WorldWideScience

Sample records for structural nuclear composites

  1. Nuclear structure

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.

    1986-01-01

    The paper on 'nuclear structure' is the Appendix to the Daresbury (United Kingdom) Annual Report 1985/86, and contains the research work carried out at the Nuclear Structure Facility, Daresbury, within that period. During the year a total of 74 experiments were scheduled covering the main areas of activity including: nuclear collective motion, nuclei far from stability, and nuclear collisions. The Appendix contains brief reports on these experiments and associated theory. (U.K.)

  2. Composition - structure - properties relationships of peraluminous glasses for nuclear waste containment

    International Nuclear Information System (INIS)

    Piovesan, Victor

    2016-01-01

    Part of the Research and Development program concerning high level nuclear waste conditioning aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of homogeneity, thermal stability, long term behavior and process ability. This study focuses on peraluminous glasses, defined by an excess of aluminum ions Al 3+ in comparison with modifier elements such as Na + , Li + or Ca 2+ . A Design of Experiment approach has been employed to determine relationships between composition of simplified peraluminous glasses (SiO 2 - B 2 O 3 - Al 2 O 3 - Na 2 O - Li 2 O - CaO - La 2 O 3 ) and their physical properties such as viscosity, glass transition temperature and glass homogeneity. Moreover, some structural investigation (NMR) was performed in order to better understand the structural role of Na + , Li + and Ca 2+ and the structural organization of peraluminous glasses. Then, physical and chemical properties of fully simulated peraluminous glasses were characterized to evaluate transposition between simplified and fully simulated glasses and also to put forward the potential of peraluminous glasses for nuclear waste containment. (author) [fr

  3. Thermal characterization of tubular SiC/SiC composite structures for nuclear applications

    International Nuclear Information System (INIS)

    Duquesne, Loys

    2015-01-01

    Researches on the development on SiCf/SiC refractory composites for generation IV nuclear fuel cladding led the CEA to focus on the thermal behavior of these materials. In particular, knowledge of the thermal properties is essential for designing the components. Regarding the development of the 'sandwich' cladding concept, for which the complexity and the geometry differ from the conventionally used flat tubes, usual measurement methods are unsuitable. This study reports on the characterization and modeling of the thermal behavior of these structures. The first part deals with the identification of the global thermal parameters for the different layers of a 'sandwich' cladding. For this purpose, a flash method is used and an experimental device suitable for tubular geometries was developed. A new estimation method based on the combination of both collected signals in front and rear faces allows the identification of the thermal diffusivity of tubular composites using infrared thermography. The second part focuses on a virtual material approach, established to describe the thermal behavior of a 'sandwich' cladding, starting from the measured properties of the elementary components (fibers and matrix). They are then used as input data for the heat transfer modeling. Confrontations between experimental measurements and numerical results finally allow us to understand the importance of the various key parameters governing the heat transfer. (author) [fr

  4. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  5. Nuclear structure

    International Nuclear Information System (INIS)

    Diamond, R.M.; Stephens, F.S.; Deleplanque, M.A.; Draper, J.E.; Dines, E.L.; Davis, U.C.; Macchiavelli, A.O.

    1984-01-01

    Essentially the whole range of spins possible for many nuclei in the periodic table is available with the use of the 88-Inch cyclotron and SuperHILAC accelerators. Nuclei carry angular momentum principally in two ways: by aligning individual high j nucleons, and by a collective rotation of the nucleus as a whole. Deformed nuclei use both modes and it is the interplay between the single-particle and collective modes that leads to the great diversity of nuclear properties at high spin. Information about these states and their properties is obtained only by detailed γ-ray spectroscopy of their de-exciting transitions. But for the higher spins the population is usually spread over so many states that only average values of continuum properties can be determined. So one of the goals of present-day research is to push discrete spectroscopic studies to higher spin states, reducing the continuum region. To do this requires that the number of cascade pathways observed be reduced to a small enough number so that individual transitions can show. One way is to use a combination of sum-energy and multiplicity selection, that is, to define a smaller entry region. This is what the NaI crystal balls can do. Another technique is to set gates on the highest-lying discrete transitions observed and look at what is in coincidence (ahead) of them. Either method requires a drastic decrease in the number of cascades selected, so very good statistics are needed and this means many detectors as close as possible to the target. The authors use both techniques simultaneously. Current and planned experiments are described

  6. Composition effects on chemical durability and viscosity of nuclear waste glasses - systematic studies and structural thermodynamic models

    International Nuclear Information System (INIS)

    Feng, X.

    1988-01-01

    Two of the primary criteria for the acceptability of nuclear waste glasses are their durability, i.e. chemical resistance to aqueous attack for 10 4 to 10 5 years, and processability, which requires their viscosity at the desired melt temperature to be sufficiently low. Chapter 3 presents the results of systematic composition variation studies around the preliminary reference glass composition WV205 and an atomistic interpretation of the effects of individual oxides. Chapter 4 is concerned with modifications of the Jantzen-Plodinec hydration model which takes into account formation of complex aluminosilicate compounds in the glass. Chapter 5 is devoted to the development and validation of the structural-thermodynamic model for both durability and viscosity. This model assumes the strength of bonds between atoms to be the controlling factor in the composition dependence of these glass properties. The binding strengths are derived from the known heats of formation and the structural roles of constituent oxides. Since the coordination state of various oxides in the glass is temperature dependent and cation size has opposite effects on the two properties, the correlation between melt viscosity and rate of corrosion at low temperature is not simply linear. Chapter 6 surveys the effects of aqueous phase composition on the leach behavior of glasses. These studies provide a comprehensive view of the effects of both glass composition and leachant composition on leaching. The models developed correlate both durability and viscosity with glass composition. A major implication is that these findings can be used in the systematic optimization of the properties of complex oxide glasses

  7. Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Dainan Zhang

    2017-02-01

    Full Text Available Abstract Natural organic matter (NOM plays important roles in biological, chemical, and physical processes within the terrestrial and aquatic ecosystem. Despite its importance, a clear and exhaustive knowledge on NOM chemistry still lacks. Aiming to prove that advanced solid-state 13C nuclear magnetic resonance (NMR techniques may contribute to fill such a gap, in this paper we reported relevant examples of its applicability to NOM components, such as biomass, deposition material, sediments, and kerogen samples. It is found that nonhydrolyzable organic carbons (NHC, chars, and polymethylene carbons are important in the investigated samples. The structure of each of the NHC fractions is similar to that of kerogens, highlighting the importance of selective preservation of NOM to the kerogen origin in the investigated aquatic ecosystems. Moreover, during the artificial maturation experiments of kerogen, the chemical and structural characteristics such as protonated aromatic, nonprotonated carbons, and aromatic cluster size play important roles in the origin and variation of nanoporosity during kerogen maturation. Graphical abstract NMR parameters of thermally stimulated kerogens

  8. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  9. Accident tolerant composite nuclear fuels

    Directory of Open Access Journals (Sweden)

    Szpunar Barbara

    2017-01-01

    Full Text Available Investigated accident tolerant nuclear fuels are fuels with enhanced thermal conductivity, which can withstand the loss of coolant for a longer time by allowing faster dissipation of heat, thus lowering the centerline temperature and preventing the melting of the fuel. Traditional nuclear fuels have a very low thermal conductivity and can be significantly enhanced if transformed into a composite with a very high thermal conductivity components. In this study, we analyze the thermal properties of various composites of mixed oxides and thoria fuels to improve thermal conductivity for the next generation safer nuclear reactors.

  10. Composite containment for nuclear power

    International Nuclear Information System (INIS)

    Harstead, G.A.; Soeoet, O.

    1977-01-01

    Fundamentally, a nuclear reactor containment structure provides three major functions; namely, (1), to withstand loads due to pressure and temperature increase due to Design Basis Accident (DBA) (2), to withstand environmental loads such as seismic, tornado and normal loads, and (3) act as a radiation shield. Conventional design practise is to employ either a steel vessel and concrete shield building or a steel lined concrete structure. This paper deals with a new concept in which a steel liner is employed which carries much of the primary membrane loads. This type of structure is similar in some aspects to the previously described systems: a) A mat, lined with a thin plate on its top surface, is similar to concrete containment. b) A cylinder and hemispherical dome, made up of steel plate and concrete, is about 2.5 feet thick (the minimum required for radiation shielding). Although the steel plate and concrete are in contact, as in concrete containment, the steel plate in composite containment is much thicker than the liner. There are two main advantages over present practise; namely reduction of materials and therefore reduced capital cost and even more significantly a shortened construction schedule which will permit more flexibility in overall plant construction schedule and will benefit the cash flow situation. (Auth.)

  11. Multifunctional Structural Composite Batteries

    Science.gov (United States)

    2007-09-01

    Conference held in Dallas, Texas on 6-9 November 2006. We are developing structural polymeric composites that both carry structural loads and store...structural polymeric composites that both carry structural loads and store electrochemical energy. These multifunctional batteries could replace inert...solid-state goal, and is compatible with our PEO -based resin electrolytes . The metal substrate provides structural support while acting as a

  12. Multifunctional Composite Structure

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is developing a Composite Sandwich Habitable Pressurized Structure for deep space travel. Permeability, radiation, & micrometeoroids and orbital...

  13. Nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1992-01-01

    New results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported

  14. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1990-06-01

    This report summarizes progress during the past ten months in the following areas of research: pion double charge exchange reactions, including a theory of the isotensor term in the pion-nucleus optical potential, and a study of meson exchange contributions to the reactions at low energies. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and to test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values

  15. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Gromov, K.Ya.; Malov, L.A.; Shilov, V.M.

    1994-01-01

    The Fourth International Conference on selected topics in nuclear structure was held at Dubna in July 1994 on recent experimental and theoretical investigations in nuclear structure. Topics discussed were the following: nuclear structure at low-energy excitations (collective quasiparticle phenomena, proton-neutron interactions, microscopic and phenomenological theories of nuclear structure; nuclear structure studies with charged particles. heavy ions, neutrons and photons; nuclei at high angular momenta and superdeformation, structure and decay properties of giant resonances, charge-exchange resonances and β-decay; semiclassical approach of large amplitude collective motion and structure of hot nuclei

  16. Ceramics composites for next generation nuclear reactors

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Rebac, Tomislav; Chen, Jiachao; Dai, Yong; Hoffelner, Wolfgang

    2011-01-01

    Silicon carbide and carbon based composite materials are promising candidates for structural components of future nuclear systems. From non nuclear applications, both, the silicon carbide and the carbon matrix are well known for their excellent high temperature behavior and in case of the carbide, for the chemical inertness. The usage of these materials in their composite variant is inevitable, as the additionally introduced ductility is absolutely necessary in safety relevant components. Possible applications are structural components in high temperature reactors and claddings of advanced reactor systems, such as gas cooled fast reactors, including subcritical ones. The basic mechanical behavior of many of these composite materials is well known, however, little data is available about the degradation in mechanical performance after irradiation. The present paper investigates the mechanical behavior of four different composite materials before and after proton and neutron irradiation. The testing method is a three point bend experiment on non-notched sample bars. Four kinds of materials were tested. Two chemically vapor infiltrated CVI composites with silicon carbide matrices, one with a 2D silicon carbide fiber structure, and the other one with carbon fibers woven in a 2D structure. The two others were liquid silicon infiltrated LSI, both with carbon fibers, but one with a random and the other one with a 2D woven structure. The CVI samples with carbon fibers showed the highest mechanical strength after irradiation. The CVI material with silicon carbide fibers degraded most, but starting from a very high strength before irradiation. Both LSI materials showed a quite constant performance, before and after irradiation. (author)

  17. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    1994-01-01

    The collection of abstracts on selected topics in nuclear structure are given. Special attention pays to collective excitations and high-spin states of nuclei, giant resonance structure, nuclear reaction mechanisms and so on

  18. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  19. Deployable Soft Composite Structures

    Science.gov (United States)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  20. Investigations of Nuclear Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, Demetrios [Washington Univ., St. Louis, MO (United States); Reviol, W. [Washington Univ., St. Louis, MO (United States)

    2015-07-15

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at exciting the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.

  1. Diabatic orbitals in nuclear structure

    International Nuclear Information System (INIS)

    Bengtsson, Tord.

    1989-09-01

    The importance of wavefunctions in detailed nuclear structure calculations is emphasized. A scheme to enable studies of the development of wavefunctions as the hamiltonian gradually changes is presented. By using this scheme, nuclear structure properties can be calculated with great detail. (author)

  2. Nuclear Structure References (NSR) file

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1978-08-01

    The use of the Nuclear Structure References file by the Nuclear Data Project at ORNL is described. Much of the report concerns format information of interest only to those preparing input to the system or otherwise needing detailed knowledge of its internal structure. 17 figures

  3. Bonded and Stitched Composite Structure

    Science.gov (United States)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  4. Evaluated nuclear structure data file

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1996-01-01

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides, as derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and bibliographic files, can be accessed on-line through the INTERNET or modem, and some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory. (orig.)

  5. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  6. Compositions and methods for treating nuclear fuel

    Science.gov (United States)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  7. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  8. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  9. Nuclear Structure at the Limits

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1998-01-01

    One of the frontiers of todays nuclear science is the journey to the limits of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei

  10. Nuclear Structure at the Limits

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, Witold

    1997-12-31

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.

  11. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  12. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  13. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  14. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  15. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  16. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Faessler, A.

    1990-01-01

    Today's dream of nuclear structure physics is to calculate the properties of nuclei starting from Quantum-Chromodynamics (QCD). However, we are definitely not able to do that today and may be even in the future one would wish only to show in principle that this is possible. It probably will never be a daily approach to study excitation energies, transitions probabilities and other properties of nuclei. This paper discusses the possibility of coming from the shore of QCD to the other side of the river, to nuclear structure, not in one great arch buy like medieval bridges in several arches grounded each solidly on pillars going down to the river floor and by that connecting theory with the solid ground of experiments. The first arch is meant to connect QCD and the nucleon-nucleon phase shifts with the help to the nucleon-nucleon phase shifts with the experimentally fitted effective interactions for the final model spaces used in nuclear structure calculations. This is at the moment still by far the weakest arch although a large amount of work and ideas have been invested since about the middle of the 60's to derive a theory of effective interactions and to establish the connection of the effective interaction fitted to nuclear structure data with the bare interaction between nucleons in the vacuum. The last arch is connecting the effective nucleon-nucleon interaction with nuclear structure properties

  17. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  18. Composite desiccant structure

    Science.gov (United States)

    Fraioli, Anthony V.; Schertz, William W.

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  19. Composite cladding for nuclear fuel elements

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1975-01-01

    The composite cladding described is for nuclear reactors and comprises a zirconium alloy substrate, a metallurgically bonded metal barrier on the inner surface of the substrate, and a metallurgically bonded internal coating on the inner surface of the metal barrier. The metal of the barrier is selected from aluminium, niobium, copper, nickel, stainless steel or iron. The internal coating is zirconium alloy [fr

  20. Nuclear Structure at the Limits

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W.

    1998-01-12

    One of the frontiers of today�s nuclear science is the �journey to the limits� of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  1. Nuclear structure of Trypanosoma cruzi.

    Science.gov (United States)

    Schenkman, Sergio; Pascoalino, Bruno dos Santos; Nardelli, Sheila C

    2011-01-01

    The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general

  2. Laser measurements and nuclear structure

    International Nuclear Information System (INIS)

    Leander, G.A.

    1982-01-01

    The nuclear states amenable to laser studies are reviewed with respect to their structure. Systematic predictions are made, e.g., for magnetic moments of parity-mixed intrinsic orbitals in the Ac isotopes and for the shape of the known high-spin isomers in the Pb region

  3. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Stachura, Z.

    1984-09-01

    19. winter school in Zakopane was devoted to selected topics in nuclear structure such as: production of spin resonances, heavy ions reactions and their applications to the investigation of high spin states, octupole deformations, excited states and production of new elements etc. The experimental data are ofen compared with theoretical predictions. Report contains 28 papers. (M.F.W.)

  4. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  5. Precision Composite Space Structures

    Science.gov (United States)

    2007-10-15

    processing of truss elements, e.g., using coating or multilayer insulation, can achieve certain success in alleviating thermal distortion problems...myViewport.setValues(displayedObject=hexpart) myViewport.partDisplay.setValues(renderStyle=SHADED) print’Part created from Extrusion ...strength of multilayered composites under a plane-stress state. Compos Sci Technol 1998;58(7):1209-1223. [D.219]. Zinoviev PA, Lebedeva OV, Tairova

  6. Advanced technology composite aircraft structures

    Science.gov (United States)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  7. Deformation Characteristics of Composite Structures

    Directory of Open Access Journals (Sweden)

    Theddeus T. AKANO

    2016-08-01

    Full Text Available The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoing the arbitrarily large displacements and rotations, but small strains, is a common problem in the application of these engineering composite systems. This paper presents a nonlinear finite element model which is able to estimate the deformations of the fibre-reinforced epoxy composite beams. The governing equations are based on the Euler-Bernoulli beam theory (EBBT with a von Kármán type of kinematic nonlinearity. The anisotropic elasticity is employed for the material model of the composite material. Moreover, the characterization of the mechanical properties of the composite material is achieved through a tensile test, while a simple laboratory experiment is used to validate the model. The results reveal that the composite fibre orientation, the type of applied load and boundary condition, affect the deformation characteristics of the composite structures. The nonlinearity is an important factor that should be taken into consideration in the analysis of the fibre-reinforced epoxy composites.

  8. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  9. Problems of structural mechanics in nuclear design

    International Nuclear Information System (INIS)

    Patwardhan, V.M.; Kakodkar, Anil

    1975-01-01

    A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)

  10. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  11. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  12. Nuclear matrix - structure, function and pathogenesis.

    Science.gov (United States)

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  13. Composite Crew Module: Primary Structure

    Science.gov (United States)

    Kirsch, Michael T.

    2011-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.

  14. ENSDF: a nuclear structure data bank for nuclear physicists

    International Nuclear Information System (INIS)

    Blachot, J.

    1987-02-01

    Data Banks have tremendously grown these last years. All the nuclear Structure information are now in the ENSDF. This file is used for the Nuclear Data Sheets publication. The part which contains only Adopted Data could be used as a Data Bank for Nuclear Physicists. Examples of retrevial are given [fr

  15. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  16. Optimization of Laminated Composite Structures

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup

    allows for a higher degree of tailoring of the resulting material. To enable better utilization of the composite materials, optimum design procedures can be used to assist the engineer. This PhD thesis is focused on developing numerical methods for optimization of laminated composite structures....... The first part of the thesis is intended as an aid to read the included papers. Initially the field of research is introduced and the performed research is motivated. Secondly, the state-of-the-art is reviewed. The review includes parameterizations of the constitutive properties, linear and geometrically...... of the contributions of the PhD project are included in the second part of the thesis. Paper A presents a framework for free material optimization where commercially available finite element analysis software is used as analysis tool. Robust buckling optimization of laminated composite structures by including...

  17. Statistical aspects of nuclear structure

    International Nuclear Information System (INIS)

    Parikh, J.C.

    1977-01-01

    The statistical properties of energy levels and a statistical approach to transition strengths are discussed in relation to nuclear structure studies at high excitation energies. It is shown that the calculations can be extended to the ground state domain also. The discussion is based on the study of random matrix theory of level density and level spacings, using the Gaussian Orthogonal Ensemble (GOE) concept. The short range and long range correlations are also studied statistically. The polynomial expansion method is used to obtain excitation strengths. (A.K.)

  18. Selected topic in nuclear structure. V. 1

    International Nuclear Information System (INIS)

    Broda, R.; Stachura, Z.; Styczen, J.

    1985-01-01

    A report of recent experiments performed in different laboratories and a review of fundamental problems of nuclear physics connected with study of nuclear structure, that had just been solved are presented. The proceedings contain 33 articles. (M.F.-W.)

  19. Broyden's method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.

    2008-01-01

    Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations

  20. Composite structure made of concrete and timber

    OpenAIRE

    Kozjan, Ana

    2009-01-01

    Thesis work is dealing with behavior of composite structure made of concrete and timber. First the scope of the document is introduced following by description of the problem and explaining the purpose and goals. Continuing of the document is presented composite structure concrete-timber. The composite material is described, composite structure is represent, stated are reasons of coupling concrete and timber and the typical connection in composite structure are represented. Thesis describes c...

  1. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  2. Nuclear Structure in China 2010

    Science.gov (United States)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile

  3. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  4. Nuclear Structure Data for the Present Age

    International Nuclear Information System (INIS)

    Baglin, Coral M.

    2005-01-01

    The US Nuclear Data Program maintains and provides easy and free access to several comprehensive databases that assist scientists to sift through and assess the vast quantity of published nuclear structure and decay data. These databases are an invaluable asset for nuclear-science experimentalists and theorists alike, and the recommended values provided for nuclear properties such as decay modes, level energies and lifetimes, and radiation properties can also be of great importance to specialists in other fields such as medicine, geophysics, and reactor design. The Evaluated Nuclear Structure Data File (ENSDF) contains experimental nuclear structure data for all known nuclides, evaluated by the US nuclear data program evaluators in collaboration with a number of international data groups; the Nuclear Science Reference (NSR) database provides complementary bibliographic information; the Experimental Unevaluated Nuclear Data Listing (XUNDL) exists to enable rapid access to experimental nuclear-structure data compiled from the most recent publications (primarily in high-spin physics). This paper presents an overview of the nuclear structure and decay data available through these databases, with emphasis on recent and forthcoming additions to and presentations of the available material

  5. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  6. Functionally Graded Metal-Metal Composite Structures

    Science.gov (United States)

    Brice, Craig A. (Inventor)

    2017-01-01

    Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.

  7. Influence of nuclear glasses composition on their liability to deterioration

    International Nuclear Information System (INIS)

    Tovena, I.

    1995-01-01

    The aim of this thesis is to contribute to the study of the nuclear glasses composition influence on their liability to deterioration. The methodology of the experimental research used has lead to define between the thirty oxides which form the reference glass light water, six oxides of interest. For each of these oxides, a composition variation area has been defined. A matrix of twenty glass compositions has then been defined. The preparation of materials of these compositions has sometimes lead to materials weakly heterogeneous which have been characterized before deterioration. This study has been completed by those of three glasses in a composition variation area narrower of the light water nuclear glass : the R7T7 and two glasses at limits having respectively an initial dissolution velocity at 100 degrees Celsius theoretically maximum and minimum. Some deterioration parameters in pure water have been experimentally measured on the twenty three glasses : 1) an initial dissolution velocity at 100 degrees (Vo 1 00) Celsius and another one at 90 degrees Celsius (Vo 9 0) 2) a dissolution velocity in conditions near the saturation at 90 degrees Celsius 3) an apparent solubility of glass based on the ortho silicic acid activity 4) the evolution of the dissolution kinetics at 90 degrees Celsius in sub-saturated medium towards saturated medium 5) the alteration films nature developed at the glasses surface during these last alteration tests. Some thermodynamic and structural models have been studied in order to predict Vo 9 0 and Vo 1 00. The dissolution kinetic law developed from reference glass dissolution results has been studied with the calculation code LIXIVER. It has not been able to be used for most of the glasses compositions studied. As a consequence, the glasses dissolution control by a surface reaction which are itself controlled by the only dissolved silica is an hypothesis which is not verified for the greater part of the glasses. (O.L.). refs., figs

  8. Nuclear Structure and Decay Data (NSDD) network

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2001-02-01

    This report provides a brief description of the Nuclear Structure and Decay Data (NSDD) Network in response to a request from the Advisory Group Meeting on ''Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators'' (IAEA, Vienna, 14-17 December 1998, report IAEA(NDS)-399 (1999)). This report supersedes the special issue of the Nuclear Data Newsletter No. 20 published in November 1994. (author)

  9. Hybrid Simulation of Composite Structures

    DEFF Research Database (Denmark)

    Høgh, Jacob Herold

    Hybrid simulation is a substructural method combining a numerical simulation with a physical experiment. A structure is thereby simulated under the assumption that a substructure’s response is well known and easily modelled while a given substructure is studied more accurately in a physical...... of freedom. In this dissertation the main focus is to develop hybrid simulation for composite structures e.g. wind turbine blades where the boundary between the numerical model and the physical experiment is continues i.e. in principal infinite amount of degrees of freedom. This highly complicates...... the transfer system and the control and monitoring techniques in the shared boundary is therefore a key issue in this type of hybrid simulation. During the research, hybrid simulation platforms have been programmed capable of running on different time scales with advanced control and monitoring techniques...

  10. Structural Health Monitoring: Numerical Damage Predictor for Composite Structures

    National Research Council Canada - National Science Library

    Lannamann, Daniel

    2001-01-01

    .... Wide use of composites is found in aircraft, armored vehicles, ships and civil structures This present research demonstrates the ability to numerically detect damage in a composite sandwich structure...

  11. Compositions of nuclear maps with vector measures and ...

    African Journals Online (AJOL)

    The properties of the compositions of nuclear maps, between two locally convex spaces, with vector measures and measurable functions are investigated. The composition with a vector measure has improved variational properties and a precompact range. The measurability and integrability properties of the composition of ...

  12. Three nucleon interaction and nuclear composition

    International Nuclear Information System (INIS)

    Pandharipande, V.R.

    1983-01-01

    The author discusses results of some of the calculations carried out by J. Carlson, I. Lagaris, J. Lomnitz-Adler, R.A. Smith, R.B. Wiringa and himself to study the three nucleon interaction. The group has attempted to calculate the wavefunctions and binding energies of 3 H, 3 He, 4 He and nuclear matter, with the variational method, from a nonrelativistic Hamiltonian. Only nucleon degrees of freedom are retained in this Hamiltonian; the effects of other degrees of freedom are implicit in the two and three nucleon potentials. The author discusses further the calculations carried out, in collaboration with B. Friman, and R.B. Wiringa, to study the composition of nuclei. Nucleons interact by many processes including exchange of pions with or without excitation to isobar (Δ) states. Thus the nucleus contains pions being exchanged, and some nucleons in the Δ state. The group attempts to calculate the number and momentum distribution of these exchanged pions, and the fraction of time a nucleon in the nucleus is in the Δ state. 21 references, 4 figures

  13. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  14. Multiscale Multifunctional Progressive Fracture of Composite Structures

    Science.gov (United States)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  15. Multifunctional Composite Nanofibers for Smart Structures

    Science.gov (United States)

    2011-10-13

    translated to the composite nanofibrous structures in the form of nonwovens and yarns? (3) Can these functional composite fibers be integrated into...nanoparticles were co- electrospun into nonwoven mat and over meter long yarn. The SEM and TEM image in Report Documentation Page Form ApprovedOMB No...functional composite nanofiber structures (yarn and nonwoven ) characterized we explored the feasibility of integrating these functional composite fibers into

  16. Nuclear pore structure: warming up the core.

    Science.gov (United States)

    Harel, Amnon; Gruenbaum, Yosef

    2011-07-22

    Structural determination of the nuclear pore complex has been limited by the complexity and size of this cellular megalith. By taking advantage of exceptionally stable nucleoporins from the thermophilic fungus Chaetomium thermophilum, Amlacher et al. (2011) provide new insight into a core element of the nuclear pore scaffold. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  18. Fire resistance of structural composite lumber products

    Science.gov (United States)

    Robert H. White

    2006-01-01

    Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber...

  19. Electromagnetic studies of nuclear structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  20. Structural dynamic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Halbritter, A.L.; Koishi, N.; Prates, C.L.M.

    1986-01-01

    One of the most important items to be considered in order to guarantee the safety conditions of a Nuclear Power Plant is the design of the civil structures, the electrical and mechanical components and piping system taking into account non-conventional loading cases, e.g. earthquakes and explosions pressure waves. The general procedures used in the structural dynamic analysis of Nuclear Power Plants are presented, specially for seismic and explosion loads. (Author) [pt

  1. Modelling the Crash Response of Composite Structures

    OpenAIRE

    Johnson, A.; Kohlgrüber, D.

    1997-01-01

    The paper describes recent progress on the materials modelling and numerical simulation of the dynamic crash response of fibre reinforced composite structures. The work is based on the application of explicit finite element analysis codes to composite aircraft structures and structural elements under low velocity impact conditions (up to 15 m/s). Structures studied are designed to absorb crash energy and reduce seat deceleration pulses in aircraft subfloor structures, and consist of an aircra...

  2. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  3. Inside-Out Manufacturing of Composite Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Tooling for the manufacture of large structures from composite materials often costs much more than individual parts, rendering the processes unattractive for...

  4. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  5. Nucleon isobars in nuclear structure

    International Nuclear Information System (INIS)

    Green, A.M.

    1978-01-01

    Present day uncertainties in the theory of nuclear matter, which indicate that there is room for the large corrections that appear when Δs are treated explicitly, are considered. The role that the Δ plays in exchange currents, in the two-nucleon potential, and in three-body potentials is examined. The form of the transition potential, generation of isobar configurations and the effect of isobars in few nucleon systems are considered. (U.K.)

  6. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  7. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    Abstract. In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass ...

  8. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions.

  9. Structure-property relationships in eutectic composites

    Science.gov (United States)

    Hertzberg, R. W.

    1976-01-01

    The preparation of a composite material of eutectic composition directly from the molten state is investigated. The manufacture of eutectic composites by unidirectional solidification is reviewed, and it is shown how two-phase composite structures of given relative volume fraction can be produced with a range of particle sizes. Crystallographic relationships and the thermal stability of interfaces in controlled eutectic structures are examined, the mechanical behavior of aligned eutectic microstructures is discussed, and characteristics of eutectic composites having mechanical properties of engineering significance are evaluated. Specific properties of the Ni-Nb eutectic alloy are reviewed to demonstrate the effect of structure control (through directional solidification) on the mechanical response of a eutectic composite. It is noted that unidirectionally solidified eutectic composites possess highly aligned and thermally stable microstructures and also exhibit excellent combinations of strength and ductility to very high temperature levels.

  10. Structural mechanics in nuclear power plant

    International Nuclear Information System (INIS)

    Han Liangbi

    1998-01-01

    The main research works in structural mechanics in reactor technology are emphatically introduced. It is completed by structural mechanics engineers at Shanghai Nuclear Research and Design Institute associated with the design and construction problems for Qinshan NPP Unit 1 and Pakistani CHASNUPP. About structural mechanics problem for the containment, the rock and soft soil two different bases are considered. For the later the interaction between soil and structure is carefully studied. About the structural mechanics problem for the equipment and pipings, the three dimensional stress and fracture analyses are studied. For the structural dynamics problem, including flow induced vibration, the response analyses under earthquake and loss coolant accident loadings are studied. For pipings, the leak before break technique has been emphatically introduced. A lot of mathematical models, the used computer codes, analytical calculations and experimental results are also introduced. This is a comprehensive description about structural mechanics problem in pressurized water reactor nuclear power plant

  11. On elastic structural elements for nuclear reactors

    International Nuclear Information System (INIS)

    Povolo, F.

    1978-03-01

    The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de

  12. Progress report on nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1991-01-01

    In this report, new results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. 6 figs., 5 tabs

  13. Theoretical nuclear structure. Progress report for 1997

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Strayer, M.R.

    1997-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops

  14. Deployable Composite Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking innovative structure technologies that will advance expandable modules for orbital and surface based habitats. These secondary structures must...

  15. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  16. Nuclear structure at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  17. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  18. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.

    Science.gov (United States)

    Prince, Elisabeth; Alizadehgiashi, Moien; Campbell, Melissa; Khuu, Nancy; Albulescu, Alexandra; De France, Kevin; Ratkov, Dimitrije; Li, Yunfeng; Hoare, Todd; Kumacheva, Eugenia

    2018-04-09

    Compositional and structural patterns play a crucial role in the function of many biological tissues. In the present work, for nanofibrillar hydrogels formed by chemically cross-linked cellulose nanocrystals (CNC) and gelatin, we report a microextrusion-based 3D printing method to generate structurally anisotropic hydrogel sheets with CNCs aligned in the direction of extrusion. We prepared hydrogels with a uniform composition, as well as hydrogels with two different types of compositional gradients. In the first type of gradient hydrogel, the composition of the sheet varied parallel to the direction of CNC alignment. In the second hydrogel type, the composition of the sheet changed orthogonally to the direction of CNC alignment. The hydrogels exhibited gradients in structure, mechanical properties, and permeability, all governed by the compositional patterns, as well as cytocompatibility. These hydrogels have promising applications for both fundamental research and for tissue engineering and regenerative medicine.

  19. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  20. Adaptive, tolerant and efficient composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Martin; Sinapius, Michael (eds.) [German Aerospace Center DLR, Braunschweig (Germany). Inst. of Composite Structures and Adaptive Systems

    2013-07-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.

  1. Nuclear Structure Research at Richmond

    Energy Technology Data Exchange (ETDEWEB)

    Beausang, Cornelius W. [Univ. of Richmond, VA (United States)

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  2. Quasi-free scattering and nuclear structure

    International Nuclear Information System (INIS)

    Vasconcellos, C.A.Z.

    1982-01-01

    In quasi-free scatterings the knocked-out nucleon is in general effectively polarized. This polarization can be observed by using polarized incoming protons. The effective polarization of the knocked-out nucleon is heavily dependent on certain spin correlations. Therefore the quasi-free reaction may be used as a method to investigate nuclear structure. Effective polarization for the reactions 14 N(p,2p) 13 C and 6 Li(p,2p) 5 He are considered using the following nuclear structure models: [jj] coupling shell model, [LS] coupling and a [deuteron-core] cluster model. (Author) [pt

  3. Reliability assessment of nuclear structural systems

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1983-01-01

    Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented

  4. Nuclear structure of $^{231}$Ac

    CERN Document Server

    Boutami, R; Mach, H; Kurcewicz, W; Fraile, L M; Gulda, K; Aas, A J; García-Raffi, L M; Løvhøiden, G; Martínez, T; Rubio, B; Taín, J L; Tengblad, O

    2008-01-01

    The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  5. Nuclear structure of 231Ac

    International Nuclear Information System (INIS)

    Boutami, R.; Borge, M.J.G.; Mach, H.; Kurcewicz, W.; Fraile, L.M.; Gulda, K.; Aas, A.J.; Garcia-Raffi, L.M.; Lovhoiden, G.; Martinez, T.; Rubio, B.; Tain, J.L.; Tengblad, O.

    2008-01-01

    The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β - decay of 231 Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231 Ra → 231 Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

  6. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo

    2013-01-01

    tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...... was performed with a higher thickness reduction. Memory steps were performed at room temperature and 120 °C so as to test the foam core in the glassy and rubbery state, respectively. Shape memory tests revealed the ability of the shape memory composite structures to recover the initial shape also after severe......A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...

  7. Mechanical Model Development for Composite Structural Supercapacitors

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  8. QCD Structure of Nuclear Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Florida Intl Univ., Miami, FL (United States)

    2011-05-25

    This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in 3He, and double Δ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Δ-isobars production in deuteron breakup, HRM angular distributions for the two double Δ channels were compared to the pn channel and to each other. An important prediction from this study is that the Δ++ Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a double Δ system in the initial state of the interaction. For such models both channels should have the same strength.

  9. Nuclear structure and the single charge exchange

    International Nuclear Information System (INIS)

    Oset, E.; Strottman, D.

    1979-01-01

    The influence of nuclear structure on meson-induced single-charge-exchange reactions on light nuclei is discussed within the context of the Glauber approximation. Selection rules which are expected to be approximately obeyed in elastic and inelastic pion and kaon scattering are proposed. Theoretical predictions are presented for (π + ,π 0 ) and (K + ,K 0 ) reactions on 13 C. 14 figures

  10. Nuclear structure models: Applications and development

    International Nuclear Information System (INIS)

    Semmes, P.B.

    1992-07-01

    This report discusses the following topics: Studies of superdeformed States; Signature Inversion in Odd-Odd Nuclei: A fingerprint of Triaxiality; Signature Inversion in 120 Cs - Evidence for a Residual p-n Interaction; Signatures of γ Deformation in Nuclei and an Application to 125 Xe; Nuclear Spins and Moments: Fundamental Structural Information; and Electromagnetic Properties of 181 Ir: Evidence of β Stretching

  11. Progress on nuclear modifications of structure functions

    Directory of Open Access Journals (Sweden)

    Kumano S.

    2016-01-01

    Full Text Available We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010’s.

  12. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  13. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    However, nuclear structure at high spin and excitation energies (∼ 6 MeV) would require a coupling of excited 1p–1h with 208Pb core. The coupling between single- particle orbitals and collective vibrations of core complicates the simple shell model picture. With increasing neutron number, Ra isotopes show an abrupt ...

  14. Nuclear structure at high excitation energies

    Indian Academy of Sciences (India)

    Study of the structure of nuclei in extreme conditions of angular momentum, excitation energy (temperature) and isospin has recently become a very interesting and active area of research in nuclear physics. Experimentally compound nuclei can be formed at high excitation energies and in high angular momentum states ...

  15. Pion double charge exchange and nuclear structure

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1987-01-01

    Pion double charge exchange to both the double-analog state and the ground state is studied for medium weight nuclei. The relative cross section of these two transitions and the importance of nuclear structure as a function of pion kinetic energy is examined. 16 figs., 5 tabs

  16. In situ structural analysis of the human nuclear pore complex.

    Science.gov (United States)

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.

  17. Design and Processing of Structural Composite Batteries

    National Research Council Canada - National Science Library

    Wong, E. L; Baechle, D. M; Xu, K; Carter, R. H; Snyder, J. F; Wetzel, E. D

    2007-01-01

    ...) 2007 Symposium and Exhibition held in Baltimore, MD, on 3-7 June 2007. Multifunctional structural composites are being developed to simultaneously bear mechanical loads and store electrochemical energy...

  18. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1979-01-01

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  19. Isotopically enriched structural materials in nuclear devices

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Shimwell, J.; Gilbert, M.R.

    2015-01-01

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  20. Deployable Composite Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking innovative structure technologies that will advance expandable exploration space modules and surface based habitats. To address this need CTD has...

  1. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  2. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  3. Structural investigation of a new composite process

    Science.gov (United States)

    Mayer, Philippe; Becker, Eric; Bigot, Régis; Kaïci, Bruno

    2017-10-01

    This work presents a study done on a new patented forming process, created to produce massive composite parts used for structural applications in automotive and aeronautics industries. The study presented in this paper deals with an experimental setup, used to characterize thick composite cylinders. The author presents the characterization of these cylinders and a new analysis method, in order to understand the consolidation steps of the composite in this forming process. The structural health of the part is illustrated by the analysis of the intra-bundle and inter-bundle porosities, by micrographs characterizations.

  4. Hirschegg '03: Nuclear structure and dynamics at the limits. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Knoll, J.; Noerenberg, W.; Wambach, J.

    2003-01-01

    The following topics were dealt with: Nuclear structure ans symmetries, nuclei near the drip line, halo nuclei and nuclear resonances, superheavy elements and fission, fragmentation and multifragmentation, nuclear astrophysics. (HSI)

  5. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  6. Adaptive, tolerant and efficient composite structures

    CERN Document Server

    Sinapius, Michael

    2013-01-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances.  Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along ...

  7. Integrating electrostatic adhesion to composite structures

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  8. Backfill composition for secondary barriers in nuclear waste repositories

    Science.gov (United States)

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  9. Investigation of Nuclear Partonic Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States); Engelage, J. M.

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  10. Proceedings of the conference on nuclear structure at the limits

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains the papers from the Proceedings of the Conference on Nuclear Structure at the Limits. Some of the areas covered by these papers are: nuclear deformation; nuclear decay; nuclear spectroscopy; radioactive ion beams; nuclear models; high spin states; and heavy ion reactions. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. Lithographically defined microporous carbon-composite structures

    Science.gov (United States)

    Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.

    2016-12-06

    A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.

  12. Quantitative NDE of Composite Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  13. Building nuclear structures : challenges and achievements

    International Nuclear Information System (INIS)

    Gad, V.M.

    1981-01-01

    Reliability and safety are factors of prime importance in construction of civil engineering structures of nuclear facilities. There cannot be any compromise in the strength and life of the structure. This involves rigorous control of: (1) quality of materials and end products, (2) time taken for construction, (3) cost, and also continuing innovation. India has now accumulated more than three decades of experience in nuclear civil engineering and the civil engineering fraternity of India and particularly of the Department of Atomic Energy is now fully capable of designing and construction of all types of structures involved in the nuclear field. Illustrative examples are given. Dome of the CIRUS reactor was constructed in steel plates, but then there was a switch over to reinforced concrete for containment structures and subsequently to prestressed concrete. The aspects taken into consideration of the design to ensure absolute leak tightness are: (1) earthquake safeguards, (2) concrete surface protection, and (3) minimization of cracking in concrete due to pressure loading and shrinkage. Coordination charts are prepared for monitoring time required for various operations and time and motion studies are employed to cut down on construction time. Close control over the cost is kept through internal and external audit, executing the work departmentally or employing an outside agency as the occasion demands and proper selection of materials. Some of the innovations in materials use and construction techniques are mentioned. (K.M.)

  14. Prestressed concrete structures for nuclear power generation

    International Nuclear Information System (INIS)

    Funabashi, Isao; Ichikawa, Kazuo.

    1981-01-01

    Prestressed concrete containment vessels are about to be adopted for power reactors, and many informations have been seen recently in newspapers and technical magazines in Japan. But prestressed concrete structures have never been used in nuclear power stations in Japan. The first nuclear power plant which will use a prestressed concrete containment vessel is the Tsuruga No. 2 plant of Japan Atomic Power Co., which is a PWR plant with 1100 MW capacity. This project is in the stage of the safety deliberation by the government as of October, 1980, and if the construction of a PCCV must be started in near future, the experiences in foreign countries are indispensable for reference. Accordingly, the construction engineers and PC engineers must prepare the related technologies steadily for enabling to meet to the expectation of the users and society, and establish the construction techniques as early as possible. The tendency of constructing nuclear facilities, the kinds of power reactors, the features in the design of nuclear reactor buildings and the application of prestressed concrete construction method are described. The prestressed concrete construction method enables to rationalize the stress condition in concrete structures, to reduce the weight, to extend the span and to upgrade the material quality, thus the applications are expanded. (Kako, I.)

  15. Digitally focused array ultrasonic testing technique for carbon fiber composite structures

    OpenAIRE

    Salchak, Yana Alekseevna; Zhvyrblya, Vadim Yurievich; Sednev, Dmitry Andreevich; Lider, Andrey Markovich

    2016-01-01

    Composite fiber reinforced polymers are highly promising structures. At present, they are widely used in different areas such as aeronautics and nuclear industries. There is a great number of advantages of composite structures such as design flexibility, low cost per cubic inch, resistance to corrosion, lower material costs, lighter weight and improved productivity. However, composites degradation may be caused by different mechanisms such as overload, impact, overheating, creep and fatigue. ...

  16. SFCOMPO: A new database of isotopic compositions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Michel-Sendis, Franco; Gauld, Ian

    2014-01-01

    The numerous applications of nuclear fuel depletion simulations impact all areas related to nuclear safety. They are at the basis of, inter alia, spent fuel criticality safety analyses, reactor physics calculations, burn-up credit methodologies, decay heat thermal analyses, radiation shielding, reprocessing, waste management, deep geological repository safety studies and safeguards. Experimentally determined nuclide compositions of well-characterised spent nuclear fuel (SNF) samples are used to validate the accuracy of depletion code predictions for a given burn-up. At the same time, the measured nuclide composition of the sample is used to determine the burn-up of the fuel. It is therefore essential to have a reliable and well-qualified database of measured nuclide concentrations and relevant reactor operational data that can be used as experimental benchmark data for depletion codes and associated nuclear data. The Spent Fuel Isotopic Composition Database (SFCOMPO) has been hosted by the NEA since 2001. In 2012, a collaborative effort led by the NEA Data Bank and Oak Ridge National Laboratory (ORNL) in the United States, under the guidance of the NEA Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF) of the Working Party on Nuclear Criticality Safety (WPNCS), has resulted in the creation of an enhanced relational database structure and a significant expansion of the SFCOMPO database, which now contains experimental assay data for a wider selection of international reactor designs. The new database was released online in 2014. This new SFCOMPO database aims to provide access to open experimental SNF assay data to ensure their preservation and to facilitate their qualification as evaluated assay data suitable for the validation of methodologies used to predict the composition of irradiated nuclear fuel. Having a centralised, internationally reviewed database that makes these data openly available for a large selection of international reactor designs is of

  17. Ownership Structure, Board Composition and Investment Performance

    OpenAIRE

    Eklund, Johan; Palmberg, Johanna; Wiberg, Daniel

    2009-01-01

    In this paper the relation between ownership structure, board composition and firm performance is explored. A panel of Swedish listed firms is used to investigate how board composition affects firm performance. Board heterogeneity is measured as board size, age and gender diversity. The results show that Swedish board of directors have become more diversified in terms of gender. Also, fewer firms have the CEO on the board which can be interpreted as a sign of increased independency. The regre...

  18. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  19. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  20. A New Light Weight Structural Material for Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Afsaneh [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  1. Composite Structure Optimization with Genetic Algorithm

    Science.gov (United States)

    Deslandes, Olivier

    2014-06-01

    In the frame of optimization studies in CNES launcher directorate structure, thermic and material department, the need of an optimization tool based on metaheuristic and finite element models for composite structural dimensioning was underlined.Indeed, composite structures need complex optimization methodologies in order to be really compared to metallic structures with regard to mass, static strength and stiffness constraints (metallic structures using optimization methods better known).After some bibliography research, the use of a genetic algorithm coupled with design of experiment to generate the initial population was chosen. Academic functions were used to validate the optimization process and then it was applied to an industrial study aiming to optimize an interstage skirt with regard to its mass, stiffness and stability (global buckling).

  2. Development of SC structure modularization in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mun, Taeyoup

    2008-01-01

    New Focus on NPP are Rising Concerns on Global Warming, Potential energy crisis (geo-political), Improved reliability and safety of nuclear power plant, Advent of Generation 3+ NPP technology and Economical Energy Resource. New NPPs are 6 units in Korea and 23 in Asia being built, 32 units being planned in China by 2020 (150 by 2050), 10 units being planned in US by 2020 and IAEA expects $200 billions on NPP construction next 25 years (up to 30% of total world energy). □ SC(Steel Plate Concrete) structure · Steel Plate is used as a Structural Element instead of Reinforcing Bars in RC · SC structure consists of Steel Plate with Headed Studs. Connected by Tie-bars - The Primary Purpose of Tie-bars is to Stiffen and Hold Together the Plates during Construction Process - Headed Studs are Welded to the Inside of Steel Plate for composite action □ Benefits of SC Structure · Shorten Construction Duration for Re bar, Forming and Scaffolding Works · Minimize Site Labors · Improve the Construction Quality · Enable Construction Sites to be kept Clean □ SC Modularization · Fit for Modular Construction for Structural Features · Fit for Modular Construction for Structural Features · Inattentively Effective for Integrated Modules · Pre-fabrication, Pre-assembly and Modularization □ Project Overview · Project Name: Development of SC structure for Modularization in NPP · Project Type: Electric Power Industry R and D (Ministry of Knowledge Economy) · Duration: Sep. 2005 ∼ Aug. 2008 (36 Months) · Research Team and Scopes - Project Management: Korea Hydro and Nuclear Power Company (KHNP) - Development of Code and Standards for SC Structure: Korea Society of Steel Construction (KSSC) Korea Electric Power Research Institute (KEPRI) - Development of SC Structural Analysis and Design: Korea Power Engineering Company (KOPEC) - Development of Construction Techniques for SC Modularization: KHNP, Korea Institute of Nuclear Safety(KINS), KOPEC □ Performance

  3. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  4. Pile foundation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Jurkiewicz, W.J.; Thomaz, E.; Rideg, P.; Girao, M.

    1978-01-01

    The subject of pile foundation used for nuclear power plant structures, considering the experience gained by the designers of the Angra Nuclear Power Plant, Units 2 and 3 in Brazil is dealt with. The general concept of the pile foundations, including types and execution of the piles, is described briefly. Then the two basic models, i.e. the static model and the dynamic one, used in the design are shown, and the pertinent design assumptions as related to the Angra project are mentioned. The criteria which established the loading capacity of the piles are discussed and the geological conditions of the Angra site are also explained briefly, justifying the reasons why pile foundations are necessary in this project. After that, the design procedures and particularly the tools - i.e. the computer programs - are described. It is noted that the relatively simple but always time consuming job of loading determination calculations can be computerized too, as it was done on this project through the computer program SEASA. The interesting aspects of soil/structure interaction, applicable to static models, are covered in detail, showing the theoretical base wich was used in the program PILMAT. Then the advantage resulting from computerizing of the job of pile reinforcement design are mentioned, describing briefly the jobs done by the two special programs PILDES and PILTAB. The point is stressed that the effort computerizing the structural design of this project was not so much due to the required accuracy of the calculations, but mainly due to the need to save on the design time, as to allow to perform the design task within the relatively tight time schedule. A conclusion can be drawn that design of pile foundations for nuclear power plant structures is a more complex task than the design of bearing type of foundation for the same structures, but that the task can be always made easier when the design process can be computerized. (Author)

  5. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  6. Composite structural armor for combat vehicle applications

    Science.gov (United States)

    Haskell, William E., III; Alesi, A. L.; Parsons, G. R.

    1990-01-01

    Several projects that have demonstrated the advantages of using thick composite armor technology for structural applications in armored combat vehicles are discussed. The first involved composite cargo doors for the Marine Corps LVTP-7 amphibious landing vehicle. Another was a demonstration composite turret that offered a weight reduction of 15.5 percent. The advantages of this composite armor compared to metallic armors used for combat vehicle hull and turret applications are reduced weight at equal ballistic protection; reduced back armor spall; excellent corrosion resistance; reduced production costs by parts consolidation; and inherent thermal and acoustic insulative properties. Based on the encouraging results of these past programs, the Demonstration Composite Hull Program was started in September 1986. To demonstrate this composite armor technology, the Army's newest infantry fighting vehicle, the Bradley Fighting Vehicle (BFV), was selected as a model. A composite infantry fighting vehicle, designated the CIFV for this program, has been designed and fabricated and is currently undergoing a 6000 mile field endurance test. The CIFV demonstration vehicle uses the BFV engine, transmission, suspension, track and other equipment.

  7. Resin selection criteria for tough composite structures

    Science.gov (United States)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  8. Structural Design of Ares V Interstage Composite Structure

    Science.gov (United States)

    Sleigh, David W.; Sreekantamurthy, Thammaiah; Kosareo, Daniel N.; Martin, Robert A.; Johnson, Theodore F.

    2011-01-01

    Preliminary and detailed design studies were performed to mature composite structural design concepts for the Ares V Interstage structure as a part of NASA s Advanced Composite Technologies Project. Aluminum honeycomb sandwich and hat-stiffened composite panel structural concepts were considered. The structural design and analysis studies were performed using HyperSizer design sizing software and MSC Nastran finite element analysis software. System-level design trade studies were carried out to predict weight and margins of safety for composite honeycomb-core sandwich and composite hat-stiffened skin design concepts. Details of both preliminary and detailed design studies are presented in the paper. For the range of loads and geometry considered in this work, the hat-stiffened designs were found to be approximately 11-16 percent lighter than the sandwich designs. A down-select process was used to choose the most favorable structural concept based on a set of figures of merit, and the honeycomb sandwich design was selected as the best concept based on advantages in manufacturing cost.

  9. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  10. Structure, composition, and condition of overstory trees

    Science.gov (United States)

    Daniel A. Yaussy; Todd F. Hutchinson; Elaine Kennedy Sutherland

    2003-01-01

    The structure, composition, and condition of overstory trees in the four study areas prior to prescribed fire treatments are summarized. Stand initiation dates were similar among the study areas (ca. 1885), and coincided with the decline of the charcoal iron industry in southern Ohio. Tree basal area averaged 26.8m²/ha and was not significantly different among...

  11. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    objective of this work was to study the vegetation structure, composition and Natural ... Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant ..... Vegetation types and forest fire management in Ethiopia In: MOA & GTZ.

  12. Vegetation composition and structure influences bird species ...

    African Journals Online (AJOL)

    Two gradients of increasing vegetation structural heterogeneity were most important in influencing bird community composition and had positive effects on species diversity and the presence of most of the species assessed: (1) increasing closed cover due to woody plant density, which also had positive effects on species ...

  13. Lightning Protection for Composite Aircraft Structures

    Science.gov (United States)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  14. Timber rivets in structural composite lumber

    Science.gov (United States)

    Ronald W. Wolfe; Marshall Begel; Bruce Craig

    2004-01-01

    Timber rivet connections, originally developed for use with glulam construction, may be a viable option for use with structural composite lumber (SCL) products. Tests were conducted on small samples to assess the performance and predictability of timber rivet connections in parallel strand lumber (PSL) and laminated strand lumber (LSL). The test joint configurations...

  15. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1978-10-01

    This is the fourth issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation is published and distributed by the IAEA Nuclear Data Section every year. The material contained in this compilation is sorted according to eight subject categories: General compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes, half-lives, energies and spectra; nuclear decay processes, gamma-rays; nuclear decay processes, fission products; nuclear decay processes (others); atomic processes

  16. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  17. Nuclear structure/nuclei far from stability

    International Nuclear Information System (INIS)

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F.S.; Subotic, K.; Talbert, W.; Toth, K.S.; Tu, X.L.; Vieira, D.J.; Villari, A.C.C.; Walters, W.B.; Wildenthal, B.H.; Wilhelmy, J.B.; Winger, J.A.; Wohn, F.K.; Wouters, J.M.; Zhou, X.G.; Zhou, Z.Y.

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new

  18. Evaluation of communication structures for nuclear-specific applications

    International Nuclear Information System (INIS)

    Zahedi, P.

    2007-01-01

    This paper evaluates various implementations of communication structures associated with nuclear-specific applications. Establishing numerous network structures currently used in nuclear industry, this projects analyzes the functionality and reliability of different structures. The communication structures studied in this paper include Object Linking and Embedding process control (OPC), Dynamic Data Exchange (DDE) and Modbus Communication Protocol. The experimental aspect of this project includes development and implementation of each network structure for NPP control and shutdown systems. The results of the experimentations are used to identify the potential problems of applying such structures to nuclear industry, in order to introduce nuclear-specific network structures. (author)

  19. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  20. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural...... origin of this change is elucidated through nuclear magnetic resonance analyses and topological considerations. Furthermore, we find that addition of 1 mol% Fe2O3 exerts a complicated impact on the measured properties....

  1. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1991-01-01

    The past year has seen continued progress in our efforts. On the experimental side, we completed data acquisition on our major remaining involvement at NIKHEF, the 12 C(e,e'pp) experiment. We advanced the analysis of most of projects in low lying nuclear structure and giant resonances, of which several were completed and published. We received approval for several new experiments, and have made major contributions to design and development of detectors to be used at Bates and CEBAF. Our data interpretation efforts have been extended and enhanced with the availability of our new computer cluster. In this paper we briefly report on most of these efforts

  2. Detailed nuclear structure studies far from stability

    International Nuclear Information System (INIS)

    Wood, J.L.; Schwarzenberg, J.; Zganjar, E.F.; Rupnik, D.

    1991-01-01

    State-of--the-art spectroscopy of nuclei far from stability has achieved an extraordinary level of sophistication and detail in the last ten years. In principle, if a state can be populated, it can be characterized by its energy, spin, parity, and major decay paths. Sometimes its lifetime can be measured. In practice, one is confronted with enormous complexity. To convert raw spectroscopic data into nuclear structure data involves a complex process of disentangling gamma rays and conversion electrons into decay schemes. Specifically, coincidence techniques, especially coincidence intensities, play a crucial role in this process. Recent examples and methods from work done at UNISOR are presented

  3. ENSL and CDRL: Evaluated nuclear structure libraries

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1981-01-01

    Two files of nuclear structure data derived largely from the seventh edition of the Table of Isotopes are described. The files are computer oriented, and have been constructed to so that every decay can be traced either to an eventual ground state of to a positive flag that indicates nothing is known about further decay. The ENSL file contains level schemes derived from decay data, and the CDRL file contains the level schemes derived from particle-induced reaction data that have been merged into the ENSL file. (author)

  4. Aging management of nuclear fuel pool structures

    International Nuclear Information System (INIS)

    Hookham, C.J.

    1991-01-01

    The long-term operations of a nuclear power plant (NPP) are currently impacted by the utility's capabilities with respect to spent fuel storage. Available options for the safe, long-term storage of spent fuel are quite limited; as such, maximized usage of existing on-site storage capacity (NPP) is quite important. The service life of existing fuel pool structures may be determined by a number of operations or age-related events. Management of these events is often critical to the structure's integrity and durability. From an operations vantage point, aging management relates to such characteristics as storage capacity, performance of pool water treatment systems, and physical liner damage. Primary issues related to structural integrity include materials degradation and environmental enclosure factors. The development of an effective aging management program should address both operational and structural issues. The goal of this paper is to provide recommendations for pool structure aging management, with benefits to both short and long-term, or extended life, operations. Because of their critical nature, the report will focus on spent fuel pools. Many of the concepts generated in this report may also be applied to other NPP pool structures (i.e., new fuel pools, reactor internals pits and transfer canals) because of similar physical/environmental effects

  5. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  6. Multifunctional structural energy storage composite supercapacitors.

    Science.gov (United States)

    Shirshova, Natasha; Qian, Hui; Houllé, Matthieu; Steinke, Joachim H G; Kucernak, Anthony R J; Fontana, Quentin P V; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P

    2014-01-01

    This paper addresses the challenge of producing multifunctional composites that can simultaneously carry mechanical loads whilst storing (and delivering) electrical energy. The embodiment is a structural supercapacitor built around laminated structural carbon fibre (CF) fabrics. Each cell consists of two modified structural CF fabric electrodes, separated by a structural glass fibre fabric or polymer membrane, infused with a multifunctional polymeric electrolyte. Rather than using conventional activated carbon fibres, structural carbon fibres were treated to produce a mechanically robust, high surface area material, using a variety of methods, including direct etching, carbon nanotube sizing, and carbon nanotube in situ growth. One of the most promising approaches is to integrate a porous bicontinuous monolithic carbon aerogel (CAG) throughout the matrix. This nanostructured matrix both provides a dramatic increase in active surface area of the electrodes, and has the potential to address mechanical issues associated with matrix-dominated failures. The effect of the initial reaction mixture composition is assessed for both the CAG modified carbon fibre electrodes and resulting devices. A low temperature CAG modification of carbon fibres was evaluated using poly(3,4-ethylenedioxythiophene) (PEDOT) to enhance the electrochemical performance. For the multifunctional structural electrolyte, simple crosslinked gels have been replaced with bicontinuous structural epoxy-ionic liquid hybrids that offer a much better balance between the conflicting demands of rigidity and molecular motion. The formation of both aerogel precursors and the multifunctional electrolyte are described, including the influence of key components, and the defining characteristics of the products. Working structural supercapacitor composite prototypes have been produced and characterised electrochemically. The effect of introducing the necessary multifunctional resin on the mechanical properties has

  7. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  8. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  9. Impact source localisation in aerospace composite structures

    Science.gov (United States)

    De Simone, Mario Emanuele; Ciampa, Francesco; Boccardi, Salvatore; Meo, Michele

    2017-12-01

    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event.

  10. Production defects in marine composite structures

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Tsouvalis, Nicholas G.

    2007-01-01

    Composite structures are often used when there is a requirement for low weight. Then a key aspect is to be able to take full advantage of the material and utilise it to its limits. To do this it is important to achieve as low a variability as possible in the manufacture of such structures......, and to have a good understanding of the way in which production defects and imperfections influence the structural performance, so that adequate levels of structural safety and reliability can be achieved without having to apply excessively large factors of safety. A review is made of the types of defects...... that arise in the relevant production processes, of their causes and the means that can be used to reduce or eliminate them, and of models that enable the effects of defects and imperfections on structural performance to be predicted....

  11. Structure and composition of giant planet interiors

    International Nuclear Information System (INIS)

    Hubbard, W.B.

    1989-01-01

    In the simplest model of a Jovian planet atmosphere, the atmospheric abundances are identical to the bulk interior abundances, except as modified by atmospheric condensation processes. This model is now known to be generally inadequate, on the basis of comparisons between detailed atmospheric composition measurements and (less-detailed) determinations of interior composition. The latter are primarily deduced by integrating high-pressure equations of state of plausible constituents to obtain interior models which satisfy observational constraints such as mass, radius, gravitational moments, luminosity and age. This chapter reviews the status of discrepancies between such determinations of interior and atmospheric composition, and reviews possible explanations via interior processes such as hydrogen-helium immiscibility and phase transitions in major constituents. We discuss the proposed structure of the core, mantle and deep atmosphere for each of the four giant planets

  12. Holmium polysulfide crystals: Structure, shape and composition

    International Nuclear Information System (INIS)

    Belaya, S.V.; Vasilyeva, I.G.; Naumov, D.Yu.; Podberezskaya, N.V.

    2006-01-01

    The variety of morphology, chemical composition and density of holmium polysulfide crystals grown from the flux in different as well as in the same experiments is observed. It was found that the crystals of different habits have the monoclinic structure, P2 1 /m, a=10.95, b=11.45, c=10.97A, β=91.3 o , as already known, and identical composition HoS 1.837 . All the crystals are twinned by the plane (101-bar ). It is shown that the diversity of crystal compositions and density values are due to the constitution of the flux in a crystal and displacement of a crystal in the growth zone. The formation of non-equilibrium growth forms is discussed

  13. Update on nuclear structure effects in light muonic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Oscar Javier, E-mail: javierh@triumf.ca; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia [TRIUMF (Canada); Barnea, Nir [The Hebrew University, Racah Institute of Physics (Israel)

    2016-12-15

    We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.

  14. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  15. Structure and Properties of LENRA/ Silica Composite

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  16. Composites as structural materials in fusion reactors

    International Nuclear Information System (INIS)

    Megusar, J.

    1989-01-01

    In fusion reactors, materials are used under extreme conditions of temperature, stress, irradiation, and chemical environment. The absence of adequate materials will seriously impede the development of fusion reactors and might ultimately be one of the major difficulties. Some of the current materials problems can be solved by proper design features. For others, the solution will have to rely on materials development. A parallel and balanced effort between the research in plasma physics and fusion-related technology and in materials research is, therefore, the best strategy to ultimately achieve economic, safe, and environmentally acceptable fusion. The essential steps in developing composites for structural components of fusion reactors include optimization of mechanical properties followed by testing under fusion-reactor-relevant conditions. In optimizing the mechanical behavior of composite materials, a wealth of experience can be drawn from the research on ceramic matrix and metal matrix composite materials sponsored by the Department of Defense. The particular aspects of this research relevant to fusion materials development are methodology of the composite materials design and studies of new processing routes to develop composite materials with specific properties. Most notable examples are the synthesis of fibers, coatings, and ceramic materials in their final shapes form polymeric precursors and the infiltration of fibrous preforms by molten metals

  17. Thermal Inspection of Composite Honeycomb Structures

    Science.gov (United States)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  18. Nuclear Structure Near the Drip Lines

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1998-01-01

    Experiments with beams of unstable nuclei will make it possible to look closely into many aspects of the nuclear many-body problem. Theoretically, exotic nuclei represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita

  19. OOA composite structures applicable in railway industry

    Directory of Open Access Journals (Sweden)

    Rusnáková Soňa

    2017-01-01

    Full Text Available Composite sandwich structures offers several advantages over conventional structural materials such as lightweight, high bending and torsional stiffness, superior thermal insulation and excellent acoustic damping. In the aerospace industry, sandwich composites are commonly manufactured using the autoclave process which is associated with high operating cost. Out-of-autoclave (OOA manufacturing has been shown to be capable of producing low cost and high performance composites. In this paper we present results of experimental testing of various sandwich materials according various standards and actual requirements in transport industry. We compared the different types of surface and paint systems, because these layers are the most important in contact with the surrounding environment and load conditions. In the experimental measurements were used various materials. For the core of the sandwich structure were selected aluminium honeycomb, aramid honeycomb and PET (Polyethylene terephthalate foam core. Support layers were chosen two kinds of predimpregnated materials. The conditions of measurements were requirements for strength and rigidity, safety - flame resistance and reflectivity resistance. The samples were tested at the 3 - point bending test according to standard EN ISO 178, by modified test to determine the force required to rapture threaded insert, by test of reflectivity according to UIC CODE 844-4 R and according to standard EN 45545-2 fire protection of railway vehicles.

  20. Development of thermoplastic composite aircraft structures

    Science.gov (United States)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  1. Influence of nuclear glasses composition on their liability to deterioration; Influence de la composition des verres nucleaires sur leur alterabilite

    Energy Technology Data Exchange (ETDEWEB)

    Tovena, I.

    1995-09-29

    This contributes to the study of the nuclear glasses composition influence on their liability to deterioration. The methodology of the experimental research used has lead to define between the thirty oxides which form the reference glass light water, six oxides of interest. For each of these oxides, a composition variation area has been defined. A matrix of twenty glass compositions has then been defined. The preparation of materials of these compositions has sometimes lead to materials weakly heterogeneous which have been characterized before deterioration. This study has been completed by those of three glasses in a composition variation area narrower of the light water nuclear glass : the R7T7 and two glasses at limits having respectively an initial dissolution velocity at 100 degrees Celsius theoretically maximum and minimum. Some deterioration parameters in pure water have been experimentally measured on the twenty three glasses : 1) an initial dissolution velocity at 100 degrees (Vo{sub 1}00) Celsius and another one at 90 degrees Celsius (Vo{sub 9}0) 2) a dissolution velocity in conditions near the saturation at 90 degrees Celsius 3) an apparent solubility of glass based on the ortho silicic acid activity 4) the evolution of the dissolution kinetics at 90 degrees Celsius in sub-saturated medium towards saturated medium 5) the alteration films nature developed at the glasses surface during these last alteration tests. Some thermodynamic and structural models have been studied in order to predict Vo{sub 9}0 and Vo{sub 1}00. The dissolution kinetic law developed from reference glass dissolution results has been studied with the calculation code LIXIVER. It has not been able to be used for most of the glasses compositions studied. As a consequence, the glasses dissolution control by a surface reaction which are itself controlled by the only dissolved silica is an hypothesis which is not verified for the greater part of the glasses. (O.L.). refs., figs., tabs.

  2. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-03-01

    This is the second issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation of compilations and evaluations is designed to keep the nuclear scientific community informed of the availability of compiled or evaluated NSD data, and contains references to laboratory reports, journal articles and books containing selected compilations and evaluations. It excludes references to ''mass-chain'' evaluations normally published in the ''Nuclear Data Sheets'' and ''Nuclear Physics''. The material contained in this compilation is sorted according to eight subject categories: general compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes; half-lives, energies and spectra; nuclear decay processes: gamma-rays; nuclear decay processes: fission products; nuclear decay processes: (others); atomic processes

  3. Webb Model of Nuclear Structure and Forces

    Science.gov (United States)

    Webb, Bill

    2008-10-01

    String theory has established that neutrons and protons consist of threesomes of string-like quarks. These threesomes nucleosynthesize to build larger nuclei. This Webb Model differs by postulating that the larger nuclei are also threesomes: threesomes of string-like ring shaped Jumbo Quarks. A threesome of Jumbo Quarks make up every larger nucleus. From this starting point, the Webb Model uses only the forces of gravity and electromagnetics to accurately calculate a large variety of nuclear properties including - fundamental structural shapes and charge arrangements - the size, shape, internal forces and relativistic mass energies of the neutron, proton, deuteron, triton, alpha particle and oxygen - the details of all types of beta decay - the correct slope of the lower end of the nuclear chart - the calculated stability of the 45 smallest stable nuclei and their 59 naturally occurring unstable isotopes - and mathematical confirmation of the magic number 2,8 and 20. This Webb model satisfies the empirical tests of the Scientific Method. The mathematics is simple enough to be confirmed by any scientist without bias.

  4. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1996-01-01

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA (α decay of very neutron-deficient Bi isotopes); MSU/NSCL (β decay of 56 Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; β decay of 58 Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling

  5. Aging of nuclear safety related concrete structures

    International Nuclear Information System (INIS)

    Cerny, R.; Vydra, V.; Toman, J.; Vodak, F.

    1994-01-01

    An analysis of aging processes in nuclear-safety-related concrete structures (NSRCS) is presented. The major environmental stressor and aging factors affecting the performance of NSRCS are summarized, as are drying and plastic shrinkage, expansion of water during the freeze-thaw cycle, water passing through cracks dissolving or leaching the soluble calcium hydroxide, attack of acid rain and ground water, chemical reactions between particular aggregates and the alkaline solution within cement paste, reaction of calcium hydroxide in cement paste hydration products with atmospheric carbon dioxide, and physical radiation effects of neutrons and gamma radiation. The current methods for aging management in NSRCS are analyzed and evaluated. A new treatment is presented for the monitoring, evaluation and prediction of aging processes, consisting in a combination of theoretical methods, laboratory experiments, in-situ measurements and numerical simulations. 24 refs

  6. Development of carbon/carbon composites for nuclear reactor applications

    International Nuclear Information System (INIS)

    Venugopalan, Ramani; Sathiyamoorthy, D.; Tyagi, A.K.

    2012-01-01

    Carbon and carbon fiber reinforced materials are promising materials for use in nuclear reactors, due to their excellent thermal and mechanical properties. In the present studies, experiments were carried out to prepare carbon-carbon(C/C) composites using non-graphitizing precursors such as polyacrylonitrile (PAN) fiber and phenolic resin matrix. A typical sample of C/C composite at 40 vol% of PAN fibre showed to be amorphous. These fibers have been used to make a 2-D preform and phenol formaldehyde resin was impregnated, cured and carbonized to form the matrix. Impregnation was carried out under different conditions, and its effect was studied by XRD, Raman spectroscopy and XPS. The C/C composite samples have been irradiated by neutrons at neutron flux of 1x10 12 n/cm 2 /s with varying fluences at 40℃. The stored energy is very less about 23.4 J/g and 43.3 J/g as compared to irradiated graphite. The composites were coated with silicon carbide (SiC) for improved oxidation resistance by chemical vapor deposition technique. (author)

  7. Nuclear structure and radioactive decay resources at the US National Nuclear Data Center

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Burrows, T.W.; Pritychenko, B.; Tuli, J.K.; Winchell, D.F.

    2008-01-01

    The National Nuclear Data Center has a long tradition of evaluating nuclear structure and decay data as well as offering tools to assist in nuclear science research and applications. With these tools, users can obtain recommended values for nuclear structure and radioactive decay observables as well as links to the relevant articles. The main databases or tools are ENSDF, NSR, NuDat and the new Endf decay data library. The Evaluated Nuclear Structure Data File (ENSDF) stores recommended nuclear structure and decay data for all nuclei. ENSDF deals with properties such as: -) nuclear level energies, spin and parity, half-life and decay modes, -) nuclear radiation energy and intensity for different types, -) nuclear decay modes and their probabilities. The Nuclear Science References (NSR) is a bibliographic database containing nearly 200.000 nuclear sciences articles indexed according to content. About 4000 are added each year covering 80 journals as well as conference proceedings and laboratory reports. NuDat is a software product with 2 main goals, to present nuclear structure and decay information from ENSDF in a user-friendly way and to allow users to execute complex search operations in the wealth of data contained in ENSDF. The recently released Endf-B7.0 contains a decay data sub-library which has been derived from ENSDF. The way all these databases and tools have been offered to the public has undergone a drastic improvement due to advancements in information technology

  8. Nuclear power plants: structure and function

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1983-01-01

    Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety

  9. [Studies of nuclear structure using neutrons and charged particles

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains brief discussions on nuclear research done at Triangle Universities Nuclear Laboratory. The major categories covered are: Fundamental symmetries in the nucleus; Dynamics in very light nuclei; D states in light nuclei; Nucleon-nucleus interactions; Nuclear structure and reactions; and Instrumentation and development

  10. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  11. Tornado-resistance design for the nuclear safety structure of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xia Zufeng.

    1987-01-01

    The primary design consideration of anti-tornado of the nuclear safety structure of Qinshan Nuclear Power Plant is briefly presented. It mainly includes estimating the probability of tornado arising in the site, ascertaining the design requirments of the anti-tornado structures and deciding the tornado load acted on the structures

  12. Aging of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Pland, C.B.; Arndt, E.G.

    1991-01-01

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs

  13. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  14. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  15. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  16. Axial compression behavior and partial composite action of SC walls in safety-related nuclear facilities

    Science.gov (United States)

    Zhang, Kai

    Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of

  17. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  18. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  19. Refractory metal alloys and composites for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  20. Establishment and Analysis of Nuclear Structure Data DB for Nuclear Safety Regulation Technique Applications

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Yoo, Jae Kwon; Gil, Choong; Cho, Young Sik; Kim, Hyung Il; Kim, Jong Woon; Kwon, Duk Hee; Lee, Jong Hwa

    2013-10-01

    The contents of the project consisting of four research fields carried out are: Ο Installation of DB with nuclear structure/decay datasets - Setup a computer system for production of nuclear structure/decay data in ENSDF format - Production of nuclear structure/decay data in ENSDF format( 211 , 215 Po, 136 Cs) and setup a data converting system from ENSDF format to ENDF-6 format. Ο Computer simulation of nuclear decay and burnup using the ENSDF DB - Calculation of decay heats of the several radioactive nuclides with Geant4 - Burnup calculation with full decay chain using Monte Carlo method Ο Comparison and analysis of nuclear structure/decay and fission product yields data. - Acquisitions and Analyses of decay and fission yields data in ENDF-6 format - Research for theoretical evaluation method of fission product yields data. Ο Analysis of SCALE(ORIGEN-s, -ARP) libraries - Analysis of ORIGEN library structure of nuclear decay/yields data. - Methodological studies to improve nuclear decay/yield ORIGEN libraries by use of nuclear structure/yield data in ENDF-6 format. The results of this project will be a basis to establish the nuclear decay and fission yield data DB in Korea. Additionally, new decay and yield data can be immediately served for the users to utilize those data for nuclear research and/or development

  1. Carbon composites in space vehicle structures

    Science.gov (United States)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  2. Nuclear data newsletter. No. 20. Nuclear structure and decay data network

    International Nuclear Information System (INIS)

    1994-11-01

    This special issue of the Nuclear Data Newsletter dated November 1994 gives information on the Nuclear Structure and Decay Data (NSDD) Network established in 1974 under the auspices of the IAEA and comprising 17 laboratories and universities in 10 countries. The procedures for online access to US National Nuclear Data Center, NEA Data Bank in Paris and IAEA Nuclear Data Section in Vienna are presented

  3. Proceedings of second national workshop on nuclear structure physics

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Jain, A.K.

    1995-01-01

    The Second National Workshop on Nuclear Structure Physics was held at Calcutta during February 7-10 1995. The topics discussed have been quite broad based and covered many areas of nuclear structure physics and radiochemistry. Papers relevant to INIS are indexed separately

  4. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  5. Nuclear Structure References (NSR) file. [Mostly information for input

    Energy Technology Data Exchange (ETDEWEB)

    Ewbank, W.B.

    1978-08-01

    The use of the Nuclear Structure References file by the Nuclear Data Project at ORNL is described. Much of the report concerns format information of interest only to those preparing input to the system or otherwise needing detailed knowledge of its internal structure. 17 figures. (RWR)

  6. Critical joints in large composite aircraft structure

    Science.gov (United States)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  7. Structural Health Monitoring for Impact Damage in Composite Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  8. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1995-01-01

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using α decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year

  9. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  10. Composite seals for liquid hydrogen and nuclear radiation environments.

    Science.gov (United States)

    Van Auken, R. L.; Chase, V. A.

    1971-01-01

    Description of plastic composite seals for service in a liquid-hydrogen and nuclear-radiation environment. The radiation-resistant aromatic heterocyclic class of polymers, including polyimide, polybenzimidazole, and polyquinoxaline, were evaluated for this application. The seal developed is based on a design involving a resin-starved laminate consisting of alternating layers of woven glass fabric and polymer film. This design imparts a mechanical spring characteristic to the seal, resulting in essentially complete elastic recovery when unloaded, and eliminates cold flow. Encapsulating techniques employing the polyquinoxaline polymer were developed which rendered the seal impervious to liquid hydrogen. The seals were tested before and after gamma irradiation up to 10 to the 10th ergs/g. Load/deflection and leakage tests were performed over a temperature range from -423 through +500 F.

  11. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  12. The Influence of Nuclear Reactions and Nuclear Structure in Astrophysics

    Science.gov (United States)

    Rehm, K. E.

    2017-11-01

    Nuclear reactions play an important role for the energy production and the nucleosynthesis in stars. New facilities, able to accelerate radioactive nuclei or high-intensity stable beams have allowed us to measure in the laboratory reactions involving short-lived nuclei or processes with very small cross sections, which are crucial for stellar nucleosynthesis. I will discuss some of the recent experiments studying fusion and transfer reactions with radioactive beams which play a critical role in various quiescent and explosive stellar environments.

  13. New frontiers in nuclear structure studies

    International Nuclear Information System (INIS)

    Zwarts, D.; Walet, N.R.; Wolters, A.A.; Glaudemans, P.W.M.; VandeGraff, R.J.

    1985-01-01

    The need to go to larger model spaces for more detailed studies of the atomic nucleus has led to the introduction of the supercomputer to nuclear physics. In this report a brief survey of the nuclear shell model is presented and the performance of some of the relevant programs on different computer systems is compared

  14. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  15. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  16. Proton capture reactions and nuclear structure

    International Nuclear Information System (INIS)

    Kikstra, S.W.

    1989-01-01

    Experimental studies are described of the structure of 40 Ca and 42 Sc with measurements at proton-capture of (p, gamma) reactions. Where possible, an attempt has been made to interpret the results of the measurements in termsof existing models. The 40 Ca and 42 Sc nuclides were excited by bombarding 39 K and 41 Ca targets, respectively with low energy protons (E p = 0.3-3.0 MeV), that were produced by the Utrecht 3MV van de Graaff accelerator. From the measured energy and intensity of the gamma-rays created in the subsequent decay of the cuclei, information was obtained on the existence and properties of their excited states. In addition properties of two T = 3/2 levels at high excitation energy of the 9 Be nucleus were investigated. These levels were excited by the resonant absorption of gamma-rays from the 11 B(p, gamma) 12 C reaction. The results of the measurements are interpreted by a comparison to the analoque β-decay of 9 Li and to shell model calculations. The total decay energy of the superallowed O + → O + transition between the ground states of 42 Sc and 42 Ca was determined by measurements in Utrecht of the proton separation energy S p of 42 Sc and in Oak Ridge of S n of 42 Sc and 42 Ca. The results were used for verification of the conserved vector current hypothesis, which implies that the ft values of all superallowed O + → O + β-decays are the same. An attempt was made to describe properties of odd-parity states of A = 37-41 nuclei with a variant of the Warburton, Becker, Millener and Brown (WBMB) interaction.Finally a new method for the assignment of nuclear spins by a simple statistical analysis of spectroscopic information is proposed. (author). 169 refs.; 22 figs.; 24 schemes; 29 tabs

  17. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  18. Changes in attitude structure toward nuclear power in the nuclear power plant locations of Tohoku district

    International Nuclear Information System (INIS)

    Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa; Nakagawa, Yuri

    2012-01-01

    This survey was examined the changes in structure of attitude toward nuclear power and the influence of environmental value on the attitude structure before and after the accident at the Fukushima No. 1 nuclear power plant. With residents of Aomori, Miyagi, and Fukushima prefectures as participants, we conducted online surveys in November 2009 and October 2011. Comparing the results before and after the accident, we found that trust in the management of nuclear power plants had a stronger influence on the perceived risk and benefit regarding nuclear power after the accident than before the accident. The value of concern about environmental destruction resulted in reduced trust in the management. (author)

  19. Relativistic density functional for nuclear structure

    CERN Document Server

    2016-01-01

    This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.

  20. Nuclear structure studies of F-24

    Czech Academy of Sciences Publication Activity Database

    Caceres, L.; Lepailleur, A.; Sorlin, O.; Stanoiu, M.; Grévy, S.; Mrázek, Jaromír; Negoita, F.; de Oliveira Santos, F.; Penionzhkevich, Y. E.; Rotaru, F.

    2015-01-01

    Roč. 92, č. 1 (2015), 014327 ISSN 0556-2813 Institutional support: RVO:61389005 Keywords : spectrometer * GANIL * forces Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.146, year: 2015

  1. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-10-01

    This is the third issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation is published and distributed by the IAEA Nuclear Data Section approximately every six months. This compilation of compilations and evaluations is designed to keep the nuclear scientific community informed of the availability of compiled or evaluated NSD data, and contains references to laboratory reports, journal articles and books containing selected compilations and evaluations

  2. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  3. Procedures manual for the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1987-10-01

    This manual is a collection of various notes, memoranda and instructions on procedures for the evaluation of data in the Evaluated Nuclear Structure Data File (ENSDF). They were distributed at different times over the past few years to the evaluators of nuclear structure data and some of them were not readily avaialble. Hence, they have been collected in this manual for ease of reference by the evaluators of the international Nuclear Structure and Decay Data (NSDD) network contribute mass-chains to the ENSDF. Some new articles were written specifically for this manual and others are reivsions of earlier versions

  4. Innovative SiC/SiC composite for nuclear applications

    International Nuclear Information System (INIS)

    Chaffron, L.; Sauder, C.; Lorrette, C.; Briottet, L.; Michaux, A.; Gelebart, L.; Coupe, A.; Zabiego, M.; Le Flem, M.; Seran, J. L.

    2013-01-01

    Among various refractory materials, SiC/SiC ceramic matrix composites (CMC) are of prime interest for fusion and advanced fission energy applications, due to their excellent irradiation tolerance and safety features (low activation, low tritium permeability,K). Initially developed as fuel cladding materials for the Fourth generation Gas cooled Fast Reactor (GFR), this material has been recently envisaged by CEA for different core structures of Sodium Fast Reactor (SFR) which combines fast neutrons and high temperature (500 deg.C). Regarding fuel cladding generic application, in the case of GFR, the first challenge facing this project is to demonstrate the feasibility of a fuel operating under very harsh conditions that are (i) temperatures of structures up to 700 deg.C in nominal and over 1600 deg.C in accidental conditions, (ii) irradiation damage higher than 60 dpa SiC , (iii) neutronic transparency, which disqualifies conventional refractory metals as structural core materials, (iv) mechanical behavior that guarantees in most circumstances the integrity of the first barrier (e.g.: ε> 0.5%), which excludes monolithic ceramics and therefore encourages the development of new types of fibrous composites SiC/SiC adapted to the fast reactor conditions. No existing material being capable to match all these requirements, CEA has launched an ambitious program of development of an advanced material satisfying the specifications [1]. This project, that implies many laboratories, inside and outside CEA, has permitted to obtain a very high quality compound that meets most of the challenging requirements. We present hereinafter few recent results obtained regarding the development of the composite. One of the most relevant challenges was to make a gas-tight composite up to the ultimate rupture. Indeed, multi-cracking of the matrix is the counterpart of the damageable behavior observed in these amazing compounds. Among different solutions envisaged, an innovative one has been

  5. A workshop report on nuclear reaction and cluster structure

    International Nuclear Information System (INIS)

    1985-01-01

    A work shop was held in June 1984 at RCNP (Research Center for Nuclear Physics), Osaka University, to discuss theory of nuclear reactions based on studies from microscopic or cluster structure viewpoints. About forty researchers participated in this work shop and 27 paperes were presented. All these papers with English abstracts are gathered in this collective report. (Aoki, K.)

  6. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... Nuclear structure at high spin. Figure 1. Schematic of the orientation of HPGe detector in GDA [4]. These signals were fed to custom-made data acquisition system Freedom [10] which was later used for data reduction. We recorded γ-ray fold of nuclear reaction using multiplicity filter made of BGO scin-.

  7. Particle production from nuclear targets and the structure of hadrons

    International Nuclear Information System (INIS)

    Bialas, A.

    Production processes from nuclear targets allow studying interactions of elementary hadronic constituents in nuclear matter. The information thus obtained on the structure of hadrons and on the properties of hadronic constituents is presented. Both soft (low momentum transfer) and hard (high momentum transfer) processes are discussed. (author)

  8. Braided Composite Technologies for Rotorcraft Structures

    Science.gov (United States)

    Jessie, Nathan

    2015-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  9. Braided Composite Technologies for Rotorcraft Structures

    Science.gov (United States)

    Jessie, Nathan

    2014-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  10. Optimization of composite wood structural components : processing and design choices

    Science.gov (United States)

    Theodore L. Laufenberg

    1985-01-01

    Decreasing size and quality of the world's forest resources are responsible for interest in producing composite wood structural components. Process and design optimization methods are offered in this paper. Processing concepts for wood composite structural products are reviewed to illustrate manufacturing boundaries and areas of high potential. Structural...

  11. Composite Structure Optimization using a Homogenized Material Approach

    OpenAIRE

    Hozić, Dženan

    2014-01-01

    The increasing use of bre-reinforced composite materials in the manufacturing of high performance structures is primarily driven by their superior strength-toweight ratio when compared to traditional metallic alloys. This provides the ability to design and manufacture lighter structures with improved mechanical properties. However, the specic manufacturing process of composite structures, along with the orthotropic material properties exhibited by bre-reinforced composite materials, result in...

  12. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  13. Multi-material Preforming of Structural Composites

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eberle, Cliff C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pastore, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sudbury, Thomas Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hartman, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  14. Impact of the structural changes on the nuclear safety

    International Nuclear Information System (INIS)

    Ziakova, M.

    2005-01-01

    In this presentation author deals with impact of the structural changes (privatization of the Slovenske Elektrarne, a.s.) and new Atomic law (541/2004 Coll. Laws) on the nuclear safety in the Slovak Republic.

  15. Nuclear reactor fuel assemblies and end fitting grid structures therefor

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    An improved end fitting grid structure is described for nuclear fuel assemblies which overcomes the need for load-bearing control rod guide tubes and the expensive special fittings that these tubes required. (UK)

  16. Stress Management and Nuclear Anxiety: A Structured Group Experience.

    Science.gov (United States)

    Bisio, Thomas A.; Crisan, Pamela

    1984-01-01

    Describes a structured workshop in which group members explore their fears of nuclear holocaust and the effects this fear has had on their lives. By using logotherapy ideals, the participants create a renewed sense of purpose and hope. (Author)

  17. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1989-08-01

    During the past year, research in theoretical nuclear physics at the University of Maryland attained a number of exciting and important results. These are described in some detail throughout the report, but some of the highlights are as follows: large N c QCD has been shown to place strong constraints on vacuum effects of hadronic field theories; color dielectric models of hadrons have been understood in terms of lattice QCD; we have completed a relativistic analysis of proton scattering to test virtual pair contributions; we have also re-derived the Mandelzweig-Wallace two-body Dirac equation in covariant form, and applied it to the atomic two-body bound states: hydrogen, muonium and positronium; we have carried out the first calculation of the triton binding energy with a realistic quark-based nucleon-nucleon interaction and have learned that new kinds of nonlocalities in the tensor force may produce unexpected results; and we have shown that the Quadronium Conjecture can lead to spontaneous creation of the atom with low momentum as required by the observations, and are constructing a model to quantify the Quadronium phenomenology of the e + e - Puzzle

  18. Construction of special structures for nuclear power projects

    International Nuclear Information System (INIS)

    Raghavan, N.

    2003-01-01

    Construction is a very important stage in the course of realization of Nuclear Power Projects and as much care has be devoted to this stage as to the planning and engineering stages. While the setting up of nuclear power projects used to take over seven years in the past, the time period has now been considerably reduced to about five years with advancements in construction engineering, project management and design techniques, on the basis of new initiatives from the owner agency, Nuclear Power Corporation of India. In this article, the constructional aspects of the specialized structures for nuclear power generation are looked into. (author)

  19. Study on voids of epoxy matrix composites sandwich structure parts

    Science.gov (United States)

    He, Simin; Wen, Youyi; Yu, Wenjun; Liu, Hong; Yue, Cheng; Bao, Jing

    2017-03-01

    Void is the most common tiny defect of composite materials. Porosity is closely related to composite structure property. The voids forming behaviour in the composites sandwich structural parts with the carbon fiber reinforced epoxy resin skins was researched by adjusting the manufacturing process parameters. The composites laminate with different porosities were prepared with the different process parameter. The ultrasonic non-destructive measurement method for the porosity was developed and verified through microscopic examination. The analysis results show that compaction pressure during the manufacturing process had influence on the porosity in the laminate area. Increasing the compaction pressure and compaction time will reduce the porosity of the laminates. The bond-line between honeycomb core and carbon fiber reinforced epoxy resin skins were also analyzed through microscopic examination. The mechanical properties of sandwich structure composites were studied. The optimization process parameters and porosity ultrasonic measurement method for composites sandwich structure have been applied to the production of the composite parts.

  20. Predictive Modeling of Complex Contoured Composite Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The existing HDWLT (pictured) contoured composite structure design, its analyses and manufacturing tools, will be used to validate key analyses inputs through...

  1. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  2. Nuclear structure and double beta decay

    International Nuclear Information System (INIS)

    Vogel, P.

    1988-01-01

    Double beta decay is a rare transition between two nuclei of the same mass number A involving a change of the nuclear charge Z by two units. It has long been recognized that the Oν mode of double beta decay, where two electrons and no neutrinos are emitted, is a powerful tool for the study of neutrino properties. Its observation would constitute a convincing proof that there exists a massive Majorana neutrino which couples to electrons. Double beta decay is a process involving an intricate mixture of particle physics and physics of the nucleus. The principal nuclear physics issues have to do with the evaluation of the nuclear matrix elements responsible for the decay. If the authors wish to arrive at quantitative answers for the neutrino properties the authors have no choice but to learn first how to understand the nuclear mechanisms. The authors describe first the calculation of the decay rate of the 2ν mode of double beta decay, in which two electrons and two antineutrinos are emitted

  3. Nuclear Structures Surrounding Internal Lamin Invaginations

    Czech Academy of Sciences Publication Activity Database

    Legartová, Soňa; Stixová, Lenka; Laur, O.; Kozubek, Stanislav; Sehnalová, Petra; Bártová, Eva

    2014-01-01

    Roč. 115, č. 3 (2014), s. 476-487 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LD11020 Institutional support: RVO:68081707 Keywords : LAMINS * NUCLEAR PORES * CHROMATIN Subject RIV: BO - Biophysics Impact factor: 3.263, year: 2014

  4. Composition, structure and chemistry of interstellar dust

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.

    1986-09-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase

  5. Ageing evaluation model of nuclear reactors structural elements

    International Nuclear Information System (INIS)

    Ziliukas, A.; Jutas, A.; Leisis, V.

    2002-01-01

    In this article the estimation of non-failure probability by random faults on the structural elements of nuclear reactors is presented. Ageing is certainly a significant factor in determining the limits of nuclear plant lifetime or life extensions. Usually the non failure probability rates failure intensity, which is characteristic for structural elements ageing in nuclear reactors. In practice the reliability is increased incorrectly because not all failures are fixed and cumulated. Therefore, the methodology with using the fine parameter of the failures flow is described. The comparison of non failure probability and failures flow is carried out. The calculation of these parameters in the practical example is shown too. (author)

  6. Nuclear data for radiation damage estimates for reactor structural materials

    International Nuclear Information System (INIS)

    Piksaikin, V.

    1986-06-01

    The IAEA Consultants' Meeting on Nuclear Data for Radiation Damage Estimates for Reactor Structural Materials was convened by the IAEA Nuclear Data Section in Santa Fe, New Mexico, USA from 20-22 May 1985. The meeting was attended by 17 participants from 10 countries and 2 international organizations. The main objectives of the meeting were to review the status of displacement cross sections and the requirements for nuclear data needed for radiation damage estimates in reactor structural materials, and to develop recommendations for future activities in this field. This publication contains the text of all the papers prepared especially for this meeting including the conclusions and recommendations worked out during the meeting

  7. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  8. Report on aging of nuclear power plant reinforced concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs

  9. Nuclear shapes and nuclear structure at low excitation energies. Abstracts of contributed papers

    International Nuclear Information System (INIS)

    Dykstra, F.; Goutte, D.; Sauvage, J.; Vergnes, M.

    1994-01-01

    103 papers are presented on recent theoretical and experimental results on nuclear structure investigation. Short communications were published in this volume, all of which were indexed separately for the INIS database. (R.P.)

  10. Time Domain Diffraction by Composite Structures

    Science.gov (United States)

    Riccio, Giovanni; Frongillo, Marcello

    2017-04-01

    Time domain (TD) diffraction problems are receiving great attention because of the widespread use of ultra wide band (UWB) communication and radar systems. It is commonly accepted that, due to the large bandwidth of the UWB signals, the analysis of the wave propagation mechanisms in the TD framework is preferable to the frequency domain (FD) data processing. Furthermore, the analysis of transient scattering phenomena is also of importance for predicting the effects of electromagnetic pulses on civil structures. Diffraction in the TD framework represents a challenging problem and numerical discretization techniques can be used to support research and industry activities. Unfortunately, these methods become rapidly intractable when considering excitation pulses with high frequency content. This contribution deals with the TD diffraction phenomenon related to composite structures containing a dielectric wedge with arbitrary apex angle when illuminated by a plane wave. The approach is the same used in [1]-[3]. The transient diffracted field originated by an arbitrary function plane wave is evaluated via a convolution integral involving the TD diffraction coefficients, which are determined in closed form starting from the knowledge of the corresponding FD counterparts. In particular, the inverse Laplace transform is applied to the FD Uniform Asymptotic Physical Optics (FD-UAPO) diffraction coefficients available for the internal region of the structure and the surrounding space. For each observation domain, the FD-UAPO expressions are obtained by considering electric and magnetic equivalent PO surface currents located on the interfaces. The surface radiation integrals using these sources is assumed as starting point and manipulated for obtaining integrals able to be solved by means of the Steepest Descent Method and the Multiplicative Method. [1] G. Gennarelli and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propag., Vol

  11. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  12. Piezoelectric and mechanical properties of structured PZT–epoxy composites

    NARCIS (Netherlands)

    Kunnamkuzhakkal James, N.; Van den Ende, D.; Lafont, U.; Van der Zwaag, S.; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  13. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  14. Composites structures for bone tissue reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Neto, W.; Santos, João [Universidade Federal de São Carlos, Departament of Materials Engineering - Rd. Washington Luis, Km 235, 13565-905, São Carlos-SP (Brazil); Avérous, L.; Schlatter, G.; Bretas, Rosario, E-mail: bretas@ufscar.br [Université de Strasbourg, ECPM-LIPHT - 25 rue Becquerel, 67087, Strasbourg (France)

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  15. Composites structures for bone tissue reconstruction

    International Nuclear Information System (INIS)

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-01-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth

  16. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  17. Nuclear microscopy of sperm cell elemental structure

    Energy Technology Data Exchange (ETDEWEB)

    Bench, G.S.; Balhorn, R.; Friz, A.M.; Freeman, S.P.H.T.

    1994-09-28

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  18. The nuclear structure and low-energy reactions (NSLER) collaboration

    International Nuclear Information System (INIS)

    Dean, D J

    2006-01-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible

  19. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    to such an aligned configuration in 216Ra, would be of the order of J ∼ 39 ¯h with a wave function of π(h2. 9/2 f 2 ... detectors at 99. ◦. In addition to these matrices, γ-gated γT matrices were generated for getting time spectrum between any two γ's of 216Ra which enabled lifetime measurement of isomeric nuclear levels. 3.

  20. Quantum field theory and nuclear structure

    International Nuclear Information System (INIS)

    Celenza, L.S.; Goulard, B.; Shakin, C.M.

    1981-01-01

    We discuss recent successful calculations of the properties of nuclear matter within the context of theories exhibiting mass generation through spontaneous symmetry breaking. We start with the sigma model of Gell-Mann and Levy and introduce the nucleon mass (in a vacuum) in the usual manner. We relate the expectation value of the sigma field in a vacuum to a finite value of the scalar density. If the vacuum is now filled with nucleons (nuclear matter) the scalar density is increased and the new value for the nucleon mass must be determined. We exhibit the equation whose solution determines the new mass, and we also define a perturbative scheme for the determination of this mass. This scheme involves an expansion of the various quantities of the theory in terms of matrix elements calculated with positive- and negative-energy spinors parametrized with the vacuum mass. Although the decrease in the mass upon going from vacuum to nuclear matter at the equilibrium density is quite large (approx.400 MeV), we are still able to exhibit a small parameter which allows for a perturbative expansion of the binding energy and other observables. The leading term in such an expansion reproduces the approximation widely used in other calculations of the properties of nuclear matter. The truncation of the expansion at the leading term is inadequate and this fact accounts for the lack of success in previous calculations using the standard formalism. We proceed to make a transformation to the Weinberg Lagrangian retaining the fluctuating parts of the sigma field. We further make a small-oscillation approximation, dropping the nonlinear terms in this Lagrangian

  1. Structural characterization and lipid composition of acquired cholesteatoma

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Svane-Knudsen, Viggo; Sørensen, Jens A

    2012-01-01

    noninvasive structural and lipid compositional study of acquired cholesteatoma and control human skin using multiphoton excitation fluorescence microscopy-related techniques and high-performance thin-layer chromatography. RESULTS: The structural arrangement of the cholesteatoma is morphologically invariant...

  2. Atomic parity nonconservation: Electroweak parameters and nuclear structure

    International Nuclear Information System (INIS)

    Pollock, S.J.; Fortson, E.N.; Wilets, L.

    1992-01-01

    There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic chain, by taking ratios of observables in order to cancel complicated atomic-structure effects. Precise atomic PNC measurements could make a significant contribution to tests of the standard model at the level of one-loop radiative corrections. However, the results also depend upon certain features of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic and nonrelativistic nuclear model calculations. Contributions from nucleon internal weak structure are included, but found to be fairly negligible. The spread among present models in predicted sizes of nuclear-structure effects may preclude using Pb isotope ratios to test the standard model at better than a 1% level, unless there are adequate independent tests of the nuclear models by various alternative strong and electroweak nuclear probes. On the other hand, sufficiently accurate atomic PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei

  3. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  4. Hybrid Composite Structures : Multifunctionality through Metal Fibres

    NARCIS (Netherlands)

    Ahmed, T.

    2009-01-01

    The introduction of fibre reinforced polymer composites into the wings and fuselages of the newest aircraft are changing the design and manufacturing approach. Composites provide greater freedom to designers who want to improve aircraft performance in an affordable way. In this quest, researchers

  5. Micromechanical models for textile structural composites

    Science.gov (United States)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  6. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  7. International symposium on exotic nuclear structures. Book of abstracst

    International Nuclear Information System (INIS)

    2000-01-01

    The following topics were discussed at the meeting: Physics of weakly bound nuclei, neutron skin and halo; Evolution of shell structures for neutron-rich nuclei; Collective excitations in nuclei with exotic nuclear shapes; Cluster structures; Super- and hyperdeformed nuclei, exotic structures in the actinides; Superheavy elements; Towards understanding the structure of nucleons; New experimental techniques, facilities for radioactive beams. All abstracts (75 items) were submitted as full text to the INIS database. (R.P.)

  8. Structural Analysis of Ciprofloxacin-Carbopol Polymeric Composites ...

    African Journals Online (AJOL)

    Erah

    Structural Analysis of Ciprofloxacin-Carbopol. Polymeric Composites .... prepare a sample for analysis, a glass slide was clipped to the ... shows, both polymeric composite types showed similar diffraction patterns. Structure identification in a diffractogram is usually based on the position of peaks and their relative intensities.

  9. Floristic Composition and Structure of Yegof Mountain Forest, South ...

    African Journals Online (AJOL)

    Floristic Composition and Structure of Yegof Mountain Forest, South Wollo, Ethiopia. S Mohammed, B Abraha. Abstract. In this study, Floristic composition, diversity, population structure and regeneration status of woody plant species of Yegof Forest in South Wollo Zone, Amhara Regional State, Ethiopia were analyzed.

  10. Chapter 4. Monitoring vegetation composition and structure as habitat attributes

    Science.gov (United States)

    Thomas E. DeMeo; Mary M. Manning; Mary M. Rowland; Christina D. Vojta; Kevin S. McKelvey; C. Kenneth Brewer; Rebecca S.H. Kennedy; Paul A. Maus; Bethany Schulz; James A. Westfall; Timothy J. Mersmann

    2013-01-01

    Vegetation composition and structure are key components of wildlife habitat (Mc- Comb et al. 2010, Morrison et al. 2006) and are, therefore, essential components of all wildlife habitat monitoring. The objectives of this chapter are to describe common habitat attributes derived from vegetation composition and structure and to provide guidance for obtaining and using...

  11. Multilevel design optimization of composite structures with blended laminates

    NARCIS (Netherlands)

    Seresta, O.

    2007-01-01

    This research work deals with the design and optimization of a large composite structure. In design of large structural systems, it is customary to divide the problem into many smaller independent/semi-independent local design problems. The use of composite necessitates the inclusion of ply angles

  12. Fabrication of carbon film composites for high-strength structures

    Science.gov (United States)

    Preiswerk, P. R.; Lippman, M.

    1972-01-01

    Physical and mechanical properties of fiber composite materials consisting of carbon films are described. Application of carbon film structural composites for constructing microwave filters or optical instruments is proposed. Applications in aerospace and architectural structures for high strength and low density properties are discussed.

  13. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham [General Atomics, San Diego, CA (United States)

    2017-08-03

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures provide the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.

  14. Structural and failure mechanics of sandwich composites

    CERN Document Server

    Carlsson, LA; Carlsson, Leif A

    2011-01-01

    Focusing on important deformation and failure modes of sandwich structures, this volume describes the mechanics behind fracture processes. The text also reviews test methods developed for the cr, structural integrity, and failure mechanisms of sandwich structures.

  15. Status of the evaluated nuclear structure data file

    International Nuclear Information System (INIS)

    Martin, M.J.

    1991-01-01

    The structure, organization, and contents of the Evaluated Nuclear Structure Data File (ENSDF) are discussed in this paper. This file contains a summary of the state of experimental nuclear structure data for all nuclides as determined from consideration of measurements reported worldwide in the literature. Special emphasis is given to the data evaluation procedures, the consistency checks, and the quality control utilized at the input stage and to the retrieval capabilities of the system at the output stage. Recent enhancements of the on-line interaction with the file contents is addressed as well as procedural changes that will improve the currency of the file

  16. Structuring Cooperative Nuclear RIsk Reduction Initiatives with China.

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Larry [Stanford Univ., CA (United States); Reinhardt, Jason Christian [Stanford Univ., CA (United States); Hecker, Siegfried [Stanford Univ., CA (United States)

    2017-03-01

    The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagements between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.

  17. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  18. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  19. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R.

    1994-01-01

    Sodium zirconium phosphate [NZP] structural family, of which NaZr 2 P 3 O 12 is the parent composition, has been reviewed as a host ceramic waste form for nuclear waste immobilization. NZP compounds are characterized for their ionic conductivity, low thermal expansion and structural flexibility to accommodate a large number of multivalent ions. This latter property of the [NZP] structure allows the incorporation of almost all 42 nuclides present in a typical commercial nuclear waste. The leach studies of simulated waste forms based on NZP have shown reasonable resistance for the release of its constituents. The calculation of dissolution rates of NZP structure has demonstrated that it would take 20,000 times longer to dissolved NZP than quartz

  20. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  1. Lightweight, Composite Cryogenic Tank Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm has developed and qualified strong, all-composite LOX tanks for launch vehicles. Our new 42-inch diameter tank design weighs 486 lbs and burst without...

  2. Structural Composites Corrosive Management by Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  3. PREFACE: Structure of Exotic Nuclei and Nuclear Forces

    Science.gov (United States)

    Honma, Michio; Otsuka, Takaharu; Aoi, Nori

    2006-11-01

    The International Symposium on `Structure of Exotic Nuclei and Nuclear Forces' was held at The Koshiba Hall, University of Tokyo, on 9 - 12 March 2006. This symposium was organized as an activity of the Grant-in-Aid for the specially promoted area `Monte Carlo Shell Model' from the Ministry of Education, Science, Sports and Culture (MEXT) of Japan. The symposium was sponsored by the Center for Nuclear Study (CNS) and by RIKEN. The purpose of the symposium was to discuss theoretical and experimental developments in the study of the structure of exotic nuclei and its relationship with nuclear forces. There has been much progress recently in our understanding of what the structure of exotic nuclei is and how it can be linked to nuclear forces, with emerging intriguing perspectives. The following subjects were covered in this symposium Present status and future of the shell model Effective interaction theories Experimental results and perspectives Few-body methods including ab initio calculations Advancements of mean-fieeld models Transition between shell and cluster structure Nuclear astrophysics and nuclear structure Particle physics and the shell model Emphasis was placed on the interplay between many-body structures and nuclear forces, and on the experimental clarification of these topics. Around 80 participants attended the symposium and we enjoyed 34 excellent and lively invited talks and 26 oral presentations. The organizing committee consisted of B A Brown (MSU), S Fujii (CNS), M Honma (Aizu), T Kajino (NAO), T Mizusaki (Senshu), T Motobayashi (RIKEN), K Muto (TIT), T Otsuka (Chair, Tokyo/CNS/RIKEN), P Ring (TMU), N Shimizu (Scientific Secretary, Tokyo), S Shimoura (CNS), Y Utsuno (Scientific Secretary, JAEA). Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium so successful.

  4. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  5. The Compositional Structure of the Asteroid Belt

    Science.gov (United States)

    DeMeo, F. E.; Alexander, C. M. O'D.; Walsh, K. J.; Chapman, C. R.; Binzel, R. P.

    The past decade has brought major improvements in large-scale asteroid discovery and characterization, with over half a million known asteroids, more than 100,000 of which have some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the main asteroid belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of solar system evolution has emerged. The question has changed from "What was the original compositional gradient of the asteroid belt?" to "What was the original compositional gradient of small bodies across the entire solar system?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after solar system formation. This chapter reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the main belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the main belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our solar system and beyond.

  6. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  7. Structural integrity of materials in nuclear service: a bibliography

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1977-01-01

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user

  8. Structural integrity of materials in nuclear service: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1977-06-07

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  9. Improvements to SFCOMPO - a database on isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, Kenya; Nouri, Ali; Mochizuki, Hiroki; Nomura, Yasushi

    2003-01-01

    Isotopic composition is one of the most relevant data to be used in the calculation of burnup of irradiated nuclear fuel. Since autumn 2002, the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) has operated a database of isotopic composition - SFCOMPO, initially developed in Japan Atomic Energy Research Institute. This paper describes the latest version of SFCOMPO and the future development plan in OECD/NEA. (author)

  10. RATU - Nuclear power plant structural safety

    International Nuclear Information System (INIS)

    Hedner, G.; Schultz, H.; Unneberg, L.

    1992-12-01

    The evaluation group is of the opinion that the work performed under the RATU programme is generally of high quality, in some areas, especially those related to water chemistry of excellent quality. The personnel gives the impression of being dedicated and enthusiastic, and the administration seems to be very effective. It is obvious that the RATU programme has taken advantage of related contracts and projects funded by different sources. It is the opinion of the valuation group that the investment and human capital have been brought to work very efficiently in all projects. The objectives of the programme and the different projects are formulated in a broad sense. The areas selected for work are however of high relevance to nuclear safety. In some projects not all aspects are addressed by the ongoing work, and further activities may be necessary to meet with the requirements of the authorities. (orig.)

  11. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  12. The policy structure of the Dutch nuclear energy sector

    International Nuclear Information System (INIS)

    Zijlstra, G.J.

    1982-01-01

    The main objective of this study has been to indicate the principle structures through which much of governmental nuclear policy is formed and to develop a model for the analysis of policy communication networks. The first chapter begins with a general outline of the international development of nuclear energy and gives an impression of the Dutch nuclear energy sector with special emphasis on the institutional aspects. In chapter II the author elaborates on the place of structural analysis in public policy analysis and argues that it is one of the indispensable elements of public policy analysis. Relations are treated in chapter III. Personal interlocks are given special attention because these are interrelated with financial, informational and other dependency relations and have a special communicative function in public policy-making. The different functions of the interlocks are 'translated' in graph theoretical concepts. Chapter IV introduces a method derived from graph analysis to analyse public policy networks. Several structural configurations are distinguished. In the same chapter an outline of the empirical research on the nuclear energy network will be given. In chapters V and VI the nuclear energy network is analysed, and in chapter VII the decision-making concerning some nuclear items is described in a general way. (Auth.)

  13. Homogeneous forming technology of composite materials and its application to dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Hong, Soon Hyun; Ryu, Ho Jin; Sohn, Woong Hee; Kim, Chang Kyu

    1997-01-01

    Powder metallurgy processing technique of metal matrix composites is reviewed and its application to process homogeneous dispersion nuclear fuel is considered. The homogeneous mixing of reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement can be ceramic particles, whiskers or chopped fibers having high strength and high modulus. The blended powders are consolidated into billets and followed by various deformation processing, such as extrusion, forging, rolling or spinning into final usable shapes. Dispersion nuclear fuel is a class of metal matrix composite consisted of dispersed U-compound fuel particles and metallic matrix. Dispersion nuclear fuel is fabricated by powder metallurgy process such as hot pressing followed by hot extrusion, which is similar to that of SiC/Al metal matrix composite. The fabrication of homogeneous dispersion nuclear fuel is very difficult mainly due to the inhomogeneous mixing characteristics of the powders from quite different densities between uranium alloy powders and aluminum powders. In order to develop homogeneous dispersion nuclear fuel, it is important to investigate the effect of powder characteristics and mixing techniques on homogeneity of dispersion nuclear fuel. An new quantitative analysis technique of homogeneity is needed to be developed for more accurate analysis of homogeneity in dispersion nuclear fuel. (author). 28 refs., 7 figs., 1tab

  14. Composite Payload Fairing Structural Architecture Assessment and Selection

    Science.gov (United States)

    Krivanek, Thomas M.; Yount, Bryan C.

    2012-01-01

    This paper provides a summary of the structural architecture assessments conducted and a recommendation for an affordable high performance composite structural concept to use on the next generation heavy-lift launch vehicle, the Space Launch System (SLS). The Structural Concepts Element of the Advanced Composites Technology (ACT) project and its follow on the Lightweight Spacecraft Structures and Materials (LSSM) project was tasked with evaluating a number of composite construction technologies for specific Ares V components: the Payload Shroud, the Interstage, and the Core Stage Intertank. Team studies strived to address the structural challenges, risks and needs for each of these vehicle components. Leveraging off of this work, the subsequent Composites for Exploration (CoEx) effort is focused on providing a composite structural concept to support the Payload Fairing for SLS. This paper documents the evaluation and down selection of composite construction technologies and evolution to the SLS Payload Fairing. Development of the evaluation criteria (also referred to as Figures of Merit or FOMs), their relative importance, and association to vehicle requirements are presented. A summary of the evaluation results, and a recommendation of the composite concept to baseline in the Composites for Exploration (CoEx) project is presented. The recommendation for the SLS Fairing is a Honeycomb Sandwich architecture based primarily on affordability and performance with two promising alternatives, Hat stiffened and Fiber Reinforced Foam (FRF) identified for eventual program block upgrade.

  15. Progress in composite structure and space construction systems technology

    Science.gov (United States)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  16. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  17. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    Cabrero, J.

    2009-11-01

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  18. Development of deterioration models and tests of structural materials for nuclear containment structures(III)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan [Seoul National University, Seoul (Korea)

    2002-03-01

    The nuclear containment structures are very important infrastructures which require much cost for construction and maintenance. If these structures lose their functions and do not ensure their safety, great losses of human lives and properties will result. Therefore, the nuclear containment structures should secure appropriate safety and functions during these service lives. The nuclear concrete structures start to experience deterioration due to severe environmental condition, even though the concrete structures exhibit generally superior durability. It is, therefore, necessary to take appropriate actions at each stage of planning, design and construction to secure safety and functionability. Thorough examination of deterioration mechanism and comprehensive tests have been conducted to explore the durability characteristics of nuclear concrete structures. 88 refs., 70 figs., 12 tabs. (Author)

  19. Nuclear structure and Indian Clover array

    Indian Academy of Sciences (India)

    The experimental Й t values lie somewhere halfway between the values obtained for these two minima. Thus, the present work showed for the first time an oblate shape for Kr at low spins and a triaxial shape at higher spins. 6. Shape of. ¼. Kr at high spin. The shape and structure of. ¼. Kr at high spins has also been studied ...

  20. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    Directory of Open Access Journals (Sweden)

    Jen-Chueh Kuo

    2017-01-01

    Full Text Available Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion and directional material stiffness can be artificially adjusted in composite materials to meet the user’s requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP composite materials are applied In the FORMOSAT-5 Remote Sensing (RSI structure because of its light weight and low CTE characteristics. The RSI structural elements include the primary mirror supporting plate, secondary mirror supporting ring, and supporting frame. These elements are designed, manufactured, and verified using composite materials to meet specifications. The structure manufacturing process, detailed material properties, and CFRP structural element validation methods are introduced in this paper.

  1. Structure and Properties of High Symmetry Composites

    Science.gov (United States)

    1990-07-27

    In Part I of this study, 3-D fiber architectures were classified according to the method of manufacture, symmetry and geometric isotopy . It was...concluded that a classification scheme based on geometric isotopy provides the most efficient and useful method for the modelling of the 3-D composite

  2. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    Floristic composition and environmental factors characterizing coffee forests in southwest Ethiopia. Forest. Ecology and Management, 255: 2138-2150. Tadesse Woldemariam. 2003. Vegetation of the Yayu forest in Southwest Ethiopia: Impacts of human use and Implications for In situ conservation of Wild Coffea arabica L.

  4. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2014-05-06

    Sebald [3] used extrusion methods to produce fibers with a platinum core surrounded by a PNN-PZT/polymer binder which was fired to leave a platinum/PNN... multilayered inclusions. However, the model’s capability to estimate the electroelastic properties of the multiphase piezoelectric composites is yet

  5. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2012-07-31

    thickness from ~500nm to 20mm •Other perovskite compositions can be synthesized 2q Henry A Sodano – AFOSR Mech. of Multifunctional and...films Henry A Sodano – AFOSR Mech. of Multifunctional and Microsystems Review – July 31, 2012 ZnO Growth on Carbon Fibers • Solution based growth

  6. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  7. Superluminary relativity related to nuclear forces and structures

    International Nuclear Information System (INIS)

    Anastasovski, Petar K.

    1998-01-01

    The new Theory of Superluminary Relativity (SLR) presented and proposed here is based on the superluminary frame of reference transformation and on the modified principles of Special Relativity, General Relativity and Quantum Mass Theory. One of the main concepts of the SLR theory is application of Newton's law of universal gravitation to nuclear structures. The constant in the Newton's gravitational magnitudes for distances and masses characteristic for nuclear structures is defined and determined by the Quantum Mass Theory. The analysis is performed for a nucleus with two nucleons, that is for the deuteron nucleus. On the bases of the principles of Superluminary Relativity a new deuteron nucleus model is offered. (author)

  8. Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices

    International Nuclear Information System (INIS)

    Petersson, P.; Kreter, A.; Possnert, G.; Rubel, M.

    2010-01-01

    Probes made of carbon fibre composite NB41 were exposed to deuterium plasmas in the TEXTOR tokamak and in a simulator of plasma-wall interactions, PISCES. The aim was to assess the deuterium retention and its lateral and depth distribution. The analysis was performed by means of D( 3 He, p) 4 He and 12 C( 3 He, p) 14 N nuclear reactions analysis using a standard (1 mm spot) and micro-beam (20 μm resolution). The measurements have revealed non uniform distribution of deuterium atoms in micro-regions: differences by a factor of 3 between the maximum and minimum deuterium concentrations. The differences were associated with the orientation and type of fibres for samples exposed in PICSES. For surface structure in the erosion zone of samples exposed to a tokamak plasma the micro-regions were more complex. Depth profiling has indicated migration of fuel into the bulk of materials.

  9. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  10. Experimental investigations of the nuclear structure

    International Nuclear Information System (INIS)

    Gromov, K.Ya.

    1989-01-01

    The problem of experimental investigation into atomic nucleus structure is discussed. Examples of studying the properties of low-lying nucleus states using cyclotron-type accelerators for their production are presented. The consideration is conducted on the base of the Idisol experimental complex created at the Finland. Results of measuring masses of neutron-redundant rubidium nuclei are presented. Schemes of 160 Er and 108 In decay are presented. 12 refs.; 6 figs

  11. The role of nuclear shapes in nuclear structure (from the perspective of the Daresbury Tandem)

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1993-01-01

    In specific regions of the nuclear periodic chart, large multipole moments are observed and the low-lying excitations have a rotational character. These features are understood if the nuclei in question are assumed to have a stable deformation, i.e., a non-spherical distribution of the nuclear matter. In other (transitional) regions the quasi-rotational bands are present; they are strongly coupled to low-lying vibrational modes. Those nuclei are best understood in terms of small static deformations but large dynamic fluctuations around local equilibria. As a matter of fact, the vast majority of nuclei are deformed; even in those which are spherical or almost spherical, the dynamical couplings to shape vibrations are crucial. The issue of nuclear deformation is many-faceted. If the nuclear shape (nuclear mean field) is deformed, characteristic excitation modes are present, such as rotations and vibrations built upon the non-spherical equilibrium. Through the particle-core coupling, nuclear deformations can dramatically influence the single-particle properties of nucleons moving in the average nuclear potential. Many experimental investigations using the Daresbury Tandem were related in one way or another to the physics of nuclear shapes. Fundamental discoveries from Daresbury include the observation of superdeformed structures in rapidly rotating nuclei, the observation of identical (open-quotes twinnedclose quotes) rotational bands, various studies of structural changes induced by very fast rotation (band-crossings, band-terminations), the observation of the oblate-deformed open-quotes dipoleclose quotes bands, studies of reflection-asymmetric shapes, studies of (quasimolecular) cluster configurations in light nuclei, and many, many others. The author reviews the forefront research at Daresbury from the global perspective; the common denominator being the nuclear shape deformation

  12. Nozzle dam design improvement using composite material of the steam generator in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, S. H.; Lee, S. S.; Lee, Y. S.

    2000-01-01

    The period of normal shut down and maintenance of a nuclear power plants can be remarkably shortened by doing the refueling work with inspection of a steam generator simultaneously. The nozzle dams in a steam generator are to block the back flow of coolant from the reactor cavity to the steam generator. The installation and removal of the nozzle dams have been attempted by using a robot system in stead of human workers in order to protect from the high radiation exposure and harse working environment in a steam generator. The weight of the nozzle dam must be reduced for the convenience of the robot operation. In this paper, a lighter nozzle dams were designed to keep structural integrity. The nozzle dams have been manufactured using various material such as carbon-epoxy, glass-epoxy, honey comb and aluminum plate. The variation in mechanical properties of composites with respect to radiation emission has been investigated. In order to verify the structural integrity of the nozzle dam, the stress analyses have performed using ANSYS finite element program. The hydrostatic pressure test was performed to mock-up. The maximum stress and the maximum displacement of the composite nozzle dams are measured and compared to that obtained by finite element analyses

  13. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  14. Recovery of protactinium from molten fluoride nuclear fuel compositions

    Science.gov (United States)

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  15. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  16. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  17. Structural Composites with Intrinsic Multifunctionality, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a multifunctional, structural material for applications in terrestrial and space-based platforms used for instrumentation in earth observation is...

  18. Structural Composites with Intrinsic Multifunctionality, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of multifunctional, structural materials for applications in terrestrial and space-based platforms is proposed. The principle innovation is the...

  19. Woody species composition and structure of Gurra Farda forest

    African Journals Online (AJOL)

    *

    2008-03-02

    Mar 2, 2008 ... Therefore, Woody species composition and structure of Gurra Farda forest was studied from November 2005 to September 2006. ... land use systems such as coffee and tea plantations at present, threatens the few ... woody species composition of the forest and to documents its status that gives baseline ...

  20. Progressive failure analysis of fibrous composite materials and structures

    Science.gov (United States)

    Bahei-El-din, Yehia A.

    1990-01-01

    A brief description is given of the modifications implemented in the PAFAC finite element program for the simulation of progressive failure in fibrous composite materials and structures. Details of the memory allocation, input data, and the new subroutines are given. Also, built-in failure criteria for homogeneous and fibrous composite materials are described.

  1. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  2. Nuclear structure of {sup 231}Ac

    Energy Technology Data Exchange (ETDEWEB)

    Boutami, R. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain)], E-mail: borge@iem.cfmac.csic.es; Mach, H. [Department of Radiation Sciences, ISV, Uppsala University, SE-751 21 Uppsala (Sweden); Kurcewicz, W. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Fraile, L.M. [Departamento Fisica Atomica, Molecular y Nuclear, Facultad CC. Fisicas, Universidad Complutense, E-28040 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland); Gulda, K. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Aas, A.J. [Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway); Garcia-Raffi, L.M. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Lovhoiden, G. [Department of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo (Norway); Martinez, T.; Rubio, B.; Tain, J.L. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Tengblad, O. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2008-10-15

    The low-energy structure of {sup 231}Ac has been investigated by means of {gamma} ray spectroscopy following the {beta}{sup -} decay of {sup 231}Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of {sup 231}Ra {yields}{sup 231}Ac has been constructed for the first time. The Advanced Time Delayed {beta}{gamma}{gamma}(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  3. Flexible Nanocellulose - Nanoparticle Composites: Structures and Properties

    OpenAIRE

    UTHPALA MANAVI GARUSINGHE

    2018-01-01

    Nanocellulose is biodegradable and renewable and has many attractive properties of technological interest. Therefore, nanocellulose can be converted into thin films, which is used in wide range of applications. However, the property range achievable with nanocellulose by itself still has limitations. This thesis focuses on the production of nanocellulose-inorganic nanoparticle composites to combine the advantage associated with both individual components together to extend the range of proper...

  4. Composite Structures Damage Tolerance Analysis Methodologies

    Science.gov (United States)

    Chang, James B.; Goyal, Vinay K.; Klug, John C.; Rome, Jacob I.

    2012-01-01

    This report presents the results of a literature review as part of the development of composite hardware fracture control guidelines funded by NASA Engineering and Safety Center (NESC) under contract NNL04AA09B. The objectives of the overall development tasks are to provide a broad information and database to the designers, analysts, and testing personnel who are engaged in space flight hardware production.

  5. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  6. Nuclear structure of the transactinides – investigated by decay spectroscopy

    Directory of Open Access Journals (Sweden)

    Heßberger Fritz Peter

    2016-01-01

    Full Text Available Superheavy elements owe their stability due to a subtle balance between the disruptive Coulomb force and the attractive nuclear forces. Thus they represent an ideal laboratory to study basic interactions. The essential tools are detailed investigations of radioactive decay properties and nuclear structure of superheavy nuclei. The results of those studies will deliver valuable input to improve theoretical models. To fulfill this demand conclusive data of high quality are necessary, which is presently not so easy to meet due to small production cross sections and technical limitations (beam intensities, detection probabilities. Possibilities and problems concerning extraction of decay properties and nuclear structure information on the basis of a low number of observed decay events will be discussed for three illustrative examples, 257Rf, 257Lr, and 288Fl.

  7. Structure and gating of the nuclear pore complex

    Science.gov (United States)

    Eibauer, Matthias; Pellanda, Mauro; Turgay, Yagmur; Dubrovsky, Anna; Wild, Annik; Medalia, Ohad

    2015-06-01

    Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel. Furthermore, we compare and contrast this native NPC structure to one that exhibits reduced transport activity and unveil the spatial properties of the NPC gate.

  8. Fire Response of Loaded Composite Structures - Experiments and Modeling

    OpenAIRE

    Burdette, Jason A.

    2001-01-01

    In this work, the thermo-mechanical response and failure of loaded, fire-exposed composite structures was studied. Unique experimental equipment and procedures were developed and experiments were performed to assess the effects of mechanical loading and fire exposure on the service life of composite beams. A series of analytical models was assembled to describe the fire growth and structural response processes for the system used in the experiments. This series of models consists of a fire...

  9. Quality assurance in the structural installations of nuclear power stations

    International Nuclear Information System (INIS)

    Schnellenbach, G.; Wrage, S.

    1985-01-01

    The concept of quality assurance distinguishes between self-monitoring of the design, manufacturing and executing firms and external monitoring by state institutions or by experts commissioned by them. The long-term control of structures is within the area of responsibility of the owner. This quality assurance concept is controlled in detail by statutes, which clearly define responsibilities. This structural engineering quality assurance system also forms the basis for the design, construction and utilization of structural installations of nuclear power stations; requirements emanating from the Atomic Energy Acts for the structural installations demand, however, to some extent a sharpening of self- and external monitoring. Therefore, today a quality concept has been developed for the important engineering safety-related buildings of nuclear power stations. This concept takes account of the strict requirements imposed and fulfils the requirement of KTA 1401. (orig.) [de

  10. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  11. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  12. Microscopic description of nuclear structure; La structure nucleaire decrite par les theories microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Girod, M.; Berger, J.F.; Peru, S.; Dancer, H. [CEA Bruyeres-le-Chatel, 91 (France)

    2002-07-01

    After briefly recalling the formalism of the mean field approach with an effective nucleon-nucleon interaction, the theoretical framework of the nuclear structure studies performed at CEA-DAM, applications of this theory to various nuclear systems: shape and spin isomeric states, neutron and proton rich nuclei, superheavy and hyper-heavy nuclei, and to the fission process are presented. (authors)

  13. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator ...

  14. Optical spectroscopy by Hantaro Nagaoka Pioneer nuclear structure study

    Science.gov (United States)

    Inamura, Takashi T.

    2000-08-01

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  15. Optical spectroscopy by Hantaro Nagaoka - Pioneer nuclear structure study

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Takashi T. [Warsaw University, Heavy Ion Laboratory (Poland)], E-mail: inamura@slcj.uw.edu.pl

    2000-08-15

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  16. Detailed requirements for a next generation nuclear data structure.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-05

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as found in the ENDF format. This set of requirements will be used to guide the development of a new data structure to replace the legacy ENDF format.

  17. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  18. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  19. Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads

    International Nuclear Information System (INIS)

    Rusmin, Ruhaida; Sarkar, Binoy; Liu, Yanju; McClure, Stuart; Naidu, Ravi

    2015-01-01

    Graphical abstract: - Highlights: • Facile preparation of chitosan–palygorskite composite beads demonstrated. • Components’ mass ratio impacted structural characteristics of composites. • Mechanism of composite formation and structure of composite beads proposed. • Composite beads adsorbed significantly greater amount of Pb than pristine materials. • In-depth investigation done on Pb adsorption mechanisms. - Abstract: This paper investigates the structural evolution of chitosan–palygorskite (CP) composites in relation to variable mass ratios of their individual components. The composite beads’ performance in lead (Pb) adsorption from aqueous solution was also examined. The composite beads were prepared through direct dispersion of chitosan and palygorskite at 1:1, 1:2 and 2:1 mass ratios (CP1, CP2 and C2P, respectively). Analyses by Fourier transform Infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the dependence of the composites’ structural characteristics on their composition mass ratio. The chitosan–palygorskite composite beads exhibited a better Pb adsorption performance than the pristine materials (201.5, 154.5, 147.1, 27.7 and 9.3 mg g −1 for CP1, C2P, CP2, chitosan and palygorskite, respectively). Adsorption of Pb by CP1 and CP2 followed Freundlich isothermal model, while C2P fitted to Langmuir model. Kinetic studies showed that adsorption by all the composites fitted to the pseudo-second order model with pore diffusion also acting as a major rate governing step. The surface properties and specific interaction between chitosan and palygorskite in the composites were the most critical factors that influenced their capabilities in removing toxic metals from water.

  20. Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads

    Energy Technology Data Exchange (ETDEWEB)

    Rusmin, Ruhaida, E-mail: ruhaida.rusmin@mymail.unisa.edu.au [CERAR – Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000 (Malaysia); Sarkar, Binoy, E-mail: binoy.sarkar@unisa.edu.au [CERAR – Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC CARE – Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Liu, Yanju [CERAR – Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC CARE – Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); McClure, Stuart [CERAR – Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR – Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC CARE – Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-10-30

    Graphical abstract: - Highlights: • Facile preparation of chitosan–palygorskite composite beads demonstrated. • Components’ mass ratio impacted structural characteristics of composites. • Mechanism of composite formation and structure of composite beads proposed. • Composite beads adsorbed significantly greater amount of Pb than pristine materials. • In-depth investigation done on Pb adsorption mechanisms. - Abstract: This paper investigates the structural evolution of chitosan–palygorskite (CP) composites in relation to variable mass ratios of their individual components. The composite beads’ performance in lead (Pb) adsorption from aqueous solution was also examined. The composite beads were prepared through direct dispersion of chitosan and palygorskite at 1:1, 1:2 and 2:1 mass ratios (CP1, CP2 and C2P, respectively). Analyses by Fourier transform Infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the dependence of the composites’ structural characteristics on their composition mass ratio. The chitosan–palygorskite composite beads exhibited a better Pb adsorption performance than the pristine materials (201.5, 154.5, 147.1, 27.7 and 9.3 mg g{sup −1} for CP1, C2P, CP2, chitosan and palygorskite, respectively). Adsorption of Pb by CP1 and CP2 followed Freundlich isothermal model, while C2P fitted to Langmuir model. Kinetic studies showed that adsorption by all the composites fitted to the pseudo-second order model with pore diffusion also acting as a major rate governing step. The surface properties and specific interaction between chitosan and palygorskite in the composites were the most critical factors that influenced their capabilities in removing toxic metals from water.

  1. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  2. Foundations of compositional models: structural properties

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Radim; Kratochvíl, Václav

    2015-01-01

    Roč. 44, č. 1 (2015), s. 2-25 ISSN 0308-1079 R&D Projects: GA ČR GA13-20012S Grant - others:GA ČR(CZ) GAP403/12/2175 Program:GA Institutional support: RVO:67985556 Keywords : multidimensional distribution * conditional independence * composition * semigraphoid properties * running intersection property Subject RIV: BA - General Mathematics Impact factor: 1.677, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/jirousek-0442412.pdf

  3. Aging of concrete containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Yasuhiro; Arndt, E.G.

    1992-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants in the US Pertinent concrete structures are described in terms of their importance design, considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. Current inservice inspection requirements for concrete containments are summarized. A review of the performance history of the concrete components in nuclear power plants is provided. A summary is presented. A summary is presented of the Structural Aging (SAG) Program being conducted at the Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved bases for their continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitiative methodology for continued service conditions. Objectives and a summary of accomplishments under each of these tasks are presented

  4. Modelling the bending/bowing of composite beams such as nuclear fuel

    International Nuclear Information System (INIS)

    Tayal, M.

    1989-01-01

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes can bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. BOW accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraint from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcaps and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations shoe that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements

  5. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  6. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    Directory of Open Access Journals (Sweden)

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  7. Structure analysis, fatigue testing, and lifetime prediction of composite steels

    Science.gov (United States)

    Sokolkin, Yu. V.; Chekalkin, A. A.; Babushkin, A. V.

    1998-05-01

    Composite steels prepared by technology of powder metallurgy are widely used as low cost parts with good resistance to wear, fracture, and corrosion. The development of powder composite steels is directly related to strength under vibration, fatigue stabilizing, and accurate lifetime prediction for actual composite topology. The fatigue behavior of powder steels was studied by experimental and numerical methods of composite mechanics and materials sciences. The chemical composition of composite steel is a pure iron powder as the base material and a handful of carbon, chromium, nickel, or phosphorus powders. The powder multi-component mixture is compacted by cold isostatic pressing to a rectangular form. The compactants are sintered in protective atmosphere. The microscale examination of the composite structure included an METAM-RV-21 metallographic optic microscope with a high-resolution ScanNexIIc scanner and an image processing package on the PC platform. The phase composition of powder steels has complex disordered topology with irregular ferrite/austenite grains, iron carbide inclusions, and pores. The microstructure images are treated according to the theory of stochastic processes as ergodic probability functions; statistical moments and a structural covariance function of the composite steels are given. The microscale stress-strain state of the composite steel is analyzed by finite element methods. The stiffness matrix of the composite steel is also presented together with stiffness matrices of ferrite/austenite grains, iron carbide inclusions, and pores as zero matrices. Endurance limits of the microstructural components are described by the Basquin or Coffin-Manson laws, respectively, as high and low cycle fatigue; cumulative microdamage in loading with a variable amplitude is taken from the Palmgren-Miner rule. Planar specimens were tested by console bending. Symmetric fatigue cycling was performed at a stable frequency of 20 Hz with endurance limits up

  8. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei

    CERN Document Server

    Neyens, G

    2003-01-01

    One of the key issues in current nuclear physics research is to investigate the properties of so-called 'exotic nuclei' and of 'exotic nuclear structures'. Exotic nuclei are nuclei with a proton-to-neutron ratio that is very different from the proton-to-neutron ratio in stable nuclei (a technical term related to this ratio is the 'isospin'). We define exotic nuclear structures as excitation modes of nuclei that have a very different structure than the structure (or shape) of the nuclear ground state. By putting the nucleons in a nucleus to extreme conditions of isospin and excitation energy one can investigate details of one of the four basic forces in nature: the strong force which binds the nucleons together to form a bound nucleus. While the basic properties of the strong nucleon-nucleon interaction are known from investigating the properties of nuclei near the 'valley of stability', recent developments in the study of exotic nuclei have demonstrated that specific properties of the strong interaction, such...

  9. Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 2

    Science.gov (United States)

    Westerheide, D. E.; Carter, H. G.; Erickson, R. C.; Kerlin, E. E.

    1972-01-01

    The nuclear heating of the propellant in all of the four baseline RNS configurations studied was much lower than that of the nuclear flight module configuration with the 5000-MW NERVA analyzed previously. Although the nuclear heating has been reduced, the effect of nuclear heating on the propellant as well as the effect of nuclear heating on internal structures such as antivortex baffles, screens, and sump components cannot be neglected. In addition, it was found that the present analytical precedures were not able to predict boundary layer initiation and breakoff points with the accuracy necessary to predict propellant thermodynamic nonequilibrium (stratification) and/or mixing.

  10. NUCLEAR STRUCTURE AND DECAY DATA: INTRODUCTION TO RELEVANT WEB PAGES

    International Nuclear Information System (INIS)

    BURROWS, T.W.; MCLAUGHLIN, P.D.; NICHOLS, A.L.

    2005-01-01

    A brief description is given of the nuclear data centres around the world able to provide access to those databases and programs of highest relevance to nuclear structure and decay data specialists. A number of Web-page addresses are also provided for the reader to inspect and investigate these data and codes for study, evaluation and calculation. These instructions are not meant to be comprehensive, but should provide the reader with a reasonable means of electronic access to the most important data sets and programs

  11. Considerations about soil-structures interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Muzzi, F.

    1977-01-01

    The main features of the soil-structure interaction for nuclear power plant are presented as they resulted from conservations that the author carried out at the Berkeley (California) University, at the California Institute of Technology and at the U.S. Nuclear Regulatory Commission in Washington (Dec 1975). The complete and inertial interaction approaches of analysis are discussed. The complete approach by the use of finite element technique as suggested by the U.S.N.R.C. Standard Review Plan 3.7.1. (June 1975) is finally described. (author)

  12. Muonic radioactive atoms a unique probe for nuclear structure

    CERN Document Server

    Nilsson, Thomas; Kolbe, E; Langanke, K; Martínez-Pinedo, G; Riisager, Karsten

    2004-01-01

    Muonic atoms have been a source of high-precision experimental nuclear structure data for decades, through muonic X-rays that yield information on nuclear charge distributions. The intense driver beams for production of radioactive beams in so-called second generation facilities will simultaneously be capable of producing unprecedented amounts of low-energy muons. This paper concerns some of the potential synergies of combining muons with radioactive nuclei as one possible new tool to be used at future RIB facilities. As a case study, muonic capture rates into highly excited states in /sup 78/Ni have been calculated.

  13. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  14. Transition from glass to graphite in manufacture of composite aircraft structure

    Science.gov (United States)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  15. Book of abstracts of 13. national conference on nuclear structure and 9. symposium on 'nuclear structure and quantum mechanics'

    International Nuclear Information System (INIS)

    2010-07-01

    13. national conference on nuclear structure and 9. symposium on 'nuclear structure and quantum mechanics' was held by China Nuclear Physics Society in Chifeng, 25 to 30 July, 2010. The proceedings collects the abstracts of 102 articles

  16. Structure, composition and mechanical properties of the silk fibres of ...

    Indian Academy of Sciences (India)

    The silk egg case and orb web of spiders are elaborate structures that are assembled from a number of components. We analysed the structure, the amino acid and fibre compositions, and the tensile properties of the silk fibres of the egg case of Nephila clavata. SEM shows that the outer and inner covers of the egg case ...

  17. Vegetation structure and floristic composition of Gergeda Anfillo ...

    African Journals Online (AJOL)

    Vegetation structure and floristic composition of Gergeda Anfillo Forest, West Ethiopia. ... Moreover, the forest housed 10 of the 24 national priority tree species and four plant communities were identified by cluster analysis. Structural analysis revealed that the forest is dominated by small sized trees and shrubs.

  18. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion

    Science.gov (United States)

    Rufer, Markus

    2015-01-01

    Microcosm, Inc., in conjunction with the Scorpius Space Launch Company, is developing a UCPS (Unibody Composite Pressurized Structure )for in-space propulsion. This innovative approach constitutes a clean break from traditional spacecraft design by combining what were traditionally separate primary and secondary support structures and metal propellant tanks into a single unit.

  19. Improved Joining of Metal Components to Composite Structures

    Science.gov (United States)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The

  20. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number...... of plies in a laminated composite structure. The conceptual combinatorial design problem is relaxed to a continuous problem such that well-established gradient based optimization techniques can be applied, and the optimization problem is solved on basis of interpolation schemes with penalization...

  1. Metallic-glass-matrix composite structures with benchmark mechanical performance

    Science.gov (United States)

    Schramm, Joseph P.; Hofmann, Douglas C.; Demetriou, Marios D.; Johnson, William L.

    2010-12-01

    Metallic-glass-matrix composites demonstrating unusual combination of high strength, high toughness, and excellent processability are utilized to fabricate cellular structures of egg-box topology. Under compressive loading, the egg-box panels are capable of undergoing extensive plastic collapse at very high plateau stresses enabling absorption of large amounts of mechanical energy. In terms of specific mechanical energy absorbed, the present panels far outperform panels of similar topology made of aluminum or fiber-reinforced polymer composites, and even surpass steel structures of highly buckling-resistant topologies, thus emerging among the highest performance structures of any kind.

  2. Ink composition for making a conductive silver structure

    Science.gov (United States)

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  3. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    Directory of Open Access Journals (Sweden)

    Tzviya Zeev-Ben-Mordehai

    2015-12-01

    Full Text Available Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC, which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.

  4. Nuclear structure investigations with inclusion of continuum states

    International Nuclear Information System (INIS)

    Rotter, I.

    1983-09-01

    The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)

  5. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1986-01-01

    The development and clinical application of a number of nuclear techniques for studying body composition is described. These techniques include delayed neutron activation for the analysis of calcium, phsophorus, sodium and chlorine and prompt-gamma activation for the measurement of nitrogen and cadmium. In addition, the measurement of in vivo iron by nuclear resonance scattering and lead by x-ray fluorescence is described. (author)

  6. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  7. Study on Macro-fiber Composite Coupled-Plate Structures

    Science.gov (United States)

    Zhang, Jiarui; Tu, Jianwei; Lai, Fangpeng; Luo, Wei; Zhu, Chenfei

    2017-11-01

    In this paper, the dynamic and vibration control effect of macro-fiber composite (MFC) were studied on the plate and shell structure, proposing a new calculation method of MFC coupled-plate structure actuating equation. Based on the first kind of piezoelectric equation, this paper deduces the equation of P1-type MFC composite plate structure, considering the influence of the Poisson’s ratio of the controlled structure and the effect of the MFC plane strain on MFC’s actuating force and actuating moment. In this paper, the vibration control experiment of the MFC coupled-plate structure is completed. The deviation between the experimental results and the simulation results is less than 7.5%, indicating that the P1-type MFC actuating equation is correct and can be used in the simulation calculation of vibration control for the MFC coupled-plate structure.

  8. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  9. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  10. Woven Structures from Natural Fibres for Reinforcing Composites

    OpenAIRE

    Bernava, Aina; Manins, Maris; Strazds, Guntis

    2015-01-01

    The increase of production of woven structures from natural fibres for reinforced composites can be noticed in different sectors of economy. This can be explained by limited sources of raw materials and different environmental issues, as well as European Union guidelines for car manufacture [4]. This research produced 2D textile structures of hemp yarn and polypropylene yarn and tested the impact of added glass fibre yarn on the mechanical properties of the woven structur...

  11. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  12. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  13. Structure and aqueous reactivity of silicate glasses high-resolution nuclear magnetic resonance contribution

    International Nuclear Information System (INIS)

    Angeli, F.

    2000-01-01

    This research aims at getting a better understanding of the relations which may exist between the chemical composition of the oxide silicate glasses, the structure and the aqueous reactivity. We study the cations present in most glasses, more particularly the radioactive waste glasses, and those which are more liable to bring information both about structure and reactivity. Among the experimental methods used, the nuclear magnetic resonance of multi-quantum magic-angle spinning (NMR MQ-MAS) has been carried out for the structural characterization of the pristine and altered glasses. In the first part, we discuss the possibility of deducting a type of information from a quantitative approach of the 23 Na, 27 Al and 17 O NMR MQ-MAS. In the second part, we apply this method to glasses containing between two and six oxides. The vitreous compositions studied permit to focus our attention on the influence of sodium, aluminum and calcium on their local structural environment. We point out an evolution of the distributions of bond distances and angles in relation to the glass chemical composition. We show the strong potentiality of the 17 O used to probe the pristine and altered glasses. The influence of the different cations studied on the rate of glass dissolution is debated from the alterations made on short periods. On the basis of all these data, we discuss the importance of the structural effect which may influence the kinetic phenomena of alteration. (author)

  14. Relationship of structure and stiffness in laminated bamboo composites

    OpenAIRE

    Penellum, Matthew; Sharma, Bhavna; Shah, Darshil Upendra; Foster, Robert; Ramage, Michael Hector

    2018-01-01

    Laminated bamboo in structural applications has the potential to change the way buildings are constructed. The fibrous microstructure of bamboo can be modelled as a fibre-reinforced composite. This study compares the results of a fibre volume fraction analysis with previous experimental beam bending results. The link between fibre volume fraction and bending stiffness shows that differences previously attributed to preservation treatment in fact arise due to strip thickness. Composite t...

  15. Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions

    Science.gov (United States)

    Bombaci, Ignazio; Logoteta, Domenico

    2018-02-01

    Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.

  16. Blast Testing and Modelling of Composite Structures

    DEFF Research Database (Denmark)

    Giversen, Søren

    The motivation for this work is based on a desire for finding light weight alternatives to high strength steel as the material to use for armouring in military vehicles. With the use of high strength steel, an increase in the level of armouring has a significant impact on the vehicle weight......-up proved functional and provided consistent data of the panel response. The tests reviled that the sandwich panels did not provide a decrease in panel deflection compared with the monolithic laminates, which was expected due to their higher flexural rigidity. This was found to be because membrane effects...... a pressure distribution on a selected surfaces and has been based on experimental pressure measurement data, and (ii) with a designed 3 step numerical load model, where the blast pressure and FSI (Fluid Structure Interaction) between the pressure wave and modelled panel is modelled numerically. The tested...

  17. Nuclear structure and decay data evaluation in Europe

    Science.gov (United States)

    Negret, Alexandru; Balabanski, Dimiter; Dimitriou, Paraskevi; Elekes, Zoltan; Mertzimekis, Theo J.; Pascu, Sorin; Timar, Janos

    2017-09-01

    Nuclear Structure and Decay Data (NSDD) activities in Europe include mass-chain and individual nuclei evaluations as well as horizontal evaluations and compilations, data dissemination and educational activities. As such they are essential for a large range of applications from energy, environmental, and medical to basic research in nuclear structure and reactions, all of which are intensively pursued in Europe. Although the NSDD evaluation groups in Europe form part of the international network of NSDD evaluators, which is coordinated by the International Atomic Energy Agency, they are faced with some very distinct challenges. We shortly present the NSDD Data Centre at IFIN-HH, Bucharest and discuss possible actions to improve the situation for the entire European NSDD evaluation effort.

  18. Nuclear structure and decay data evaluation in Europe

    Directory of Open Access Journals (Sweden)

    Negret Alexandru

    2017-01-01

    Full Text Available Nuclear Structure and Decay Data (NSDD activities in Europe include mass-chain and individual nuclei evaluations as well as horizontal evaluations and compilations, data dissemination and educational activities. As such they are essential for a large range of applications from energy, environmental, and medical to basic research in nuclear structure and reactions, all of which are intensively pursued in Europe. Although the NSDD evaluation groups in Europe form part of the international network of NSDD evaluators, which is coordinated by the International Atomic Energy Agency, they are faced with some very distinct challenges. We shortly present the NSDD Data Centre at IFIN-HH, Bucharest and discuss possible actions to improve the situation for the entire European NSDD evaluation effort.

  19. Technical limitations of nuclear fuel materials and structures

    International Nuclear Information System (INIS)

    Hansson, L.; Planman, T.; Vitikainen, E.

    1993-05-01

    This report gives a summary of the tasks carried out within the project 'Technical limitations of nuclear fuel materials and structures' which belongs to the Finnish national research programme called 'Systems behaviour and operational aspects of safety'. The duration of the project was three years from 1990 to 1992. Most western LWR utilities, including the two Finnish ones have an incentive to implement extended burnup fuel cycles in their nuclear power plants. The aim of this project has been authorities to support them in the assessment and licensing of new fuel designs and materials. The research work of the project was focused on collecting and qualifying fuel performance data and on performing laboratory tests on fresh and irradiated cladding and structural materials. Moreover, knowledge of the high burnup phenomena was obtained through participation in international research projects such as OECD Halden Project and several Studsvik projects. Experimental work within the framework of the VVER fuel cooperative effort was also continued. (orig.)

  20. Dismantling of nuclear facilities. From a structural engineering perspective

    International Nuclear Information System (INIS)

    Block, Carsten; Henkel, Fritz-Otto; Bauer, Thomas

    2014-01-01

    The paper summarizes some important aspects, requirements and technical boundary conditions that need to be considered in dismantling projects in the nuclear sector from a structural engineering perspective. Besides general requirements regarding radiation protection, occupational safety, efficiency and cost effectiveness it is important to take into account other conditions which have a direct impact on technical details and the structural assessment of the dismantling project. These are the main aspects highlighted in this paper: - The structural assessment of dismantling projects has to be based on the as-built situation. - The limitations in terms of available equipment and space have to be taken into account. - The structural assessments are often non-standardized engineering evaluations. A selection of five dismantling projects illustrates the various structural aspects. (orig.)

  1. EVALUATED NUCLEAR STRUCTURE DATA FILE. A MANUAL FOR PREPARATION OF DATA SETS

    International Nuclear Information System (INIS)

    TULI, J.K.

    2001-01-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A ≤ 293), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A ≥ 44, this information is published in the Nuclear Data Sheets; for A < 44, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information

  2. Supersymmetric unified compositeness and the quark/lepton generation structure

    International Nuclear Information System (INIS)

    Davidson, A.; Sonnenschein, J.

    1983-12-01

    We attempt to construct a realistic model, incorporating the ideas of supersymmetry, compositeness and grand unification. Unification dictates the preon/spectator SU(3)xSU(2)xU(1) assignments, while supersymmetry tackles the hierachy problem and partially protects chiral invariance. It is primarily the presence of scalar preons which allows for a 't Hooft-Appelquist-Carazzone consistent composite generation structure. The various quark/leptons are internally distinguished, with U(1)sub(R) serving as a broken horizontal symmetry. To demonstrate our idea, unified SU(10) is invoked to give birth to supersymmetric SU(5)sub(HC) compositeness with four low-lying standard families. (author)

  3. Thermosetting polymer-matrix composites for structural repair applications

    Science.gov (United States)

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  4. Design and analysis of composite structures with applications to aerospace structures

    CERN Document Server

    Kassapoglou, Christos

    2010-01-01

    Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from ac

  5. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  6. Nuclear Structure Aspects of Neutrinoless Double-β Decay

    Science.gov (United States)

    Brown, B. A.; Horoi, M.; Sen'kov, R. A.

    2014-12-01

    We decompose the neutrinoless double-β decay matrix elements into sums of products over the intermediate nucleus with two less nucleons. We find that the sum is dominated by the Jπ=0+ ground state of this intermediate nucleus for both the light and heavy neutrino decay processes. This provides a new theoretical tool for comparing and improving nuclear structure models. It also provides the connection to two-nucleon transfer experiments.

  7. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  8. Behavior of grid-stiffened composite structures under transverse loading

    Science.gov (United States)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  9. Nuclear structure functions at a future electron-ion collider

    Science.gov (United States)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P.

    2017-12-01

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x —robust experimental constraints below x ˜10-2 at low resolution scale Q2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x ˜10-5 at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q2. In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.

  10. Structural role of molybdenum in nuclear glasses: an EXAFS study

    International Nuclear Information System (INIS)

    Calas, G.; Le Grand, M.; Galoisy, L.; Ghaleb, D.

    2003-01-01

    The Mo environment has been investigated in inactive nuclear glasses using extended X-ray absorption spectroscopy (XAS). Mo is present in a tetrahedron coordinated to oxygen in the form of molybdate groups [MoO 4 ] 2- (d(Mo-O)=1.78 A). This surrounding is not affected by the presence of noble metal phases in the nuclear glass. Relying on the XAS results, on the bond-valence model and on molecular dynamics simulations of a simplified borosilicate model glass, we show that these groups are not directly linked to the borosilicate network but rather located within alkali and alkaline-earth rich domains in the glass. This specific location in the glass network is a way to understand the low solubility of Mo in glasses melted under oxidizing conditions. It also explains the possible phase separation of a yellow phase enriched in alkali molybdates in molten nuclear glasses or the nucleation of calcium molybdates during thermal aging of these glasses. Boron coordination changes in the molten and the glassy states may explain the difference in the composition of the crystalline molybdates, as they exert a direct influence on the activity of alkalis in borosilicate glasses and melts

  11. Equidistant structure and effective nucleon mass in nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1981-11-01

    The effective nucleon mass of the Equidistant Multi-Layer Structure (EMULS) is discussed self-consistently. In the density region where the Fermi gas state in nuclear matter is unstable against the density fluctuation, the EMULS gives lower binding energy. It is, however, shown that such a structure with an ordinary nucleon mass collapses due to too strong attraction. We point out that such a collapse can be avoided by taking account of an effective nucleon mass affected by the localization of nucleons. (author)

  12. EMC characteristics of composite structure - Electric/electromagnetic shielding attenuation

    Science.gov (United States)

    Wegertseder, P.; Breitsameter, R.

    1989-09-01

    The paper reports electric/electromagnetic shielding-attenuation experiments performed on different test boxes built with the same materials and processes as those to be used for the construction of a helicopter. The measurements are performed in the frequency range of 14 to 18 GHz, and the effects of different composite materials, jointing and bonding of structure parts of the boxes, application and bonding of the mesh, the construction of access panels, and conductive seals on these panels are assessed. It is demonstrated that moderate electric/electromagnetic shielding-attenuation values can be achieved by composite structures made from carbon, and materials and procedures required for high shielding attenuation are discussed.

  13. Failure mechanisms in energy-absorbing composite structures

    Science.gov (United States)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  14. Structural optimization study of composite wind turbine blade

    DEFF Research Database (Denmark)

    Chen, Jin; Shen, Wen Zhong; Wang, Quan

    2013-01-01

    In this paper the initial layout of a 2. MW composite wind turbine blade is designed first. The new airfoils families are selected to design a 2. MW wind turbine blade. The finite element parametric model for the blade is established. Based on the modified Blade Element Momentum theory, a new one......-way fluid-structure interaction method is introduced. A procedure combining finite element analysis and particle swarm algorithm to optimize composite structures of the wind turbine blade is developed. The procedure proposed not only allows thickness variation but also permits the spar cap location...

  15. Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex.

    Science.gov (United States)

    Courjol, Flavie; Mouveaux, Thomas; Lesage, Kevin; Saliou, Jean-Michel; Werkmeister, Elisabeth; Bonabaud, Maurine; Rohmer, Marine; Slomianny, Christian; Lafont, Franck; Gissot, Mathieu

    2017-06-01

    The nuclear pore is a key structure in eukaryotes regulating nuclear-cytoplasmic transport as well as a wide range of cellular processes. Here, we report the characterization of the first Toxoplasma gondii nuclear pore protein, named TgNup302, which appears to be the orthologue of the mammalian Nup98-96 protein. We produced a conditional knock-down mutant that expresses TgNup302 under the control of an inducible tetracycline-regulated promoter. Under ATc treatment, a substantial decrease of TgNup302 protein in inducible knock-down (iKD) parasites was observed, causing a delay in parasite proliferation. Moreover, the nuclear protein TgENO2 was trapped in the cytoplasm of ATc-treated mutants, suggesting that TgNup302 is involved in nuclear transport. Fluorescence in situ hybridization revealed that TgNup302 is essential for 18S RNA export from the nucleus to the cytoplasm, while global mRNA export remains unchanged. Using an affinity tag purification combined with mass spectrometry, we identified additional components of the nuclear pore complex, including proteins potentially interacting with chromatin. Furthermore, reverse immunoprecipitation confirmed their interaction with TgNup302, and structured illuminated microscopy confirmed the NPC localization of some of the TgNup302-interacting proteins. Intriguingly, facilitates chromatin transcription complex (FACT) components were identified, suggesting the existence of an NPC-chromatin interaction in T. gondii. Identification of TgNup302-interacting proteins also provides the first glimpse at the NPC structure in Apicomplexa, suggesting a structural conservation of the NPC components between distant eukaryotes.

  16. Seismic site characterization for nuclear structures and power plants

    International Nuclear Information System (INIS)

    Boominathan, A.

    2004-01-01

    Seismic site characterization is carried out for the construction of nuclear structures and power plants in earthquake-prone areas to establish the occurrence of severe seismic hazards such as tectonic rupture, surface faulting, large scale liquefaction, sliding and seismic settlement which may alter the overall stability of the site. Seismic characterization is required to finalize the design earthquake parameters including choosing input seismic data. As a part of the investigation, measurements of relevant dynamic parameters both in laboratory and in situ have been made for carrying out dynamic soil structure interaction analysis, for determination of dynamic deformation, seismic settlement and dynamic response spectrum of the site, and for calculating dynamic earth pressure acting on retaining structures. We discuss here the seismic investigation components and methods, measurement of P- and S- wave velocities in the field and estimation of important dynamic parameters such as maximum shear modulus, modulus reduction curve, damping ratio, seismic site classification, predominant site period, liquefaction analysis through case studies for nuclear structures at Kalpakkam and Kudankulam and power plant structures at New Delhi and Konaseema. (author)

  17. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  18. A Formalism for Scattering of Complex Composite Structures

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Pedersen, Jan Skov

    2012-01-01

    -unit scattering. The structural scattering expressions allow composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is generic in the sense that the scattering due......We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub...... to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair distributions...

  19. Non-empirical energy density functional for the nuclear structure

    International Nuclear Information System (INIS)

    Rot ival, V.

    2008-09-01

    The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)

  20. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  1. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    Science.gov (United States)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  2. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  3. Configuration management and load monitoring procedures for nuclear plant structures

    International Nuclear Information System (INIS)

    Chu, S.L.; Skaczylo, A.T.

    1990-01-01

    This paper describes a computer-aided engineering tool called the Load Monitoring System (LMS) that was proven effective for monitoring floor framing, loads, and structural integrity. The system links structural analysis, design investigation, and reporting and automated drafting programs with a Data Base Management System (DBMS). It provides design engineers with a powerful tool for quickly incorporating, tracking, and assessing load revisions and determining effects on steel floor framing members and connections, thereby helping to reduce design man-hours, minimize the impact of structural modifications, and maintain and document the design baseline. The major benefit to utilities are the reduction in engineering costs, assistance with plant configuration management, and assurance of structural safety throughout the operating life of a nuclear plant and at evaluation for license renewal. (orig./HP)

  4. Nuclear fuel cycle bringing about opportunity for industrial structure conversion

    International Nuclear Information System (INIS)

    Nakamura, Taiki

    1991-01-01

    Three facilities of nuclear fuel cycle, that is, uranium enrichment, fuel reprocessing and low level radioactive waste storage and burying, are being constructed by electric power industry in Rokkasho Village, Kamikita County, Aomori Prefecture. These are the large scale project of the total investment of 1.2 trillion yen. It is expected that the promotion of this project exerts not a little effect to the social economy of the surrounding districts. Agency of Natural Resources and Energy, Ministry of International Trade and Industry, carried out the social environment survey on the location of nuclear fuel cycle facilities. In this report, the outline of the economical pervasive effect due to the construction and operation of the three facilities in the report of this survey is described. The method of survey and the organization, the outline of three nuclear fuel cycle facilities, the economical pervasive effect, the effect to the local social structure, and the direction of arranging occupation, residence and leisure accompanying the location of three nuclear fuel cycle facilities are reported. (K.I.)

  5. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1993-01-01

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in 82 Sr; structure of and identical bands in 182 Hg and 178 Pt; a highly deformed band in 136 Pm; particle decay of the 164 Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of 12 O; modeling and theoretical studies; excited 16 O disassembly into four alpha particles; 209 Bi + 136 Xe collisions at 28.2 MeV/amu; and development work on 4π solid angle gamma detectors, and x-ray detectors

  6. Evaluation of network structures and protocols for nuclear-specific applications

    International Nuclear Information System (INIS)

    Zahedi, P.

    2008-01-01

    The evaluation of industrial implementations of network structures associated with nuclear-specific applications is the main focus of this paper. Establishing numerous network structures currently used in nuclear industry, this project analyzes the functionality and reliability of different structures. The communication structures studied in this paper include Fieldbus and Modbus Communication Protocols, Object Linking and Embedding process control (OPC), Dynamic Data Exchange (DDE) and Net-DDE. This paper focuses on identifying the potential problems in applying various network structures to nuclear industry to enable a nuclear-specific network structure to be developed for the fast growing nuclear industry. (author)

  7. 75 FR 24502 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; Reopening of Comment...

    Science.gov (United States)

    2010-05-05

    ... Evaluation of Composite Rotorcraft Structures; Reopening of Comment Period AGENCY: Federal Aviation... composite structures technology and provide internationally harmonized standards. The public was invited to... 793) Notice No. 09-12, entitled ``Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft...

  8. Self-learning health monitoring algorithm in composite structures

    Science.gov (United States)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  9. CHAP: a composite nuclear plant simulation program applied to the 3000 MW(t) HTGR

    International Nuclear Information System (INIS)

    Secker, P.A.; Bailey, P.G.; Gilbert, J.S.; Willcutt, G.J.E. Jr.; Vigil, J.C.

    1977-01-01

    The Composite HTGR Analysis Program (CHAP) is a general systems analysis program which has been developed at LASL. The program is being used for simulating large HTGR nuclear power plant operation and accident transients. The general features and analytical methods of the CHAP program are discussed. Features of the large HTGR model and results of model transients are also presented

  10. Net-Shape Tailored Fabrics For Complex Composite Structures

    Science.gov (United States)

    Farley, Gary L.

    1995-01-01

    Proposed novel looms used to make fabric preforms for complex structural elements, both stiffening elements and skin, from continuous fiber-reinforced composite material. Components of looms include custom reed and differential fabric takeup system. Structural parts made best explained by reference to curved "I" cross-section frame. Technology not limited to these fiber orientations or geometry; fiber angles, frame radius of curvature, frame height, and flange width changed along length of structure. Weaving technology equally applicable to structural skins, such as wing of fuselage skins.

  11. MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2013-02-01

    Full Text Available In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

  12. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  13. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  14. Recognition structure of semipalatinsk residents caused by nuclear explosion tests

    International Nuclear Information System (INIS)

    Hirabayashi, Kyoko; Satoh, Kenichi; Ohtaki, Megu; Muldagaliyev, T.; Apsalikov, K.; Kawano, Noriyuki

    2012-01-01

    Authors' team of Hiroshima University and Scientific Research Institute of Radiation Medicine and Ecology (Kazakhstan) has been investigating the health state, exposure route, contents and mental effect of nuclear explosion tests of Semipalatinsk residents through their witness and questionnaire since 2002, to elucidate the humanistic damage of nuclear tests. Reported here is the recognition structure in the title statistically analyzed with use of frequently spoken words in the witness. The audit was performed in 2002-2007 to 994 residents who had experienced ground explosion tests during the period from 1949 to 1962 and were living in 26 villages near the old test site. Asked questions concerning nuclear tests involved such items as still unforgettable matters, dreadful events, regretting things, thought about the test, requests; and matters about themselves, their family, close friends and anything. The frequency of the test site-related words heard in the interview were analyzed with hierarchical clustering and multi-dimensional scaling with a statistic software R for computation and MeCab for morphological analysis. Residents' recognition was found to be of two structures of memory at explosion tests and anger/dissatisfaction/anxiety to the present state. The former contained the frequent words of mushroom cloud, flash, blast, ground tremble and outdoor evacuation, and the latter, mostly anxiety about health of themselves and family. Thus residents have had to be confronted with uneasiness of their health even 20 years after the closure of the test site. (T.T.)

  15. Household structure vs. composition: Understanding gendered effects on educational progress in rural South Africa

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2017-12-01

    Full Text Available Background: Demographers have long been interested in the relationship between living arrangements and gendered outcomes for children in sub-Saharan Africa. Most research conflates household structure with composition and has revealed little about the pathways that link these components to gendered outcomes. Objective: We offer a conceptual approach that differentiates structure from composition with a focus on gendered processes that operate in the household in rural South Africa. Methods: We use data from the 2002 round of the Agincourt Health and Socio-Demographic Surveillance System. Our analytical sample includes 22,997 children aged 6‒18 who were neither parents themselves nor lived with a partner or partner's family. We employ ordinary least squares regression models to examine the effects of structure and composition on educational progress of girls and boys. Results: Non-nuclear structures are associated with similar negative effects for both boys and girls compared to children growing up in nuclear households. However, the presence of other kin in the absence of one or both parents results in gendered effects favouring boys. Conclusions: The absence of any gendered effects when using a household structure typology suggests that secular changes to attitudes about gender equity trump any specific gendered processes stemming from particular configurations. On the other hand, gendered effects that appear when one or both parents are absent show that traditional gender norms and/or resource constraints continue to favour boys. Contribution: We have shown the value of unpacking household structure to better understand how gender norms and gendered resource allocations are linked to an important outcome for children in sub-Saharan Africa.

  16. Structure and content of competitive group compositions in sports aerobics

    Directory of Open Access Journals (Sweden)

    Tetiana Moshenska

    2017-02-01

    Full Text Available Purpose: to make the analysis of modern competitive group compositions in sports aerobics. Material & Methods: pedagogical, sociological and methods of mathematical statistics were used. 10 coaches took part in the experimental part; analysis of protocols and video records of competitions of the aged category of children of 9–11 years old, who perform in the nomination of triplets and quintuples (group exercises, is carried out. Results: the content of competitive compositions and the allocated indicators are studied which defined it. Conclusions: the basic structural elements, which characterize competitive compositions, are allocated. Their components, quantity and time of performance are defined. It is established that variety of aerobic contents, spaces, and means of registration, musical compliance and logicality of creation of the whole competitive composition at high quality of performance characterizes teams – winners.

  17. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  18. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    Science.gov (United States)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  19. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  20. A critical review of nanotechnologies for composite aerospace structures

    Science.gov (United States)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  1. Investigation of knowledge structure of nuclear data evaluation code

    International Nuclear Information System (INIS)

    Uenaka, Junji; Kambayashi, Shaw

    1988-08-01

    In this report, investigation results of knowledge structure in a nuclear data evaluation code are described. This investigation is related to the natural language processing and the knowledge base in the research theme of Human Acts Simulation Program (HASP) begun at the Computing Center of JAERI in 1987. By using a machine translation system, an attempt has been made to extract a deep knowledge from Japanese sentences which are equivalent to a FORTRAN program CASTHY for nuclear data evaluation. With the knowledge extraction method used by the authors, the verification of knowledge is more difficult than that of the prototyping method in an ordinary AI technique. In the early stage of building up a knowledge base system, it seems effective to extract and examine knowledge fragments of limited objects. (author)

  2. Nuclear-structure studies of exotic nuclei with MINIBALL

    Science.gov (United States)

    Butler, P. A.; Cederkall, J.; Reiter, P.

    2017-04-01

    High-resolution γ-ray spectroscopy has been established at ISOLDE for nuclear-structure and nuclear-reaction studies with reaccelerated radioactive ion beams provided by the REX-ISOLDE facility. The MINIBALL spectrometer comprises 24 six-fold segmented, encapsulated high-purity germanium crystals. It was specially designed for highest γ-ray detection efficiency which is advantageous for low-intensity radioactive ion beams. The MINIBALL array has been used in numerous Coulomb-excitation and transfer-reaction experiments with exotic ion beams of energies up to 3 MeV A-1. The physics case covers a wide range of topics which are addressed with beams ranging from neutron-rich magnesium isotopes up to heavy radium isotopes. In the future the HIE-ISOLDE will allow the in-beam γ-ray spectroscopy program to proceed with higher secondary-beam intensity, higher beam energy and better beam quality.

  3. Floristic Composition, Tree Canopy Structure and Regeneration in a ...

    African Journals Online (AJOL)

    Floristic composition, plant species diversity, tree canopy structure and regeneration were assessed in a degraded tropical humid rainforest in Nigeria using a systematic line transect sampling technique for plot demarcation. All plants in a plot were identified and classified into families while the diameters and heights of ...

  4. ALL NATURAL COMPOSITE SANDWICH BEAMS FOR STRUCTURAL APPLICATIONS. (R829576)

    Science.gov (United States)

    As part of developing an all natural composite roof for housing application,structural panels and unit beams were manufactured out of soybean oil based resinand natural fibers (flax, cellulose, pulp, recycled paper, chicken feathers)using vacuum assisted resin tran...

  5. Tree species composition, structure and utilisation in Maruzi Hills ...

    African Journals Online (AJOL)

    The study investigated the tree species composition, vegetation structure and harvesting pattern to guide management of the Maruzi Hills Forest Reserve. Stratified random sampling was used to site six (100 m × 100 m) permanent sample plots in the woodland, bushland and grassland vegetation types identified in the ...

  6. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  7. Variability in Parasites' Community Structure and Composition in Cat ...

    African Journals Online (AJOL)

    This study investigated the composition and structure of the parasite communities in Cat fish with respect to levels of water pollution in Lake Victoria. A total of 1071 Clarias gariepinus with mean TL range of 19 to 27 cm were analyzed from three localities in Mwanza Gulf (Kirumba, 298 fish infected with 15 parasite species), ...

  8. floristic composition and structure of the Dry Afromontane Forest

    African Journals Online (AJOL)

    ADMIN

    Key words/phrases: Bale Mountains, floristic composition, plant community, vegetation structure. INTRODUCTION. The highland area of ..... Juniperus procera had the highest dominance in. Adelle whereas Hagenia abyssinica ..... The World Bank is gratefully acknowledged for provision of financial support through the.

  9. Plant species composition and structure of the Mana Angetu moist ...

    African Journals Online (AJOL)

    A floristic composition and structure study of the Mana Angetu Forest was carried out between July 2003 and June 2004 at four sites of the forest with an altitudinal range of 1533-2431 m. Three transects, 750 ... Analysis of Importance Value Index indicated that Vepris dainellii had the highest value (79). The population ...

  10. Fish species composition, size structure and distribution in non ...

    African Journals Online (AJOL)

    Fish diversity studies in littoral non-trawlable areas of Lake Victoria (Tanzania) were undertaken during six systematic surveys (November 2000 to December 2002). Information on fish species composition, size structure as well as spatial and temporal distribution was generated from gill-netting, beach-seining and electric ...

  11. Floristic Composition and Vegetation Structure of The KNUST ...

    African Journals Online (AJOL)

    The diversity, relative importance, canopy height and cover of plant species in the Kwame Nkrumah University of Science and Technology (KNUST) Botanic Garden were evaluated in five 1-ha plots using a stratified random sampling technique in order to build an understanding of its floristic composition and structure in two ...

  12. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    . The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...

  13. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  14. Structural evolution of ZTA composites during synthesis and processing

    Czech Academy of Sciences Publication Activity Database

    Exare, C.; Kiat, J. M.; Guiblin, N.; Porcher, F.; Petříček, Václav

    2015-01-01

    Roč. 35, č. 4 (2015), s. 1273-1283 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : ceramic s * alumina–zirconia composites * structural properties * strain effect * size effect Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.933, year: 2015

  15. The influence of compositional and structural diversity on forest productivity

    Science.gov (United States)

    James N. Long; John D. Shaw

    2010-01-01

    Data from ~1500 ponderosa pine (Pinus ponderosa C. Lawson) stands in the western United States were used to examine the potential influence of compositional and structural diversity on forest productivity. Relative density, height and site quality were combined in a conceptually sound expression of the relationship between growth and growing stock for ponderosa pine-...

  16. Structural composite panel performance under long-term load

    Science.gov (United States)

    Theodore L. Laufenberg

    1988-01-01

    Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...

  17. Ancient ceramics and glass compositional studies using nuclear methods

    International Nuclear Information System (INIS)

    Contastinescu, B.

    2001-01-01

    The analysis of archaeological objects requires simultaneously non-destructive, fast, versatile, sensitive and multielemental methods. Romania has a lot of interesting archaeological sites: Greek on the Black Sea coast, Roman in Transylvania and Dobroudja. Byzantine on the Danube border. Our purpose was to help Romanian archaeologists to identify provenance (workshop, technologies, mines) and to explain commercial, military and political aspects. Three methods were used in air 3 MeV protons PIXE 241 Am source based XRF and FNAA. For in air PIXE, we are used a 3-4 MeV proton beam obtained from the 6.5 MeV Cyclotron nominal regime protons extracted through a 20 μm aluminium foil into the air striking the sample after 8-10 cm. X-ray were detected through reflection using horizontal Si(Li) detector. XRF measurement were done with a spectrometer consisting of a 30mCi 241 Am annular gamma source a Si(Li) detector and a conventional electronic chain. Using both PIXE and XRF methods, we can determine all the elements from potassium to Uranium. Some compositional results on various archaeological ceramics objects from Romanian sites (glaze and painting agents but also clay elemental analyses) are presented. For glasses, chemical differences that occur during preparation of materials will affect the elemental composition and could be used for the identification of technologies and workshops involved. The problems i sto identify colouring agents de colorants, opacifier and fining agents. The XRF and FNAA techniques were used. Some results on medieval and XVIII Century samples founded in South-Eastern Romania are also presented

  18. Development of new CAD system for steel structures of nuclear power plants

    International Nuclear Information System (INIS)

    Morii, Yasuhiro; Kudou Takashi; Kouno, Kenichi; Yamada, Koutarou

    1999-01-01

    IHI has developed a new Three-Dimensional Computer-Aided Design (3D-CAD) system to improve the design efficiency and quality of the steel structure of nuclear power plants. This system covers every design phase from the initial arrangement of structure to the production design sharing the same database. The system incorporates the design rules and professional expertise of designers, and enable easy and efficient design. The system can easily generate the three-dimensional data for structures, model data for stress analyses and composite arrangement data. The system has already been applied to several plants under construction and has achieved excellent results. The outline of the new CAD system is introduced. (author)

  19. Determination of internal pressure and the backfill gas composition of nuclear fuel rods

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Cota S, G.; Merlo S, L.; Fernandez T, F.

    1997-01-01

    An important consideration in the nuclear fuel manufacturing is the measurement of the helium atmosphere pressure and its composition analysis inside the nuclear fuel rod. In this work it is presented a system used to measure the internal pressure and to determine the backfill gas composition of fuel rods. The system is composed of an expansion chamber provided of a seals system to assure that when rod is drilled, the gas stays contained inside the expansion chamber. The system is connected to a pressure measurement digital system: Baratron MKS 310-AHS-1000. Range 1000 mm Hg from which the pressure readings are taken when this is stabilized in all the system. After a gas sample is sent toward a Perkin Elmer gas chromatograph, model 8410 with thermal conductivity detector to get the corresponding chromatogram and doing the necessary calculations for obtaining the backfill gas composition of the rod in matter. (Author)

  20. Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact

    Science.gov (United States)

    2016-06-01

    this study of impact force, deflection, and strain were measured in a carbon fiber reinforced polymer (CFRP) composite cylinder subjected to low...Sanchez, J. Lopez-Puente, and D. Varas, “On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts,” Composite ...and back sides. The baffle provided the greatest strain reduction at the high fill levels. 14. SUBJECT TERMS glass fiber composite , fluid structure

  1. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  2. The maintenance optimization of structural components in nuclear power plants

    International Nuclear Information System (INIS)

    Bryla, P.; Ardorino, F.; Aufort, P.; Jacquot, J.P.; Magne, L.; Pitner, P.; Verite, B.; Villain, B.; Monnier, B.

    1997-10-01

    An optimization process, called 'OMF-Structures', is developed by Electricite de France (EDF) in order to extend the current 'OMF' Reliability Centered Maintenance to piping structural components. The Auxiliary Feedwater System of a 900 MW French nuclear plant has been studied in order to lay the foundations of the method. This paper presents the currently proposed principles of the process. The principles of the OMF-Structures process include 'Risk-Based Inspection' concepts within an RCM process. Two main phases are identified: The purpose of the first phase is to select the risk-significant failure modes and associated elements. This phase consists of two major steps: potential consequences evaluation and reliability performance evaluation. The second phase consists of the definition of preventive maintenance programs for piping elements that are associated with risk-significant failure modes. (author)

  3. Nuclear structure and nuclear reaction aspects of Faessler and Greiner's rotation-vibration coupling theory

    International Nuclear Information System (INIS)

    Aspelund, O.

    In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)

  4. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  5. Vibration based structural health monitoring of composite skin-stiffener structures

    NARCIS (Netherlands)

    Ooijevaar, T.H.

    2014-01-01

    Composite materials combine a high strength and stiffness with a relatively low density. These materials can, however, exhibit complex types of damage, like transverse cracks and delaminations. These damage scenarios can severely influence the structural performance of a component. Periodic

  6. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  7. A Study of Flexible Composites for Expandable Space Structures

    Science.gov (United States)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  8. Nuclear structure studies with INGA at IUAC and future possibilities

    International Nuclear Information System (INIS)

    Singh, R.P.

    2016-01-01

    Study of nuclear structure exhibits a wide variety of modes of nuclear excitations. The various modes of excitations reflect different underlying structures nuclei adopt to for a given situation of spin, iso-spin and excitation energy. Trying to understand and reconcile these large variety of underlying structures (and symmetries) in a finite quantal system, like nuclei, is of great interest to physicists. The gamma ray spectrometer called Indian National Gamma detector Array (INGA) (a national collaboration) has given further impetus to these studies due to enhanced photo-peak detection efficiency for gamma rays. In recent years our group in collaboration with universities and institutes have probed the various dynamical symmetries like chirality, shears and gamma bands built over excited configurations. I would discuss some of the recent results from these studies. Further, at IUAC we are working on combining the INGA spectrometer with our hybrid gas-filled mass analyser HYRA for study of heavy nuclei in the forthcoming INGA-HYRA campaign. Some of these developments would also be discussed

  9. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  10. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  11. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  12. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  13. Structures tubulaires minces en matériaux composites. Principes de calcul Thin-Walled Composite Tubular Structures. Calculation Method

    Directory of Open Access Journals (Sweden)

    Odru P.

    2006-11-01

    Full Text Available Cet article présente une méthode de calcul des structures composites fibres-résine appliquée aux cas des tubes minces. Outre l'établissement des relations contraintes - déformations généralisées des tubes à partir des caractéristiques des matériaux de base et de leur orientation, on pose les relations permettant de calculer leur comportement et leur dimensionnement sous des charges axisymétriques combinées de traction, pression et flexion. Une méthode simplifiée applicable au cas des composites microfissurés est aussi présentée. On montre ensuite, à travers quelques exemples concrets d'applications, les propriétés intéressantes ou inhabituelles que le matériau permet de conférer aux structures. This article presents a method of calculation of composite structures applied to thin-walled tubes. Starting from the characteristics and orientation of the basic materials, the generalized stress-strain equations of the tubes are determined ; then the relationship allowing the calculation of their design and behavior under combined axisymmetrical loads of tension, pressure and bending are established. A simplified method applicable to microcracked composite materials is also described. Several complete examples of applications illustrate the interesting or unusual properties that this material can impart to structures

  14. Nuclear Structure Group annual progress report June 1974 -May 1975

    International Nuclear Information System (INIS)

    1975-06-01

    This is the first annual progress report of the Nuclear Structure Group of the University of Birmingham. The introduction lists the main fields of study of the Group as: polarisation penomena and optical model studies using 3 He and 4 He probes; photonuclear physics; heavy-ion physics; and K- meson physics. The programme is related to particle accelerators at Birmingham, Oxford, Harwell and the Rutherford Laboratory. The body of the report consists of summaries of 38 experiments undertaken by members of the Group. The third section contains 10 notes on instrumentation topics. Appendices contain lists of (a) personnel, (b) papers published or submitted during the period. (U.K.)

  15. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  16. Grain boundary engineering for structure materials of nuclear reactors

    Science.gov (United States)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  17. Grain boundary engineering for structure materials of nuclear reactors

    International Nuclear Information System (INIS)

    Tan, L.; Allen, T.R.; Busby, J.T.

    2013-01-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic–martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys

  18. Progress In Developing an Impermeable, High Temperature Ceramic Composite for Advanced Reactor Clad And Structural Applications

    International Nuclear Information System (INIS)

    Feinroth, Herbert; Hao, Bernard; Fehrenbacher, Larry; Patterson, Mark

    2002-01-01

    Most Advanced Reactors for Energy and Space Applications require higher temperature materials for fuel cladding and core internal structures. For temperatures above 500 deg. C, metal alloys do not retain sufficient strength or long term corrosion resistance for use in either water, liquid metal or gas cooled systems. In the case of water cooled systems, such metals react exo-thermically with water during core overheating accidents, thus requiring extensive and expensive emergency systems to protect against major releases. Past efforts to apply ceramic composites (oxide, carbide or nitride based) having passive safety characteristics, good strength properties at high temperatures, and reasonable resistance to crack growth, have not been successful, either because of irradiation induced effects, or lack of impermeability to fission gases. Under a Phase 1 SBIR (Small Business Innovative Research) project sponsored by DOE's Office of Nuclear Energy, the authors have developed a new material system that may solve these problems. A hybrid tubular structure (0.6 inches in outside diameter) consisting of an inner layer of monolithic silicon carbide (SiC) and outer layers of SiC-SiC composite, bonded to the inner layer, has been fabricated in small lengths. Room temperature permeability tests demonstrate zero gas leakage at pressures up to 120 psig internal pressure. Four point flexural bending tests on these hybrid tubular specimens demonstrate a 'graceful' failure mode: i.e. - the outer composite structure sustains a failure mode under stress that is similar to the yield vs. stress characteristics of metal structures. (authors)

  19. Background and perspective on rapid progress and deepening of international development of nuclear industry-composition of international nuclear energy business 'cooperation and competition'

    International Nuclear Information System (INIS)

    Kano, Tokio; Kanda, Keji; Ishizuka, Nobuo

    2005-01-01

    Based on the recognition that international development of nuclear industry was important by a viewpoint of international cooperation to neighboring Asian area and also it was the trump that defeated a feeling of domestic confinement, the Japan Atomic Industrial Forum (JAIF) founded Nuclear energy international development gathering' in November 2004. On that occasion our magazine (March, 2005 issue) featured 'prospects and problem of the international development of nuclear energy use'. Slightly for half a year afterwards this nuclear energy international development has been rapidly deepened and become a close-up as a policy of an important strategy of the field of nuclear energy that the government and the private sector were united to make. Therefore the nuclear energy international development was secondly featured from multidirectional points of view such as a background of nuclear energy international development, composition of international nuclear energy business, a main strategy of three makers, approach of finance / a business firm. (T. Tanaka)

  20. Structural and morphological characteristics of composite: polyamide 6/ferrite nickel

    International Nuclear Information System (INIS)

    Fernandes, P.C.; Santos, P.T.A.; Silva, T.R.G.; Araujo, E.M.; Costa, A.C.F.M.

    2010-01-01

    This study aims to evaluate the structural and morphological characteristics of a composite polyamide 6 with 50% loading of nickel ferrite. The ferrite was obtained by combustion synthesis and calcined in muffle furnace at 700 deg C. The polymer matrix was previously dried in vacuum oven at 80 deg C / 48 h to eliminate moisture. The composites were characterized by XRD and SEM. XRD results show the incorporation of cargo in the matrix, and that increasing temperature led to a considerable increase in crystallinity. The particle size of the load in the matrix was changed by increasing temperature. (author)

  1. Structural design of nuclear reactor machinery and equipment

    International Nuclear Information System (INIS)

    Hara, Hideki

    1992-01-01

    Since the machinery, equipment and piping which compose nuclear power station facilities are diverse, when those are designed, consideration is given sufficiently to the objective of use and the importance of the object machinery and equipment so that those can maintain the soundness over the design life. In this report, on the contents and the design standard in the design techniques for nuclear reactor machinery and equipment, the way of thinking is shown, taking an example of reactor pressure vessel which is stipulated as the vessel kind 1 in the 'Technical standard of structures and others regarding nuclear facilities for electric power generation', Notice No. 501 of the Ministry of International Trade and Industry. The reactor pressure vessel of 1350 MWe improved type BWR (ABWR) is used under the condition of 87.9 kg/cm 2 and 302 degC, and the inside diameter is about 7.2 m, the inside height is about 21 m, and the wall thickness is about 170 mm. The design standard for reactor pressure vessels and its way of thinking, breakdown prevention design and the design techniques for reactor pressure vessels are described. (K.I.)

  2. Penetration effect in internal conversion and nuclear structure

    International Nuclear Information System (INIS)

    Listengarten, M.A.

    1978-01-01

    The conditions for the appearance of the anomalous internal conversion coefficients (ICC) are considered, when the contribution of the penetration matrix element (PME) is of the order of or larger than the main part of the conversion matrix element. The experimental magnitudes of the nuclear PME agree well with those calculated in the framework of simple nuclear models, provided the magnitude of PME is not decreased due to the model -dependent selection rules. The magnitude of the anomaly ( lanbda parameter ) is compared with the exclusion factor of γ-transition relative to the Weisskopf estimation. The better is the model of the nucleus the weaker is the dependence of the lambda magnitude on the exclusion factor. ICC coefficients might be anomalous for those γ-transitions for which the exclusion factor calculated in the framework of more rigorous model are of the order of unity. In the ''ideal'' model of nucleus completely adequate to the true nuclear structure the dependence of the lambda penetration parameter on the exclusion factor vanishes

  3. Direct nuclear reactions and the structure of atomic nuclei

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1985-01-01

    The present thesis deals with two different aspects of direct nuclear reactions, namely on the one hand with the microscopic calculation of the imaginary optical potential for the elastic nucleon-nucleus scattering as well as on the other hand with the microscopic analysis of giant magnetic resonances in atomic nuclei which are excited by (p,n) charge-exchange reactions. In the first part of the thesis the imaginary part of the optical potential for the elastic proton- and neutron-nucleus scattering is microscopically calculated in the framework of the so called nuclear-structure approximation to the optical potential. The calculations are performed in the Feshbach formalism in second-order perturbation theory corresponding to an effective projectile-target-nucleon interaction. In the second part of this thesis in the framework of microscopic nuclear models a complete analysis of different A(p,n)B charge-exchange reactions at high incident energies 160 MeV 90 Zr(p,n) reaction three collective spin-isospin resonances could be uniquely identified. (orig./HSI) [de

  4. Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures

    DEFF Research Database (Denmark)

    Luczak, Marcin; Peeters, Bart; Kahsin, Maciej

    2014-01-01

    Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...... for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate...

  5. Discussion on organization structure system of nuclear power projects in China

    International Nuclear Information System (INIS)

    Wang Zhi

    2011-01-01

    With the development of the nuclear power industry in China, several AE companies were born and now play a major role in building nuclear power projects in China and overseas. After studying current organization structure systems of all nuclear power AE companies in China and comparing with successful foreign ones, this paper proposes some approaches to optimize the structure. (author)

  6. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses.

    Science.gov (United States)

    Brehault, Antoine; Patil, Deepak; Kamat, Hrishikesh; Youngman, Randall E; Thirion, Lynn M; Mauro, John C; Corkhill, Claire L; McCloy, John S; Goel, Ashutosh

    2018-02-08

    Molybdenum oxides are an integral component of the high-level waste streams being generated from the nuclear reactors in several countries. Although borosilicate glass has been chosen as the baseline waste form by most of the countries to immobilize these waste streams, molybdate oxyanions (MoO 4 2- ) exhibit very low solubility (∼1 mol %) in these glass matrices. In the past three to four decades, several studies describing the compositional and structural dependence of molybdate anions in borosilicate and aluminoborosilicate glasses have been reported in the literature, providing a basis for our understanding of fundamental science that governs the solubility and retention of these species in the nuclear waste glasses. However, there are still several open questions that need to be answered to gain an in-depth understanding of the mechanisms that control the solubility and retention of these oxyanions in glassy waste forms. This article is focused on finding answers to two such questions: (1) What are the solubility and retention limits of MoO 3 in aluminoborosilicate glasses as a function of chemical composition? (2) Why is there a considerable increase in the solubility of MoO 3 with incorporation of rare-earth oxides (for example, Nd 2 O 3 ) in aluminoborosilicate glasses? Accordingly, three different series of aluminoborosilicate glasses (compositional complexity being added in a tiered approach) with varying MoO 3 concentrations have been synthesized and characterized for their ability to accommodate molybdate ions in their structure (solubility) and as a glass-ceramic (retention). The contradictory viewpoints (between different research groups) pertaining to the impact of rare-earth cations on the structure of aluminoborosilicate glasses are discussed, and their implications on the solubility of MoO 3 in these glasses are evaluated. A novel hypothesis explaining the mechanism governing the solubility of MoO 3 in rare-earth containing aluminoborosilicate

  7. Structural investigation of carbon/carbon composites by neutron scattering

    International Nuclear Information System (INIS)

    Prem, Manfred; Krexner, Gerhard; Peterlik, Herwig

    2006-01-01

    Carbon/carbon (C/C) composite material was investigated by means of small-angle as well as wide-angle elastic neutron scattering. The C/C-composites were built up from bi-directionally woven fabrics from PAN-based carbon fibers. Pre-impregnation with phenolic resin was followed by pressure curing and carbonization at 1000 deg. C and a final heat treatment at either 1800 or 2400 deg. C. Measurements of the samples were performed in orientations arranging the carbon fibers, respectively, parallel and perpendicular to the incoming beam. Structural features of the fibers as well as the inherently existing pores are presented and the influence of the heat treatment is discussed. The results are compared to earlier X-ray investigations of carbon fibers and C/C-composites

  8. Effects of thermal cycling on composite materials for space structures

    Science.gov (United States)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  9. γ-rays as a probe to study nuclear dynamics and nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Schutz, Y.

    1987-01-01

    The usefulness of gamma rays in nuclear physics is reviewed, and it is shown how they offer insight into the structure and damping of giant resonances, and how they can be used as an isospin filter. Results from inclusive and exclusive experiments at GANIL are discussed. It is stressed that although the production of high energy gamma rays in heavy ion reactions between 30 MeV/A and 86 MeV/A is understood qualitatively, most models fail in being more quantitative

  10. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    Science.gov (United States)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-12-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  11. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    International Nuclear Information System (INIS)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-01-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  12. Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health

    National Research Council Canada - National Science Library

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-01-01

    .... Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage...

  13. ROR nuclear receptors: structures, related diseases, and drug discovery.

    Science.gov (United States)

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs.

  14. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  15. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  16. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  17. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    Science.gov (United States)

    Burchell, T. D.; Eatherly, W. P.; Robbins, J. M.; Strizak, J. P.

    1992-09-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the international thermonuclear experimental reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER wilt produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.58 dpa (displacements per atom) at 600°C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-carbon composite dimensional changes are interpreted in terms of simple microstructural models.

  18. Evaluated Nuclear Structure data file: a manual for preparation of data sets

    International Nuclear Information System (INIS)

    Ewbank, W.B.; Schmorak, M.R.

    1978-02-01

    A standard input format for nuclear structure data is described. The format is sufficiently structured that bulk data can be entered efficiently. At the same time, the structure is open-ended and can accommodate most measured or deduced quantities that yield nuclear structure information

  19. Seismic evaluation and strengthening of Bohunice nuclear power plant structures

    International Nuclear Information System (INIS)

    Shipp, J.G.; Short, S.A.; Grief, T.; Borov, V.; Kuzma, J.

    2001-01-01

    A seismic assessment and strengthening investigation is being performed for selected structures at the Bohunice V1 Nuclear Power Plant in Slovakia. Structures covered in this paper include the reactor building complex and the emergency generator station. The emergency generator station is emphasized in the paper as work is nearly complete while work on the reactor building complex is ongoing at this time. Seismic evaluation and strengthening work is being performed by a cooperative effort of Siemens and EQE along with local contractors. Seismic input is the interim Review Level Earthquake (horizontal peak ground acceleration of 0.3 g). The Bohunice V1 reactor building complex is a WWER 4401230 nuclear power plant that was originally built in the mid-1970s but had extensive seismic upgrades in 1991. Siemens has performed three dimensional dynamic analyses of the reactor building complex to develop seismic demand in structural elements. EQE is assessing seismic capacities of structural elements and developing strengthening schemes, where needed. Based on recent seismic response analyses for the interim Review Level Earthquake which account for soil-structure interaction in a rigorous manner, the 1991 seismic upgrade has been found to be inadequate in both member/connection strength and in providing complete load paths to the foundation. Additional strengthening is being developed. The emergency generator station was built in the 1970s and is a two-story unreinforced brick masonry (URM) shear wall building above grade with a one story reinforced concrete shear wall basement below grade. Seismic analyses and testing of the URM walls has been performed to assess the need for building strengthening. Required structural strengthening for in-plane forces consists of revised and additional vertical steel framing and connections, stiffening of horizontal roof bracing, and steel connections between the roof and supporting walls and pointing of two interior transverse URM

  20. Nuclear Structure Studies at the Future FAIR facility

    International Nuclear Information System (INIS)

    Rubio, Berta

    2010-01-01

    This article is intended to be an introduction to studies of nuclear structure at the future FAIR facility. It addresses interested readers not necessarily expert in the field. It outlines the physics aims and experiments to be carried out at FAIR in the field of nuclear structure and astrophysics. Starting with a brief description of what can be achieved in experiments with intense, high quality stable beams the article leads the reader to how beams of unstable radioactive nuclei will be produced and exploited at FAIR. The characteristics of the beams from the main separation device, the Super-FRS, are outlined and the limitations they impose on experiment are discussed. The various setups at the three experimental branches associated with the Super-FRS are described. The aims of the various experimental setups, how they complement each other and the physics they will address are all explained. The concept of the r-process of nucleosynthesis is outlined at the beginning and used as a running example of how useful it will be to be able to carry out experiments with beams of short-lived, exotic ions.

  1. Structural CNT Composites Part II: Assessment of CNT Yarns as Reinforcement for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography.

  2. Nondestructive Evaluation and Health Monitoring of Adhesively Bonded Composite Structures

    Science.gov (United States)

    Roth, William Walker

    As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress needed to preload fasteners. Adhesives transfer the load over a large area, do not require additional machining operations, provide increased stiffness through the joint, provide corrosion protection when joining dissimilar materials, and provide vibrational damping. Additionally, the repair of composite structures, which will become a major concern in the near future, will require the use of adhesive bonding for thermoset composites. In order for adhesives to be used to join primary aerospace structures they must meet certification requirements, which includes proof that the joint can withstand the required ultimate load without structural failure. For most components, nondestructive inspection is used to find critical flaws, which is combined with fracture mechanics to ensure that the structure can meet the requirements. This process works for some of the adhesive flaws, but other critical defects are not easily detected. Weak interface bonding is particularly challenging. This type of defect results in an interphase zone that may be only a dozen microns in thickness. Traditional bulk wave ultrasonic techniques cannot easily distinguish this zone from the interface between adherend and adhesive. This work considers two approaches to help solve this problem. Guided elastic wave propagation along

  3. Impact Testing and Simulation of Composite Airframe Structures

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  4. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    Science.gov (United States)

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc.

  5. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  6. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  7. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    Science.gov (United States)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  8. Structure for hts composite conductors and the manufacture of same

    Science.gov (United States)

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  9. NUCLEAR RADIATION DOSIMETER USING COMPOSITE FILTER AND A SINGLE ELEMENT FILTER

    Science.gov (United States)

    Storm, E.; Shlaer, S.

    1964-04-21

    A nuclear radiation dosimeter is described that uses, in combination, a composite filter and a single element filter. The composite filter contains a plurality of comminuted metals having K-edges evenly distributed over the energy range of interest and the quantity of each of the metals is selected to result in filtering in an amount inversely proportional to the sensitivity of the film in the range over l00 kev. A copper filter is used that has a thickness to contribute the necessary additional correction in the interval between 40 and 100 kev. (AEC)

  10. Analysis of composite wing structures with a morphing leading edge

    OpenAIRE

    Morishima, Ryoko

    2011-01-01

    One of the main challenges for the civil aviation industry is the reduction of its environmental impact. Over the past years, improvements in performance efficiency have been achieved by simplifying the design of the structural components and using composite materials to reduce the overall weight. These approaches however, are not sufficient to meet the current demanding requirements set for a „greener‟ aircraft. Significant changes in drag reduction and fuel consumption can be obtained by...

  11. Nanomembrane structures having mixed crystalline orientations and compositions

    Science.gov (United States)

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  12. Actual methods of nuclear physics in the analysis of the elemental composition of rocks and minerals

    International Nuclear Information System (INIS)

    Leonard, M.; Tsipenyuk, Yu. M.

    1981-01-01

    In this paper two methods are described for the Nuclear Physical analysis of the elementary composition of ores, mineral rocks and principles, elementary particles and radiation sources. Some examples are given showing their applications, high sensibility, selectivity, quichness and economy in comparison with other analytical methods. They are classified by their sensibilities among other analytical techniques in the determination of a large quantity of elements. (author)

  13. Utilization of carbon/carbon composites in nuclear simulation fuel rods

    International Nuclear Information System (INIS)

    Polidoro, H.A.; Otani, S.; Rezende, M.C.; Ferreira, S.R.; Otani, C.

    1988-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by using electrically heated rods. Carbon/carbon composites were used to make heating elements for testing by indirect heating up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceed if the choice of the complementary materials for insulator and cladding were improved. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. (author) [pt

  14. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  15. Experimental study on beam for composite CES structural system

    Science.gov (United States)

    Matsui, Tomoya

    2017-10-01

    Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.

  16. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in a assessment of the performance of these structural components, probabilistic methods. The benefits of a probabilistic approach are the clear treatment of uncertainly and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel). (authors)

  17. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in an assessment of the performance of these structural components, probabilistic methods provide an attractive alternative or supplement to more conventional deterministic methods. The benefits of a probabilistic approach are the clear treatment of uncertainty and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel)

  18. Challenges of structural materials for innovative nuclear systems in Europe

    International Nuclear Information System (INIS)

    Serrano, M.; Gomez-Briceno, D.

    2009-01-01

    New fusion and fission reactors for generation IV are envisaged to operate at conditions well above the actual ones for commercial fission reactors. This type of reactor combined a high operation temperature with a high neutron dose and an aggressive coolant, which imply new challenges for structural materials. One of the key issues to assure the safety and feasibility of these new nuclear systems is the selection of the structural materials, especially for in core components. Beside the differences between them, especially the amount of transmutation He in fusion reactors, similar structural materials have been selected. Some of the selected materials are well characterized at least at medium temperatures, as conventional ferritic/martensitic steels, but the qualification for higher temperatures is needed. For other materials, as ODS steels, there is a need for a complete characterization and qualification. In this paper a review of the operating conditions and selected structural materials for generation IV and fusion reactors within Europe is made. The needs for a complete characterization of these candidate materials are identified in terms of high temperature behaviour, radiation damage and coolant compatibility. (author)

  19. [Nuclear Structure Research] at the Triangle Universities Nuclear Laboratory: Annual report No. 27, 1 September 1987--31 August 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains papers in the following topics: Fundamental symmetries in the nucleus; Dynamics of few-nucleon systems; Tensor forces in light nuclei; nucleon-nucleus interactions mechanisms; Nuclear structure and reactions; and Development and instrumentation

  20. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Alidad, E-mail: sahashem@bechtel.com; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-12-15

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10{sup 4}, 10{sup 5}, and 10{sup 6} year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have