WorldWideScience

Sample records for structural dynamic behavior

  1. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  2. Dynamical behavior of price forecasting in structures of group correlations

    Science.gov (United States)

    Lim, Kyuseong; Kim, Soo Yong; Kim, Kyungsik

    2015-07-01

    We investigate the prediction of the future prices from the structures and the networks of the companies in special financial groups. After the financial group network has been constructed from the value of the high cross-correlation, each company in a group is simulated and analyzed how it buys or sells stock is anaylzed and how it makes rational investments is forecasted. In the shortmemory behavior rather than the long-memory behavior, each company among a group can make a rational investment decision by using a stochastic evolution rule in the financial network. In particular, we simulate and analyze the investment situation in connection with the empirical data and the simulated result.

  3. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  4. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  5. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    Science.gov (United States)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  6. Dynamical Mechanism of Scaling Behaviors in Multifractal Structure

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae Won; Kim, Soo Yong

    2010-03-01

    The pattern of stone distribution in the game of Go (Baduk, Weiqi, or Igo) can be treated in the mathematical and physical languages of multifractals. The concepts of fractals and multifractals have relevance to many fields of science and even arts. A significant and fascinating feature of this approach is that it provides a proper interpretation for the pattern of the two-colored (black and white) stones in terms of the numerical values of the generalized dimension and the scaling exponent. For our case, these statistical quantities can be estimated numerically from the black, white, and mixed stones, assuming the excluded edge effect that the cell form of the Go game has the self-similar structure. The result from the multifractal structure allows us to find a definite and reliable fractal dimension, and it precisely verifies that the fractal dimension becomes larger, as the cell of grids increases. We also find the strength of multifractal structures from the difference in the scaling exponents in the black, white, and mixed stones.

  7. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr

    2014-10-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.

  8. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    International Nuclear Information System (INIS)

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  9. Application of Incremental Dynamic Analysis (IDA Method for Studying the Dynamic Behavior of Structures During Earthquakes

    Directory of Open Access Journals (Sweden)

    M. Javanpour

    2017-02-01

    Full Text Available Prediction of existing buildings’ vulnerability by future earthquakes is one of the most essential topics in structural engineering. Modeling steel structures is a giant step in determining the damage caused by the earthquake, as such structures are increasingly being used in constructions. Hence, two same-order steel structures with two types of structural systems were selected (coaxial moment frames and moment frame. In most cases, a specific structure needs to satisfy several functional levels. For this purpose, a method is required to determine the input request to the structures under possible earthquakes. Therefore, the Incremental Dynamic Analysis (IDA was preferred to the Push-Over non-linear static method for the analysis and design of the considered steel structures, due its accuracy and effect of higher modes at the same time intervals. OpenSees software was used to perform accurate nonlinear analysis of the steel structure. Two parameters (spectral acceleration and maximum ground acceleration were introduced to the modeled frames to compare the numerical correlations of seismic vulnerability obtained by two statistical methods based on the "log-normal distribution" and "logistics distribution", and finally, the parameters of displacement and drift were assessed after analysis.

  10. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    Science.gov (United States)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  11. Examining the Dynamic Structure of Daily Internalizing and Externalizing Behavior at Multiple Levels of Analysis

    Directory of Open Access Journals (Sweden)

    Aidan G.C. Wright

    2015-12-01

    Full Text Available Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days of maladaptive behaviors collected from a sample (N = 101 of individuals diagnosed with personality disorders. Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days we found support for a two-factor Internalizing-Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Impulsivity structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic.

  12. Examining the Dynamic Structure of Daily Internalizing and Externalizing Behavior at Multiple Levels of Analysis

    Science.gov (United States)

    Wright, Aidan G. C.; Beltz, Adriene M.; Gates, Kathleen M.; Molenaar, Peter C. M.; Simms, Leonard J.

    2015-01-01

    Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days) of maladaptive behaviors collected from a sample (N = 101) of individuals diagnosed with personality disorders (PDs). Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days) we found support for a two-factor Internalizing–Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals) we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Disinhibition structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic. PMID:26732546

  13. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    Science.gov (United States)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of

  14. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  15. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  16. Application of Incremental Dynamic Analysis (IDA) Method for Studying the Dynamic Behavior of Structures During Earthquakes

    OpenAIRE

    Javanpour, M.; Zarfam, P.

    2017-01-01

    Prediction of existing buildings’ vulnerability by future earthquakes is one of the most essential topics in structural engineering. Modeling steel structures is a giant step in determining the damage caused by the earthquake, as such structures are increasingly being used in constructions. Hence, two same-order steel structures with two types of structural systems were selected (coaxial moment frames and moment frame). In most cases, a specific structure needs to satisfy several functional l...

  17. Application of fluid-structure coupling to predict the dynamic behavior of turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, B; Seidel, U [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany); Roth, S, E-mail: bjoern.huebner@voith.co [Laboratory for Hydraulic Machines, EPFL, Avenue de Cour 33 Bis, 1007 Lausanne (Switzerland)

    2010-08-15

    In hydro turbine design, fluid-structure interaction (FSI) may play an important role. Examples are flow induced inertia and damping effects, vortex induced vibrations in the lock-in vicinity, or hydroelastic instabilities of flows in deforming gaps (e.g. labyrinth seals). In contrast to aeroelasticity, hydroelastic systems require strongly (iteratively) coupled or even monolithic solution procedures, since the fluid mass which is moving with the structure (added-mass effect) is much higher and changes the dynamic behavior of submerged structures considerably. Depending on the mode shape, natural frequencies of a turbine runner in water may be reduced to less than 50% of the corresponding frequencies in air, and flow induced damping effects may become one or two orders of magnitude higher than structural damping. In order to reduce modeling effort and calculation time, the solution strategy has to be adapted precisely to a given application. Hence, depending on the problem to solve, different approximations may apply. Examples are the calculation of natural frequencies and response spectra in water using an acoustic fluid formulation, the determination of flow induced damping effects by means of partitioned FSI including complex turbulent flows, and the identification of hydroelastic instabilities using monolithic coupling of non-linear structural dynamics and water flow.

  18. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  19. Anisotropic damage and dynamic behavior of reinforced concrete structures until failure

    International Nuclear Information System (INIS)

    Chambart, M.

    2009-09-01

    Dynamic loadings such as impact on reinforced concrete structures lead to degradations and structural failures significantly different to the ones observed for quasi-static loadings. Local effects (spalling, compaction...) and global mechanisms (bending, shear, perforation...) are experimentally observed. Wave propagation due to dynamics loadings can lead to failure in tension in a part of a structure or a component previously in compression. Induced damage anisotropy in concrete is partly responsible for the dissymmetry of behavior between tension and compression. Concrete anisotropy can be modelled by means of a second order damage tensor. In the damage model considered, damage growth is governed by the positive extensions. The model, written in the thermodynamics framework, is robust and is able to compute efficiently Reinforced Concrete (RC) structures. The initial anisotropic model is here extended to dynamics by introducing a viscosity law to govern dynamic damage evolution. The strain rate effect observed experimentally in tension (strength increases with strain rate) is reproduced. In compression no strain rate is introduced since inertial forces seem sufficient to reproduce the strength enhancement in dynamics. One also focuses on regularization issues. For high strain rates the solution is regularized since the characteristic time introduced indirectly defines an internal length and since the damage rate is bounded by a maximum damage rate parameter (visco/delay damage law). This visco/delay regularization is efficient at large strain rates, otherwise, the delay in damage evolution is too small to let damage grow in a wide enough zone. For quasi-static or low speed dynamic cases, the regularization is gained by means of classical non-local damage. For intermediary loading rates where both the strain rate effect and the non-local regularization are needed, a non-local delay-damage model is written (and used in 3D computations). The example of a dynamic

  20. Dynamic behavior of tuning fork shear-force structures in a SNOM system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fengli [Department of Engineering Mechanics, AML, CNMM, Tsinghua University, Beijing 100084 (China); Li, Xide, E-mail: lixide@tsinghua.edu.cn [Department of Engineering Mechanics, AML, CNMM, Tsinghua University, Beijing 100084 (China); Wang, Jia [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Fu, Yu [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore)

    2014-07-01

    Piezoelectric tuning fork shear-force structures are widely used as a distance control unit in a scanning near-field optical microscopy. However, the complex dynamic behavior among the micro-tuning forks (TFs), optical fiber probes, and the probe–surface interactions is still a crucial issue to achieve high-resolution imaging or near-field interaction inspections. Based on nonlinear beam tension-bending vibration theory, vibration equations in both longitudinal and lateral directions have been established when the TF structure and the optical fiber are treated as deformable structures. The relationship of the probe–surface interaction induced by Van der Waals force has been analyzed and the corresponding numerical results used to describe the vibrational behavior of the probe approaching the sample surface are obtained. Meanwhile, the viscous resistance of the liquid film on the sample surface has also been investigated using linear beam-bending vibration theory. Experiments testing the interaction between the probe and the water film on a single crystal silicon wafer have been carried out and the viscous resistance of the water film was estimated using the established equations. Finally, to use the TF-probe structure as a force sensor, the relation between the dynamic response of the TF-probe system and an external force on the probe tip was obtained. - Highlights: • Nonlinear vibration equation is established for a deformable tuning fork probe assembly. • Probe–sample interactions induced by Van der Waals force and viscous resistance are investigated. • The viscous resistance between the probe and the water film is estimated using testing results.

  1. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  2. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-01-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration

  3. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  4. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  5. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    Science.gov (United States)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  6. Dynamic behavior structural response and capacity evaluation of the standardized WWER-1000 nuclear power plants subjected to severe loading conditions

    International Nuclear Information System (INIS)

    Ambriashvili, Y.K.; Krutzik, N.J.

    1993-01-01

    In order to verify the structural capacity of standardized WWER-1000 MW nuclear power plants, comprehensive static and dynamic analyses were performed in cooperation between Siemens and Atomenergoprojekt. The main goal of these investigations was to perform of a number of seismic analyses of standardized WWER-1000 reactor buildings on the basis of 13 given seismological inputs, taking into account the local soil conditions at 17 different sites defined by in-situ investigations. The analyses were based on appropriate mathematical models (equivalent beam models as well as detailed spatial surface element models) of the coupled vibrating structures (base structure, outer structure, containment, inner structure) and of the layered soil. The analyses were mainly performed using the indirect method (substructure method). Based on the results of the seismic analysis as well as the results of static analysis (pressure and temperature due to LOCA, dead weight, prestressing) an assessment was made of the seismic safety of the containment and the reactor building. Using a complex 3-dimensional model of the structure and the soil, the influence of the flexibility of the basement structure on the structural response was also studied. The structural analyses of the WWER-1000 reactor building led to the conclusion that its design accounts well for the main factors governing the dynamic behavior of the building. The assessment of the forces acting in the structures shows that the bearing capacity of the analyzed building structure corresponds to an earthquake intensity of about 0.2 g to 0.25 g

  7. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    Science.gov (United States)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  8. Structural Dynamics

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....

  9. Evaluation of aseismic integrity in the HTTR core-bottom structure. V. On the static and dynamic behavior of graphite HTTR key-keyway structures

    International Nuclear Information System (INIS)

    Futakawa, M.; Iyoku, T.

    1996-01-01

    For pt.IV see ibid., vol.154, p.83-95, 1995. The graphite components in high temperature gas-cooled reactors are connected to each other through a key-keyway structure that has gaps between the key and the keyway to accommodate thermal expansion. Because a dynamic load concentrates on the key-keyway structure during earthquakes, it is considered to be a crucial element for assessing the integrity of the graphite components. A combination of experiments and analyses was employed to investigate the dynamic behavior of the key-keyway structure, i.e. the equivalent stiffness associated with vibrational characteristics of the graphite components and the stress distribution under dynamic loading. The experiments were performed using a graphite scale model and a dynamic photo-elastic method. The analysis was carried out using the finite element method (FEM) code ABAQUS, taking account of the contact behavior between the key and the keyway. The following conclusions were derived. (1) The equivalent stiffness of the key-keyway structure shows nonlinearity, owing to the contact deformation. (2) The equivalent stiffness evaluated by the FEM analysis, taking account of the non-linear contact deformation, is applicable for predicting the vibrational characteristics of the key-keyway structure. (3) The stress concentration under dynamic loading is lower than or nearly equal to that under static loading. The maximum stress concentration of the seismic load can be sufficiently evaluated under static loading conditions. (orig.)

  10. Dynamical behavior connection of the gluon distribution and the proton structure function at small x

    International Nuclear Information System (INIS)

    Boroun, G.R.

    2014-01-01

    We make a critical study of the relationship between the singlet structure function F 2 S and the gluon distribution G(x,Q 2 ) proposed in the past two decades, which is frequently used to extract the gluon distribution from the proton structure function. We show that a simple relation is not generally valid in the simplest state. We complete this relation by using a Laplace transform method and hard-pomeron behavior at LO and NLO at small x. Our study shows that this relation is dependent on the splitting functions and initial conditions at Q 2 =Q 2 0 and running coupling constant at NLO. The resulting analytic expression allows us to predict the proton structure function with respect to the gluon distributions and to compare the results with H1 data and a QCD analysis fit. Comparisons with other results are made and predictions for the proposed best approach are also provided. (orig.)

  11. Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure

    International Nuclear Information System (INIS)

    Matsuba, Ikuo; Namatame, Masanori

    2003-01-01

    We study a geometric structure of urban development process which pays particular attention to scaling properties in the settlement area and inhabitant population through changes in the scaling exponents. Both the degree to which the space is fulfilled and the rate at which it is filled are obtained for the residential development in Tokyo. For distances larger than the city boundary, there is a sharp cross-over to a suburban region with a quite intriguing variation with a distance from the center of the city. The population densities in this region are found to collapse into a single scaling function with the scaling exponent 0.678 in the early 1990s in which the growth of the population attenuates. We propose a cellular automata model using the simulated annealing method that succeeds in reproducing the qualitative similar structural complexity of the actual city by taking into account the transportation system, especially railroad network. Finally, a possible theoretical consideration is given in analogous with fluid dynamics. Scaling of the population density is obtained assuming that there is a dynamical hierarchical structure in the scaling region where the stationarity is fulfilled. The theoretically obtained exponent 2/3 agrees well with the observed one

  12. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests

    Science.gov (United States)

    Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.

    2018-03-01

    Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.

  13. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-07-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration of straight horizontal pipes, and boundary layer static solution of inclined risers. In the first study, we analyze the effect of the internal velocity of straight horizontal pipe and obtain the vortex induced vibration forces via coupling the pipe equation of motion with the recently modified Van Der Pol oscillator governing the lift coefficient. Our numerical results are obtained for two different pipe configurations: hinged-hinged, and clamped- clamped. The results show that the internal velocity reduces the vibration and the oscillation amplitudes. Also, it is shown that the clamped-clamped pipe configuration offers a wider range of internal velocities before buckling instability occurs. The results also demonstrate the effect of the end condition on the amplitudes of vibration. In the second study, we develop a boundary layer perturbation static solution to govern and simulate the static behavior of inclined risers. In the boundary layer analysis, we take in consideration the effects of the axial stretch, applied tension, and internal velocity. Our numerical simulation results show good agreement with the exact solutions for special cases. In addition, our developed method overcomes the mathematical and numerical limitations of the previous methods used before.

  14. Structural health and dynamic behavior of residential buildings: field challenges in the rehab of damaged reinforced concrete

    Directory of Open Access Journals (Sweden)

    Chalhoub M. S.

    2014-01-01

    Full Text Available Reinforced concrete buildings require special consideration under dynamic excitations due to their anisotropic material properties. Strain compatibility equations are used in concrete analysis and design with assumptions about the stress and strain field across member section and member length. However, these assumptions fall short of describing real life behavior when concrete elements deteriorate, age or undergo cyclic loading. This paper addresses the structural health of reinforced concrete buildings and proposes an analytical model to account for concrete damage through loss of bond. The proposed model relates steel loading that causes bond distress to design parameters such as development length and bar properties, and therefore could be complemented by field measurement. The paper proposes a diagnosis method and discusses the sustainability of the structure by assisting in a simplistic decision rule as to whether to perform minor fixes, major rehabilitation, or disposal. Emphasis is placed on the difference between reversible and irreversible effects of cyclic loading on structural behaviour, and draws a distinction between damage to the girder and damage to the column in the overall structural system. The model is compared to empirical results to address field challenges faced when the structure is subjected to severe conditions in its ambient environment, or to unusual loading. Deterioration in concrete causes alteration in its composite behavior with the reinforcing steel. This affects the fundamental period of the structure, and its response to seismic loading.

  15. Failure behavior of concrete pile and super-structure dynamic response as a result of soil liquefaction during earthquake

    Science.gov (United States)

    Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.

  16. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  17. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  18. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jincheng

    2018-03-16

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goals initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal

  19. A Dynamic Behavior of the Nuclear Test Rig with Coolant using the Fluid-Structural interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tae-Ho; Hong, Jintae; Ahn, Sung-Ho; Joung, Chang-Young; Jang, Seo-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeon, Kon-Whi [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the dynamic behavior of the test rig in the coolant flow simulator is evaluated by using the 2-way fluid-structural interaction analysis. The maximum value and location of the deformation and equivalent stress in the test rig is confirmed. The fluid-structural interaction analysis is applied to perform the fluid and structural analysis A fluid-structure interaction analysis is used to simulate the relationship between the deformation and hydraulic pressure. There are two types of fluid-structural interaction analysis. One is a 1-way direction analysis in which the hydraulic pressure is calculated by a CFD and transmitted to the surface of the structure, and a structural analysis is then performed. The other is a 2-way direction analysis that is performed by changing the data between the deformation of the structural and pressure of the coolant water for every time step. The location of the maximum deformation of the test rig is the bottom parts of the test rig. It is expected that the equivalent stress of the test rig is occurred. The maximum equivalent stress in the test rig under the circulation of the coolant is 90.1 MPa. The location of the maximum stress in the test rig is the connect part between the fuel rod and flow divider. A safety factor on the test rig is 3, approximately. The deformation motion of the test rig at the bottom part of the test rig is caused about the fluid-induced vibration. A test on the fluid-induced vibration of the test rig will be performed and compared with results of the analysis in further paper.

  20. Dynamic behaviors in directed networks

    International Nuclear Information System (INIS)

    Park, Sung Min; Kim, Beom Jun

    2006-01-01

    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks

  1. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  2. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  3. Predictability of steel containment response near failure track 3 - structural integrity, dynamic behavior, and seismic design

    International Nuclear Information System (INIS)

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-01

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms

  4. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.

    Directory of Open Access Journals (Sweden)

    Luis F Aguilar

    Full Text Available Changes in the cholesterol (Chol content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs for cuvette and giant unilamellar vesicles (GUVs for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC and dioctadecyl phosphatidylcholine (DOPC in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo.

  5. Basic structural dynamics

    CERN Document Server

    Anderson, James C

    2012-01-01

    A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d

  6. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    Science.gov (United States)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  7. Structural Dynamics, Vol. 9

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University.......This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University....

  8. Structural behavior and dynamics of an anomalous fluid between attractive and repulsive walls: templating, molding, and superdiffusion.

    Science.gov (United States)

    Leoni, Fabio; Franzese, Giancarlo

    2014-11-07

    Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer ("templating" effect). In turn, the first layer induces a "molding" effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.

  9. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  10. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  11. Structural dynamics in FBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    2003-01-01

    In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)

  12. Dynamics of structures

    CERN Document Server

    Paultre, Patrick

    2013-01-01

    This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to

  13. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  14. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper

    statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...

  15. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  16. Enantioselective recognition of an isomeric ligand by a biomolecule: mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility.

    Science.gov (United States)

    Peng, Wei; Ding, Fei

    2017-10-24

    Chirality is a ubiquitous basic attribute of nature, which inseparably relates to the life activity of living organisms. However, enantiomeric differences have still failed to arouse enough attention during the biological evaluation and practical application of chiral substances, and this poses a large threat to human health. In the current study, we explore the enantioselective biorecognition of a chiral compound by an asymmetric biomolecule, and then decipher the molecular basis of such a biological phenomenon on the static and, in particular, the dynamic scale. In light of the wet experiments, in silico docking results revealed that the orientation of the latter part of the optical isomer structures in the recognition domain can be greatly affected by the chiral carbon center in a model ligand molecule, and this event may induce large disparities between the static chiral bioreaction modes and noncovalent interactions (especially hydrogen bonding). Dynamic stereoselective biorecognition assays indicated that the conformational stability of the protein-(S)-diclofop system is clearly greater than the protein-(R)-diclofop adduct; and moreover, the conformational alterations of the diclofop enantiomers in the dynamic process will directly influence the conformational flexibility of the key residues found in the biorecognition region. These points enable the changing trends of biopolymer structural flexibility and free energy to exhibit significant distinctions when proteins sterically recognize the (R)-/(S)-stereoisomers. The outcomes of the energy decomposition further showed that the van der Waals' energy has roughly the same contribution to the chiral recognition biosystems, whereas the contribution of electrostatic energy to the protein-(R)-diclofop complex is notably smaller than to the protein-(S)-diclofop bioconjugate. This proves that differences in the noncovalent bonds would have a serious impact on the stereoselective biorecognition between a

  17. Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil.

    Science.gov (United States)

    Moutinho, Paulo Rufalco; Gil, Luis Herman Soares; Cruz, Rafael Bastos; Ribolla, Paulo Eduardo Martins

    2011-06-24

    Anopheles darlingi is the major vector of malaria in South America, and its behavior and distribution has epidemiological importance to biomedical research. In Brazil, An. darlingi is found in the northern area of the Amazon basin, where 99.5% of the disease is reported. The study area, known as Ramal do Granada, is a rural settlement inside the Amazon basin in the state of Acre. Population variations and density have been analysed by species behaviour, and molecular analysis has been measured by ND4 mitochondrial gene sequencing. The results show higher density in collections near a recent settlement, suggesting that a high level of colonization decreases the vector presence. The biting activity showed higher activity at twilight and major numbers of mosquitos in the remaining hours of the night in months of high density. From a sample of 110 individual mosquitoes, 18 different haplotypes were presented with a diversity index of 0.895, which is higher than that found in other Anopheles studies. An. darlingi depends on forested regions for their larval and adult survival. In months with higher population density, the presence of mosquitoes persisted in the second part of the night, increasing the vector capacity of the species. Despite the intra-population variation in the transition to rainy season, the seasonal distribution of haplotypes shows no change in the structure population of An. darlingi.

  18. Nonlinear dynamics in human behavior

    Energy Technology Data Exchange (ETDEWEB)

    Huys, Raoul [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Jirsa, Viktor K. (eds.) [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Florida Atlantic Univ., Boca Raton, FL (United States). Center for Complex Systems and Brain Sciences

    2010-07-01

    Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music. (orig.)

  19. Analytical estimates of structural behavior

    CERN Document Server

    Dym, Clive L

    2012-01-01

    Explicitly reintroducing the idea of modeling to the analysis of structures, Analytical Estimates of Structural Behavior presents an integrated approach to modeling and estimating the behavior of structures. With the increasing reliance on computer-based approaches in structural analysis, it is becoming even more important for structural engineers to recognize that they are dealing with models of structures, not with the actual structures. As tempting as it is to run innumerable simulations, closed-form estimates can be effectively used to guide and check numerical results, and to confirm phys

  20. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  1. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  2. Distributed Dynamic Condition Response Structures

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    We present distributed dynamic condition response structures as a declarative process model inspired by the workflow language employed by our industrial partner and conservatively generalizing labelled event structures. The model adds to event structures the possibility to 1) finitely specify...... as a labelled transition system. Exploration of the relationship between dynamic condition response structures and traditional models for concurrency, application to more complex scenarios, and further extensions of the model is left to future work....

  3. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    oxidation of methane, the catalyst reduced from the end to the beginning of the catalyst bed and oxidized again toward the end as soon as the entire catalyst bed was reduced. On an entirely oxidized catalyst bed, only total oxidation of methane was observed and consumed the oxygen until the conditions...... of the Pd particles at increasing age of the catalyst was observed, which leads to a lower oscillation frequency. Effects of particle size, oven temperature, and oxygen/methane ratio on the oscillation behavior were studied in detail. The deactivation period (reoxidation of Pd) was much less influenced...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  4. Structure and dynamics of the solar chromosphere

    NARCIS (Netherlands)

    Krijger, Johannes Mattheus

    2002-01-01

    The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the

  5. Structural dynamic modification

    Indian Academy of Sciences (India)

    and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.

  6. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  7. A combined multibody and finite element approach for dynamic interaction analysis of high-speed train and railway structure including post-derailment behavior during an earthquake

    International Nuclear Information System (INIS)

    Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y

    2010-01-01

    A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.

  8. Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology

    Directory of Open Access Journals (Sweden)

    Francesco Caputo

    2018-01-01

    Full Text Available In this paper, a new methodology supporting the design of landing gears is proposed. Generally, a preliminary step is performed with simplified FE model, usually one-dimensional, to achieve the reaction forces involving each component during all aforementioned aircraft operations. Though this approach gives a valid support to the designer, it is characterized by several problems, such as the related approximations. So, it is important, by a numerical point of view, to develop an isostatic FE model equivalent to the real one. In fact, if the landing gear is modelled as hyperstatic, the static equilibrium equations are insufficient for determining the internal forces and reactions on each sub-component; so, the modelled material properties and geometries assume an increasing importance, which gets the model too approximating. The proposed methodology consists of achieving the reaction forces by means of multibody simulations, by overcoming such problems, since each component is modelled as rigid. In this paper, also a FE model for the investigation of the structural response is proposed. Aimed to Certification by Analysis purposes, the developed multibody and the FE models have been assessed against an experimental landing gear drop test carried out by Magnaghi Aeronautica S.p.A., according to the EASA CS 25 regulations

  9. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).

  10. Dynamics test on structures

    International Nuclear Information System (INIS)

    De Canio, G.; Ranieri, N.

    2009-01-01

    Shake table tests allow to assess the effectiveness of technologies for structures protection from natural events such as earthquakes. The article summarizes the remarkable results of the most significant projects. [it

  11. Structural Dynamics, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....

  12. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Tsakalidis, Konstantinos

    multi-versioned indexing database. We first present a generic method for making data structures fully persistent in external memory. This method can render any database multi-versioned, as long as its implementation abides by our assumptions. We obtain the result by presenting an implementation of B...

  13. On the dynamic behavior of mineralized tissues

    Science.gov (United States)

    Kulin, Robb Michael

    Mineralized tissues, such as bone and antler, are complex hierarchical materials that have adapted over millennia to optimize strength and fracture resistance for their in vivo applications. As a structural support, skeletal bone primarily acts as a rigid framework that is resistant to fracture, and able to repair damage and adapt to sustained loads during its lifetime. Antler is typically deciduous and subjected to large bending moments and violent impacts during its annual cycle. To date, extensive characterization of the quasi-static mechanical properties of these materials has been performed. However, very little has been done to characterize their dynamic properties, despite the fact that the majority of failures in these materials occur under impact loads. Here, an in depth analysis of the dynamic mechanical behavior of these two materials is presented, using equine bone obtained post-mortem from donors ranging in age from 6 months to 28 years, and antler from the North American Elk. Specimens were tested under compressive strain rates of 10-3, 100, and 103 sec-1 in order to investigate their strain rate dependent compressive response. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack propagation between dynamic (˜2x105 MPa˙m1/2/s) and quasi-static (˜0.25 MPa˙m1/2/s) loading rates. After testing, specimens were analyzed using a combination of optical, electron and confocal microscopy. Results indicated that the mechanical response of these materials is highly dependent on loading rate. Decreasing quasi-static fracture toughness is observed with age in bone specimens, while dynamic specimens show no age trends, yet universally decreased fracture toughness compared to those tested quasi-statically. For the first time, rising R-curve behavior in bone was also shown to exist under both quasi-static and dynamic

  14. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  15. Social Dynamics Management and Functional Behavioral Assessment

    Science.gov (United States)

    Lee, David L.

    2018-01-01

    Managing social dynamics is a critical aspect of creating a positive learning environment in classrooms. In this paper three key interrelated ideas, reinforcement, function, and motivating operations, are discussed with relation to managing social behavior.

  16. Coherent structures and dynamical systems

    Science.gov (United States)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  17. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  18. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    International Nuclear Information System (INIS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-01-01

    The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained

  19. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  20. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  1. Analysis of Nonlinear Dynamic Structures

    African Journals Online (AJOL)

    Bheema

    work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.

  2. Coupled disease-behavior dynamics on complex networks: A review

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  3. An Investigation of dynamic characteristics of structures subjected to dynamic load from the viewpoint of design

    International Nuclear Information System (INIS)

    Lee, Hyun Ah; Kim, Yong Il; Park, Gyung Jin; Kang, Byung Soo; Kim, Joo Sung

    2006-01-01

    All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads

  4. Dynamic Soil-Structure-Interaction

    DEFF Research Database (Denmark)

    Kellezi, Lindita

    1998-01-01

    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...

  5. Structural behavior of cable superconductors

    International Nuclear Information System (INIS)

    Becker, H.; Marston, P.

    1983-01-01

    The structural properties of cable superconductor coils, for particle accelerators such as the Tevatron and the CBA (Colliding Beam Accelerator), depend upon direction of loading. For compression perpendicular to the ''flat faces'' of the conductor, the coils exhibit nonlinear, inelastic and time dependent behavior. The same is true for ''inplane'' compression loading perpendicular to the conductor edges. In the lengthwise direction, the coils display tension and compression stress-strain curves typical of structural metals. The loading of primary concern is compression perpendicular to the conductor faces since deformations in that direction can have a major influence on magnetic field quality. However, the coil behavior under that condition is uncertain because of the nonlinear stress strain curve complicated by creep and relaxation at the stress levels induced by preloading and Lorentz forces. Furthermore, the stiffness of the loading fixture appears to influence the data as shown by results from tests run under different conditions at Berkeley, Brookhaven and MIT. The paper displays test data on stress-strain curves for all three loading directions. Results are presented for RT, 77 K and 4 K behavior. Data of various investigators are compared. The applicability of a relatively simple power law between stress and strain is depicted

  6. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  7. Influence of human behavior on cholera dynamics.

    Science.gov (United States)

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-09-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Dynamics of Quantum Causal Structures

    Science.gov (United States)

    Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2018-01-01

    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  9. Dynamics of Quantum Causal Structures

    Directory of Open Access Journals (Sweden)

    Esteban Castro-Ruiz

    2018-03-01

    Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  10. Handbook on dynamics of jointed structures.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  11. Structure and dynamics of solutions

    CERN Document Server

    Ohtaki, H

    2013-01-01

    Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos

  12. The dynamic behavior of mortar under impact-loading

    Science.gov (United States)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  13. Harsh parenting, child behavior problems, and the dynamic coupling of parents' and children's positive behaviors.

    Science.gov (United States)

    Lunkenheimer, Erika; Ram, Nilam; Skowron, Elizabeth A; Yin, Peifeng

    2017-09-01

    We examined self-reported maternal and paternal harsh parenting (HP) and its effect on the moment-to-moment dynamic coupling of maternal autonomy support and children's positive, autonomous behavior. This positive behavior coupling was measured via hidden Markov models as the likelihood of transitions into specific positive dyadic states in real time. We also examined whether positive behavior coupling, in turn, predicted later HP and child behavior problems. Children (N = 96; age = 3.5 years at Time 1) and mothers completed structured clean-up and puzzle tasks in the laboratory. Mothers' and fathers' HP was associated with children's being less likely to respond positively to maternal autonomy support; mothers' HP was also associated with mothers' being less likely to respond positively to children's autonomous behavior. When mothers responded to children's autonomous behavior with greater autonomy support, children showed fewer externalizing and internalizing problems over time and mothers showed less HP over time. These results were unique to the dynamic coupling of maternal autonomy support and children's autonomous behavior: The overall amount of these positive behaviors did not similarly predict reduced problems. Findings suggest that HP in the family system compromises the coregulation of positive behavior between mother and child and that improving mothers' and children's abilities to respond optimally to one another's autonomy-supportive behaviors may reduce HP and child behavior problems over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Sierra Structural Dynamics Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  15. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.

    Science.gov (United States)

    Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai

    2013-11-01

    Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Dynamic analysis of embedded structures

    International Nuclear Information System (INIS)

    Kausel, E.; Whitman, R.V.; Morray, J.P.

    1977-01-01

    The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)

  17. Dynamic buckling of inelastic structures

    International Nuclear Information System (INIS)

    Pegon, P.; Guelin, P.

    1983-01-01

    The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)

  18. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  19. Langevin dynamics for ramified structures

    Science.gov (United States)

    Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel

    2017-06-01

    We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.

  20. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    NAIWRIT KARMODAK

    Special Issue on THEORETICAL CHEMISTRY/CHEMICAL DYNAMICS. The dynamic behavior ... The ab initio molecular dynamic simulations were performed at. 1200 K to ... boron clusters and the nature of polyhedral boranes suggested that ...

  1. behaviorism: a framework for dynamic data visualization.

    Science.gov (United States)

    Forbes, Angus Graeme; Höllerer, Tobias; Legrady, George

    2010-01-01

    While a number of information visualization software frameworks exist, creating new visualizations, especially those that involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene graph for high-performance 3D rendering, a data graph for different layers of semantically linked heterogeneous data, and a timing graph for sophisticated control of scheduling, interaction, and animation. In particular, the timing graph provides a unified system to add behaviors to both data and visual elements, as well as to the behaviors themselves. To evaluate the framework we look briefly at three different projects all of which required novel visualizations in different domains, and all of which worked with dynamic data in different ways: an interactive ecological simulation, an information art installation, and an information visualization technique.

  2. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  3. The CEASEMT system (Computer analysis of the thermomechanical structure behavior). The TRICO code, for analysis of three-dimensional structures comprising shells and beams - Statics - Dynamics - Elasticity - Plasticity - Buckling - Large displacements

    International Nuclear Information System (INIS)

    1977-01-01

    The TRICO part of the CEA-SEMT system is concerned with the elasticity or plasticity computation of structures made of thin shells and beams. TRICO uses the finite element method for shells and beams. TRICO also allows the dynamic computing of structures: search for eigenmodes and eigenfrequencies or response to any sinusoidal excitation, response to time dependent loads (direct integration) in elasticity or plasticity. The mechanical structures can offer any shape and be composed of a number of materials. A special effort has been put on data input (read without any format), the data being arranged in optional commands with a precise physical sense corresponding to an order for the program. A dynamic control of the memory allows the size of the program to be adapted to that the problem to be processed. Results are printed on listing, or many be described on a magnetic tape [fr

  4. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  5. Tax evasion under behavioral structures

    Directory of Open Access Journals (Sweden)

    Gabriela S. Pantoja

    2014-01-01

    Full Text Available We study the strategic interactions between the fiscal authority and the taxpayer regarding tax evasion and auditing. We fit this interaction into a Bayesian game and introduce the concept of behavioral consistency, which helps reducing the number of available strategies and models the stylized fact according to which the choice to evade is subject to behavioral patterns.

  6. Coordination: Neural, Behavioral and Social Dynamics

    CERN Document Server

    Fuchs, Armin

    2008-01-01

    One of the most striking features of Coordination Dynamics is its interdisciplinary character. The problems we are trying to solve in this field range from behavioral phenomena of interlimb coordination and coordination between stimuli and movements (perception-action tasks) through neural activation patterns that can be observed during these tasks to clinical applications and social behavior. It is not surprising that close collaboration among scientists from different fields as psychology, kinesiology, neurology and even physics are imperative to deal with the enormous difficulties we are facing when we try to understand a system as complex as the human brain. The chapters in this volume are not simply write-ups of the lectures given by the experts at the meeting but are written in a way that they give sufficient introductory information to be comprehensible and useful for all interested scientists and students.

  7. Information behavior in dynamic group work contexts

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Pierce, Linda G.

    2000-01-01

    personnel and documentation on C2. During data analysis, three important themes that highlight the why, what, how and consequences of information behavior in C2 emerged. The first is the concept of interwoven situational awareness consisting of individual, intragroup and intergroup shared understanding...... of the situation. Interwoven situational awareness appears to facilitate response to dynamic, constraint-bound situations. The second theme describes the need for dense social networks or frequent communication between participants about the work context and situation, the work process and domain...

  8. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  9. Structure and Interface Properties of Nanophase Ceramics: Multimillion Particle Molecular-Dynamics Simulations on Parallel Computer

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1997-01-01

    Large-scale molecular-dynamics (MD) simulations were performed to investigate: (1) sintering process, structural correlations, and mechanical behavior including dynamic fracture in microporous and nanophase Si3N4...

  10. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  11. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  12. From Dynamic Condition Response Structures to Büchi Automata

    DEFF Research Database (Denmark)

    Mukkamala, Raghava Rao; Hildebrandt, Thomas

    2010-01-01

    Recently we have presented distributed dynamic condition response structures (DCR structures) as a declarative process model conservatively generalizing labelled event structures to allow for finite specifications of repeated, possibly infinite behavior. The key ideas are to split the causality...... relation of event structures in two dual relations: the condition relation and the response relation, to split the conflict relation in two relations: the dynamic exclusion and dynamic inclusion, and finally to allow configurations to be multi sets of events. In the present abstract we recall the model...... and show how to characterise the execution of DCR structures and the acceptance condition for infinite runs by giving a map to Bu ̈chi-automata. This is the first step towards automatic verification of processes specified as DCR structures....

  13. Dynamic behavior of district heating systems

    International Nuclear Information System (INIS)

    Kunz, J.

    1994-01-01

    The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs

  14. Organizational Structure and Teacher Behavior.

    Science.gov (United States)

    Miklos, Erwin

    Two major approaches to the analysis of the organizational structure of schools are described. The rational approach focuses on characteristics that are bureaucratic and relate to the hierarchical exercise of authority. The natural-system approach focuses on the social structure and attempts to identify the power structure through analyses of…

  15. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  16. Progression of 3D Protein Structure and Dynamics Measurements

    Science.gov (United States)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  17. Structural analysis of behavioral networks from the Internet

    International Nuclear Information System (INIS)

    Meiss, M R; Menczer, F; Vespignani, A

    2008-01-01

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic

  18. Structural analysis of behavioral networks from the Internet

    Energy Technology Data Exchange (ETDEWEB)

    Meiss, M R; Menczer, F [Department of Computer Science, Indiana University, Bloomington, IN 47405 (United States); Vespignani, A [Department of Informatics, Indiana University, Bloomington, IN 47408 (United States)], E-mail: mmeiss@indiana.edu

    2008-06-06

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic.

  19. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  20. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  1. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  2. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  3. Chaotic Behavior in a Switched Dynamical System

    Directory of Open Access Journals (Sweden)

    Fatima El Guezar

    2008-01-01

    Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.

  4. Chemical structure and dynamics. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  5. Annual Report 1998: Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  6. POSTER : Identifying dynamic data structures in Malware

    NARCIS (Netherlands)

    Rupprecht, Thomas; Chen, Xi; White, David H.; Mühlberg, Jan Tobias; Bos, Herbert; Lüttgen, Gerald

    2016-01-01

    As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control ow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this

  7. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  8. Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures

    DEFF Research Database (Denmark)

    Luczak, Marcin; Peeters, Bart; Kahsin, Maciej

    2014-01-01

    for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate......Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...

  9. Structural fluctuation governed dynamic diradical character in pentacene.

    Science.gov (United States)

    Yang, Hongfang; Chen, Mengzhen; Song, Xinyu; Bu, Yuxiang

    2015-06-07

    We unravel intriguing dynamical diradical behavior governed by structural fluctuation in pentacene using ab initio molecular dynamics simulation. In contrast to static equilibrium configuration of pentacene with a closed-shell ground state without diradical character, due to structural fluctuation, some of its dynamical snapshot configurations exhibit an open-shell broken-symmetry singlet ground state with diradical character, and such diradical character presents irregular pulsing behavior in time evolution. Not all structural changes can lead to diradical character, only those involving the shortening of cross-linking C-C bonds and variations of the C-C bonds in polyacetylene chains are the main contributors. This scenario about diradicalization is distinctly different from that in long acenes. The essence is that structural distortion cooperatively raises the HOMO and lowers the LUMO, efficiently reducing the HOMO-LUMO and singlet-triplet energy gaps, which facilitate the formation of a broken-symmetry open-shell singlet state. The irregular pulsing behavior originates from the mixing of normal vibrations in pentacene. This fascinating behavior suggests the potential application of pentacene as a suitable building block in the design of new electronic devices due to its magnetism-controllability through energy induction. This work provides new insight into inherent electronic property fluctuation in acenes.

  10. Dynamic analysis program for frame structure

    International Nuclear Information System (INIS)

    Ando, Kozo; Chiba, Toshio

    1975-01-01

    A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)

  11. Dynamic behavior of concrete and seismic engineering

    National Research Council Canada - National Science Library

    Mazars, Jacky; Millard, Alain

    2009-01-01

    .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1. Meaning of the word "dynamic" . . . . . . . . . . . . . . . . . . . . . 1.1.2. Reminders about dynamic experimentation . . . . . . . . . . . . . . 1.1.3...

  12. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  13. Ergodic Theory, Open Dynamics, and Coherent Structures

    CERN Document Server

    Bose, Christopher; Froyland, Gary

    2014-01-01

    This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.

  14. Structure-based control of complex networks with nonlinear dynamics.

    Science.gov (United States)

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  15. Shear-wave dynamic behavior using two different orientations

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Hashemi, S. J.

    2007-01-01

    For laterally complex media, it may be more suitable to take a different orientation of the displacement vector of Shear-waves. This may change the sign of several imaginary reflections and conversion coefficients to be used in reservoir characterization and Amplitude Versus Offset analysis or modeling. In this new convention the positive direction of the displacement vector of reflected Shear-waves is chosen to the left of ray tangent (in the direction of wave propagation). Therefore, the definition of the displacement vector of shear-waves can be used properly even for very complicated media. Finally the shear-wave dynamic behavior of a reservoir zone can be illustrated for laterally varying structures in terms of the amplitude variation and phase behavior using this new orientation

  16. Avoided critical behavior in dynamically forced wetting.

    Science.gov (United States)

    Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno

    2006-05-05

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.

  17. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  18. 31st IMAC Conference on Structural Dynamics

    CERN Document Server

    Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred

    2013-01-01

    Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:   Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.

  19. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  20. Dynamic response of structures with uncertain parameters

    International Nuclear Information System (INIS)

    Cai, Z H; Liu, Y; Yang, Y

    2010-01-01

    In this paper, an interval method for the dynamic response of structures with uncertain parameters is presented. In the presented method, the structural physical and geometric parameters and loads can be considered as interval variables. The structural stiffness matrix, mass matrix and loading vectors are described as the sum of two parts corresponding to the deterministic matrix and the uncertainty of the interval parameters. The interval problem is then transformed into approximate deterministic one. The Laplace transform is used to transform the equations of the dynamic system into linear algebra equations. The Maclaurin series expansion is applied on the modified dynamic equation in order to deal with the linear algebra equations. Numerical examples are studied by the presented interval method for the cases with and without damping. The upper bound and lower bound of the dynamic responses of the examples are compared, and it shows that the presented method is effective.

  1. Dynamic mechanical behaviors of Fangshan marble

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2017-10-01

    Full Text Available Dynamic strength parameters are extensively used in mining engineering and rock mechanics. However, there are no widely accepted dynamic failure models for rocks. In this study, the dynamic punching shear strength, uniaxial compressive strength (UCS and tensile strength of fine-grained Fangshan marble (FM are first measured by using a split Hopkinson pressure bar (SHPB system. The pulse-shaping technique is then implemented to maintain the dynamic force balance in SHPB tests. Experimental results show that the dynamic punching shear strength, UCS and tensile strength increase with the loading rate. A recently developed dynamic Mohr-Coulomb theory is then used to interpret the testing data. In this model, the angle of internal friction ϕ is assumed to be independent of loading rate and is obtained using the static strength values. According to the dynamic Mohr-Coulomb theory, the dynamic UCS and the dynamic tensile strength are predicted from the dynamic punching shear strength. Furthermore, based on this dynamic theory, the dynamic UCS is predicted from the dynamic tensile strength. The consistency between the predicted and measured dynamic strengths demonstrates that the dynamic Mohr-Coulomb theory is applicable to FM.

  2. Structure and dynamics of aqueous solution of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied

  3. Design optimization applied in structural dynamics

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T

    2007-01-01

    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process

  4. Dynamical structure of space and time

    International Nuclear Information System (INIS)

    Sannikov-Proskuryakov, S.S.

    2000-01-01

    A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested

  5. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  6. Effect of support conditions on structural response under dynamic loading

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.

    2008-01-01

    In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)

  7. Modeling and identification in structural dynamics

    OpenAIRE

    Jayakumar, Paramsothy

    1987-01-01

    Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...

  8. Dynamic Response of a Floating Bridge Structure

    OpenAIRE

    Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu

    2016-01-01

    A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...

  9. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Dixon, James A.

    2011-01-01

    Research highlights: → We investigated anticipatory behaviors in response to chaotic metronomes. → We assessed multifractal structure in tap intervals and onset intervals. → Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.

  10. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  11. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de [Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany); Schreiber, Falk [Monash University, Melbourne, VIC (Australia); Martin-Luther-University Halle-Wittenberg, Halle (Germany)

    2015-01-26

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.

  12. Dynamic calculation of structures in seismic zones. 2. ed.

    International Nuclear Information System (INIS)

    Capra, Alain; Davidovici, Victor

    1982-01-01

    The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr

  13. A quantitative evolutionary theory of adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved

  14. About the dynamics of structural phase transitions

    International Nuclear Information System (INIS)

    Medeiros, J.T.N.

    1975-01-01

    The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt

  15. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...

  16. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  17. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  18. The assessment of structural dynamics problems in nuclear reactor safety

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-10-01

    The paper discusses important physical features of structural dynamics problems in reactor safety. First a general characterization is given of the following problems: Containment deformation due to pool-dynamics during BWR-blowdown; behavior of the core internals due to PWR-blowdown loads; dynamic response of a nuclear power plant during an earthquake; fuel element deformation due to local pressure pulses in an LMFBR core. Several criterias are formulated to classify typical problems so that a better choise can be made both of appropriate mathematical/numerical as well as experimental techniques. The degree of physical coupling between structural dynamics and fluid dynamics is discussed in more detail since it requires particular attention when selecting problem-oriented methods of solution. Some examples are given to illustrate the application and to compare advantages and disadvantages of several numerical methods. Then description is given of experimental techniques in structural dynamics and typical problem areas are identified. Finally some results are presented concerning the fuel element deformation problem in LMFBRs and from the general considerations some important conclusions are summarized. (orig.) 891 RW 892 AP [de

  19. Advancement and testing of analysis techniques for the determination of the structural dynamic behavior of containment structures. Final report; Weiterentwicklung und Erprobung von Analysemethoden zur Bestimmung des strukturdynamischen Verhaltens von Containmentstukturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Juergen; Bahr, Ludwig; Arndt, Jens; Heckoetter, Christian; Grebner, Hans

    2014-11-15

    Within the framework of project RS1197, analysis methods have been further developed and tested for the determination of the structural dynamic loading and the maximum load-bearing capacity of containment structures with a focus on the quantification of safety margins against failures due to loads resulting from selected internal and external hazards. The analyses comprised a model containment structure of prestressed reinforced concrete under internal pressure loading until reaching failure pressure, an outer containment structure made of reinforced concrete under local impact loads that may occur during a targeted aircraft crash, and a steel containment under local peak loads from internal pressure and temperature loads due to core melt scenarios with a local hydrogen combustion. GRS participated in the international ''Standard Problem Exercise 3'' on the issue ''Performance of Containment Vessel under Severe Accident Conditions''. Together with the cooperation partners, aspects of the global containment behaviour were considered based on the example of the Sandia 1:4 model containment of prestressed concrete, which was loaded by rising internal pressure until failure. Complex analysis models were developed, calculating the behaviour of the prestressing tendons under consideration of the frictional contact with the cladding tubes. Compared with corresponding measurement values, the analysis results show that the stresses near the tensioning device and the deformation of the inner surface can be realistically modelled as a function of the internal pressure. In the experiment, global structural failure of the containment model was caused by tendon rupture at about 3.64 times the design pressure. With the developed analysis models of a generic structure of an outer reinforced concrete containment, simulations were carried out for various aircraft crash scenarios as contact problems with explicit impactor simulation. For this

  20. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  1. The Structure of Childhood Disruptive Behaviors

    Science.gov (United States)

    Martel, Michelle M.; Gremillion, Monica; Roberts, Bethan; von Eye, Alexander; Nigg, Joel T.

    2010-01-01

    Attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) frequently co-occur. Comorbidity of these 2 childhood disruptive behavior domains has not been satisfactorily explained at either a structural or etiological level. The current study evaluated a bifactor model, which allows for a "g" factor in addition to…

  2. Structure and Dynamics of Negative Ions

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model

  3. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  4. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  5. Chemical structure and dynamics: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  6. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  7. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  8. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  9. Modeling structural change in spatial system dynamics: A Daisyworld example.

    Science.gov (United States)

    Neuwirth, C; Peck, A; Simonović, S P

    2015-03-01

    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.

  10. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)

  11. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-06-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering

  12. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.

  13. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  14. Behavior of Brittle Materials Under Dynamic Loading

    National Research Council Canada - National Science Library

    Kanel, G

    2000-01-01

    Dynamic loading of brittle materials is related to many applications, including explosive excavation of rocks, design of ceramic armor, meteor impact on spacecraft windows, particle damage to turbine blades, etc...

  15. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R; Gallagher, B; Neville, J; Henderson, K

    2011-11-11

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

  17. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  18. The dynamical conductance of graphene tunnelling structures

    International Nuclear Information System (INIS)

    Zhang Huan; Chan, K S; Lin Zijing

    2011-01-01

    The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.

  19. The dynamical conductance of graphene tunnelling structures.

    Science.gov (United States)

    Zhang, Huan; Chan, K S; Lin, Zijing

    2011-12-16

    The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.

  20. Stock Portfolio Structure of Individual Investors Infers Future Trading Behavior

    Science.gov (United States)

    Bohlin, Ludvig; Rosvall, Martin

    2014-01-01

    Although the understanding of and motivation behind individual trading behavior is an important puzzle in finance, little is known about the connection between an investor's portfolio structure and her trading behavior in practice. In this paper, we investigate the relation between what stocks investors hold, and what stocks they buy, and show that investors with similar portfolio structures to a great extent trade in a similar way. With data from the central register of shareholdings in Sweden, we model the market in a similarity network, by considering investors as nodes, connected with links representing portfolio similarity. From the network, we find investor groups that not only identify different investment strategies, but also represent individual investors trading in a similar way. These findings suggest that the stock portfolios of investors hold meaningful information, which could be used to earn a better understanding of stock market dynamics. PMID:25068302

  1. Stock portfolio structure of individual investors infers future trading behavior.

    Science.gov (United States)

    Bohlin, Ludvig; Rosvall, Martin

    2014-01-01

    Although the understanding of and motivation behind individual trading behavior is an important puzzle in finance, little is known about the connection between an investor's portfolio structure and her trading behavior in practice. In this paper, we investigate the relation between what stocks investors hold, and what stocks they buy, and show that investors with similar portfolio structures to a great extent trade in a similar way. With data from the central register of shareholdings in Sweden, we model the market in a similarity network, by considering investors as nodes, connected with links representing portfolio similarity. From the network, we find investor groups that not only identify different investment strategies, but also represent individual investors trading in a similar way. These findings suggest that the stock portfolios of investors hold meaningful information, which could be used to earn a better understanding of stock market dynamics.

  2. Stock portfolio structure of individual investors infers future trading behavior.

    Directory of Open Access Journals (Sweden)

    Ludvig Bohlin

    Full Text Available Although the understanding of and motivation behind individual trading behavior is an important puzzle in finance, little is known about the connection between an investor's portfolio structure and her trading behavior in practice. In this paper, we investigate the relation between what stocks investors hold, and what stocks they buy, and show that investors with similar portfolio structures to a great extent trade in a similar way. With data from the central register of shareholdings in Sweden, we model the market in a similarity network, by considering investors as nodes, connected with links representing portfolio similarity. From the network, we find investor groups that not only identify different investment strategies, but also represent individual investors trading in a similar way. These findings suggest that the stock portfolios of investors hold meaningful information, which could be used to earn a better understanding of stock market dynamics.

  3. Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach

    Science.gov (United States)

    Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh

    2012-01-01

    Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…

  4. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  5. Dynamic structural disorder in supported nanoscale catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  6. Earthquake engineering and structural dynamics studies at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Dubey, P.N.; Vaity, K.N.; Kukreja, Mukhesh; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2007-01-01

    Earthquake Engineering and structural Dynamics has gained the attention of many researchers throughout the world and extensive research work is performed. Linear behaviour of structures, systems and components (SSCs) subjected to earthquake/dynamic loading is clearly understood. However, nonlinear behaviour of SSCs subjected to earthquake/dynamic loading need to be understood clearly and design methods need to be validated experimentally. In view of this, three major areas in earthquake engineering and structural dynamics identified for research includes: design and development of passive devices to control the seismic/dynamic response of SSCs, nonlinear behaviour of piping systems subjected to earthquake loading and nonlinear behavior of RCC structures under seismic excitation or dynamic loading. BARC has performed extensive work and also being continued in the above-identified areas. The work performed is helping for clearer understanding of nonlinear behavior of SSCs as well as in developing new schemes, methodologies and devices to control the earthquake response of SSCs. (author)

  7. Family structure and eating behavior disorders.

    Science.gov (United States)

    Mateos-Agut, Manuel; García-Alonso, Isabel; De la Gándara-Martín, Jesús J; Vegas-Miguel, María I; Sebastián-Vega, Carlota; Sanz-Cid, Beatriz; Martínez-Villares, Ana; Martín-Martínez, Esther

    2014-01-01

    The modern way of life, characterized by the cult of individualism, discredited authority, and a proliferation of points of view about reality, has modified family structure. This social structure imbues families and the way that its members become ill, in such a way that eating behavior disorders (EDs) have become a typically postmodern way of becoming ill. The aim is to understand the systemic structure and vulnerability of families by comparing 108 families with members who have ED to 108 families without pathology. A questionnaire administered by an interview with trained personnel was used. Families with ED have a different structure from the families in the control group. They have more psychiatric history and poor coping skills. The family hierarchy is not clearly defined and the leadership is diffuse, with strict and unpredictable rules, more intergenerational coalitions, and fewer alliances. The relationship between the parents is distant or confrontational, and their attitudes towards their children are complacent and selfish, with ambivalent and unaffectionate bonds. In the case of mothers, this is manifested by separation anxiety and dyadic dependence. Their expectations concerning their offspring are either very demanding and unrealistic, or indifferent, and there is less control of their behavior, in addition to poor organization of the family meals. The structural differences between the two groups of families seem to be important for the occurrence and maintenance of EDs, although they may not be the only cause. The results suggest strategies for clinical intervention in EDs.

  8. Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes

    Science.gov (United States)

    Gao, Zilin; Wang, Yinhe; Zhang, Lili

    2018-02-01

    In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.

  9. Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling

    International Nuclear Information System (INIS)

    Hu, Y.-S.; Modarres, Mohammad

    1999-01-01

    In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process

  10. Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Kelton, K F

    2017-01-01

    The liquid phase remains poorly understood. In many cases, the densities of liquids and their crystallized solid phases are similar, but since they are amorphous they lack the spatial order of the solid. Their dynamical properties change remarkably over a very small temperature range. At high temperatures, near their melting temperature, liquids flow easily under shear. However, only a few hundred degrees lower flow effectively ceases, as the liquid transforms into a solid-like glass. This temperature-dependent dynamical behavior is frequently characterized by the concept of kinetic fragility (or, generally, simply fragility). Fragility is believed to be an important quantity in glass formation, making it of significant practical interest. The microscopic origin of fragility remains unclear, however, making it also of fundamental interest. It is widely (although not uniformly) believed that the dynamical behavior is linked to the atomic structure of the liquid, yet experimental studies show that although the viscosity changes by orders of magnitude with temperature, the structural change is barely perceptible. In this article the concept of fragility is discussed, building to a discussion of recent results in metallic glass-forming liquids that demonstrate the presumed connection between structural and dynamical changes. In particular, it becomes possible to define a structural fragility parameter that can be linked with the kinetic fragility. (topical review)

  11. Chemical structure and dynamics. Annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  12. Chemical structure and dynamics: Annual report 1996

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species

  13. Annual Report 2000. Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  14. Chemical structure and dynamics: Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  15. Study of a spur gear dynamic behavior in transient regime

    Science.gov (United States)

    Khabou, M. T.; Bouchaala, N.; Chaari, F.; Fakhfakh, T.; Haddar, M.

    2011-11-01

    In this paper the dynamic behavior of a single stage spur gear reducer in transient regime is studied. Dynamic response of the single stage spur gear reducer is investigated at different rotating velocities. First, gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. Then, the dynamic response is computed using the Newmark method. After that, a parameter study is made on spur gear powered in the first place by an electric motor and in the second place by four strokes four cylinders diesel engine. Dynamic responses come to confirm a significant influence of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition.

  16. Some aspects of animal behavior and community dynamics

    Directory of Open Access Journals (Sweden)

    Vikas Rai

    2011-09-01

    Full Text Available We simulate the dynamical behavior of a few two - dimensional predator - prey systems in two - dimensional parameter spaces to gain insight into how functional responses affect community dynamics. The insight gained helps us design three dimensional systems. We construct models for a few ecosystems with three species and study them using computer simulations. The models have been developed by linking food chains which have both kinds of predators: specialist as well as generalist. The linking functions are weakly non-linear. The three dimensional model ecosystems have sexually reproducing top - predators. We perform extensive simulations to figure out dynamics of dynamical possibilities caused by changes in animal behavior. The animals change the foraging strategies and behave differently in different environments. At the end of the paper, we examine how diseases can govern transitions in meandering of dynamical models in bounded volume of their phase spaces.

  17. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  18. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  19. Structural behavior of supercritical fluids under confinement

    Science.gov (United States)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features

  20. Metastable structures and size effects in small group dynamics.

    Science.gov (United States)

    Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco

    2014-01-01

    In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical "leadership" pattern, and in "cognitive" terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves "as if" it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting.

  1. Metastable structures and size effects in small group dynamics

    Directory of Open Access Journals (Sweden)

    Rosapia eLauro Grotto

    2014-07-01

    Full Text Available In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: 1 they emerge as a consequence of the natural tendency of (both conscious and unconscious emotions to combine into structured group patterns; 2 they have a certain degree of stability in time; 3 they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; 4 they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical 'leadership’ pattern, and in 'cognitive’ terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e. the group behaves 'as if’ it was assuming that…. Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: 1 are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? 3 can these states be differentiated in structural terms? 3 to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical

  2. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  3. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  4. DYNAMIC CINEMATIC TO A STRUCTURE 2R

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2016-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Flat structures 2R can solve all the problems posed by all the robotic anthropomorphic structures. The study of the anthropomorphic robots by the use of a flat structure 2R is a much easier method than classical used spatial methods. The paper outlines a method for the determination of dynamic to a robotic structure 2R balanced. 2R plane structures are used in practice only in the form balanced, for which in this paper will be made, initial, the total balance, and then the study cinematico-dynamic will only develop on the model already balanced. Dynamic relations presented then briefly without deduction will be explained and discussed with regard to their application. On the basis of the model presented and following calculations performed can be chosen correctly the two electric motors in the actuator. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  5. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human--Robot Interaction

    Directory of Open Access Journals (Sweden)

    Tatsuro Yamada

    2016-07-01

    Full Text Available To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language--behavior relationships and the temporal patterns of interaction. Here, ``internal dynamics'' refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language--behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language--behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.

  6. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human-Robot Interaction.

    Science.gov (United States)

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2016-01-01

    To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language-behavior relationships and the temporal patterns of interaction. Here, "internal dynamics" refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language-behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language-behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.

  7. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  8. Dynamic analysis of the BPX machine structure

    International Nuclear Information System (INIS)

    Dahlgen, F.; Citrolo, J.; Knutson, D.; Kalish, M.

    1992-01-01

    A preliminary analysis of the response of the BPX machine structure to a seismic input was performed. MSC/NASTRAN 5 , a general purpose XXX element computer code, has been used. The purpose of this paper is to assess the probable range of seismically induced stresses and deflections in the machine substructure which connects the machine to the test cell floor, with particular emphasis on the shear pins which will be used to attach the TF coil modules to the machine substructure (for a more detailed description of the shear pins and structure see ref. 4 in these proceedings). The model was developed with sufficient detail to be used subsequently to investigate the transient response to various dynamic loading conditions imposed on the structure by the PF, TF, and Vacuum Vessel, during normal and off-normal operations. The model does not include the mass and stiffness of the building or the building-soil interaction and as such can only be considered an interim assessment of the dynamic response of the machine to the S.S.E.(this is the Safe Shutdown Earthquake which is also the Design XXX Earthquake for all major structural components)

  9. Size-Dependent Dynamic Behavior of a Microcantilever Plate

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    2012-01-01

    Full Text Available Material length scale considerably affects the mechanical properties of microcantilever components. Recently, cantilever-plate-like structures have been commonly used, whereas the lack of studies on their size effects constrains the design, testing, and application of these structures. We have studied the size-dependent dynamic behavior of a cantilever plate based on a modified couple stress theory and the differential quadrature method in this note. The numerical solutions of microcantilever plate equation involving the size effect have been presented. We have also analyzed the bending and vibration of the microcantilever plates considering the size effect and discussed the dependence of the size effect on their geometric dimensions. The results have shown that (1 the mechanical characteristics of the cantilever plate show obvious size effects; as a result, the bending deflection of a microcantilever plate reduces whereas the natural frequency increases effectively and (2 for the plates with the same material, the size effect becomes more obvious when the plates are thinner.

  10. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  11. Structured population dynamics: continuous size and discontinuous stage structures.

    Science.gov (United States)

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  12. Structure and mechanical behavior of bird beaks

    Science.gov (United States)

    Seki, Yasuaki

    The structure and mechanical behavior of Toco toucan (Ramphastos toco) and Wreathed hornbill (Rhyticeros undulatus) beaks were examined. The structure of Toco toucan and Wreathed hornbill beak was found to be a sandwich composite with an exterior of keratin and a fibrous bony network of closed cells made of trabeculae. A distinctive feature of the hornbill beak is its casque formed from cornified keratin layers. The casque is believed to have an acoustic function due to the complex internal structure. The toucan and hornbill beaks have a hollow region that extends from proximal to mid-section. The rhamphotheca is comprised of super-posed polygonal scales (45 mum diameter and 1 mum thickness) fixed by some organic adhesive. The branched intermediate filaments embedded in keratin matrix were discovered by transmission electron microscopy (TEM). The diameter of intermediate laments was ~10 nm. The orientation of intermediate filaments was examined with TEM tomography and the branched filaments were homogeneously distributed. The closed-cell foam is comprised of the fibrous structure of bony struts with an edge connectivity of three or four and the cells are sealed off by the thin membranes. The volumetric structure of bird beak foam was reproduced by computed tomography for finite element modeling.

  13. 30th IMAC, A Conference on Structural Dynamics

    CERN Document Server

    Catbas, FN; Mayes, R; Rixen, D; Griffith, DT; Allemang, R; Clerck, J; Klerk, D; Simmermacher, T; Cogan, S; Chauhan, S; Cunha, A; Racic, V; Reynolds, P; Salyards, K; Adams, D; Kerschen, G; Carrella, A; Voormeeren, SN; Allen, MS; Horta, LG; Barthorpe, R; Niezrecki, C; Blough, JR; Vol.1 Topics on the Dynamics of Civil Structures; Vol.2 Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics; Vol.3 Topics in Nonlinear Dynamics; Vol.4 Topics in Model Validation and Uncertainty Quantification; Vol.5 Topics in Modal Analysis I; Vol.6 Topics in Modal Analysis II

    2012-01-01

    Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures.

  14. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  15. Dynamics of Correlation Structure in Stock Market

    Directory of Open Access Journals (Sweden)

    Maman Abdurachman Djauhari

    2014-01-01

    Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.

  16. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  17. The structural dynamics of social class.

    Science.gov (United States)

    Kraus, Michael W; Park, Jun Won

    2017-12-01

    Individual agency accounts of social class persist in society and even in psychological science despite clear evidence for the role of social structures. This article argues that social class is defined by the structural dynamics of society. Specifically, access to powerful networks, groups, and institutions, and inequalities in wealth and other economic resources shape proximal social environments that influence how individuals express their internal states and motivations. An account of social class that highlights the means by which structures shape and are shaped by individuals guides our understanding of how people move up or down in the social class hierarchy, and provides a framework for interpreting neuroscience studies, experimental paradigms, and approaches that attempt to intervene on social class disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oxide Interfaces: emergent structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Roy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-16

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.

  19. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  20. Finite element analysis of inelastic structural behavior

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1977-01-01

    The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model

  1. Dynamic sign structures in visual art and music

    DEFF Research Database (Denmark)

    Zeller, Jörg

    2006-01-01

    Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....

  2. Dynamics of a structured neuron population

    International Nuclear Information System (INIS)

    Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît

    2010-01-01

    We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing

  3. Dynamic Choice Behavior in a Natural Experiment

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten

    evidence of some probability weighting, but no loss aversion. We also find evidence that contestants make decisions as if using more than one latent criteria, mixing traditional utility evaluations, probability weighting, and aspiration levels. Fourth, we design and implement laboratory experiments...... linked to current choices. We have four major findings. First, we show that popular utility functions that assume constant relative or absolute risk aversion and expected utility theory defined over the prizes cannot characterize these choices, which exhibit increasing relative risk aversion over prizes...... the income that they bring to the game show. Allowing for this integration of income and game show prizes leads to choice behavior consistent with constant relative risk aversion. Third, we examine th e effects of allowing contestants to make choices characterized by non-standard decision models. We find...

  4. Pressure effects on dynamics behavior of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Taha [Faculty of Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-01-15

    The dynamic behavior of Multiwall boron nitride nanotubes (MWBNNTs) is investigated by employing multiple elastic shells model. The influences of van der Waals interactions on layers are shown as nonlinear functions of the interlayer distance of MWBNNTs. Governing equations are solved by using the developed finite element method and by employing time history diagrams. The radial wave speed from the outermost layer to the innermost layer is computed. The effects of geometrical factors such as diameter-to-thickness ratio on dynamic behavior of MWBNNTs are determined. The magnification aspects of MWBNNTs are computed, and the effects of surrounding pressures on wave speed and magnification aspect of MWBNNTs are discussed.

  5. Age structure and cooperation in coevolutionary games on dynamic network

    Science.gov (United States)

    Qin, Zilong; Hu, Zhenhua; Zhou, Xiaoping; Yi, Jingzhang

    2015-04-01

    Our proposed model imitates the growth of a population and describes the age structure and the level of cooperation in games on dynamic network with continuous changes of structure and topology. The removal of nodes and links caused by age-dependent attack, together with the nodes addition standing for the newborns of population, badly ruins Matthew effect in this coevolutionary process. Though the network is generated by growth and preferential attachment, it degenerates into random network and it is no longer heterogeneous. When the removal of nodes and links is equal to the addition of nodes and links, the size of dynamic network is maintained in steady-state, so is the low level of cooperation. Severe structure variation, homogeneous topology and continuous invasion of new defection jointly make dynamic network unsuitable for the survival of cooperator even when the probability with which the newborn players initially adopt the strategy cooperation is high, while things change slightly when the connections of newborn players are restricted. Fortunately, moderate interactions in a generation trigger an optimal recovering process to encourage cooperation. The model developed in this paper outlines an explanation of the cohesion changes in the development process of an organization. Some suggestions for cooperative behavior improvement are given in the end.

  6. Modeling detour behavior of pedestrian dynamics under different conditions

    Science.gov (United States)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  7. Modeling Behavior Dynamics using Computational Psychometrics within Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Pietro eCipresso

    2015-11-01

    Full Text Available In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video and audio and an advanced technique (Virtual Reality to manipulate experimental settings. The second step concerns the measurement of behavior in one, two or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  8. Modeling behavior dynamics using computational psychometrics within virtual worlds.

    Science.gov (United States)

    Cipresso, Pietro

    2015-01-01

    In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  9. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  10. Structural dynamics of turbo-machines

    CERN Document Server

    Rangwala, AS

    2009-01-01

    The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod

  11. Dynamical structure of pure Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera

    2016-03-01

    We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.

  12. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  13. Framing effects: behavioral dynamics and neural basis.

    Science.gov (United States)

    Zheng, Hongming; Wang, X T; Zhu, Liqi

    2010-09-01

    This study examined the neural basis of framing effects using life-death decision problems framed either positively in terms of lives saved or negatively in terms of lives lost in large group and small group contexts. Using functional MRI we found differential brain activations to the verbal and social cues embedded in the choice problems. In large group contexts, framing effects were significant where participants were more risk seeking under the negative (loss) framing than under the positive (gain) framing. This behavioral difference in risk preference was mainly regulated by the activation in the right inferior frontal gyrus, including the homologue of the Broca's area. In contrast, framing effects diminished in small group contexts while the insula and parietal lobe in the right hemisphere were distinctively activated, suggesting an important role of emotion in switching choice preference from an indecisive mode to a more consistent risk-taking inclination, governed by a kith-and-kin decision rationality. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Cardiolipin effects on membrane structure and dynamics.

    Science.gov (United States)

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.

  15. Band structure dynamics in indium wires

    Science.gov (United States)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  16. Structure and dynamics of molten salts

    International Nuclear Information System (INIS)

    Rovere, M.; Tosi, M.P.

    1986-02-01

    Modern techniques of liquid state physics have been successfully used over the last decade to probe the microscopic structure and dynamics of a variety of multicomponent liquids in which relative ordering of the species is present near freezing. The alkali halides are prototypes for this specific type of short range order in relation to the nature of bonding, but the systems in question include also other monovalent and polyvalent metal-ion halides, alkali-based intermetallic compounds, and chalcogen-based alloys. A viewpoint is taken in this review which gives attention to relations between liquid and solid phase properties across melting for compound systems at stoichiometric composition. In addition, large deviations from stoichiometry can be realized in the liquid phase, to display trends of evolution of structure, bonding and electronic states with composition. (author)

  17. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    Directory of Open Access Journals (Sweden)

    Aizzat S. Yahaya Rashid

    2014-01-01

    Full Text Available The dynamic behavior of a body-in-white (BIW structure has significant influence on the noise, vibration, and harshness (NVH and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.

  18. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  19. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  20. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an

  1. Chemical Structure and Dynamics annual report 1997

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous

  2. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  3. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  4. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  5. Technicolor and the asymptotic behavior of dynamically generated masses

    International Nuclear Information System (INIS)

    Natale, A.A.

    1984-01-01

    Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt

  6. Simulation of long-term dynamic behavior of runaway electrons

    International Nuclear Information System (INIS)

    Wang Yulei; Liu Jian; Zhang Ruili; He Yang

    2015-01-01

    The secular dynamics of runaway electrons in Tokamak electromagnetic field is studied. The radiation effect is added into a relativistic volume-preserving algorithm to gain long-term stability of calculation. The results shows that the method we used is able to reveal the behavior of a runaway electron in configuration space. (author)

  7. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    Science.gov (United States)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  8. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    Science.gov (United States)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  9. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  10. Behavioral Priming 2.0: Enter a Dynamical Systems Perspective

    Directory of Open Access Journals (Sweden)

    Dario Krpan

    2017-07-01

    Full Text Available On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP. The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications.

  11. Behavioral Priming 2.0: Enter a Dynamical Systems Perspective

    Science.gov (United States)

    Krpan, Dario

    2017-01-01

    On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP). The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications. PMID:28769846

  12. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  13. A function-behavior-structure framework for quantification and reproduction of emotional haptic experience in using an electronic device

    International Nuclear Information System (INIS)

    Bae, Il Ju; Lee, Soo Hong; Ok, Hyung Seok; Lee, Jae In

    2013-01-01

    A user's haptic experience in using an electronic device is related to the continuous and dynamic variances of the structural state of the device. Since the changes of the structural component cause complex changes of the dynamics, it is difficult to predict the user's experience. We propose a function-behavior-structure framework to predict and improve the user's experience. The framework consists of the function layer model, the behavior layer model, and the structure layer model. Especially, the independent behavior model to the device is based on a physical phenomenon. Finally, an optimized structure which produces an ideal haptic experience for a cell phone is suggested.

  14. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  15. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.

    Science.gov (United States)

    Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D

    2015-03-01

    We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rahul; Verth, Gary; Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2017-05-10

    Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity components using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.

  17. Parallel processors and nonlinear structural dynamics algorithms and software

    Science.gov (United States)

    Belytschko, Ted

    1989-01-01

    A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.

  18. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  19. Factor Structure of Child Behavior Scale Scores in Peruvian Preschoolers

    Science.gov (United States)

    Meyer, Erin L.; Schaefer, Barbara A.; Soto, Cesar Merino; Simmons, Crystal S.; Anguiano, Rebecca; Brett, Jeremy; Holman, Alea; Martin, Justin F.; Hata, Heidi K.; Roberts, Kimberly J.; Mello, Zena R.; Worrell, Frank C.

    2011-01-01

    Behavior rating scales aid in the identification of problem behaviors, as well as the development of interventions to reduce such behavior. Although scores on many behavior rating scales have been validated in the United States, there have been few such studies in other cultural contexts. In this study, the structural validity of scores on a…

  20. Structure, dynamics, and function of biomolecules

    International Nuclear Information System (INIS)

    Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal

  1. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  2. Plasma and current structures in dynamical pinches

    International Nuclear Information System (INIS)

    Butov, I.Ya.; Matveev, Yu.V.

    1981-01-01

    Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru

  3. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  4. Information Processing Features Can Detect Behavioral Regimes of Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Rick Quax

    2018-01-01

    Full Text Available In dynamical systems, local interactions between dynamical units generate correlations which are stored and transmitted throughout the system, generating the macroscopic behavior. However a framework to quantify exactly how these correlations are stored, transmitted, and combined at the microscopic scale is missing. Here we propose to characterize the notion of “information processing” based on all possible Shannon mutual information quantities between a future state and all possible sets of initial states. We apply it to the 256 elementary cellular automata (ECA, which are the simplest possible dynamical systems exhibiting behaviors ranging from simple to complex. Our main finding is that only a few information features are needed for full predictability of the systemic behavior and that the “information synergy” feature is always most predictive. Finally we apply the idea to foreign exchange (FX and interest-rate swap (IRS time-series data. We find an effective “slowing down” leading indicator in all three markets for the 2008 financial crisis when applied to the information features, as opposed to using the data itself directly. Our work suggests that the proposed characterization of the local information processing of units may be a promising direction for predicting emergent systemic behaviors.

  5. Dynamic behavior of hybrid sodium bearings. Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Guidez, J.; Juignet, N.; Queval, M.

    1981-08-01

    The primary sodium pump shaft lower section of a fast breeder reactor is guided by a hydrostatic sodium bearing. This recess type bearing is supplied via orifices restrictors. Sodium is sampled at hight pressure at the diffuser outlet and is then centrifuged towards the orifices restrictors. Bearing stiffness and damping data is essential for the study of rotor dynamic behavior. Two points in particular may then be studied: - calculation of rotor instability ranges and critical speeds, - dynamic behavior of the rotor in the event of an earthquake. As regards the bearing design, the problem is to obtain the pressure fields in the liquid film. The integration of these pressure fields will then give the stiffness coefficients. The damping coefficients can then be obtained by the same calculation after slight displacement. The Reynolds equation can be used to study the liquid film (under any conditions for the turbulent and inertia effects). Then the computer code DELPAL is explained that solves the modified Reynolds equation using a finite element method. The presentation of tests conducted in 1981 on the Super-Phenix 1 full scall bearing (diameter 850 mm) in water is made. In conclusion this paper describes a method for calculating the stiffness and damping matrices of a hydrostatic bearing using the DELPAL calculation code and shows the loop of behavior tests on a bearing with sinusoidal excitation. The results, obtained by calculation and by testing, are indispensable when calculating the dynamic behavior of the shaft line

  6. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    Science.gov (United States)

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  7. DYNAMIC PARTICLE SYSTEMS FOR OBJECT STRUCTURE EXTRACTION

    Directory of Open Access Journals (Sweden)

    Olivier Lavialle

    2011-05-01

    Full Text Available A new deformable model based on the use of a particle system is introduced. By defining the local behavior of each particle, the system behaves as an active contour model showing a variable topology and regularization properties. The efficiency of the particle system is illustrated by two applications: the first one concerns the use of the system as a skeleton extractor based on the propagation of particles inside a treeshaped object. Using this method, it is possible to generate a cartography of structures such as veins or channels. In a second illustration, the system avoids the problem of initialization of a piecewise cubic Bspline network used to straighten curved text lines.

  8. Dynamic behavior of a social model for opinion formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    2007-12-01

    The dynamic behavior of a social group influenced by both a strong leader and the mass media, which is modeled according to the social impact theory, is studied under two situations: (i) The strong leader changes his/her state of opinion periodically while the mass media are not considered. In this case, the leader is capable of driving the group between a dynamically ordered state with a weak leader-group coupling (high-frequency regime) and a dynamically disordered state where the group follows the opinion of the leader (low-frequency regime). (ii) The mass-media change periodically their message and have to compete with a strong leader that keeps his/her state of opinion unchanged. In this case, the mass media require an amplitude threshold in order to overcome the influence of the leader and drive the system into a dynamically disordered state. The dynamic behavior characteristic of the studied social opinion model shares many features of physical systems that are relevant in the fields of statistical mechanics and condensed matter.

  9. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  10. Synchronization effects in the dynamical behavior of elevators

    Science.gov (United States)

    Pöschel, Thorsten; Gallas, Jason A. C.

    1994-10-01

    We simulate the dynamical behavior of M elevators serving N floors of a building in which a Poisson distribution of persons call elevators. Our simulation reproduces the jamming effect typically seen in large buildings when a large number of persons decide to leave the building simultaneously. The collective behavior of the elevators involves characteristics similar to those observed in systems of coupled oscillators. In addition, there is an apparently rule-free critical population density above which elevators start to arrive synchronously at the ground floor.

  11. Indoor footstep localization from structural dynamics instrumentation

    Science.gov (United States)

    Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.

    2017-05-01

    Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.

  12. Iron nanoparticle assemblies: structures and magnetic behavior

    International Nuclear Information System (INIS)

    Farrell, D; Cheng, Y; Kan, S; Sachan, M; Ding, Y; Majetich, S A; Yang, L

    2005-01-01

    Self-assembly of spherical, surfactant-coated nanoparticles is discussed, an examples are presented to demonstrate the variety of structures that can be formed, and the conditions that lead to them. The effect of the concentration on the magnetic properties is then examined for 8.5 nm Fe nanoparticles. Dilute dispersions, arrays formed by evaporation of the dispersions, and nanoparticle crystals grown by slow diffusion of a poorly coordinating solvent were characterized by zero field-cooled magnetization, remanent hysteresis loop, and magnetic relaxation measurements. The average spacing between the particles was determined from a combination of transmission electron microscopy and small angle x-ray scattering. In the arrays the spacing was 2.5 nm between the edges of the particle cores, while in the nanoparticle crystals the particles were more tightly packed, with a separation of 1.1 nm. The reduced separation increased the magnetostatic interaction strength in the nanoparticle crystals, which showed distinctly different behavior in the rate of approach to saturation in the remanent hysteresis loops, and in the faster rate of time-dependent magnetic relaxation

  13. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  14. The dynamics of behavior in modified dictator games.

    Directory of Open Access Journals (Sweden)

    Jeannette Brosig-Koch

    Full Text Available We investigate the dynamics of individual pro-social behavior over time. The dynamics are tested by running the same experiment with the same subjects at several points in time. To exclude learning and reputation building, we employ non-strategic decision tasks and a sequential prisoners-dilemma as a control treatment. In the first wave, pro-social concerns explain a high share of individual decisions. Pro-social decisions decrease over time, however. In the final wave, most decisions can be accounted for by assuming pure selfishness. Stable behavior in the sense that subjects stick to their decisions over time is observed predominantly for purely selfish subjects. We offer two explanation for our results: diminishing experimenter demand effects and moral self-licensing.

  15. Evolving dynamics of trading behavior based on coordination game in complex networks

    Science.gov (United States)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  16. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. The dynamic behavior of the exohedral transition metal complexes of B₄₀ : η⁶- and η⁷-B₄₀Cr(CO) ₃ and Cr(CO) ₃η⁷-B₄η₀-Cr(CO) ₃. NAIWRIT KARMODAK ELUVATHINGAL D JEMMIS. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp ...

  17. Dynamic behavior of PE-HD pipes grade

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Buchar, Jaroslav; Nezbedová, E.

    2017-01-01

    Roč. 373, č. 1 (2017), č. článku 1700038. ISSN 1022-1360 R&D Projects: GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : dynamic behavior * PE-HD * split Hopkinson pressure bar test * strain rate Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://onlinelibrary.wiley.com/doi/10.1002/masy.201700038/full

  18. Dynamic behavior of rearranging carbocations – implications for terpene biosynthesis

    Directory of Open Access Journals (Sweden)

    Stephanie R. Hare

    2016-02-01

    Full Text Available This review describes unexpected dynamical behaviors of rearranging carbocations and the modern computational methods used to elucidate these aspects of reaction mechanisms. Unique potential energy surface topologies associated with these rearrangements have been discovered in recent years that are not only of fundamental interest, but also provide insight into the way Nature manipulates chemical space to accomplish specific chemical transformations. Cautions for analyzing both experimental and theoretical data on carbocation rearrangements are included throughout.

  19. Dynamic power behavior of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Moreira, F.J.

    1984-01-01

    A methodology for the power level evaluation (dynamic behavior) in a Pressurized Water Reactor, during a transient is developed, by solving the point kinetic equation related to the control rod insertion effects and fuel or moderator temperature 'feed-back'. A new version of the thermal-hydraulic code COBRA III P/MIT, is used. In this new version was included, as an option, the methodology developed. (E.G.) [pt

  20. Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model

    International Nuclear Information System (INIS)

    Si-Lakhal, B.; Abada, A.

    2003-11-01

    Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)

  1. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials

    National Research Council Canada - National Science Library

    Freeman, Arthur J; Kontsevoi, Oleg Y; Gornostyrev, Yuri N; Medvedeva, Nadezhda I

    2008-01-01

    To fulfill the great potential of intermetallic alloys for high temperature structural applications, it is essential to understand the mechanisms controlling their mechanical behavior on the microscopic level...

  2. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  3. Parameter study on dynamic behavior of ITER tokamak scaled model

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takeda, Nobukazu

    2004-12-01

    This report summarizes that the study on dynamic behavior of ITER tokamak scaled model according to the parametric analysis of base plate thickness, in order to find a reasonable solution to give the sufficient rigidity without affecting the dynamic behavior. For this purpose, modal analyses were performed changing the base plate thickness from the present design of 55 mm to 100 mm, 150 mm and 190 mm. Using these results, the modification plan of the plate thickness was studied. It was found that the thickness of 150 mm gives well fitting of 1st natural frequency about 90% of ideal rigid case. Thus, the modification study was performed to find out the adequate plate thickness. Considering the material availability, transportation and weldability, it was found that the 300mm thickness would be a limitation. The analysis result of 300mm thickness case showed 97% fitting of 1st natural frequency to the ideal rigid case. It was however found that the bolt length was too long and it gave additional twisting mode. As a result, it was concluded that the base plate thickness of 150mm or 190mm gives sufficient rigidity for the dynamic behavior of the scaled model. (author)

  4. Matrix of transmission in structural dynamics

    International Nuclear Information System (INIS)

    Mukherjee, S.

    1975-01-01

    Within the last few years numerous papers have been published on the subject of matrix method in elasto-mechanics. 'Matrix of Transmission' is one of the methods in this field which has gained considerable attention in recent years. The basic philosophy adopted in this method is based on the idea of breaking up a complicated system into component parts with simple elastic and dynamic properties which can be readily expressed in matrix form. These component matrices are considered as building blocks, which are fitted together according to a set of predetermined rules which then provide the static and dynamic properties of the entire system. A common type of system occuring in engineering practice consists of a number of elements linked together end to end in the form of a chain. The 'Transfer Matrix' is ideally suited for such a system, because only successive multiplication is necessary to connect these elements together. The number of degrees of freedom and intermediate conditions present no difficulty. Although the 'Transfer Matrix' method is suitable for the treatment of branched and coupled systems its application to systems which do not have predominant chain topology is not effective. Apart from the requirement that the system be linearely elastic, no other restrictions are made. In this paper, it is intended to give a general outline and theoretical formulation of 'Transfer Matrix' and then its application to actual problems in structural dynamics related to seismic analysis. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using a suitable numerical method, the natural frequencies and mode shapes are determined by making a frequency sweep within the range of interest. Results of an analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV program. Therefore

  5. Study on Human-structure Dynamic Interaction in Civil Engineering

    Science.gov (United States)

    Gao, Feng; Cao, Li Lin; Li, Xing Hua

    2018-06-01

    The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.

  6. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  7. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  8. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  9. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  10. Simulating CubeSat Structure Deployment Dynamics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...

  11. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  12. Dynamical Structure of a Traditional Amazonian Social Network

    Directory of Open Access Journals (Sweden)

    Paul L. Hooper

    2013-11-01

    Full Text Available Reciprocity is a vital feature of social networks, but relatively little is known about its temporal structure or the mechanisms underlying its persistence in real world behavior. In pursuit of these two questions, we study the stationary and dynamical signals of reciprocity in a network of manioc beer (Spanish: chicha; Tsimane’: shocdye’ drinking events in a Tsimane’ village in lowland Bolivia. At the stationary level, our analysis reveals that social exchange within the community is heterogeneously patterned according to kinship and spatial proximity. A positive relationship between the frequencies at which two families host each other, controlling for kinship and proximity, provides evidence for stationary reciprocity. Our analysis of the dynamical structure of this network presents a novel method for the study of conditional, or non-stationary, reciprocity effects. We find evidence that short-timescale reciprocity (within three days is present among non- and distant-kin pairs; conversely, we find that levels of cooperation among close kin can be accounted for on the stationary hypothesis alone.

  13. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    Science.gov (United States)

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  14. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    Directory of Open Access Journals (Sweden)

    Mark G Orr

    Full Text Available The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior, does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence. To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  15. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  16. Some Recent Developments in Structure and Glassy Behavior of Proteins

    Science.gov (United States)

    Hu, Chin-Kun

    2012-02-01

    We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).

  17. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  18. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  19. Structural dynamics in fast reactor accident analysis

    International Nuclear Information System (INIS)

    Fistedis, S.H.

    1975-01-01

    Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code

  20. Dynamical structure of hadron emission sources

    CERN Document Server

    Zhao Xi; Zhao Shu Song

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).

  1. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  2. Dynamical structure of linearized GL(4) gravities

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)

  3. Shaking of reinforced concrete structures subjected to transient dynamic analysis

    International Nuclear Information System (INIS)

    Rouzaud, Christophe

    2015-01-01

    In the design of nuclear engineering structures security and safety present a crucial aspect. Civil engineering design and the qualification of materials to dynamic loads must consider the accelerations which they undergo. These accelerations could integrate seismic activity and shaking movements consecutive to aircraft impact with higher cut-off frequency. Current methodologies for assessing this shock are based on transient analyses using classical finite element method associated with explicit numerical schemes or projection on modal basis, often linear. In both cases, to represent in meaningful way a medium-frequency content, it should implement a mesh refinement which is hardly compatible with the size of models of the civil engineering structures. In order to extend industrial methodologies used and to allow a better representation of the behavior of the structure in medium-frequency, an approach coupling a temporal and non-linear analysis for shock area with a frequency approach to treatment of shaking with VTCR (Variational Theory of Complex Rays) has been used. The aim is to use the computational efficiency of the implemented strategy, including medium frequency to describe the nuclear structures to aircraft impact. (author)

  4. An Experimental Investigation of the Dynamic Behavior of an In-Plane MEMS Shallow Arch Under Electrostatic Excitation

    KAUST Repository

    Ramini, Abdallah

    2016-01-20

    We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency sweeps in the neighborhood of the first resonance frequency. The shallow arch response is video microscopy recorded and analyzed by means of digital imaging. The experimental data show local softening behavior for small DC and AC loads. For high voltages, the experimental investigation reveals interesting dynamics, where the arch exhibits a dynamic snap-Through behavior. These attractive experimental results verify the previously reported complex behavior of in-plane MEMS arches and show promising results to implement these structures for variety of sensing and actuation applications. © Copyright 2015 by ASME.

  5. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  6. Dynamic material behavior determination using single fiber impact

    NARCIS (Netherlands)

    Heru Utomo, B.D.; Broos, J.P.F.

    2007-01-01

    Mechanical properties of fiber materials are used as input data for amongst others impact simulations on fiber based structures to predict their behavior. Accurate predictions for such materials are still not possible, because the mechanical properties are usually determined (quasi-)statically or

  7. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  8. Knottin cyclization: impact on structure and dynamics

    Directory of Open Access Journals (Sweden)

    Gracy Jérôme

    2008-12-01

    Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity

  9. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...

  10. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    Science.gov (United States)

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  11. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  12. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  13. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    International Nuclear Information System (INIS)

    Zhao, Y.

    1996-01-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed

  14. Dynamical behavior and Jacobi stability analysis of wound strings

    Science.gov (United States)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  15. Dynamical behavior and Jacobi stability analysis of wound strings

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2016-06-15

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)

  16. Experimental oligopolies modeling: A dynamic approach based on heterogeneous behaviors

    Science.gov (United States)

    Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.

    2018-05-01

    In the rank of behavioral rules, imitation-based heuristics has received special attention in economics (see [14] and [12]). In particular, imitative behavior is considered in order to understand the evidences arising in experimental oligopolies which reveal that the Cournot-Nash equilibrium does not emerge as unique outcome and show that an important component of the production at the competitive level is observed (see e.g.[1,3,9] or [7,10]). By considering the pioneering groundbreaking approach of [2], we build a dynamical model of linear oligopolies where heterogeneous decision mechanisms of players are made explicit. In particular, we consider two different types of quantity setting players characterized by different decision mechanisms that coexist and operate simultaneously: agents that adaptively adjust their choices towards the direction that increases their profit are embedded with imitator agents. The latter ones use a particular form of proportional imitation rule that considers the awareness about the presence of strategic interactions. It is noteworthy that the Cournot-Nash outcome is a stationary state of our models. Our thesis is that the chaotic dynamics arousing from a dynamical model, where heterogeneous players are considered, are capable to qualitatively reproduce the outcomes of experimental oligopolies.

  17. Dynamics and structure of ignition process in plasma. Ignition dynamics and structure of laboratory plasmas

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Takamura, Shuichi; Razzak, Md. Abdur; Uesugi, Yoshihiko; Yoshimura, Yasuo; Cappa, Alvaro

    2008-01-01

    The dynamics and structure of plasma production are stated by the results of two experiments such as the radio frequency thermal plasmas produced by inductively coupled plasma technique at atmospheric pressure and the second harmonic ECH. The first experiment results explained transition from the electrostatic discharge mode of forming streamer to the induced discharge mode after forming the discharge channel that the streamer connected to in the azimuth direction. The other experiment explained the dynamics which the initial plasma produced at the ECH resonance point spread in the direction of radius. The divergence and transition related to the nonlinear process were observed independently existing the magnetic field or incident power. The experiment devices, conditions, results, and modeling are reported. (S.Y.)

  18. Structure and dynamics of the magnetopause

    International Nuclear Information System (INIS)

    Wang, Z.

    1992-01-01

    This thesis addresses several topics concerning the structure and dynamics of the magnetopause. These topics include the role of the magnetopause in global convection, the Kelvin-Helmholtz (K-H) instability, which accounts for momentum transport at the magnetopause, the formation of flux ropes by the tearing and twisting modes and particle diffusion across the magnetopause resulting from the destruction of magnetic surfaces. The author establishs an analytic electric field model for an open magnetosphere and introduce a magnetopause to control the reconnection rate and momentum transport. A realistic magnetospheric configuration is realized by 'stretch transformation'. The role of magnetic nulls in the electric field is approached with a technique for direct calculation of electric fields along field lines. Results indicate that electric fields associated with A-type or B-type nulls are generally singular. Then the author considers kinetic effects on the K-H instability. Contrary to the logical assumption that Landau damping damps the instability, it can instead enhance the growth and increase the spatial extent of the instability because the heating of resonance particles enhances the pressure perturbation. A gravitational analogy is used to determine the effect of curvature on K-H instability and it is found that the critical Richardson number for stability increases from 1/4 for incompressible fluids to 1/2 for compressible fluids. The flux rope, which accounts for flux transfer events (FTE), can be formed by a tearing or twisting mode. The tearing mode is self excited by the free energy associated with the magnetic configuration, while the twisting mode must be externally driven. The shear flow generates the twisting mode and reduces the growth rate of the tearing mode. The flux ropes resulting from the twisting mode closely resemble FTE's which have a longer pitch length than that from tearing mode

  19. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    Science.gov (United States)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  20. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  1. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The modeling of the dynamic behavior of an unsymmetrical rotor

    Science.gov (United States)

    Pǎrǎuşanu, Ioan; Gheorghiu, Horia; Petre, Cristian; Jiga, Gabriel; Crişan, Nicoleta

    2018-02-01

    The purpose of this article is to present the modeling of the dynamic behaviour of unsymmetrical rotors in relatively simple quantitative terms. Numerical simulations show that the shaft orthotropy produces a peak of resonant vibration about half the regular critical speed and, for small damping, a range of possible unstable behavior between the two critical speeds. Rotors having the shaft and/or the disks with unequal diametral moments of inertia (e.g., two-bladed small airplane propellers, wind turbines and fans) are dynamically unstable above a certain speed and some of these may return to a stable condition at a sufficiently high speed, depending on the particular magnitudes of the gyroscopic coupling and the inertia inequality.

  3. Dynamical behavior of a single polymer chain under nanometric confinement

    Science.gov (United States)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  4. Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface

    Directory of Open Access Journals (Sweden)

    Zhi-hai Jia

    2016-01-01

    Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.

  5. A study of dynamical behavior of space environment

    Science.gov (United States)

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  6. Failure mode and dynamic behavior of nanophase iron under compression

    Energy Technology Data Exchange (ETDEWEB)

    Jia, D.; Ramesh, K.T.; Ma, E.

    1999-12-17

    Materials with ultra-fine grains down to the nanophase range (<100 nm) have been attracting considerable interest because of their unique properties compared with conventional materials. In general, the understanding of the deformation behavior of ultrafine- and nano-grained metals and alloys is still in the rudimentary stage. In this paper, the authors report on the compressive deformation behavior and failure mode of near full-density (99.2% of theoretical density) elemental Fe with an average grain size of 80 nm. Even less is known about the behavior of ultrafine- or nano-grained alloys under dynamic loading of high strain rates. Such response is relevant to possible applications of these alloys under impact conditions, such as for kinetic energy penetrators currently under investigation. The authors will present the results of high-strain-rate (Kolsky bar) tests for nano-Fe and compare them with those obtained in quasi-static compression tests of the same material. The authors demonstrate that little strain rate sensitivity is observable in the rate of 10{sup {minus}4} to 3 x 10{sup +3} s{sup {minus}1}, in sharp contrast to the strong rate sensitivity known for conventional coarse-grained bcc Fe. The weak rate dependence is correlated with shear banding as the dominant deformation and failure mechanism. This strain rate hardening behavior, together with the high strength, absence of strain hardening, and failure mechanism observed, are discussed in the context of potential applications for penetrator materials.

  7. Dynamic behavior of district heating systems. 1. Report

    International Nuclear Information System (INIS)

    Kunz, J.

    1993-01-01

    In this study a comprehensive model simulating the dynamic behavior of an entire district heating system has been developed. The model consists of four partial models, namely a model of the hydraulic behavior of a heat distribution network, another model of the thermal behavior of this network, a model of the heat generation plants and one of the heat consumers connected to the system. For the hydraulic simulation of the distribution network, a classical steady state approach has proved to be sufficient. The evolution of the temperatures in the network is given by the equation of transport. A numerical resolution scheme, which is adapted to the special case of a heat distribution network was developed for this equation. The model developed for the heating plant is simple but it is sufficiently detailed to determine the operation of its elements. A more complex model would take much more calculation time, but with such a simple model, it is possible to include it in the global model of the entire system. Each heat consumer is represented by a simple one cell model. The difficulty in such an approach is to determine the characteristics of each building in a simple manner. A classification, which allows to find the essential parameters from few and easily available data, has been defined. This model is not sufficiently accurate to calculate the thermal behavior of one specific building but it allows to determine the average dynamic evolution of the heat demand for a set of buildings with a good precision.The developed models have been programmed on a personal computer and the entire district heating network of the city of Lausanne has been simulated with this calculation code. Measurements have been taken on this network and the comparison with calculated results has allowed to calibrate the model. The comparison of measurements and calculations shows, that each part of the system is simulated realistically by the proposed model. (author) figs., tabs., refs

  8. Considering dynamic friction and proper structural response in hydraulic load cases for realistic piping design

    International Nuclear Information System (INIS)

    Diesselhorst, T.; Diatschuk, P.; Schnellhammer, W.

    2005-01-01

    Concerning the design for hydraulic load cases there is always a sequence of fluid- and structural dynamic calculations, where the structural vibrations are induced by the time depending fluid forces. Therefore, in order to prevent excessive structural reactions, it is most important to avoid conservative fluid dynamic results. That refers to the maximum value of the pressure surge as well as to the damping of pressure oscillations. This is especially relevant in case of fluid-structure resonance. To meet these requirements the effect of dynamic wall friction was implemented in our fluid dynamic code. Thus, a more realistic damping behavior of the fluid forces was achieved. In the structural analysis code the damping of the pipe structure could be more accurate adapted to the real conditions. Additionally the local damping by viscous damper was included in the model. At supports now non-linear behavior like clearances can be simulated. The possibility of coupled calculation was installed to consider the effect of fluid structure interaction. The programmed effects are validated against measurement results from power plant systems. The favorable effects of the program improvements are demonstrated by typical examples. These included the realistic damping of pressure oscillations as well as a case of fluid-structure resonance. Additionally the effectiveness of the improved models of piping supports is demonstrated. (authors)

  9. Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications

    Science.gov (United States)

    Trombetti, Tomaso

    This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral

  10. Structures in dynamics finite dimensional deterministic studies

    CERN Document Server

    Broer, HW; van Strien, SJ; Takens, F

    1991-01-01

    The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic

  11. Model reduction tools for nonlinear structural dynamics

    NARCIS (Netherlands)

    Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.

    1995-01-01

    Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their

  12. Dynamic Behavior of Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chun-Yu Lai

    2013-06-01

    Full Text Available The influence of multi-walled carbon nanotubes (MWCNT on the structural dynamic behavior of MWCNT/epoxy nanocomposites was investigated. Two different types of MWCNTs, pristine MWCNT and functionalized MWCNT, were used in this study. Carboxylic acid-functionalized MWCNTs (MWCNT-COOH were obtained by oxidation pristine MWCNTs via sonication in sulfuric-nitric acid and characterized by Fourier transform infrared spectroscopy (FTIR. Dynamic behaviors of the MWCNT reinforced nanocomposite including the natural frequency and damping ratio were determined using free vibration test. Experimental results showed that the damping ratio of the nanocomposite decreases with the increase of the MWCNT addition, while the natural frequency is increasing with the increase of the MWCNT addition. Functionalized MWCNTs improved the interfacial bonding between the nanotubes and epoxy resin resulting in the reduction of the interfacial energy dissipation ability and enhancement of the stiffness.

  13. 4th International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    2018-01-01

    This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...

  14. Complex-Dynamic Cosmology and Emergent World Structure

    OpenAIRE

    Kirilyuk, Andrei P.

    2004-01-01

    Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...

  15. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  16. Dynamic behavior of IREB in a collective ion acceleration experiment

    International Nuclear Information System (INIS)

    Fine, T.A.; Rhee, M.J.

    1989-01-01

    The authors report an experimental study of dynamic behavior of net current in conjunction with collective ion acceleration. In the presence of neutral gas, either puffed in or released from the anode foil, the IREB injected is subject to the charge and current neutralizations, resulting in a complicated time and space dependent beam distribution in the drift tube. To investigate the dynamic behavior of the current in the drift tube, typically a 0.5 MeV, 70 kA, 100 ns electron beam of 2.54 cm diam is injected through a foil anode into a drift tube of 15 cm diam. Reproducibility of experiment was improved by using a specially designed anode system with a foil changer which allowed the production of many shots of high current electron beam without disturbing the vacuum condition. The net currents were measured by a Rogowski coil built in the anode system, and a movable Faraday cup along the drift tube. The ions accelerated were diagnosed mainly by a Thomson spectrometer system placed at the end of the drift tube

  17. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  18. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  19. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  20. Dynamical load factor of impact loaded shell structures

    International Nuclear Information System (INIS)

    Hammel, J.

    1977-01-01

    Dynamical loaded structures can be analysed by spectral representations, which usually lead to an enormous computational effort. If it is possible to find a fitting dynamical load factor, the dynamical problem can be reduced to a statical one. The computation of this statical problem is much simpler. The disadvantage is that the dynamical load factor usually leads to a very rough approximation. In this paper it will be shown, that by combination of these two methods, the approximation of the dynamical load factor can be improved and the consumption of computation time can be enormously reduced. (Auth.)

  1. Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  2. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...

  3. Consideration on the dynamic behavior and the structural design of large scale floating structure. 2nd Report. Stability of elastic structure and design of elastic response; Choogata futai no kozo kyodo oyobi kozo sekkei ni kansuru kosatsu. 2. Dansei henkei wo koryoshita fukugensei oyobi kozo oto no sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Yoshida, K. [The University of Tokyo, Tokyo (Japan)

    1996-12-31

    A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.

  4. Consideration on the dynamic behavior and the structural design of large scale floating structure. 2nd Report. Stability of elastic structure and design of elastic response; Choogata futai no kozo kyodo oyobi kozo sekkei ni kansuru kosatsu. 2. Dansei henkei wo koryoshita fukugensei oyobi kozo oto no sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Yoshida, K [The University of Tokyo, Tokyo (Japan)

    1997-12-31

    A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.

  5. Telemetered sensors for dynamic activity and structural performance monitoring

    Science.gov (United States)

    Townsend, Christopher P.; Hamel, Michael J.; Arms, Steven W.

    2001-08-01

    The development of improved structures requires knowledge of their dynamic behavior. Minimally intrusive wireless systems, capable of monitoring vibration and impact, are needed in order to provide this knowledge. Our objective was to design, build, and test a high speed data collection and wireless data communications system, including microsensors, and capable of being embedded or externally worn. Our previous transmitter designs were small and could be used to transmit multichannel digital data, but they were not capable of fast data transmission rates. The addition of a remotely triggered datalogger allowed us to overcome the limitations of our earlier designs. A bi-directional RF communications link was used to trigger a sample to be logged (from 30 meters), as well as to request data to be transmitted to the host PC for data acquisition/analysis. Sweep rates of 2000 Hz were successfully demonstrated from a triad of MEMs accelerometers. The remote datalogger and transceiver and accelerometer package measured 12 mm by 24 mm by 6 mm thick; these were mounted to the feet of thoroughbred horses to study their impact levels. These small, fast, wireless data recording systems can be used to monitor rotating/ vibrating machinery and civil/automotive/aerospace structures.

  6. THE DYNAMICS OF THE MATRICS STRUCTURE

    Directory of Open Access Journals (Sweden)

    Dumitru CONSTANTINESCU

    2007-01-01

    Full Text Available The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with the most important impact on a project’s quality, costs and lead time. From the organizational point of view, the matrix structure is frequently chosen for projects. The matrix structure generally coexists with the line structure. The two structures are contrastive. The line structure is based on the unity of command principle and is not open to cooperation and dialogue. The matrix structure encourages cooperation and communication, favours conflict, which is considered here a healthy and essential process. The matrix structure and the line structure claim their right to initiative. Conflict and the multidimensional integration of multiple hierarchies can be negotiated through the concept charisma – mediation, sustained by the matrix structure.

  7. Understanding the heavy-tailed dynamics in human behavior

    Science.gov (United States)

    Ross, Gordon J.; Jones, Tim

    2015-06-01

    The recent availability of electronic data sets containing large volumes of communication data has made it possible to study human behavior on a larger scale than ever before. From this, it has been discovered that across a diverse range of data sets, the interevent times between consecutive communication events obey heavy-tailed power law dynamics. Explaining this has proved controversial, and two distinct hypotheses have emerged. The first holds that these power laws are fundamental, and arise from the mechanisms such as priority queuing that humans use to schedule tasks. The second holds that they are statistical artifacts which only occur in aggregated data when features such as circadian rhythms and burstiness are ignored. We use a large social media data set to test these hypotheses, and find that although models that incorporate circadian rhythms and burstiness do explain part of the observed heavy tails, there is residual unexplained heavy-tail behavior which suggests a more fundamental cause. Based on this, we develop a quantitative model of human behavior which improves on existing approaches and gives insight into the mechanisms underlying human interactions.

  8. Dynamic Capital Structure: Dynamics, Determinants and Speed of Adjustment

    NARCIS (Netherlands)

    Tamirat, A.S.; Trujillo Barrera, A.A.; Pennings, J.M.E.

    2017-01-01

    The corporate finance literature has focused on explaining the determinants of firms target capital structure and speed of adjustment using the well-established theories such as pecking order, signaling and trade-off theories. However, less attention has been paid to understanding the financing

  9. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    Science.gov (United States)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  10. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray scattering

    International Nuclear Information System (INIS)

    Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.

    2000-01-01

    X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems

  11. Do Family Structure and Poverty Affect Sexual Risk Behaviors of ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Family Structure, Poverty and Sexual Risk Behaviors ... Johannesburg, South Africa; 2Demography and Social Statistics Department, .... to high rate of adolescent sexual promiscuity as a ..... birth control and consequences of premarital sex.

  12. Friends and foes : The dynamics of dual social structures

    NARCIS (Netherlands)

    Sytch, M.; Tatarynowicz, A.

    2014-01-01

    This paper investigates the evolutionary dynamics of a dual social structure encompassing collaboration and conflict among corporate actors. We apply and advance structural balance theory to examine the formation of balanced and unbalanced dyadic and triadic structures, and to explore how these

  13. DSIbin : Identifying dynamic data structures in C/C++ binaries

    NARCIS (Netherlands)

    Rupprecht, Thomas; Chen, Xi; White, David H.; Boockmann, Jan H.; Luttgen, Gerald; Bos, Herbert

    2017-01-01

    Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different

  14. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  15. Structured dyadic behavior therapy processes for ADHD intervention.

    Science.gov (United States)

    Curtis, David F

    2014-03-01

    Children with Attention-Deficit/Hyperactivity Disorder (ADHD) present significant problems with behavioral disinhibition that often negatively affect their peer relationships. Although behavior therapies for ADHD have traditionally aimed to help parents and teachers better manage children's ADHD-related behaviors, therapy processes seldom use peer relationships to implement evidence-based behavioral principles. This article introduces Structured Dyadic Behavior Therapy as a milieu for introducing effective behavioral techniques within a socially meaningful context. Establishing collaborative behavioral goals, benchmarking, and redirection strategies are discussed to highlight how in-session dyadic processes can be used to promote more meaningful reinforcement and change for children with ADHD. Implications for improving patient care, access to care, and therapist training are also discussed.

  16. Structural elucidation of dendritic host-guest complexes by X-ray crystallography and molecular dynamics simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, P.A.J.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The

  17. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  18. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  19. Quantifying and modeling soil structure dynamics

    Science.gov (United States)

    Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...

  20. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  1. Dynamic analysis of CHASNUPP steam generator structure during shipping

    International Nuclear Information System (INIS)

    Han Liangbi; Xu Jinkang; Zhou Meiwu; He Yinbiao

    1998-07-01

    The dynamic analysis of CHASNUPP steam generator during shipping is described, including the simplified mathematical model, acceleration power spectrum of ocean wave induced random vibration, the dynamic analysis of steam generator structure under random loading, the applied computer code and calculated results

  2. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  3. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  4. Simulation of Protein Structure, Dynamics and Function in Organic Media

    National Research Council Canada - National Science Library

    Daggett, Valerie

    1998-01-01

    The overall goal of our ONR-sponsored research is to pursue realistic molecular modeling strudies pertinnent to the related properties of protein stability, dynamics, structure, function, and folding in aqueous solution...

  5. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  6. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.

    Science.gov (United States)

    Wang, Wei; Duan, Wentao; Ahmed, Suzanne; Sen, Ayusman; Mallouk, Thomas E

    2015-07-21

    The assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure. Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as active matter. In this Account, we focus on the powered assembly and collective behavior of self-propelled colloids. These nano- and microparticles, also called nano- and micromotors or microswimmers, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression

  7. Neonatal Feeding Behavior as a Complex Dynamical System.

    Science.gov (United States)

    Goldfield, Eugene C; Perez, Jennifer; Engstler, Katherine

    2017-04-01

    The requirements of evidence-based practice in 2017 are motivating new theoretical foundations and methodological tools for characterizing neonatal feeding behavior. Toward that end, this article offers a complex dynamical systems perspective. A set of critical concepts from this perspective frames challenges faced by speech-language pathologists and allied professionals: when to initiate oral feeds, how to determine the robustness of neonatal breathing during feeding and appropriate levels of respiratory support, what instrumental assessments of swallow function to use with preterm neonates, and whether or not to introduce thickened liquids. In the near future, we can expect vast amounts of new data to guide evidence-based practice. But unless practitioners are able to frame these issues in a systems context larger than the individual child, the availability of "big data" will not be effectively translated to clinical practice. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Learning Methods for Dynamic Topic Modeling in Automated Behavior Analysis.

    Science.gov (United States)

    Isupova, Olga; Kuzin, Danil; Mihaylova, Lyudmila

    2017-09-27

    Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators' load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance.

  9. Dynamic behavior of a nonlinear rational difference equation and generalization

    Directory of Open Access Journals (Sweden)

    Shi Qihong

    2011-01-01

    Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.

  10. Special dynamic behavior of an aluminum alloy and effects on energy absorption in train collisions

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available Dynamic tension tests and compression tests were carried out for 5083-H111 aluminum alloy to investigate the dynamic mechanical behavior and its effect on energy absorption characteristics of an energy-absorbing device. The material constitutive relations were obtained at various levels of strain rates by means of tests. Three material models were performed on the energy-absorbing device of railway vehicles. We investigated the influence of the material dynamic behavior on the energy absorption capability. The results indicate that 5083-H111 aluminum alloy is endowed with negative strain rate sensitivity at medium–low strain rates and possesses the feature of negative and then positive strain rate sensitivity in the range of medium strain rates. The material presents obvious strain rate strengthening effect at high strain rates. Moreover, the order of magnitudes of the strain rate in the train collision is 0–2. It belongs to the medium strain rate. The practical absorbed energy of the structure made of 5083-H111 alloy is less than that of the same structure without regard to the strain rate effect in design phases.

  11. Past and future trends in structures and dynamics

    International Nuclear Information System (INIS)

    Bader, R.M.; Goesch, W.H.; Olsen, J.J.

    1981-01-01

    An historical review and a series of prognostications based on current developments are presented for the fields of structural design and structural dynamics analysis. It is shown that while weight and cost reduction and improved durability have been the primary forces in structural technology development in the past, emphasis has shifted to such things as productivity, quality assurance, low observables for military aircraft and increased fuel efficiency. Prominent among recent advances in future developments are damage tolerance durability, computer-aided design, active flutter suppression, adhesive bonding of primary structures, cast aluminum structures, titanium and graphite-epoxy primary aircraft structures, aeroelastic tailoring composites, metal matrix composites, and radar-absorbing structures

  12. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    Science.gov (United States)

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Limitations and corrections in measuring dynamic characteristics of structural systems

    International Nuclear Information System (INIS)

    Walter, P.L.

    1978-10-01

    The work deals with limitations encountered in measuring the dynamic characteristics of structural systems. Structural loading and response are measured by transducers possessing multiple resonant frequencies in their transfer function. In transient environments, the resultant signals from these transducers are shown to be analytically unpredictable in amplitude level and frequency content. Data recorded during nuclear effects simulation testing on structures are analyzed. Results of analysis can be generalized to any structure which encounters dynamic loading. Methods to improve the recorded data are described which can be implemented on a frequency selective basis during the measurement process. These improvements minimize data distortion attributable to the transfer characteristics of the measuring transducers

  14. THE DYNAMICS OF THE MATRICS STRUCTURE

    OpenAIRE

    Dumitru CONSTANTINESCU

    2007-01-01

    The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with...

  15. DYNAMIC BEHAVIOR OF TWO-SPAN CONTINUOUS CONCRETE BRIDGES UNDER MOVING OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    O. H. Marinichenko

    2017-10-01

    Full Text Available Purpose. The scientific work provides a comparison of the results of the movement of a high-speed passenger train across the bridge, obtained as a result of finite element modeling in the SAP2000 software package, and real tests of a double-span concrete railway bridge. Analysis of the rigid characteristics of flying structures. Methodology.The numerical method presented in this study shows valid results concerning the dynamic analysis of the behavior of bridges in conditions of high-speed train traffic. The factors influencing the dynamic behavior of bridges under moving loads, the influence of design parameters and rolling stock, as well as the interaction of the train and spans are determined. The system was used in the form of moving concentrated forces simulating the axes of the train. Findings. Maximum movements and accelerations were obtained as a result of the dynamic calculation for different speeds of the train and compared with practical tests. The correctness of the model of a span structure with regard to continuous ferroconcrete spans was verified. Originality. Within the framework of the work, the latest test results were used, including those with speeds calculated on the prospect of rail passenger traffic. For these tests, a model of a span structure was developed. Practical value. The results of the research can be used to plan the introduction of high-speed train traffic on existing and planned flying structures of reinforced concrete bridges. An approach to the design of span structures that will be effective when passing high-speed passenger trains is implemented.

  16. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  17. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  18. The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  19. Dynamics of Social Behavior in Fruit Fly Larvae

    Science.gov (United States)

    Durisko, Zachary; Kemp, Rebecca; Mubasher, Rameeshay; Dukas, Reuven

    2014-01-01

    We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior. PMID:24740198

  20. Classification of quench-dynamical behaviors in spinor condensates

    Science.gov (United States)

    Daǧ, Ceren B.; Wang, Sheng-Tao; Duan, L.-M.

    2018-02-01

    Thermalization of isolated quantum systems is a long-standing fundamental problem where different mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench-dynamical behaviors of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals, thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival. Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system. The reason behind both thermalizing and nonthermalizing behaviors in the same model under different initial conditions is linked to the discussion of "rare" nonthermal states existing in the spectrum. We also propose a method to predict the collapse and revival time scales and find how they scale with the number of particles in the condensate. We use a sudden quench to drive the system to nonequilibrium and hence the theoretical predictions given in this paper can be probed in experiments.

  1. Stocks’ pricing dynamics and behavioral finance: A review

    Directory of Open Access Journals (Sweden)

    Paritosh Chandra Sinha

    2015-09-01

    Full Text Available In a brief review of the literature on stocks’ pricing, the study shows that information vis-à-vis noise serves critical roles in the equilibrium process. It is dynamic in nature and there are different infiltrating aspects from the standard finance to behavioral finance points of views. The aspects of market efficiency, fundamental risk, noise traders’ risk, and implementation costs make the stock markets noisy and thereby, limit the arbitrage opportunity of informed traders. Investors’ psychological bases viz., belief and preferences contribute more in the equilibrium process. Beliefs include representativeness, conservativeness, and anchoring, availability biases, optimism and wishful thinking, overconfidence, and herd behavior tendency on the part of the investors. On the preferences, investors are influenced by disposition effect, prospects based on reference points, mental accounting, ambiguity aversion, and self control.The study explores the empirical literature also and reviews the six puzzles in the standard finance. Finally, the work identifies a few research gaps to be addressed in the literature.

  2. Global brain dynamics during social exclusion predict subsequent behavioral conformity.

    Science.gov (United States)

    Wasylyshyn, Nick; Hemenway Falk, Brett; Garcia, Javier O; Cascio, Christopher N; O'Donnell, Matthew Brook; Bingham, C Raymond; Simons-Morton, Bruce; Vettel, Jean M; Falk, Emily B

    2018-02-01

    Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences.

  3. Dynamical stability in fluid-structure interaction

    International Nuclear Information System (INIS)

    Planchard, J.; Thomas, B.

    1991-01-01

    The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr

  4. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  5. Dynamics of structures '89. Vol. 3

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings, comprising 3 volumes published by the Plzen Centre of the Czechoslovak Society for Science and Technology (Vol. 1 and 2) and by Skoda Works in Plzen (Vol. 3), contain 107 papers, out of which 8 fall within the INIS Subject Scope; these deal with problems related to the earthquake resistance of nuclear power plants. Attention is paid to the evaluation of seismic characteristics of nuclear power plant equipment, to the equipment testing and to calculations of its dynamic characteristics under simulated seismic stress. (Z.M.)

  6. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The

  7. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    International Nuclear Information System (INIS)

    Froyland, Gary

    2015-01-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)

  8. Bimanual coordination and musical experience : The role of intrinsic dynamics and behavioral information

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on

  9. Chaos, dynamical structure and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, H.B. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

    1995-09-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.

  10. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...

  11. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  12. Hadron structure with light dynamical quarks

    International Nuclear Information System (INIS)

    Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Negele, J.W.; Orginos, K.; Pochinsky, A.; Renner, D.B.; Schroers, W.

    2005-09-01

    Generalized parton distributions encompass a wealth of information concerning the three-dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV. (orig.)

  13. A System Structure for a VHTR-SI Process Dynamic Simulation Code

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2008-01-01

    The VHTR-SI process dynamic simulation code embedded in a mathematical solution engine is an application software system that simulates the dynamic behavior of the VHTR-SI process. Also, the software system supports a user friendly graphical user interface (GUI) for user input/out. Structured analysis techniques were developed in the late 1970s by Yourdon, DeMarco, Gane and Sarson for applying a systematic approach to a systems analysis. It included the use of data flow diagrams and data modeling and fostered the use of an implementation-independent graphical notation for a documentation. In this paper, we present a system structure for a VHRT-SI process dynamic simulation code by using the methodologies of structured analysis

  14. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  15. Degeneracy-driven self-structuring dynamics in selective repertoires.

    Science.gov (United States)

    Atamas, Sergei P; Bell, Jonathan

    2009-08-01

    Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.

  16. A framework of DYNAMIC data structures for string processing

    DEFF Research Database (Denmark)

    Prezza, Nicola

    2017-01-01

    implemented using DYNAMIC with those of stateof-the-art tools performing the same task. Our experiments show that algorithms making use of dynamic compressed data structures can be up to three orders of magnitude more space-efficient (albeit slower) than classical ones performing the same tasks.......In this paper we present DYNAMIC, an open-source C++ library implementing dynamic compressed data structures for string manipulation. Our framework includes useful tools such as searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM indexes. We...... prove close-to-optimal theoretical bounds for the resources used by our structures, and show that our theoretical predictions are empirically tightly verified in practice. To conclude, we turn our attention to applications. We compare the performance of five recently-published compression algorithms...

  17. Mid-frequency Band Dynamics of Large Space Structures

    Science.gov (United States)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  18. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  19. Structure and dynamics of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Clausen, K.N.; Bødker, F.; Hansen, M.F.

    2000-01-01

    In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagnetic...

  20. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stochastic models for structured populations scaling limits and long time behavior

    CERN Document Server

    Meleard, Sylvie

    2015-01-01

    In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading  to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of  environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured P...

  2. Dynamic structure in self-sustained turbulence

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.

    1995-06-01

    Dynamical equation for the self-sustained and pressure-driven turbulence in toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs to the subcritical turbulence, is obtained as a function of the turbulent transport coefficient. In the limit of the low fluctuation level, the mode has the feature of the nonlinear instability and shows the explosive growth. The growth rate vanishes when the driven transport reaches to the stationarily-turbulent level. The stationary solution is thermodynamically stable. The characteristic time, by which the stationary and self-sustained turbulence is established, scales with the ion-sound transit time and is accelerated by the bad magnetic curvature. Influences of the pressure gradient as well as the radial electric field inhomogeneity are quantified. (author)

  3. Structure an dynamics in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Kimble, H.J.

    1994-01-01

    Much of the theoretical background related to the radiative processes for atoms in the presence of boundaries comes from two often disjoint areas, namely cavity quantum electrodynamics and optical bistability with two-state atoms. While the former of these areas has been associated to a large degree with studies in a perturbative domain of altered associated to a large degree with studies in a perturbative domain of altered emission processes in the presence of boundaries other than those of free space, the latter is often viewed from the perspective of hysteresis cycles and device applications. With the exception of the laser, however, perhaps the most extensive investigations of quantum statistical processes in quantum optics are to be found in the literature on bistability with two-state atoms and on cavity QED. Unfortunately, the degree of overlap of these two areas has not always been fully appreciated. This circumstance is perhaps due in part to the fact that the investigation of dynamical processes in cavity QED has had as its cornerstone the Jaynes-Cummings problem, with extensions to include, for example, small amounts of dissipation. On the other hand, a principle aspect of the bistability literature has been the study of quantum fluctuations in open systems for which dissipation plays a central role, but for which the coherent quantum dynamics of the Haynes-Cummings model are to a large measure lost due to the usual assumption of large system size and weak coupling (as in the standard theory of the laser). 132 refs., 26 figs., 1 tab

  4. Simulation of dynamics behaviors for shipping equipment support with system dynamics analysis approach

    Directory of Open Access Journals (Sweden)

    Yang Song

    2015-05-01

    Full Text Available Purpose: The exactly and precisely supply of carrying spare parts has a crucial impact on support and could improve the performance of equipment. Spare parts support is the crux work which will be limited by spare parts allocation and support cost input. Reasonable support strategy can help in making good use of available resources and support the equipment in normal operational status. The purpose of this paper is to propose a dynamics model of spare parts support process based on considering the interaction of multiple factors, and explores the regulation of dynamics behavior in the system. In order to achieve the optimization strategy to improve the effect of support so that will enhance the relevant support parameters of equipment. Design/methodology/approach: Meditate the feedback relationship among some important factors of support that involve support cost, support time and maintenance ability. System dynamics theory is adopted to propose a dynamics model of spare parts support process, on the analysis of multiple factors and casual relationship to find some major ones which have crucial impact on spare parts support. Spare parts support cost and availability was regarded as the control objective, moreover, adjust the control paramours and improve the effect of cannibalization and lateral supply scheduling strategy for spares support. Findings: The factors of spare parts supply, demand and maintenance have relationship of control feedback, and adjust the value of some crucial factors can reduce the support cost and improve the availability value. The main finding is that adopting cannibalization strategy under condition of available materials can relieve the mission and operational availability decline caused by shortage of spare parts. Combining the lateral supply and cannibalization strategy can reduce the inventory of warship carrying spare parts. Practical implications: By controlling the value of key factors regarding aspect of spare

  5. Latent Growth and Dynamic Structural Equation Models.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2018-05-07

    Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.

  6. Dynamic loads during failure risk assessment of bridge crane structures

    Science.gov (United States)

    Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.

    2018-03-01

    The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.

  7. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  8. Molecular dynamic analysis of the structure of dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Canetta, E.; Maino, G. E-mail: maino@bologna.enea.it

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques.

  9. Molecular dynamic analysis of the structure of dendrimers

    International Nuclear Information System (INIS)

    Canetta, E.; Maino, G.

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques

  10. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  11. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  12. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  13. A function-behavior-structure framework for quantification and reproduction of emotional haptic experience in using an electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Il Ju; Lee, Soo Hong [Yonsei University, Seoul (Korea, Republic of); Ok, Hyung Seok; Lee, Jae In [LG Electronics Inc, Seoul (Korea, Republic of)

    2013-08-15

    A user's haptic experience in using an electronic device is related to the continuous and dynamic variances of the structural state of the device. Since the changes of the structural component cause complex changes of the dynamics, it is difficult to predict the user's experience. We propose a function-behavior-structure framework to predict and improve the user's experience. The framework consists of the function layer model, the behavior layer model, and the structure layer model. Especially, the independent behavior model to the device is based on a physical phenomenon. Finally, an optimized structure which produces an ideal haptic experience for a cell phone is suggested.

  14. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  15. Structure and Dynamics of Humpback Whales Competitive Groups in Ecuador

    Directory of Open Access Journals (Sweden)

    Fernando Félix

    2015-02-01

    Full Text Available We assessed the social structure and behavior of humpback whale (Megaptera novaeangliae competitive groups off Ecuador between July and August 2010. During this time we followed 185 whales in 22 competitive groups for 41.45 hr. The average group size was 8.4 animals (SD = 2.85. The average sighting time was 113.05 min/group (SD = 47.1. We used photographs of dorsal fins and video to record interactions and estimate an association index (AI between each pair of whales within the groups. Sightings were divided into periods, which were defined by changes in group membership. On average, group composition changed every 30.2 min, which confirms that the structure of competitive groups is highly dynamic. Interactions between escorts characterized by low level of aggression. At least 60% of escorts joined or left together the group in small subunits between two and five animals, suggesting some type of cooperative association. Although singletons, as well as pairs or trios were able to join competitive groups at any moment, escorts that joined together were able to stay longer with the group and displace dominant escorts. Genetic analysis showed that in three occasions more than one female was present within a competitive group, suggesting either males are herding females or large competitive groups are formed by subunits. Males and females performed similar surface displays. We propose that competition and cooperation are interrelated in humpback whales’ competitive groups and that male cooperation would be an adaptive strategy either to displace dominant escorts or to fend off challengers.

  16. Emergent dynamic structures and statistical law in spherical lattice gas automata

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  17. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  18. Evaluation of structural behavior, geological and hydrogeological characteristics

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Kim, Dae Hong; Choi, Kyu Sup

    1992-02-01

    In order to understand the behavior of an underground structure properly, this report includes the study on the structural behavior of rock masses surrounding underground openings considering the effect of excavation. Before analyzing the underground structure, the followings are studied: initial stress distribution before excavation, stress release and redistribution due to the sequential excavation, comparison of analysis methods, discussions on numerical simulation techniques for the sequential excavation and an numerical analysis modeling. The underground structure in then analyzed using the finite element and distinct element methods of analysis considering the effect of sequential excavation, Based on the results of the analysis, the followings are discussed: shape of the opening, distance between openings, method and sequence of excavation, and structural reinforcement. (Author)

  19. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  20. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    Science.gov (United States)

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  1. Dynamic structure factor on liquid Pb

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1979-01-01

    Dinamic structure factor S(Q,hω) in liquid Pb has been measured at 350 deg C and 400 deg C using the inelastic scattering of the slow neutrons. The measurements were performed in the momentum transfer range 0.6 A -1 -1 . The intermediate scattering function F(Q,t) is also calculated from S(Q,hω). Multiple scattering calculation shows that it is very large especially at small scattering angles. The comparison of the experimental data with the theory is made in terms of two theoretical models. (author)

  2. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  3. Dynamical structure of extreme ultraviolet macrospicules

    Science.gov (United States)

    Karovska, Margarita; Habbal, Shadia Rifai

    1994-01-01

    We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.

  4. Photoelastic study of the dynamic fracture behavior of Homalite 100

    International Nuclear Information System (INIS)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Etheridge, J.M.

    1975-09-01

    This report describes an experimental investigation of the dynamic behavior of cracks propagation in Homalite 100, a brittle thermosetting polymeric material. Dynamic photoelectric isochromatic fringe patterns associated with cracks propagating in center-pin-loaded, eccentric-pin-loaded and crack-line-loaded SEN specimens were recorded with a high speed multiple spark camera. Data was obtained from 11 tests over a range of crack velocities from arrest to the terminal velocity of 15,000 in/sec. The size and shape of the isochromatic loops was used to determine the instantaneous values of K by matching analytical and experimental results. The analytical results employed a Westergaard stress function of the form Z(z) = K/√ 2πz[1 + (z/a)] and a superimposed sigma/sub ox/ = αK/√ 2πa. Results were obtained by computer program (FRACTURE) for different values of α, β, K and a to give 8925 analytical fringe loops. Another computer program (SEARCH I) was used to find the best fit to each experimentally determined loop based on a comparison function. After a close fit was obtained, the instantaneous K was determined. Results show that K/sub a/ and K/sub IC/ are nearly the same and that a increases abruptly from 0 to about 10,000 in/sec for modest increases in K above 400 psi √in. Further increases in crack velocity require significant increases in K until terminal velocity is reached at K = 2000 psi√in. At this value of K the crack attempts to branch and produces a large number of small branches

  5. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    Science.gov (United States)

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second. Copyright © 2014, American Association for the Advancement of Science.

  6. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    Science.gov (United States)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  7. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  8. PDB2CD visualises dynamics within protein structures.

    Science.gov (United States)

    Janes, Robert W

    2017-10-01

    Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.

  9. Elements of earthquake engineering and structural dynamics. 2. ed.

    International Nuclear Information System (INIS)

    Filiatrault, A.

    2002-01-01

    This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone

  10. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T. [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, H. [Xi’an Aerospace Propulsion Institute, Xi’an 710100 (China); Li, B. [State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2016-08-15

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  11. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    International Nuclear Information System (INIS)

    Yang, Z.; Yu, T.; Chen, H.; Li, B.

    2016-01-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  12. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  13. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  14. Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation.

    Science.gov (United States)

    Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen

    2016-06-14

    Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.

  15. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  16. Structure and dynamics of photosynthetic proteins studied by neutron scattering and molecular dynamic simulation

    International Nuclear Information System (INIS)

    Dellerue, Serge

    2000-01-01

    Understand the structure-dynamics-function relation in the case of proteins is essential. But few experimental techniques allow to have access to knowledge of fast internal movements of biological macromolecules. With the neutron scattering method, it has been possible to study the reorientation dynamics of side chains and of polypeptide skeleton for two proteins in terms of water or detergent and of temperature. With the use of the molecular dynamics method, essential for completing and interpreting the experimental data, it has been possible to assess the different contributions of the whole structure of proteins to the overall dynamics. It has been shown that the polypeptide skeleton presents an energy relaxation comparable to those of the side chains. Moreover, it has been explained that the protein dynamics can only be understood in terms of relaxation time distribution. (author) [fr

  17. A non-parametric hierarchical model to discover behavior dynamics from tracks

    NARCIS (Netherlands)

    Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.

    2012-01-01

    We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by

  18. Structure and dynamics of weakly bound complexes

    International Nuclear Information System (INIS)

    Skouteris, D.

    1998-01-01

    The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of

  19. PWL approximation of nonlinear dynamical systems, part I: structural stability

    International Nuclear Information System (INIS)

    Storace, M; De Feo, O

    2005-01-01

    This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)

  20. The Return to Schooling in Structural Dynamic Models: A Survey

    OpenAIRE

    Christian Belzil

    2007-01-01

    Working paper du GATE 2006-09; This papers contains a survey of the recent literature devoted to the returns to schooling within a dynamic structural framework. I present a historical perspective on the evolution of the literature, from early static models set in a selectivity framework (Willis and Rosen, 1979) to the recent literature, stimulated by Keane and Wolpin (1997), and which uses stochastic dynamic programming techniques. After reviewing the literature thoroughly, I compare the stru...

  1. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  2. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    Science.gov (United States)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation

  3. Dynamic characteristics analysis of deployable space structures considering joint clearance

    Science.gov (United States)

    Li, Tuanjie; Guo, Jian; Cao, Yuyan

    2011-04-01

    The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.

  4. Dynamics of a bistable Miura-origami structure

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  5. Dynamics of a bistable Miura-origami structure.

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  6. Algorithm of Dynamic Model Structural Identification of the Multivariable Plant

    Directory of Open Access Journals (Sweden)

    Л.М. Блохін

    2004-02-01

    Full Text Available  The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating  modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.

  7. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  8. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics

    DEFF Research Database (Denmark)

    Zhao, W.; Gurtovenko, A. A.; Vattulainen, I.

    2012-01-01

    We performed atomistic molecular dynamics simulations of lipid bilayers consisting of a mixture of cationic dioleoyloxytrimethylammonium propane (DOTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) lipids at different DOTAP fractions. Our primary focus was the specific effects...... of unsaturated lipid chains on structural and dynamic properties of mixed cationic bilayers. The bilayer area, as well as the ordering of lipid tails, shows a pronounced nonmonotonic behavior when TAP lipid fraction increases. The minimum in area (maximum in ordering) was observed for a bilayer with TAP fraction...... lipids, which were found to form PC-PC and PC-TAP pairs, and the formation of lipid clusters....

  9. Matrix of transmission in structural dynamics

    International Nuclear Information System (INIS)

    Mukherjee, S.

    1975-01-01

    The problem of close-coupled systems and cantilever type buildings can be treated efficiently by means of the very general and versatile method of transmission matrix. The expression 'matrix of transmission' is used to point out the fact that the method to be described differs fundamentally from another method related to matrix calculus, and also successfully used in vibration problem. In this method, forces and displacements are introduced as the 'unknowns' of the problem. The 'matrix of transmission' relates these quantities at one point of the structure to those at the neighbouring point. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using suitable numerical method, the natural frequencies and mode shapes are determined, by making a frequency sweep within the range of interest. Results of analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV Program

  10. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  11. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    Science.gov (United States)

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  12. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  13. Two stage approach to dynamic soil structure interaction

    International Nuclear Information System (INIS)

    Nelson, I.

    1981-01-01

    A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)

  14. Structural dynamics and vibration 1995. PD-Volume 70

    International Nuclear Information System (INIS)

    Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.

    1995-01-01

    The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book

  15. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  16. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    Science.gov (United States)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  17. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  18. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    Science.gov (United States)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  19. Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.

    Science.gov (United States)

    Iomin, A

    2013-05-01

    Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.

  20. The developmental dynamics of task-avoidant behavior and math performance in kindergarten and elementary school

    OpenAIRE

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their arithmetic skills in kindergarten and in Grades 1, 2, and 4 of elementary school. Children's task-avoidant behavior in learning situations was rated by...

  1. Classroom Activity Structures and the Generalizability of Teacher Behavior.

    Science.gov (United States)

    Anderson, Lorin W.; Mandeville, Garrett K.

    The purpose of this study was to examine the influence of several instructional formats (e.g., lecture, discourse, seatwork) on the generalizability of teacher behaviors. Two structured observation instruments were used to observe two samples of teachers: 42 fifth grade science teachers on eight occasions, and 87 fifth grade mathematics teachers…

  2. Dynamic soil-structure interactions on embedded buildings

    International Nuclear Information System (INIS)

    Kobarg, J.; Werkle, H.; Henseleit, O.

    1983-01-01

    The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de

  3. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  4. Behavioral Logistics - Analysis of behavioral routines and governance structures in the interorganizational maritime transport chain

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available The strong improvements in information and communication systems as well as better transshipment technologies provide the platform for more efficient transport within interorganizational transport chains. Nevertheless these technologies do not automatically optimize systems based on routines and behavioral patterns, established over the last decades. Logisticians - in theory and practice - have to consider the field of behavioral science to describe and analyse transport problems regarding to involved actors' strategic behavior and social embeddedness, too. The objective of this paper is to illustrate behavioral aspects of supposed technical problems in interorganizational transport chains. Therefore, this paper analyses behavioral routines and governance structures in the interorganizational maritime transport chain using a case study, dealing with the generation and circulation of transport information at the earliest point available, so called "estimated time of arrival" (ETA.

  5. Team structure and regulatory focus: the impact of regulatory fit on team dynamic.

    Science.gov (United States)

    Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R

    2012-03-01

    We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics.

  6. Gas Price Formation, Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, R.

    2008-07-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  7. Gas Price Formation, Structure and Dynamics

    International Nuclear Information System (INIS)

    Davoust, R.

    2008-01-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  8. BEHAVIOR OF STEEL DP 600 UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    Miroslav Német

    2014-01-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Dynamic tensile testing of sheet steels is becoming more important. Experimental dynamic tensile technique is depending on the strain rate. For experiments was used two testing method servo hydraulic and single bar method. Experiments was realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Was investigated substructure in static and dynamic loading conditions.

  9. The structure and dynamics of boron nitride nanoscrolls

    International Nuclear Information System (INIS)

    Perim, Eric; Galvao, Douglas S

    2009-01-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  10. Structure and Dynamics of the Quiet Solar Chromosphere

    Science.gov (United States)

    Kalkofen, Wolfgang

    2002-04-01

    The grant supported research on the structure of the quiet, nonmagnetic chromosphere and on wave excitation and propagation in both the nonmagnetic chromosphere and the magnetic network. The work on the structure of the chromosphere culminated in the recognition that between two competing views of the solar chromosphere, older models by Avrett and collaborators (referred to as VAL) and the newer, dynamical model by Carlsson & Stein (referred to as CS), the clear decision is in favor of the older models, and this in spite of the evident lack of physics, which does not include wave motion and oscillations. The contrast between the static VAL models and the dynamical CS model can be stated most succinctly by comparing the temperature variation implied by the VAL models and the temperature fluctuations of the CS model, which are, respectively, of the order of 10% for the VAL model (at heights where hydrogen is 50% ionized) and a factor of 10 (at the upper boundary of their chromospheric model). The huge fluctuations of the CS model have never been observed, whereas the smaller temperature variations of the VAL models are consistent with ground-based and space-based observations. While it should be obvious which model describes the Sun and which one fails, the case is far from settled in the minds of solar physicists. Thus, much educational work remains to be done and, of course, more research to develop arguments that make the case more convincing. The research on waves and oscillations has been based on a unified theory of excitation of acoustic waves in the field-free atmosphere and of transverse and longitudinal waves in magnetic flux tubes located in the magnetic network by noting, first, that impulsive excitation of all these waves in gravitationally stratified media leads to oscillations at the respective cutoff frequencies and, second, that the observed oscillation frequencies in the nonmagnetic and magnetic parts of the chromosphere match corresponding cutoff

  11. The effect of pure state structure on nonequilibrium dynamics

    International Nuclear Information System (INIS)

    Newman, C M; Stein, D L

    2008-01-01

    Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)

  12. Slow Dynamics and Structure of Supercooled Water in Confinement

    Directory of Open Access Journals (Sweden)

    Gaia Camisasca

    2017-04-01

    Full Text Available We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics.

  13. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    Science.gov (United States)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  14. Interfacial ionic 'liquids': connecting static and dynamic structures.

    Science.gov (United States)

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul

    2015-01-28

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).

  15. 32nd IMAC Conference and Exposition on Structural Dynamics

    CERN Document Server

    Mayes, Randy; Rixen, Daniel; Catbas, Fikret; Atamturktur, H; Moaveni, Babak; Papadimitriou, Costas; Schoenherr, Tyler; Foss, Gary; Niezrecki, Christopher; Allemang, Randall; Kerschen, Gaetan

    2014-01-01

    This critical collection examines a range of topics in modal analysis, from experimental techniques to acoustics to biodynamics,  as presented in early findings and case studies from the Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014. The collection includes papers in the following general technical research areas: Experimental Techniques, Processing Modal Data, Rotating Machinery, Acoustics, Adaptive Structures, Biodynamics, Damping

  16. Proton structure functions in the dipole picture of BFKL dynamics

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.; Wallon, S.; Royon, Ch.

    1996-06-01

    The proton structure functions are derived in the QCD dipole picture. Assuming k T and renormalization-group factorization, deep-inelastic proton scattering is related to deep-inelastic onium scattering. A three parameter fit of the 1994 H1 data in the low-x, moderate Q 2 range has been obtained. The dipole picture of BFKL dynamics is shown to provide a relevant model for quantitatively describing the proton structure functions at HERA. (author)

  17. Capital Structure, Environmental Dynamism, Innovation Strategy, and Strategic Risk Management

    DEFF Research Database (Denmark)

    Juul Andersen, Torben

    2005-01-01

    Previous research found that capital structure affects performance when it is adapted to the level of environmental dynamism and pursuit of an innovation strategy. The current study reproduces some of these relationships in a more recent dataset but also identifies significant nuances across...... industrial environments. Analyses of a large cross sectional sample and various industry sub-samples suggest that other factors have influenced capital structure effects in recent years including flexibilities in multinational organization and effective strategic risk management capabilities....

  18. Dynamical behavior of X-ray spectra from Markarian 766

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, A. C.; Tsuruta, S. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Haba, Y.; Kunieda, H. [Department of Physics, Nagoya University, Furo-co, Chikusa-Ku, Nagoya 464-8602 (Japan); Takahashi, M. [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8543 (Japan); Takahashi, R., E-mail: liebmann@physics.montana.edu, E-mail: uphst@gemini.oscs.montana.edu, E-mail: haba@u.phys.nagoya-u.ac.jp, E-mail: kunieda@u.phys.nagoya-u.ac.jp, E-mail: takahasi@phyas.aichi-edu.ac.jp, E-mail: rohta@riken.jp [Department of Natural and Physical Sciences, Tomakomai National College of Technology, Tomakomai 0591-1257 (Japan)

    2014-01-01

    Mrk 766, a bright narrow-line Seyfert 1, has been observed eight times by the XMM-Newton satellite. We carried out the analysis of the composite data from all of these observations together by applying a dynamical method. Through this analysis, we noted a longer timescale variability in addition to rapid short-time variability. This longer term variability is manifested by the presence of two distinct branches in flux-flux plots. Moreover, the data show the presence of absorbing material whose average thickness decreases gradually from ∼2 × 10{sup 23} cm{sup –2} during the dim state to ∼10{sup 22} cm{sup –2} as the source brightens to brighter states. To explain this longer timescale behavior and others already found self-consistently, we offer a promising model. In this model, the source is dim when a small emission region is covered by a small, denser portion of a partial-covering cloud; the source brightens as it becomes larger and covered predominantly by a less dense, larger region of the covering cloud. The short rapid variability, in contrast, is consistent with the highly variable power-law component from the coronal primary emission region, which is superimposed onto a less variable, ionized relativistic reflection component. Last, a possible presence of some unique soft flares is suggested. Unlike many other flares seen in the light curves, these flares occur only in the 0.3-2.0 keV soft band. These soft flares may be attributed to 'hot spots' on the accretion disk.

  19. Dynamical behavior of X-ray spectra from Markarian 766

    International Nuclear Information System (INIS)

    Liebmann, A. C.; Tsuruta, S.; Haba, Y.; Kunieda, H.; Takahashi, M.; Takahashi, R.

    2014-01-01

    Mrk 766, a bright narrow-line Seyfert 1, has been observed eight times by the XMM-Newton satellite. We carried out the analysis of the composite data from all of these observations together by applying a dynamical method. Through this analysis, we noted a longer timescale variability in addition to rapid short-time variability. This longer term variability is manifested by the presence of two distinct branches in flux-flux plots. Moreover, the data show the presence of absorbing material whose average thickness decreases gradually from ∼2 × 10 23 cm –2 during the dim state to ∼10 22 cm –2 as the source brightens to brighter states. To explain this longer timescale behavior and others already found self-consistently, we offer a promising model. In this model, the source is dim when a small emission region is covered by a small, denser portion of a partial-covering cloud; the source brightens as it becomes larger and covered predominantly by a less dense, larger region of the covering cloud. The short rapid variability, in contrast, is consistent with the highly variable power-law component from the coronal primary emission region, which is superimposed onto a less variable, ionized relativistic reflection component. Last, a possible presence of some unique soft flares is suggested. Unlike many other flares seen in the light curves, these flares occur only in the 0.3-2.0 keV soft band. These soft flares may be attributed to 'hot spots' on the accretion disk.

  20. New insight in magnetic saturation behavior of nickel hierarchical structures

    Science.gov (United States)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  1. Family Structure Changes and Children's Health, Behavior, and Educational Outcomes

    DEFF Research Database (Denmark)

    Rasmussen, Astrid Würtz

    More and more children do not grow up in traditional nuclear families. Instead, they grow up in single-parent households or in families with a step-parent. Hence, it is important to improve our understanding of the impact of "shocks" in family structure due to parental relationship dissolution...... on children. In this study I empirically test whether children are traumatized both in the short and the long run by shocks in the family structure during childhood. I focus on educational, behavioral, and health outcomes. A population sample of Danish children born in January to May 1985 is used...... for the analysis. The empirical cross-sectional analysis indicates a negative relation between the number of family structure changes and children.s health, behavior, and educational outcomes. These results are con.rmed by a differences-in-differences analysis of health outcomes. This suggests...

  2. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  3. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  4. Dynamic analysis on market structure of China's coal industry

    International Nuclear Information System (INIS)

    Yang, Qing; Zhang, Lei; Wang, Xin

    2017-01-01

    According to industrial organization theory, market structure is a crucial factor to market performance. Based on the VAR model and the data from 1994 to 2014, we revealed the dynamic response route of the market structure to these factors and the change process of contribution rate of these factors to the market structure. It shows that market structure is inertial adjustment; technology advance and industry policy have continuous effects on improvement of market concentration ratio; market size and production scale have sustained negative effects on market concentration ratio; fixed capital has barrier effect, which is mainly the entry barrier effect at the beginning, and then the exit barrier effect continues to play a leading role. Therefore, the government has no need to introduce special policies to encourage merger or expansion on the capacity as enterprises would do it spontaneously; it is necessary to make market access system stricter, to improve exit compensation mechanism and to promote technological innovation; all these policies need dynamic adjustment based on the stages of economic cycle. - Highlights: • The adjustment mechanism of China's coal market structure is revealed. • Technology and industry policy are significant factors to optimize the market structure. • The government need not introduce special policy to encourage merger. • The market access system should be stricter. • Policies strength should be dynamically adjusted based on the economic cycle.

  5. CFA Films in Amorphous Substrate: Structural Phase Induction and Magnetization Dynamics

    Science.gov (United States)

    Correa, M. A.; Bohn, F.; Escobar, V. M.

    We report a systematic study of the structural and quasi-static magnetic properties, as well as of the dynamic magnetic response through MI effect, in Co2FeAl and MgO//Co2FeAl single layers and a MgO//Co2FeAl/Ag/Co2FeAl trilayered film, all grown onto an amorphous substrate. We present a new route to induce the crystalline structure in the Co2FeAl alloy and verify that changes in the structural phase of this material leads to remarkable modifications of the magnetic anisotropy and, consequently, dynamic magnetic behavior. Considering the electrical and magnetic properties of the Co2FeAl, our results open new possibilities for technological applications of this full-Heusler alloy in rigid and flexible spintronic devices.

  6. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  7. Parameter and Structure Inference for Nonlinear Dynamical Systems

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  8. The Fine Structure of Equity-Index Option Dynamics

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor

    We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface...

  9. Zooplankton community structure and dynamics during the transition ...

    African Journals Online (AJOL)

    This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...

  10. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  11. Gauge-invariant cosmic structures---A dynamic systems approach

    International Nuclear Information System (INIS)

    Woszczyna, A.

    1992-01-01

    Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure

  12. A new dynamic null model for phylogenetic community structure

    NARCIS (Netherlands)

    Pigot, Alex L; Etienne, Rampal S

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by

  13. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...

  14. Nuclear visions enhanced: chromatin structure, organization and dynamics

    OpenAIRE

    Meshorer, Eran; Herrmann, Harald; Raška, Ivan

    2011-01-01

    The EMBO Workshop on ‘Chromatin Structure, Organization and Dynamics' took place in April 2011 in Prague, Czech Republic. Participants presented data on the generation of models of the genome, working to correlate changes in the organization of chromatin with the functional state of the genome.

  15. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation

  16. Fluorescence relaxation spectroscopy : light on dynamical structures of flavoproteins

    NARCIS (Netherlands)

    Burten - Bastiaens, P.I.H.

    1992-01-01

    Refinements in technique and data analysis have opened new avenues for a detailed interpretation of protein fluorescence. What is more, by combining new insights in protein structure and dynamics with improved knowledge of photophysics of biological chromophores, the coupling between

  17. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  18. Neighborhood structure effects on the Dynamic response of soil-structure interaction by harmonic analysis

    Directory of Open Access Journals (Sweden)

    Pan Dan-guang

    2015-01-01

    Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.

  19. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  20. Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies

    Directory of Open Access Journals (Sweden)

    Krutika Bavishi

    2014-11-01

    Full Text Available The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.