WorldWideScience

Sample records for structural design procedure

  1. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  2. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  3. A finite element based substructuring procedure for design analysis of large smart structural systems

    International Nuclear Information System (INIS)

    Ashwin, U; Raja, S; Dwarakanathan, D

    2009-01-01

    A substructuring based design analysis procedure is presented for large smart structural system using the Craig–Bampton method. The smart structural system is distinctively characterized as an active substructure, modelled as a design problem, and a passive substructure, idealized as an analysis problem. Furthermore, a novel thought has been applied by introducing the electro–elastic coupling into the reduction scheme to solve the global structural control problem in a local domain. As an illustration, a smart composite box beam with surface bonded actuators/sensors is considered, and results of the local to global control analysis are presented to show the potential use of the developed procedure. The present numerical scheme is useful for optimally designing the active substructures to study their locations, coupled structure–actuator interaction and provide a solution to the global design of large smart structural systems

  4. Structural Evaluation Procedures for Heavy Wood Truss Structures

    National Research Council Canada - National Science Library

    Issa, Mohsen

    1998-01-01

    .... An evaluation procedure for wood structures differs from conventional methods used in steel, concrete, and masonry structures because, in wood construction, the allowable stresses used in design...

  5. Procedure for developing biological input for the design, location, or modification of water-intake structures

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  6. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  7. Reassessment of coal pillar design procedure

    CSIR Research Space (South Africa)

    Madden, BJ

    1995-12-01

    Full Text Available The SIMRAC project COL 021A entitled “a reassessment of coal pillar design procedures” set out to achieve a coal pillar design procedure that takes cognisance of different geological and structural factors as well as the influence...

  8. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Welding procedure. 154.180... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for contiguous hull structure designed for a temperature colder than −18 °C (0 °F) must meet § 54.05-15 and...

  9. Development of an optimized procedure bridging design and structural analysis codes for the automatized design of the SMART

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1998-09-01

    In this report, an optimized design and analysis procedure is established to apply to the SMART (System-integrated Modular Advanced ReacTor) development. The development of an optimized procedure is to minimize the time consumption and engineering effort by squeezing the design and feedback interactions. To achieve this goal, the data and information generated through the design development should be directly transferred to the analysis program with minimum operation. The verification of the design concept requires considerable effort since the communication between the design and analysis involves time consuming stage for the conversion of input information. In this report, an optimized procedure is established bridging the design and analysis stage utilizing the IDEAS, ABAQUS and ANSYS. (author). 3 refs., 2 tabs., 5 figs

  10. Design Procedure on Stud Bolt for Reactor Vessel Assembly

    International Nuclear Information System (INIS)

    Kim, Jong-Wook; Lee, Gyu-Mahn; Jeoung, Kyeong-Hoon; Kim, Tae-Wan; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-01

    The reactor pressure vessel flange is welded to the upper part of reactor pressure vessel, and there are stud holes to mount the closure head with stud bolts. The surface mating the closure head is compressed with O-ring, which acts as a sealing gasket to prevent coolant leakage. Bolted flange connections perform a very important structural role in the design of a reactor pressure vessel. Their importance stems from two important functions: (a) maintenance of the structural integrity of the connection itself, and (b) prevention of leakage through the O-ring preloaded by stud bolts. In the present study, an evaluation procedure for the design of stud bolt is developed to meet ASME code requirements. The developed design procedure could provide typical references in the development of advanced reactor design in the future

  11. Design Procedure for High-Speed PM Motors Aided by Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Francesco Cupertino

    2018-02-01

    Full Text Available This paper considers the electromagnetic and structural co-design of superficial permanent magnet synchronous machines for high-speed applications, with the aid of a Pareto optimization procedure. The aim of this work is to present a design procedure for the afore-mentioned machines that relies on the combined used of optimization algorithms and finite element analysis. The proposed approach allows easy analysis of the results and a lowering of the computational burden. The proposed design method is presented through a practical example starting from the specifications of an aeronautical actuator. The design procedure is based on static finite element simulations for electromagnetic analysis and on analytical formulas for structural design. The final results are validated through detailed transient finite element analysis to verify both electromagnetic and structural performance. The step-by-step presentation of the proposed design methodology allows the reader to easily adapt it to different specifications. Finally, a comparison between a distributed-winding (24 slots and a concentrated-winding (6 slots machine is presented demonstrating the advantages of the former winding arrangement for high-speed applications.

  12. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1988-01-01

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  13. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  14. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  15. Development of an Overlay Design Procedure for Composite Pavements

    Science.gov (United States)

    2017-09-01

    The composite overlay design procedure currently used by ODOT sometimes produces very large overlay thicknesses that are deemed structurally unnecessary, especially for composite pavements already with thick asphalt overlays. This study was initiated...

  16. Design optimization of jacket structures for mass production

    DEFF Research Database (Denmark)

    Sandal, Kasper

    This thesis presents models and applications for structural optimization of jacket structures for offshore wind turbines. The motivation is that automatic design procedures can be used to obtain more cost efficient designs, and thus reduce the levelized cost of energy from offshore wind. A struct......This thesis presents models and applications for structural optimization of jacket structures for offshore wind turbines. The motivation is that automatic design procedures can be used to obtain more cost efficient designs, and thus reduce the levelized cost of energy from offshore wind....... A structural finite element model is developed specifically for the analysis and optimization of jacket structures. The model uses Timoshenko beam elements, and assumes thin walled tubular beams and a linear elastic structural response. The finite element model is implemented in a Matlab package called JADOP...... (Jacket Design Optimization), and the static and dynamic structural response is verified with the commercial finite element software Abaqus. A parametric mesh of the offshore wind turbine structure makes it relatively easy to represent various structures from the literature, as well as exploring...

  17. Procedural Design of Exterior Lighting for Buildings with Complex Constraints

    KAUST Repository

    Schwarz, Michael

    2014-10-01

    We present a system for the lighting design of procedurally modeled buildings. The design is procedurally specified as part of the ordinary modeling workflow by defining goals for the illumination that should be attained and locations where luminaires may be installed to realize these goals. Additionally, constraints can be modeled that make the arrangement of the installed luminaires respect certain aesthetic and structural considerations. From this specification, the system automatically generates a lighting solution for any concrete model instance. The underlying, intricate joint optimization and constraint satisfaction problem is approached with a stochastic scheme that operates directly in the complex subspace where all constraints are observed. To navigate this subspace efficaciously, the actual lighting situation is taken into account. We demonstrate our system on multiple examples spanning a variety of architectural structures and lighting designs. Copyright held by the Owner/Author.

  18. Structural integrity and its role in nuclear safety: recent UK advances in the development of high temperature design procedures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1996-01-01

    This paper takes the liquid metal fast breeder reactor as an example and identifies those topics where research has had a role to play in providing improved design rules. Many of the previously adopted procedures contained large amounts of pessimism to allow for uncertainties in the prediction of long-term structural behaviour. The aim has therefore been to gain an improved physical insight into the phenomena which govern performance and to develope less restrictive procedures which, at the same time, guarantee the high standards of integrity which are required. (orig.)

  19. Designing Flightdeck Procedures: Literature Resources

    Science.gov (United States)

    Feldman, Jolene; Barshi, Immanuel; Degani, Asaf; Loukopoulou, Loukia; Mauro, Robert

    2017-01-01

    This technical publication contains the titles, abstracts, summaries, descriptions, and/or annotations of available literature sources on procedure design and development, requirements, and guidance. It is designed to provide users with an easy access to available resources on the topic of procedure design, and with a sense of the contents of these sources. This repository of information is organized into the following publication sources: Research (e.g., journal articles, conference proceedings), Manufacturers' (e.g., operation manuals, newsletters), and Regulatory and/or Government (e.g., advisory circulars, reports). An additional section contains synopses of Accident/Incident Reports involving procedures. This work directly supports a comprehensive memorandum by Barshi, Mauro, Degani, & Loukopoulou (2016) that summarizes the results of a multi-year project, partially funded by the FAA, to develop technical reference materials that support guidance on the process of developing cockpit procedures (see "Designing Flightdeck Procedures" https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013263.pdf). An extensive treatment of this topic is presented in a forthcoming book by the same authors.

  20. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  1. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  2. Displacement-Based Seismic Design Procedure for Framed Buildings with Dissipative Braces Part II: Numerical Results

    International Nuclear Information System (INIS)

    Mazza, Fabio; Vulcano, Alfonso

    2008-01-01

    For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses

  3. Design procedure for sizing a submerged-bed scrubber for airborne particulate removal

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    Performance correlations to design and operate the submerged bed scrubber were developed for various applications. Structural design procedure outlined in this report focuses on off-gas scrubbing for HLW vitrification applications; however, the method is appropriate for other applications

  4. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  5. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-04-01

    Full Text Available Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  6. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  7. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  8. Design Transformations for Rule-based Procedural Modeling

    KAUST Repository

    Lienhard, Stefan; Lau, Cheryl; Mü ller, Pascal; Wonka, Peter; Pauly, Mark

    2017-01-01

    We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.

  9. Design Transformations for Rule-based Procedural Modeling

    KAUST Repository

    Lienhard, Stefan

    2017-05-24

    We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.

  10. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances.......We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design...

  11. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  12. Subsea HIPPS design procedure

    International Nuclear Information System (INIS)

    Aaroe, R.; Lund, B.F.; Onshus, T.

    1995-01-01

    The paper is based on a feasibility study investigating the possibilities of using a HIPPS (High Integrity Pressure Protection System) to protect a subsea pipeline that is not rated for full wellhead shut-in pressure. The study was called the Subsea OPPS Feasibility Study, and was performed by SINTEF, Norway. Here, OPPS is an acronym for Overpressure Pipeline Protection System. A design procedure for a subsea HIPPS is described, based on the experience and knowledge gained through the ''Subsea OPPS Feasibility Study''. Before a subsea HIPPS can be applied, its technical feasibility, reliability and profitability must be demonstrated. The subsea HIPPS design procedure will help to organize and plan the design activities both with respect to development and verification of a subsea HIPPS. The paper also gives examples of how some of the discussed design steps were performed in the Subsea OPPS Feasibility Study. Finally, further work required to apply a subsea HIPPS is discussed

  13. Integrated aerodynamic-structural design of a forward-swept transport wing

    Science.gov (United States)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  14. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  15. ASTROS: A multidisciplinary automated structural design tool

    Science.gov (United States)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  16. Coevolutionary and genetic algorithm based building spatial and structural design

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.

    2015-01-01

    In this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a

  17. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    Science.gov (United States)

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  18. Chipless RFID design procedure and detection techniques

    CERN Document Server

    Rezaiesarlak, Reza

    2015-01-01

    This book examines the design of chipless RFID systems. The authors begin with the historical development of wireless identification systems and finally arrive at a representation of the chipless RFID system as a block diagram illustration. Chapter 2 is devoted to the theoretical bases for the design of chipless RFID tags and detection techniques in the reader. A rigorous mathematical formulation is presented based on the singularity expansion method (SEM) and characteristic mode theory (CMT) in order to study the scattered fields from an object in a general form. Th e authors attempt to explain some physical concepts behind the mathematical descriptions of the theories in this chapter. In Chapter 3, two design procedures based on complex natural resonance and CMT are presented for the design of the chipless RFID tag. By studying the effects of structural parameters on radiation and resonant behaviors of the tag, some design conclusions are presented in this chapter. Chapter 4 is dedicated to the time-frequen...

  19. Structural analysis and optimization procedure of the TFTR device substructure

    International Nuclear Information System (INIS)

    Driesen, G.

    1975-10-01

    A structural evaluation of the TFTR device substructure is performed in order to verify the feasibility of the proposed design concept as well as to establish a design optimization procedure for minimizing the material and fabrication cost of the substructure members. A preliminary evaluation of the seismic capability is also presented. The design concept on which the analysis is based is consistent with that described in the Conceptual Design Status Briefing report dated June 18, 1975

  20. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  1. Key technological issues in LMFBR high-temperature structural design - the US perspective

    International Nuclear Information System (INIS)

    Corum, J.M.

    1984-01-01

    The purpose of this paper is: (1) to review the key technological issues in LMFBR high-temperature structural design, particularly as they relate to cost reduction; and (2) to provide an overview of activities sponsored by the US Department of Energy to resolve the issues and to establish stable, standardized, and defensible structural design methods and criteria. Specific areas of discussion include: weldments, structural validation tests, simplified design analysis procedures, design procedures for piping, validation of the methodology for notch-like geometries, improved life assessment procedures, thermal striping, extension of the methodology to new materials, and ASME high-temperature Code reform needs. The perceived problems and needs in each area are discussed, and the current status of related US activities is given

  2. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Adding shear walls or braced frames can decrease the potential damage caused by earthquakes.We can isolate the structures from the ground using the Seismic Base Isolation Systems that is flexible approach to decrease the potential damage. In this research we present information on the design procedure of seismic ...

  3. An expert system for integrated structural analysis and design optimization for aerospace structures

    Science.gov (United States)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  4. Probabilistic Design of Wind Turbine Structures: Design Studies and Sensitivities to Model Parameters

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried

    : decrease of conservatism level, improvement of design procedures, and development of innovative structural systems that suit well for large wind turbines. The increasing size of the structure introduces new problems that were not present for small structures. These problems include: (i) the preparation...... substructures. In addition to being aggressive, conditions for offshore environments and the associated models are highly uncertain. Appropriate statistical methodologies should be used in order to design robust structures, which are structures whose engineering performance is not significantly affected....... These research areas are differentially implemented through tasks on various wind turbine structures (shaft, jacket, semi-floater, monopile, and grouted joint). In particular the following research questions are answered: How are extreme and fatigue loads on a given structure influenced by the design of other...

  5. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  6. Automatic control design procedures for restructurable aircraft control

    Science.gov (United States)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  7. Application of reliability based design concepts to transmission line structure foundations. Part 2

    International Nuclear Information System (INIS)

    DiGioia, A.M. Jr.; Rojas-Gonzalez, L.F.

    1991-01-01

    The application of reliability based design (RBD) methods to transmission line structure foundations has developed somewhat more slowly than that for the other structural components in line systems. In a previous paper, a procedure was proposed for the design of transmission line structures foundations using a probability based load and resistance factor design (LRFD) format. This procedure involved the determination of a foundation strength factor, φ F , which was used as a multiplier of the calculated nominal design strength to estimate the five percent exclusion limit strength required in the calculated nominal design strength to estimate the five percent exclusion limit strength required in the LRFD equation. Statistical analyses of results from full-scale load tests were used to obtain φ F values applicable to various nominal design strength equations and for drilled shafts subjected to uplift loads. These results clearly illustrated the significant economic benefits of conducting more detailed subsurface investigations for the design of transmission line structure foundations. A design example was also presented. In this paper the proposed procedure is extended to laterally load drilled shafts

  8. Some trends in aircraft design: Structures

    Science.gov (United States)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  9. Procedures of ASME code case N-201 for KALIMER. Reactor internal structures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Yoo, B.

    2001-02-01

    The main objective of this report is to describe the design procedure of ASME Boiler and Pressure Vessel Code, Code Case N-201-4, which is an elevated temperature structural design code of the Nuclear reactor internal structures, checking the criteria of stress limit, accumulated inelastic strain and deformation, creep-fatigue damage, and buckling limit. As one of examples, the creep-fatigue damage evaluations are carried out for the KALIMER reactor internal structures of baffle annulus. This report is expected to be very useful in evaluating the structural integrity of the liquid metal reactor operating under an elevated temperature

  10. FFTF fuel pin design procedure verification for transient operation

    International Nuclear Information System (INIS)

    Baars, R.E.

    1975-05-01

    The FFTF design procedures for evaluating fuel pin transient performance are briefly reviewed, and data where available are compared with design procedure predictions. Specifically, burst conditions derived from Fuel Cladding Transient Tester (FCTT) tests and from ANL loss-of-flow tests are compared with burst pressures computed using the design procedure upon which the cladding integrity limit was based. Failure times are predicted using the design procedure for evaluation of rapid reactivity insertion accidents, for five unterminated TREAT experiments in which well characterized fuel failures were deliberately incurred. (U.S.)

  11. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  12. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  13. Strategies for Optimal Design of Structural Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  14. Seismic Retrofit of Reinforced Concrete Frame Buildings with Hysteretic Bracing Systems: Design Procedure and Behaviour Factor

    Directory of Open Access Journals (Sweden)

    Antonio Di Cesare

    2017-01-01

    Full Text Available This paper presents a design procedure to evaluate the mechanical characteristics of hysteretic Energy Dissipation Bracing (EDB systems for seismic retrofitting of existing reinforced concrete framed buildings. The proposed procedure, aiming at controlling the maximum interstorey drifts, imposes a maximum top displacement as function of the seismic demand and, if needed, regularizes the stiffness and strength of the building along its elevation. In order to explain the application of the proposed procedure and its capacity to involve most of the devices in the energy dissipation with similar level of ductility demand, a simple benchmark structure has been studied and nonlinear dynamic analyses have been performed. A further goal of this work is to propose a simplified approach for designing dissipating systems based on linear analysis with the application of a suitable behaviour factor, in order to achieve a widespread adoption of the passive control techniques. At this goal, the increasing of the structural performances due to the addition of an EDB system designed with the above-mentioned procedure has been estimated considering one thousand case studies designed with different combinations of the main design parameters. An analytical formulation of the behaviour factor for braced buildings has been proposed.

  15. Structural design systems using knowledge-based techniques

    International Nuclear Information System (INIS)

    Orsborn, K.

    1993-01-01

    Engineering information management and the corresponding information systems are of a strategic importance for industrial enterprises. This thesis treats the interdisciplinary field of designing computing systems for structural design and analysis using knowledge-based techniques. Specific conceptual models have been designed for representing the structure and the process of objects and activities in a structural design and analysis domain. In this thesis, it is shown how domain knowledge can be structured along several classification principles in order to reduce complexity and increase flexibility. By increasing the conceptual level of the problem description and representation of the domain knowledge in a declarative form, it is possible to enhance the development, maintenance and use of software for mechanical engineering. This will result in a corresponding increase of the efficiency of the mechanical engineering design process. These ideas together with the rule-based control point out the leverage of declarative knowledge representation within this domain. Used appropriately, a declarative knowledge representation preserves information better, is more problem-oriented and change-tolerant than procedural representations. 74 refs

  16. Design study on quasi-constant gradient accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Littmann, B.W.

    1991-09-01

    In order to obtain high luminosity, the Next Linear Collider will operate in multibunch mode with ten or more bunches per bunch train. This leads to the need for detuning and/or damping of higher modes to control multibunch beam breakup. Continued studies of wake fields for a detuned structure with a Gaussian distribution of dipole modes showed encouraging results, and a detuned structure model has been tested experimentally. It is desirable to study the design method for this type of structure, which has a quasi-constant accelerating gradient. This note gives a brief summary of the design procedure. Also, the RF parameters of the structure are evaluated to compare with conventional constant gradient and constant impedance structures

  17. Model checking as an aid to procedure design

    International Nuclear Information System (INIS)

    Zhang, Wenhu

    2001-01-01

    The OECD Halden Reactor Project has been actively working on computer assisted operating procedures for many years. The objective of the research has been to provide computerised assistance for procedure design, verification and validation, implementation and maintenance. For the verification purpose, the application of formal methods has been considered in several reports. The recent formal verification activity conducted at the Halden Project is based on using model checking to the verification of procedures. This report presents verification approaches based on different model checking techniques and tools for the formalization and verification of operating procedures. Possible problems and relative merits of the different approaches are discussed. A case study of one of the approaches is presented to show the practical application of formal verification. Application of formal verification in the traditional procedure design process can reduce the human resources involved in reviews and simulations, and hence reduce the cost of verification and validation. A discussion of the integration of the formal verification with the traditional procedure design process is given at the end of this report. (Author)

  18. 40 CFR 240.202-2 - Recommended procedures: Design.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Design. 240... § 240.202-2 Recommended procedures: Design. (a) Whenever possible, thermal processing facilities should be located in areas zoned for industrial use and having adequate utilities to serve the facility. (b...

  19. Emergency procedures beyond design basis ''Feed and Bleed''

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.; Campuzano Pena, F.

    1994-01-01

    The incorporation of Beyond-Design-Basis Emergency Procedures, also called the Emergency Manual or Severe Accident Manual, has been an important step forward in nuclear power plant safety. These procedures cover situations in which the deterministic criteria used in plant design have been contravened. In such situations new accident scenarios, unforeseen system actions or a combination of both, need to be considered. Establishing these procedures is actually the last in a sequence of activities the sequence includes definition of scenarios, study of their phenomena, analysis of optional system actions, verification of their effectiveness and finally, implementation of the procedure. The systematization of these new strategies is supported by the results of the probabilistic analyses which serve in this case to pinpoint the objectives of these strategies. This paper describes the application of this methodology in the definition of a procedure for heat sink recovery on the secondary side (feed and bleed) if this has been totally or partially lost in a beyond-design-basis event. (Author)

  20. Probability based load combinations for design of category I structures

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1985-01-01

    This paper discusses a reliability analysis method and a procedure for developing the load combination design criteria for category I structures. For safety evaluation of category I concrete structures under various static and dynamic loads, a probability-based reliability analysis method has been developed. This reliability analysis method is also used as a tool for determining the load factors for design of category I structures. In this paper, the load combinations for design of concrete containments, corresponding to a target limit state probability of 1.0 x 10 -6 in 4 years, are described. A comparison of containments designed using the ASME code and the proposed design criteria is also presented

  1. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  2. On anti-earthquake design procedure of equipment and pipings in near future

    International Nuclear Information System (INIS)

    Shibata, H.

    1981-01-01

    The requirement of anti-earthquake design of nuclear power plants is getting severe year by year. The author will try to discuss how to control its severity and how to find a proper design procedure for licensing of new plants under such severe requirements. On the other hand we suffered from the enormous volumes of documents. To decrease such volumes, the format of documents should be standardized as well as the design procedure standardization. Starting from this point, we need the research and development on the following subjects: i) Standardization of design procedure. ii) Standardization of document. iii) Establishment of standard review procedure using computer. iv) Standardization of earthquake-resistant designed equipment. v) Standardization of anti-earthquake design procedure of piping systems. vi) Introducing margin evaluation procedure to design procedure. vii) Introducing proving test procedure of active component to design procedure. viii) Establishment of evaluation of human reliability in design, fabrication, inspection procedures. ix) Establishment of the proper relation of seismic trigger level and post-earthquake design procedures. (orig./HP)

  3. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    Science.gov (United States)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of

  4. Recreation of architectural structures using procedural modeling based on volumes

    Directory of Open Access Journals (Sweden)

    Santiago Barroso Juan

    2013-11-01

    Full Text Available While the procedural modeling of buildings and other architectural structures has evolved very significantly in recent years, there is noticeable absence of high-level tools that allow a designer, an artist or an historian, creating important buildings or architectonic structures in a particular city. In this paper we present a tool for creating buildings in a simple and clear, following rules that use the language and methodology of creating their own buildings, and hiding the user the algorithmic details of the creation of the model.

  5. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  6. Design guide for calculating fluid damping for circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1983-06-01

    Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow

  7. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  8. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  9. An Integrated Procedure for the Structural Design of a Composite Rotor-Hydrofoil of a Water Current Turbine (WCT)

    Science.gov (United States)

    Oller Aramayo, S. A.; Nallim, L. G.; Oller, S.

    2013-12-01

    This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory (Rastellini et al. Comput. Struct. 86:879-896, 2008, Martinez et al., 2007, Martinez and Oller Arch. Comput. Methods. 16(4):357-397, 2009, Martinez et al. Compos. Part B Eng. 42(2011):134-144, 2010) coupled with a fluid-dynamic formulation and multi-objective optimization algorithm (Gen and Cheng 1997, Lee et al. Compos. Struct. 99:181-192, 2013, Lee et al. Compos. Struct. 94(3):1087-1096, 2012). The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD), whose detail can be found in the reference Oller et al. (2012). The main purpose of this paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. The FEM simulation codes are engineered by CIMNE (International Center for Numerical Method in Engineering, Barcelona, Spain), COMPack for the solids problem application, KRATOS for fluid dynamic application and RMOP for the structural optimization. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.

  10. Integrated topology and shape optimization in structural design

    Science.gov (United States)

    Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.

    1990-01-01

    Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.

  11. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  12. Computational Modelling in Development of a Design Procedure for Concrete Road

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available The computational modelling plays a decisive part in development of a new design procedure for concrete pavement by quantifying impacts of individual design factors. In the present paper, the emphasis is placed on the modelling of a structural response of the jointed concrete pavement as a system of interacting rectangular slabs transferring wheel loads into an elastic layered subgrade. The finite element plate analysis is combined with the assumption of a linear contact stress variation over triangular elements of the contact region division. The linking forces are introduced to model the load transfer across the joints. The unknown contact stress nodal intensities as well as unknown linking forces are determined in an iterative way to fulfil slab/foundation and slab/slab contact conditions. The temperature effects are also considered and space is reserved for modelling of inelastic and additional environmental effects. It is pointed out that pavement design should be based on full data of pavement stressing, in contradiction to procedures accounting only for the axle load induced stresses.

  13. Direct numerical methods of mathematical modeling in mechanical structural design

    International Nuclear Information System (INIS)

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  14. Development of multidisciplinary design optimization procedures for smart composite wings and turbomachinery blades

    Science.gov (United States)

    Jha, Ratneshwar

    Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the

  15. Acceptance and Divergence from Engineering Design Procedures Implicating Knowledge Flow

    DEFF Research Database (Denmark)

    Jensen, Ole Kjeldal; Ahmed, Saeema

    2009-01-01

    of explicit procedures and; 3) implicit procedures supporting needs that are not catered for by the explicit procedures. In this understanding, a procedure can be any kind of method, tool or framework used to support design engineers. Furthermore, the study discusses a variety of recommended actions......When developing procedures such as tools, methods and frameworks to support the development of new products, one of the challenges is ensuring their successful implementation. This paper describes a study of the development and use of such design-procedures with primary focus on the new product...

  16. Methods for testing the logical structure of plant procedure documents

    International Nuclear Information System (INIS)

    Horne, C.P.; Colley, R.; Fahley, J.M.

    1990-01-01

    This paper describes an ongoing EPRI project to investigate computer based methods to improve the development, maintenance, and verification of plant operating procedures. This project began as an evaluation of the applicability of structured software analysis methods to operating procedures. It was found that these methods offer benefits, if procedures are transformed to a structured representation to make them amenable to computer analysis. The next task was to investigate methods to transform procedures into a structured representation. The use of natural language techniques to read and compile the procedure documents appears to be viable for this purpose and supports conformity to guidelines. The final task was to consider possibilities of automated verification methods for procedures. Methods to help verify procedures were defined and information requirements specified. These methods take the structured representation of procedures as input. The software system being constructed in this project is called PASS, standing for Procedures Analysis Software System

  17. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  18. Procedure for the design of Information Management Systems in Production Cooperatives

    Directory of Open Access Journals (Sweden)

    Maidelyn Díaz Pérez

    2018-02-01

    Full Text Available The information management systems of the entrepreneurial organizations have been conceived that the fulfillment of the strategic objectives depend to a large extent on the good performance of several informative tasks such as obtaining information from the environment, identifying and representing the information flows of the processes , the structuring of operational and functional data, the internal management of knowledge, etc. But in turn, the achievement of these actions depends on there being a group of procedures that lead to the adequate standardization of the data. In spite of the fact that these procedures are essential for the proper functioning of any system, and that, for the most part, the quality, reliability and pertinence of the information that is managed depends on them, it is not usual for them to exist in cooperative organizations. even in most cases they are not written. The objective of this research is to establish a procedure to design an information management system for research in a production cooperative linked directly to research. The result obtained allows identifying, defining and structuring the data required by the system to operate efficiently, as well as articulate the different components that should integrate it in its systemic development. This procedure facilitates the efficient management of operative, functional and strategic information of the different processes of a cooperative in correspondence with its strategic objectives.

  19. Analysis and application of ratcheting evaluation procedure of Japanese high temperature design code DDS

    International Nuclear Information System (INIS)

    Lee, H. Y.; Kim, J. B.; Lee, J. H.

    2002-01-01

    In this study, the evaluation procedure of Japanese DDS code which was recently developed to assess the progressive inelastic deformation occurring under repetition of secondary stresses was analyzed and the evaluation results according to DDS was compared those of the thermal ratchet structural test carried out by KAERI to analyze the conservativeness of the code. The existing high temperature codes of US ASME-NH and French RCC-MR suggest the limited ratcheting procedures for only the load cases of cyclic secondary stresses under primary stresses. So they are improper to apply to the actual ratcheting problem which can occur under cyclic secondary membrane stresses due to the movement of hot free surface for the pool type LMR. DDS provides explicitly an analysis procedure of ratcheting due to moving thermal gradients near hot free surface. A comparison study was carried out between the results by the design code of DDS and by the structural test to investigate the conservativeness of DDS code, which showed that the evaluation results by DDS were in good agreement with those of the structural test

  20. A Morphogenetic Design Approach with Embedded Structural Analysis

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Kirkegaard, Poul Henning; Holst, Malene Kirstine

    2010-01-01

    The present paper explores a morphogenetic design approach with embedded structural analysis for architectural design. A material system based on a combined space truss and membrane system has been derived as a growth system with inspiration from natural growth of plants. The structural system...... is capable of adding new elements based on a structural analysis of the existing components and their internal stress levels. A GA decision-making procedure that control the generation of the growth cycles is introduced. This evaluation and generation loop is capable of successfully making decisions based...... on several, and often conflicting, inputs formulated from architectural requirements. An experiment with a tri-pyramid component has been considered, but many other space truss systems could be explored in the same manner and result in highly performative outcomes. not only with respect to the structural...

  1. Efficient Reanalysis Procedures in Structural Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded

    This thesis examines efficient solution procedures for the structural analysis problem within topology optimization. The research is motivated by the observation that when the nested approach to structural optimization is applied, most of the computational effort is invested in repeated solutions...... on approximate reanalysis. For cases where memory limitations require the utilization of iterative equation solvers, we suggest efficient procedures based on alternative termination criteria for such solvers. These approaches are tested on two- and three-dimensional topology optimization problems including...

  2. Procedural Design of Exterior Lighting for Buildings with Complex Constraints

    KAUST Repository

    Schwarz, Michael; Wonka, Peter

    2014-01-01

    We present a system for the lighting design of procedurally modeled buildings. The design is procedurally specified as part of the ordinary modeling workflow by defining goals for the illumination that should be attained and locations where

  3. Computer-aided design of DNA origami structures.

    Science.gov (United States)

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  4. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available Final Project Report Coal pillar design procedures G. York, I. Canbulat, B.W. Jack Research agency: CSIR Mining Technology Project number: COL 337 Date: March 2000 2 Executive Summary Examination of collapsed pillar cases outside of the empirical... in strength occurs with increasing specimen size. 45 40 35 30 25 20 15 10 5 0 20 40 60 80 100 120 140 160 UNIAX IA L COMPR EHEN SIV E S TR ENG TH (M Pa ) CUBE SIZE (cm) Figure 1...

  5. A surrogate based multistage-multilevel optimization procedure for multidisciplinary design optimization

    OpenAIRE

    Yao, W.; Chen, X.; Ouyang, Q.; Van Tooren, M.

    2011-01-01

    Optimization procedure is one of the key techniques to address the computational and organizational complexities of multidisciplinary design optimization (MDO). Motivated by the idea of synthetically exploiting the advantage of multiple existing optimization procedures and meanwhile complying with the general process of satellite system design optimization in conceptual design phase, a multistage-multilevel MDO procedure is proposed in this paper by integrating multiple-discipline-feasible (M...

  6. Development of Mechanical Structure Design Technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon

    2007-03-01

    Structural integrity and design simplifications were secured on reactor core support system, upper internal structure and core catcher of KALIMER-600. The evaluation on the suitability of high temperature and seismic design of reactor structures, and the structural integrity evaluation on reactor components and high temperature pipings are performed. The interfaces between the components and ISI accessibility are checked. Lightening of reactor building by 7%, the seismic design for 0.3g seismic loads and improvement of reactor structural design concept for KALIMER-600 have been carried out. Remote inspection technique using ultrasonic wave guide sensor was acquired as a visualization method for reactor internals under opaque sodium environments. The basic guideline on high temperature structure assessment as an assessment procedure on high temperature inelastic behaviour has been completed. In high temperature creep-fatigue test, totally 500 cycles (totally 700 hold time) were carried on cylindrical test and IHTS co-axial pipe test models. The behaviors of creep-fatigue damage and creep-fatigue crack behaviour were investigated, and the DB on the structural test were established. The seismic response tests on 19-sub assembly validation test model in air and in water were carried out, and its multi-purpose characteristics and reliability on the SAC-CORE3.0 code developed for core seismic response analysis were validated

  7. Standardized Procedure Content And Data Structure Based On Human Factors Requirements For Computer-Based Procedures

    International Nuclear Information System (INIS)

    Bly, Aaron; Oxstrand, Johanna; Le Blanc, Katya L

    2015-01-01

    underlying data structure for such CBPS. The objective of the research effort is to develop guidance on how to design both the user interface and the underlying schema. This paper will describe the result and insights gained from the research activities conducted to date.

  8. Standardized Procedure Content And Data Structure Based On Human Factors Requirements For Computer-Based Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Bly, Aaron; Oxstrand, Johanna; Le Blanc, Katya L

    2015-02-01

    underlying data structure for such CBPS. The objective of the research effort is to develop guidance on how to design both the user interface and the underlying schema. This paper will describe the result and insights gained from the research activities conducted to date.

  9. Design and drafting document control procedures for CPRF/ZTH experiment

    International Nuclear Information System (INIS)

    Pollat, L.L.; Kewish, R.W.

    1989-01-01

    This paper will present, in general, the control procedures for design approval, review, changes, and release of engineering documents. It will also discuss interface control for tasks so that possible design interference does not occur. A document control procedure to insure that design criteria are met and technical specifications translate into workable drawings was instituted to support the Confinement Physics Research Facility (CPRF/ZTH) construction program. Our goal, to eliminate any conflicts that might arise between various tasks as the final designs are developed, required tight control and up-to-date design information. Detailed procedure for reviews were instituted, since circumventing the process of design and drafting anywhere might have proven disastrous to the CPRF/ZTH program. Design is a process of translating technical requirements, according to established standards, into drawings that are usable for fabrication and assembly. Both the designer and engineer are responsible for adhering to standards that have been established by the Mechanical Engineering Section for the CPRF/ZTH program. 6 refs., 5 figs

  10. Loads for use in the design of ships and offshore structures

    DEFF Research Database (Denmark)

    Hirdaris, S.E.; Bai, W.; Dessi, Daniele

    2014-01-01

    The evaluation of structural responses is key element in the design of ships and offshore structures. Fundamental to this is the determination of the design loads to support the Rule requirements and for application in direct calculations. To date, the current design philosophy for the prediction...... of motions and wave-induced loads has been driven by empirical or first-principles calculation procedures based on well-proven applications such as ship motion prediction programs. In recent years, the software, engineering and computer technology available to predict the design loads imposed on ships...... and offshore structures has improved dramatically. Notwithstanding, with the stepwise increase in the size and structural complexity of ships and floating offshore installations and the advances in the framework of Rules and Standards it has become necessary to utilise the latest technologies to assess...

  11. Design and Analysis of Muon Beam Stop Support Structures

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, Udenna [Northern Illinois Univ., DeKalb, IL (United States)

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  12. The design of operating procedures manuals for nuclear power plants

    International Nuclear Information System (INIS)

    Bohr, E.; Preuss, W.; Reinartz, G.; Thau, G.

    1977-03-01

    This report describes the findings of a research on the desirable design of operating procedures manuals for nuclear power plants. The work was supported by a grant of the Federal Department of the Interior. Information was acquired from different sources. Interviews and discussions on manual design were carried out with manual users in nuclear power plants. Moreover, tasks carried out using procedures were either observed or, alternatively, the manner of using procedures was elicited by interviews. In addition, manual writers, managers from manufacturers and utilities, nuclear experts, and individuals involved in manual specification activities were interviewed. A major source of information has been the pertinent scientific and technical findings scattered in the literature on topics such as instructional technology, engineering psychology, psycholinguistics, and typography. A comprehensive bibliography is included. General rules are established on designing instructional material for use on the job, aiming at increasing their legability, comprehensibility, and suitability to guide human performance. The application of these rules to the design of individual operating procedures is demonstrated. Recommendations are given on the design, layout, development and implementation of manuals. (orig.) [de

  13. Phenomenological Research Method, Design and Procedure: A ...

    African Journals Online (AJOL)

    Phenomenological Research Method, Design and Procedure: A Phenomenological Investigation of the Phenomenon of Being-in-Community as Experienced by Two Individuals Who Have Participated in a Community Building Workshop.

  14. Design Guidance for Computer-Based Procedures for Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, the U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying

  15. A procedure for multi-objective optimization of tire design parameters

    Directory of Open Access Journals (Sweden)

    Nikola Korunović

    2015-04-01

    Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.

  16. Structural and piping issues in the design certification of advanced reactors

    International Nuclear Information System (INIS)

    Ali, S.A.; Terao, D.; Bagchi, G.

    1996-01-01

    The purpose of this paper is to discuss the design certification of structures and piping for evolutionary and passive advanced light water reactors. Advanced reactor designs are based on a set of assumed site-related parameters that are selected to envelop a majority of potential nuclear power plant sites. Multiple time histories are used as the seismic design basis in order to cover the majority of potential sites in the US. Additionally, design are established to ensure that surface motions at a particular site will not exceed the enveloped standard design surface motions. State-of-the-art soil-structure interaction (SSI) analyses have been performed for the advanced reactors, which include structure-to-structure interaction for all seismic Category 1 structures. Advanced technology has been utilized to exclude the dynamic effects of pipe rupture from structural design by demonstrating that the probability of pipe rupture is extremely low. For piping design, the advanced reactor vendors have developed design acceptance criteria (DAC) which provides the piping design analysis methods, design procedures, and acceptance criteria. In SECY-93-087 the NRC staff recommended that the Commission approve the approach to eliminate the OBE from the design of structures and piping in advanced reactors and provided guidance which identifies the necessary changes to existing seismic design criteria. The supplemental criteria address fatigue, seismic anchor motion, and piping stress limits when the OBE is eliminated

  17. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  18. A Procedure for Structural Weight Estimation of Single Stage to Orbit Launch Vehicles (Interim User's Manual)

    Science.gov (United States)

    Martinovic, Zoran N.; Cerro, Jeffrey A.

    2002-01-01

    This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.

  19. Application of limit state design to outdoor important civil engineering reinforced concrete structures in nuclear power plant

    International Nuclear Information System (INIS)

    1992-01-01

    As for the basic concept and the procedure of the aseismatic design of nuclear power structures, it is the present state to verify the safety by allowable stress design method, but the necessity of considering the limit state in the safety verification of these structures has been pointed out. For the purpose of clarifying the technique and procedure when limit state design method is applied to the aseismatic design of important civil engineering structures in outdoors of nuclear power stations and contributing to the rationalization of aseismatic design, aiming at completing the safety verification manual for designers, as the research on the standardization of the aseismatic design of A class civil engineering structures considering the limit state, the deliberation of the contents of research has been carried out. The outline of the manual expected to be published soon is described. The items of research, the constitution of the manual, the features of the manual, the basic concept of safety verification, the calculation of design seismic load, the method of verification for reinforced concrete structures and the verifying experiment are described. (K.I.)

  20. Neutron transport in structural materials and shielding design

    International Nuclear Information System (INIS)

    Salvatores, M.

    1979-01-01

    In this paper recent development in integral Benchmark experiments and their analysis is reviewed. The main problems related to data and method assesment are also briefly reviewed. In particular, the basic data processing and multigroup structure optimization and the effects of the basic data uncertainty evaluation are stressed. The representativity of an integral experiment from the designer point of view is indicated. Moreover a procedure to deduce design oriented bias factors is outlined. Cross section adjustments are indicated as a useful tool to reduce these bias factors and their uncertainties

  1. A PROCEDURAL SOLUTION TO MODEL ROMAN MASONRY STRUCTURES

    Directory of Open Access Journals (Sweden)

    V. Cappellini

    2013-07-01

    Full Text Available The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac – PAM, developed by IGN (Paris. We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France. Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick, this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects and metric measures for restoration purposes.

  2. a Procedural Solution to Model Roman Masonry Structures

    Science.gov (United States)

    Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.

    2013-07-01

    The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.

  3. On Rational Design of Double Hull Tanker Structures against Collision

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Chung, Jang Young; Choe, Ich Hung

    1999-01-01

    This paper is a summary of recent research and development in areas related to the design technology for double hull tanker structures against low energy collision, jointly undertaken by the Hyundai Heavy Industries, the American Bureau of Shipping, the Technical University of Denmark and the Pusan...... in the present study were (i) developing a framework for the collision design procedure for double hull tanker structures, (ii) experimental investigation of the structural crashworthiness of the collided vessels in collision or stranding, using double skinned structural models, (iii) validation of the special...... investigation of the energy absorption capability characteristics of a collided double hull VLCC side structure in collision, and (vi) development of a new modified Minorsky method for double hull tanker side structures. The tools developed and the results and insights obtained by the present study should...

  4. Design of the detuned accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented

  5. Execution techniques for high level radioactive waste disposal. 4. Design and manufacturing procedure of engineered barriers

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Kosaki, Akio; Ueda, Hiroyoshi; Asano, Hidekazu; Takao, Hajime

    1999-01-01

    Ensuring the physical integrity of engineered barriers for an extremely long time period is necessary for geological disposal of high-level radioactive wastes. This report describes the design process and the designed configurations of both overpack and buffer as engineered barriers. Manufacturing procedure, quality control and inspection methods are also summarized. Carbon steel was selected as a structural material of the overpack and the specification of the overpack was determined assuming disposal in the depths of 1000 m below surface of crystalline rock site. The mixture of bentonite and sand (80% sodium bentonite and 20% silica sand by mass) was selected as material for a buffer from mainly its permeability and characteristics of self-sealing of a gap occurred in construction work. Welding method of a lid onto the main body of the overpack, uniting method of a corrosion-resistance layer and the structural component in the case of a composite overpack and manufacturing procedures of both blocks-type and monolithic-type buffers are also investigated. (author)

  6. Novel design of honeybee-inspired needles for percutaneous procedure.

    Science.gov (United States)

    Sahlabadi, Mohammad; Hutapea, Parsaoran

    2018-04-18

    The focus of this paper is to present new designs of innovative bioinspired needles to be used during percutaneous procedures. Insect stingers have been known to easily penetrate soft tissues. Bioinspired needles mimicking the barbs in a honeybee stinger were developed for a smaller insertion force, which can provide a less invasive procedure. Decreasing the insertion force will decrease the tissue deformation, which is essential for more accurate targeting. In this study, some design parameters, in particular, barb shape and geometry (i.e. front angle, back angle, and height) were defined, and their effects on the insertion force were investigated. Three-dimensional printing technology was used to manufacture bioinspired needles. A specially-designed insertion test setup using tissue mimicking polyvinyl chloride (PVC) gels was developed to measure the insertion and extraction forces. The barb design parameters were then experimentally modified through detailed experimental procedures to further reduce the insertion force. Different scales of the barbed needles were designed and used to explore the size-scale effect on the insertion force. To further investigate the efficacy of the proposed needle design in real surgeries, preliminary ex vivo insertion tests into bovine liver tissue were performed. Our results show that the insertion force of the needles in different scales decreased by 21-35% in PVC gel insertion tests, and by 46% in bovine liver tissue insertion tests.

  7. The IMI PROTECT project: purpose, organizational structure, and procedures.

    Science.gov (United States)

    Reynolds, Robert F; Kurz, Xavier; de Groot, Mark C H; Schlienger, Raymond G; Grimaldi-Bensouda, Lamiae; Tcherny-Lessenot, Stephanie; Klungel, Olaf H

    2016-03-01

    The Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium (PROTECT) initiative was a collaborative European project that sought to address limitations of current methods in the field of pharmacoepidemiology and pharmacovigilance. Initiated in 2009 and ending in 2015, PROTECT was part of the Innovative Medicines Initiative, a joint undertaking by the European Union and pharmaceutical industry. Thirty-five partners including academics, regulators, small and medium enterprises, and European Federation of Pharmaceuticals Industries and Associations companies contributed to PROTECT. Two work packages within PROTECT implemented research examining the extent to which differences in the study design, methodology, and choice of data source can contribute to producing discrepant results from observational studies on drug safety. To evaluate the effect of these differences, the project applied different designs and analytic methodology for six drug-adverse event pairs across several electronic healthcare databases and registries. This papers introduces the organizational structure and procedures of PROTECT, including how drug-adverse event and data sources were selected, study design and analyses documents were developed, and results managed centrally. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  9. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  10. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Seong-Min Kim

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  11. Design procedures for the use of composites in strengthening of reinforced concrete structures state-of-the-art report of the RILEM Technical Committee 234-DUC

    CERN Document Server

    Sena-Cruz, José

    2016-01-01

    This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation...

  12. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  13. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  14. On the design of flight-deck procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  15. Improved Design of Crew Operation in Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Jung, Yeon Sub; Sung, Chan Ho [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The operators perform the paper-based procedures in analog-based conventional main control room (MCR) depending on only communications between operators except a procedure controller such as a Shift Supervisor (SS), however in digital-based MCR the operators can confirm the procedures simultaneously in own console when the procedure controller of computerized procedure (CP) opens the CP. The synchronization and a synchronization function between procedure controller and other operators has to be considered to support the function of crew operation. This paper suggests the improved design of crew operation in computerized procedure system of APR1400. This paper suggests the improved design of APR1400 CPS. These improvements can help operators perform the crew procedures more efficiently. And they reduce a burden of communication and misunderstanding of computerized procedures. These improvements can be applied to CPS after human factors engineering verification and validation.

  16. LASL lens design procedure: simple, fast, precise, versatile

    International Nuclear Information System (INIS)

    Brixner, B.

    1978-11-01

    The Los Alamos Scientific Laboratory general-purpose lens design procedure optimizes specific lens prescriptions to obtain the smallest possible image spots and therefore near-spherical wave fronts of light converging on all images in the field of view. Optical image errors are analyzed in much the same way that they are measured on the optical bench. This lens design method is made possible by using the full capabilities of large electronic computers. First, the performance of the whole lens is sampled with many precisely traced skew rays. Next, lens performance is analyzed with spot diagrams generated by the many rays. Third, lens performance is optimized with a least squares system aimed at reducing all image errors to zero. This statistical approach to lens design uses skew rays and precisely measured ray deviations from ideal image points to achieve greater accuracy than was possible with the classical procedure, which is based on approximate expressions derived from simplified ray traces developed for pencil-and-paper calculations

  17. A design procedure for the phase-controlled parallel-loaded resonant inverter

    Science.gov (United States)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  18. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  19. Practices in adequate structural design

    Science.gov (United States)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  20. Factors affecting the design of instrument flight procedures

    Directory of Open Access Journals (Sweden)

    Ivan FERENCZ

    2008-01-01

    Full Text Available The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  1. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    Science.gov (United States)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  2. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  3. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    International Nuclear Information System (INIS)

    Passarelli, Donato; Merio, Margherita; Ristori, Leonardo

    2016-01-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  4. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  5. Different approaches of European regulations for fire design of steel structural elements

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, Iwona

    2010-01-01

    how both safety issues (avoid people injuries and preserve integrity of constructions) are addressed in the framework of European structural fire safety design of steel constructions. Some relevant differences can be found both in the procedures and in the philosophy of national and community...

  6. A mixed implicit/explicit procedure for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1982-01-01

    This paper describes an efficient method for the solution of dynamic soil-structure interaction problems. The method which combines implicit and explicit time integration procedures is ideally suited to problems in which the structure is considered linear and the soil non-linear. The equations relating to the linear structures are integrated using an unconditionally stable implicit scheme while the non-linear soil is treated explicitly. The explicit method is ideally suited to non-linear calculations as there is no need for iterative techniques. The structural equations can also be integrated explicitly, but this generally requires a time step that is much smaller than that for the soil. By using an unconditionally stable implicit algorithm for the structure, the complete analysis can be performed using the time step for the soil. The proposed procedure leads to economical solutions with the soil non-linearities handled accurately and efficiently. (orig.)

  7. Structural design by CAD system

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Shim, Jae Ku; Kim, Sun Hoon; Kim, Dae Hong; Lee, Kyung Jin; Choi, Kyu Sup; Choi, In Kil; Lee, Dong Yong

    1988-12-01

    CAD systems are now widely used for the design of many engineering problems involving static, dynamic and thermal stress analyses of structures. In order to apply CAD systems to the structural analysis and design, the function of hardwares and softwares necessary for the CAD systems must be understood. The purpose of this study is to introduce the basic elements that are indispensible in the application of CAD systems to the analysis and design of structures and to give a thorough understanding of CAD systems to design engineers, so as to participate in the further technological developments of CAD systems. Due to the complexity and variety of the shape and size of the nowa-days structures, the need of new design technologies is growing for more efficient, accurate and economical design of structures. The application of CAD systems to structural engineering fields enables to improve structural engineering analysis and design technologies and also to obtain the standardization of the design process. An active introduction of rapidly developing CAD technologies will contribute to analyzing and designing structures more efficiently and reliably. Based on this report of the current status of the application of CAD systems to the structural analysis and design, the next goal is to develop the expert system which enables to perform the design of structures by CAD systems from the preliminary conceptual design to the final detail drawings automatically. (Author)

  8. Analytical procedure in aseismic design of eccentric structure using response spectrum

    International Nuclear Information System (INIS)

    Takemori, T.; Kuwabara, Y.; Suwabe, A.; Mitsunobu, S.

    1977-01-01

    In this paper, the response are evaluated by the following two methods by the use of the typical torsional analytical models in which masses, rigidities, eccentricities between the centers thereof and several actual earthquake waves are taken as the parameters: (1) the root mean square of responses by using the response spectra derived from the earthquake waves, (2) the time history analysis by using the earthquake wave. The earthquake waves used are chosen to present the different frequency content and magnitude of the response spectra. The typical results derived from the study are as follows: (a) the response accelerations of mass center in the input earthquake direction by the (1) method coincide comparatively well with those by the (2) method, (b) the response accelerations perpendicular to the input earthquake direction by (1) method are 2 to 3 times as much as those by the (2) method, (c) the amplification of the response accelerations at arbitrary points distributed on the spread mass to those of center of the lumped mass by the (1) method are remarkably large compared with those by the (2) method in both directions respectively. These problems on the response spectrum analysis for the above-mentioned eccentric structure are discussed, and an improved analytical method applying the amplification coefficients of responses derived from this parametric time history analysis is proposed to the actual seismic design by the using of the given design ground response spectrum with root mean square technique

  9. Seriacion: Un Procedimiento De Aprendizaje (Seriation: A Learning Procedure.)

    Science.gov (United States)

    Mejia, Mercedes; And Others

    The development and application of a learning procedure for the seriation structure of children in the oscilatory state are described. The procedure was based on the structural genetic theory of learning. A study consisting of design and verification stages was carried out in Cali, Colombia. In the design stage six seriation treatments involving…

  10. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  11. Automatic differentiation for design sensitivity analysis of structural systems using multiple processors

    Science.gov (United States)

    Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi

    1994-01-01

    An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.

  12. 40 CFR 240.205-2 - Recommended procedures: Design.

    Science.gov (United States)

    2010-07-01

    ... air pollution control technology. (b) All emissions, including dust from vents, should be controlled. ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Design. 240.205-2 Section 240.205-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  13. A surrogate based multistage-multilevel optimization procedure for multidisciplinary design optimization

    NARCIS (Netherlands)

    Yao, W.; Chen, X.; Ouyang, Q.; Van Tooren, M.

    2011-01-01

    Optimization procedure is one of the key techniques to address the computational and organizational complexities of multidisciplinary design optimization (MDO). Motivated by the idea of synthetically exploiting the advantage of multiple existing optimization procedures and meanwhile complying with

  14. Development of design procedures for fast reactors in the United Kingdom

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.; Townley, C.H.A.

    1989-01-01

    A considerable amount of research has been carried out in the United Kingdom during the past two decades to quantify the factors which control the integrity of structural components. The work which has been aimed at understanding the performance of structures at high temperature, is particularly relevant to the Fast Reactor. At the same time, because of the need to demonstrate the tolerance to defects in the low temperature as well as the high temperature components, defect assessment criteria are also of great importance. Emphasis is now being given to the development of design procedures specifically for Fast Reactors, making use of the research so far completed. The United Kingdom proposals are being integrated with those from France, Federal Republic of Germany and Italy as part of the European collaborative venture. The paper outlines the major developments which are currently in hand, and brings up to date the review of United Kingdom activities presented at Tokyo in 1986. (author)

  15. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  16. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  17. Revised guideline for the approval procedure of package designs in Germany

    International Nuclear Information System (INIS)

    Nitsche, F.; Roedel, R.

    2004-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material, TS-R-1 are applied in Germany through the implementation of the Dangerous Goods Transport Regulations for class 7 of the International Modal Organisations (ADR, RID, IMDG-Code, ICAO-TI). Based on this the approval procedures for packages designs applied in Germany are in compliance with the provisions of TS-R-1. The Guideline R 003 issued by the Ministry of Transport, Building and Housing (BMVBW) in 1991 is the basis for the package design approval procedures in Germany. This Guideline has been reviewed and revised to reflect latest developments in the regulations as well as in the regulatory practice. In particular it has been extended to the approval procedures of Type C packages, packages subject to transitional arrangements, special form and low dispersible radioactive material and provides more detailed information to the applicant about the requested documentation. Publication of this revised guideline has been delayed but it is expected to take place in October 2004. The paper gives an overview about the main parts and provisions of this revised Guideline R 003 with the focus on package design approval procedures

  18. Design summary of the magnet support structures for the proton storage ring injection line upgrade

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Ledford, J.E.; Smith, B.G.

    1997-05-01

    This report summarizes the technical engineering and design issues associated with the Proton Storage Ring (PSR) Injection Line upgrade of the Los Alamos Neutron Science Center (LANSCE). The main focus is on the engineering design calculations of several magnet support structures. The general procedure based upon a set number of design criteria is outlined, followed by a case-by-case summary of the engineering design analyses, reutilization or fabrication callouts and design safety factors

  19. A rational evaluation of structural design loads

    International Nuclear Information System (INIS)

    Tasaka, S.

    1993-01-01

    -consistent n-year 2nd PGA at each site such that the conditional reliability index is equal to a given value of the target reliability index, and (b) Determine a possible design level of the n-year 2nd PGA at each site by using statistical properties of the annual 1st and 2nd PGA's together with those of the n-year 2nd PGA. Note that the conditional reliability index is implied here by the reliability index defined by the above-mentioned conditional statistical moments. An illustration of the present procedure for obtaining the design PGA for a given target reliability index is shown, and the result is compared with that obtained by the conventional way. Determination of the design PGA may enable estimation of the probability of failure by fragility analysis of NPP structures and structural components designed by LRFD method

  20. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  1. Investigation of Deterioration Behavior of Hysteretic Loops in Nonlinear Static Procedure Analysis of Concrete Structures with Shear Walls

    International Nuclear Information System (INIS)

    Ghodrati Amiri, G.; Amidi, S.; Khorasani, M.

    2008-01-01

    In the recent years, scientists developed the seismic rehabilitation of structures and their view points were changed from sufficient strength to the performance of structures (Performance Base Design) to prepare a safe design. Nonlinear Static Procedure analysis (NSP) or pushover analysis is a new method that is chosen for its speed and simplicity in calculations. 'Seismic Rehabilitation Code for Existing Buildings' and FEMA 356 considered this method. Result of this analysis is a target displacement that is the base of the performance and rehabilitation procedure of the structures. Exact recognition of that displacement could develop the workability of pushover analysis. In these days, Nonlinear Dynamic Analysis (NDP) is only method can exactly apply the seismic ground motions. In this case because it consumes time, costs very high and is more difficult than other methods, is not applicable as much as NSP. A coefficient used in NSP for determining the target displacement is C2 (Stiffness and Strength Degradations Coefficient) and is applicable for correcting the errors due to eliminating the stiffness and strength degradations in hysteretic loops. In this study it has been tried to analysis three concrete frames with shear walls by several accelerations that scaled according to FEMA 273 and FEMA 356. These structures were designed with Iranian 2800 standard (vers.3). Finally after the analyzing by pushover method and comparison results with dynamic analysis, calculated C2 was comprised with values in rehabilitation codes

  2. A procedure for multi-objective optimization of tire design parameters

    OpenAIRE

    Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović

    2015-01-01

    The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...

  3. Some aspects of the reliability-based design of reactor containment structures

    International Nuclear Information System (INIS)

    Schueller, G.I.

    1975-01-01

    It is generally recognized that the load which a structure is likely to experience during its design life as well as its resistance are to be represented by random variables. A rational design procedure for reactor containment structures can therefore only be carried out within a probabilistic framework. Internal load conditions caused by system failure such as loss-of-coolant accident, pressure loads etc., and external load conditions caused for instance by impact due to aircraft crashes, external pressure waves and natural hazards such as earthquakes, floods, hurricanes are described by extreme value distributions of the Fisher-Tippett types. Statistical and physical arguments are given to support their application. The occurrence of these rare events with respect to time is modeled by a Poisson process. The yield strength of the containment structure for both steel (liner) and reinforced concrete shells is also modeled by extreme value distributions (of the smallest values). The failure criterion considered here is that of collapse determined by plastic yieldline formation. A failure mechanism as considered here describes a particular regime of plastic line formation. The probability of failure of a structure under a single load application of load types likely to occur during the design life of the structure is to be determined by integrating over all possible mechanisms. Finally Freudenthal's reliability function is utilized to combine the information derived above so that a containment design for given design lifes and reliabilities is possible. (orig.) [de

  4. Proposed design procedure for transmission shafting under fatigue loading

    Science.gov (United States)

    Loewenthal, S. H.

    1978-01-01

    The B106 American National Standards Committee is currently preparing a new standard for the design of transmission shafting. A design procedure, proposed for use in the new standard, for computing the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.

  5. Revised MITG design, fabrication procedure, and performance predictions

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, analysis, and key features of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, testing, and post-test analysis of test assemblies simulating prototypical MITG modules were described in preceding papers in these proceedings. These analyses succeeded in identifying and explaining the principal causes of thermal-stress problems encountered in the tests, and in confirming the effectiveness of design changes for alleviating them. The present paper presents additional design improvements for solving these and other problems, and describes new thermoelectric material properties generated by independent laboratories over the past two years. Based on these changes and on a revised fabrication procedure, it presents a reoptimization of the MITG design and computes the power-to-weight ratio for the revised design. That ratio is appreciably lower than the 1981 prediction, primarily because of changes in material properties; but it is still much higher than the specific power of current-generation RTGs

  6. Influence of the Soil-Structure Interaction on the Design of Steel-Braced Building Foundation

    International Nuclear Information System (INIS)

    Azarbakht, Alireza; Ashtiany, Mohsen Ghafory

    2008-01-01

    The modeling and analysis of the superstructure and the foundation for the seismic lateral loads are traditionally done separately. This assumption is an important issue in the design/rehabilitate procedures especially for the short period structures, i.e. steel braced or shear wall systems, which may result to a conservative design. By using more advance procedures, i.e. nonlinear static method, and the incorporation of the soil-structure interaction (SSI), the seismic demand in the lateral resisting system decreases and the design will become more economic. This paper includes an investigation about the influence of the SSI effect on the design of the steel-braced building foundation. The presented example is a three-bay three-storey steel braced frame. Three design methods based on the FEMA 356 guideline and the UBC 97 code are taken in to consideration. The three methods are: (1) linear static analysis based on the UBC 97 code assuming the fixed based condition; (2) linear static analysis based on the FEMA 356 guideline assuming the fixed based condition; and (3) nonlinear static analysis assuming both fixed and flexible based assumptions. The results show that the influence of the SSI on the input demand of the short period building foundations is significant and the foundation design based on the linear static method with the fixed base assumption is so conservative. A simple method is proposed to take the SSI effect in to consideration in the linear static procedure with the fixed base assumption, which is a common method for the engineers. The advantage of this proposed method is the simplicity and the applicability for the engineering purposes

  7. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  8. Simplified design of flexible expansion anchored plates for nuclear structures

    International Nuclear Information System (INIS)

    Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)

    1984-01-01

    In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions

  9. Design considerations and data for gas-insulated high voltage structures

    International Nuclear Information System (INIS)

    Hopkins, D.B.

    1975-11-01

    This paper is intended to benefit the person faced with the occasional task of designing gas insulated high-voltage structures or spark gaps and who must decide upon the proper geometry, spacings, gas type, and pressure for reliable voltage-holding. An approach is presented along with a summary of how various factors affect voltage breakdown. The design procedures described apply to situations where the influence of nearby insulators is negligible. The accuracy of the data is estimated to be within 10 to 15 percent, a value usually attained in practice only when one follows the cautionary advice discussed in the paragraphs on materials preparation, gas properties, and conditioning

  10. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  11. Recent advances in design procedures for high temperature plant

    International Nuclear Information System (INIS)

    1988-01-01

    Thirteen papers cover several aspects of design for high temperature plant. These include design codes, computerized structural analysis and mechanical properties of materials at high temperatures. Seven papers are relevant for fast reactors and these are indexed separately. These cover shakedown design, design codes for thin shells subjected to cyclic thermal loading, the inelastic behaviour of stainless steels and creep and crack propagation in reactor structures under stresses caused by thermal cycling loading. (author)

  12. Design optimization and uncertainty analysis of SMA morphing structures

    International Nuclear Information System (INIS)

    Oehler, S D; Hartl, D J; Lopez, R; Malak, R J; Lagoudas, D C

    2012-01-01

    The continuing implementation of shape memory alloys (SMAs) as lightweight solid-state actuators in morphing structures has now motivated research into finding optimized designs for use in aerospace control systems. This work proposes methods that use iterative analysis techniques to determine optimized designs for morphing aerostructures and consider the impact of uncertainty in model variables on the solution. A combination of commercially available and custom coded tools is utilized. ModelCenter, a suite of optimization algorithms and simulation process management tools, is coupled with the Abaqus finite element analysis suite and a custom SMA constitutive model to assess morphing structure designs in an automated fashion. The chosen case study involves determining the optimized configuration of a morphing aerostructure assembly that includes SMA flexures. This is accomplished by altering design inputs representing the placement of active components to minimize a specified cost function. An uncertainty analysis is also conducted using design of experiment methods to determine the sensitivity of the solution to a set of uncertainty variables. This second study demonstrates the effective use of Monte Carlo techniques to simulate the variance of model variables representing the inherent uncertainty in component fabrication processes. This paper outlines the modeling tools used to execute each case study, details the procedures for constructing the optimization problem and uncertainty analysis, and highlights the results from both studies. (paper)

  13. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  14. PGSFR Core Thermal Design Procedure to Evaluate the Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Kim, Sang-Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Korea Atomic Energy Research Institute (KAERI) has performed a SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal design is to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damage in SFR subassemblies arises from a creep induced failure. The creep limit is evaluated based on the maximum cladding temperature, power, neutron flux, and uncertainties in the design parameters, as shown in Fig. 1. In this work, the core thermal design procedures are compared to verify the present PGSFR methodology based on the nuclear plant design criteria/guidelines and previous SFR thermal design methods. The PGSFR core thermal design procedure is verified based on the nuclear plant design criteria/guidelines and previous methods in LWRs and SFRs. The present method aims to directly evaluate the fuel cladding failure and to assure more safety margin. The 2 uncertainty is similar to 95% one-side tolerance limit of 1.96 in LWRs. The HCFs, ITDP, and MCM reveal similar uncertainty propagation for cladding midwall temperature for typical SFR conditions. The present HCFs are mainly employed from the CRBR except the fuel-related uncertainty such as an incorrect fuel distribution. Preliminary PGSFR specific HCFs will be developed by the end of 2015.

  15. Automated procedures for sizing aerospace vehicle structures /SAVES/

    Science.gov (United States)

    Giles, G. L.; Blackburn, C. L.; Dixon, S. C.

    1972-01-01

    Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.

  16. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  17. DECA -- The design change assistant: An application of expert systems concepts to procedure automation

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1993-01-01

    Proceduralized engineering reviews required for nuclear power stations result in significant O ampersand M cost's. A method of streamlining procedural reviews (while improving their quality) is to computerize the procedures and associated checklists. DECA, the Design Change Assistant, is an expert system based program that is specifically designed for computerizing procedures. This program improves the effectiveness of engineers in performing engineering design reviews. DECA is a development shell, which allows the computerization of most types of engineering reviews. In addition to computerizing the decision making process, DECA makes it possible to call on electronic information, such as databases or text files, and makes them available to the user to assist in a review. DECA clearly demonstrates the benefits that can accrue by applying expert system technologies to engineering reviews. It results in the following: a well defined process, reduced user training in the use of procedures, improved quality of reviews, a streamlining of the review process through elimination of questions that are not applicable, and high quality documentation of reviews. DECA has been successfully applied to Commonwealth Edison's engineering design review checklists, and is currently in use by Commonwealth Edison

  18. 6 CFR 25.6 - Procedures for designation of qualified anti-terrorism technologies.

    Science.gov (United States)

    2010-01-01

    ...-terrorism technologies. 25.6 Section 25.6 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY REGULATIONS TO SUPPORT ANTI-TERRORISM BY FOSTERING EFFECTIVE TECHNOLOGIES § 25.6 Procedures for designation of qualified anti-terrorism technologies. (a) Application Procedure. Any person, firm or other...

  19. Retrofit of heat exchanger networks considering pressure drop and existing structure: a new targeting procedure

    International Nuclear Information System (INIS)

    PanjehShahi, M.H.; Nouzari, M.M.

    2002-01-01

    A new retrofit targeting procedure, based on pinch technology has been developed. The procedure considers existing structure and hydrodynamic system of a given network as two main constraint during targeting. The procedure uses a linear programming model to consider existing structure. The model finds a network structure that has maximum compatibility with existing structure. Furthermore, the procedure using the pressure drop equations, can consider decreasing the film coefficients of streams due to increasing network area. Good compatibility between old and new networks and non replacement of hydrodynamic equipment cause to the best use of capital in retrofit projects. The procedure has been checked by doing two case studies, in which the results compared to the established methods, and realized significant improvement

  20. Aerospace structural design process improvement using systematic evolutionary structural modeling

    Science.gov (United States)

    Taylor, Robert Michael

    2000-10-01

    A multidisciplinary team tasked with an aircraft design problem must understand the problem requirements and metrics to produce a successful design. This understanding entails not only knowledge of what these requirements and metrics are, but also how they interact, which are most important (to the customer as well as to aircraft performance), and who in the organization can provide pertinent knowledge for each. In recent years, product development researchers and organizations have developed and successfully applied a variety of tools such as Quality Function Deployment (QFD) to coordinate multidisciplinary team members. The effectiveness of these methods, however, depends on the quality and fidelity of the information that team members can input. In conceptual aircraft design, structural information is of lower quality compared to aerodynamics or performance because it is based on experience rather than theory. This dissertation shows how advanced structural design tools can be used in a multidisciplinary team setting to improve structural information generation and communication through a systematic evolution of structural detail. When applied to conceptual design, finite element-based structural design tools elevate structural information to the same level as other computationally supported disciplines. This improved ability to generate and communicate structural information enables a design team to better identify and meet structural design requirements, consider producibility issues earlier, and evaluate structural concepts. A design process experiment of a wing structural layout in collaboration with an industrial partner illustrates and validates the approach.

  1. Assessment of soil/structure interaction analysis procedures for nuclear power plant structures

    International Nuclear Information System (INIS)

    Young, G.A.; Wei, B.C.

    1977-01-01

    The paper presents an assessment of two state-of-the-art soil/structure interaction analysis procedures that are frequently used to provide seismic analyses of nuclear power plant structures. The advantages of large three-dimensional, elastic, discrete mass models and two-dimensional finite element models are compared. The discrete mass models can provide three-dimensional response capability with economical computer costs but only fair soil/structure interaction representation. The two-dimensional finite element models provide good soil/structure interaction representation, but cannot provide out-of-plane response. Three-dimensional finite element models would provide the most informative and complete analyses. For this model, computer costs would be much greater, but modeling costs would be approximately the same as those required for three-dimensional discrete mass models

  2. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    Science.gov (United States)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  3. 46 CFR 177.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Structural design. 177.300 Section 177.300 Shipping...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below...

  4. A Systematic Procedure for the Generation of Cost-Minimized Designs

    DEFF Research Database (Denmark)

    Becker, Peter W.; Jarkler, Bjorn

    1972-01-01

    We present a procedure for the generation of cost-minimized designs of circuits and systems. Suppose a designer has decided upon the topology of his product. Also suppose he knows the cost and quality of the different grades of the N components required to implement the product. The designer...... then faces the following problem: How should he proceed to find the combination of grades that will give him the desired manufacturing yield at minimum product cost? We discuss the problem and suggest a policy by which the designer, with a reasonable computational effort, can find a set of ``good...

  5. 46 CFR 116.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Structural design. 116.300 Section 116.300 Shipping... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below for the hull material of...

  6. Hydro-structural issues in the design of ultra large container ships

    Directory of Open Access Journals (Sweden)

    Sime Malenica

    2014-12-01

    Full Text Available The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m which leads to the lower structural natural frequencies, very large operational speed (20 knots and large bow flare (increased slamming loads. The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

  7. Optimal design of structures with multiple design variables per group and multiple loading conditions on the personal computer

    Science.gov (United States)

    Nguyen, D. T.; Rogers, J. L., Jr.

    1986-01-01

    A finite element based programming system for minimum weight design of a truss-type structure subjected to displacement, stress, and lower and upper bounds on design variables is presented. The programming system consists of a number of independent processors, each performing a specific task. These processors, however, are interfaced through a well-organized data base, thus making the tasks of modifying, updating, or expanding the programming system much easier in a friendly environment provided by many inexpensive personal computers. The proposed software can be viewed as an important step in achieving a 'dummy' finite element for optimization. The programming system has been implemented on both large and small computers (such as VAX, CYBER, IBM-PC, and APPLE) although the focus is on the latter. Examples are presented to demonstrate the capabilities of the code. The present programming system can be used stand-alone or as part of the multilevel decomposition procedure to obtain optimum design for very large scale structural systems. Furthermore, other related research areas such as developing optimization algorithms (or in the larger level: a structural synthesis program) for future trends in using parallel computers may also benefit from this study.

  8. Controller tuning with evolutionary multiobjective optimization a holistic multiobjective optimization design procedure

    CERN Document Server

    Reynoso Meza, Gilberto; Sanchis Saez, Javier; Herrero Durá, Juan Manuel

    2017-01-01

    This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.

  9. Judicial problems in connection with preliminary decision and construction design approval in nuclear licensing procedures

    International Nuclear Information System (INIS)

    Schmieder, K.

    1977-01-01

    Standardization in nuclear engineering makes two demands on a legal instrument which is to make this standardization possible and which is to promote standardization in the nuclear licensing practice: On the basis of just one licence for a constructional part or a component, its applicability in any number of subsequent facility licensing procedures has to be warranted, and by virtue of its binding effect, standardization has to create a sufficiently big confidence protection with manufacturers, constructioneers and operators to offer sufficiently effective incentives for standardization. The nuclear preliminary decision pursuant to section 7 a of the Atomic Energy Act in the form of the component preliminary decision appears to be unsuitable as a legal instrument for standardization, as the preliminary decision refers exclusively to the construction of a concrete facility. For standardization in reactor engineering, the construction design approval appears to be basically the proper legal instrument on account of its legal structure as well as its economic effect. Its binding effect encouters a limitation with regard to third parties in so far that this limitation could question again the binding effect in a subsequent site-dependent nuclear licence procedure. The legal structure of the extent of the binding effect, which is decisive for the suitability of the construction design approval, lies with the legislator. The following questions have to be regulated: Ought the applicant to have a legal claim on the granting of a construction design approval, or ought it to be at the discretion of the authorities, and secondly, the extent of the binding effect in terms of time on the basis of the fixation of a time limit, or on the basis of the possibility of subsequent conditions to be imposed, or the revocation. (orig./HP) [de

  10. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  11. Assembly tool design

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Nakahira, Masataka; Ohkawa, Yoshinao; Tada, Eisuke; Seki, Masahiro

    1996-06-01

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  12. Model reduction in integrated controls-structures design

    Science.gov (United States)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  13. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  14. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    Science.gov (United States)

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-08-01

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  15. Rules and procedures for the design and operation of hazardous research equipment

    International Nuclear Information System (INIS)

    1978-12-01

    The manual has been prepared for use by research personnel involved in experiments at the Lawrence Berkeley Laboratory. It contains rules and procedures for the design, test, installation, and operation of hazardous research equipment. Sect. I contains such information as responsibility of experimenters for safety, descriptions of the various Laboratory safety organizations, and enumeration of various services available to experimenters at the Laboratory. Sect. II describes specific rules for the setup and operation of experimental equipment at the Laboratory. Sect. III gives detailed design criteria and procedures for equipment frequently encountered in the high energy physics laboratory

  16. A Scrutiny of the Equivalent Static Lateral Load Method of Design for Multistory Masonry Structures

    International Nuclear Information System (INIS)

    Touqan, A. R.; Helou, S. H.

    2008-01-01

    Building structures with a soft storey are gaining widespread popularity in urban areas due to the scarcity of land and due to the pressing need for wide open spaces at the entrance level. In earthquake prone zones dynamic analysis based on the Equivalent Static Lateral Load method is attractive to the novice and the design codes leave the choice of the analysis procedure up to the discretion of the designer. The following is a comparison of the said method with the more elaborate Response Spectrum Method of analysis as they apply to a repertoire of different structural models. The results clearly show that the former provides similar results of response in structures with gradual change in storey stiffness; while it is over conservative for a bare frame structure. It is however less conservative for structures with a soft storey

  17. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  18. Application of a Monte Carlo procedure for probabilistic fatigue design of floating offshore wind turbines

    Directory of Open Access Journals (Sweden)

    K. Müller

    2018-03-01

    Full Text Available Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based sampling procedures provide a more realistic approach to deal with the large variation in the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte Carlo integration, using subsets of a resulting total of 16 200 coupled time–domain simulations performed with the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e., wind speed, wave height and wave period are determined based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and the impact of outliers (i.e., values far away from the mean. Recommendations for the implementation of the proposed methodology in the design process are also provided.

  19. Finite element design procedure for correcting the coining die profiles

    Science.gov (United States)

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  20. A task based design procedure and modelling approached for industrial crystallization processes

    NARCIS (Netherlands)

    Menon, A.R.

    2006-01-01

    A synthesis-based approach to the design of crystallizers and industrial crystallization processes is introduced in this thesis. An ontology for a task-based design procedure has been developed which breaks the crystallization process into a subset of basic functions (physical tasks) which transform

  1. Criteria procedure development for tender in construction design

    Directory of Open Access Journals (Sweden)

    Malykha Galina Gennad’evna

    Full Text Available This article deals with the problem of criteria optimization in order to objectively evaluate the experience of an applicant (a project organization and the quality of a design product (project documentation. The methodology to be developed is based on introduction of new evaluation criteria (sub-criteria that in conjunction with the applicable criteria specified by the Law on the Contract System will allow developing the optimal procedure to evaluate competitive bids of the participants in tenders and determining the most appropriate candidate, with whom the contract will be further concluded. The article analyzes the existing criteria and their interaction with each other and describes the specifics of tenders for design in the form of open competition. The list decreases to three criteria, such as "contract price", "quality, functional and environmental characteristics of a procurement facility", "qualification of procurement participants, including availability of financial resources, equipment and other material resources necessary for the execution of the contract material resources, the presence of goodwill, professionals and other employees of a certain experience level". However, in order to upgrade the quality of assurance procedures for the design works to be performed, it was decided to apply new evaluation criteria (sub-criteria components, such as "availability of positive findings of the state out-of-departmental examination that are similar to the subject of competition, on a participant in placement of order", "availability of the certificate on approval of architectural and urban planning decisions that are similar to the subject of competition, on a participant in placement of order", "availability of the permit for the commissioning of facilities that are similar to the subject of competition, on a participant in placement of order", "availability of the contract for designer's supervision with a participant in placement of

  2. Procedures manual for the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1987-10-01

    This manual is a collection of various notes, memoranda and instructions on procedures for the evaluation of data in the Evaluated Nuclear Structure Data File (ENSDF). They were distributed at different times over the past few years to the evaluators of nuclear structure data and some of them were not readily avaialble. Hence, they have been collected in this manual for ease of reference by the evaluators of the international Nuclear Structure and Decay Data (NSDD) network contribute mass-chains to the ENSDF. Some new articles were written specifically for this manual and others are reivsions of earlier versions

  3. Prestressed concrete nuclear reactor containment structures. Revision 3

    International Nuclear Information System (INIS)

    Reuter, H.R.; Chang-Lo, P.L.C.; Pfeifer, B.W.; Shah, G.H.; Whitcraft, J.S.

    1975-02-01

    A discussion of the techniques and procedures used for the design of prestressed concrete nuclear reactor containment structures is presented. A physical description of Bechtel designed containment structures is presented. The design bases and load combinations are given for anticipated conditions of service. Reference design documents which include industry codes, specifications, AEC Regulatory Guides, Bechtel Topical Reports and additional criteria as appropriate to containment design are listed. Stepwise procedures typically followed by Bechtel for design of containments is discussed and design examples are presented. A description of currently used analytical methods and the practical application of these methods for containment design is also presented. The principal containment construction materials are identified and codes of practice pertaining to construction procedures are listed. Preoperational structural testing procedures and post-operational surveillance programs are furnished along with results of tests on completed containment structures. (U.S.)

  4. Increasing spelling achievement: an analysis of treatment procedures utilizing an alternating treatments design.

    OpenAIRE

    Ollendick, T H; Matson, J L; Esveldt-Dawson, K; Shapiro, E S

    1980-01-01

    Two studies which examine the effectiveness of spelling remediation procedures are reported. In both studies, an alternating treatment design was employed. In the first study, positive practice overcorrection plus positive reinforcement was compared to positive practice alone and a no-remediation control condition. In the second study, positive practice plus positive reinforcement was compared to a traditional corrective procedure plus positive reinforcement and a traditional procedure when u...

  5. Structural design of Kaohsiung Stadium, Taiwan

    Science.gov (United States)

    Watanabe, Hideyuki; Tanno, Yoshiro; Nakai, Masayoshi; Ohshima, Takashi; Suguichi, Akihiro; Lee, William H.; Wang, Jensen

    2013-01-01

    This paper presents an outline description of the structural design of the main stadium for the World Games held in Kaohsiung City, Taiwan, in 2009. Three new design concepts, unseen in previous stadiums, were proposed and realized: “an open stadium”, “an urban park”, and “a spiral continuous form”. Based on the open stadium concept, simple cantilever trusses in the roof structure were arranged in a delicate rhythm, and a so-called oscillating hoop of steel tubes was wound around the top and bottom surfaces of a group of cantilever trusses to form a continuous spiral form. Also, at the same time by clearly grouping the structural elements of the roof structure, the dramatic effect of the urban park was highlighted by unifying the landscape and the spectator seating area to form the stadium facade. This paper specifically reports on the overview of the building, concepts of structural design, structural analysis of the roof, roof design, foundation design, and an outline of the construction.

  6. Design and analysis of composite structures with applications to aerospace structures

    CERN Document Server

    Kassapoglou, Christos

    2010-01-01

    Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from ac

  7. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Science.gov (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  8. Using mixed methods effectively in prevention science: designs, procedures, and examples.

    Science.gov (United States)

    Zhang, Wanqing; Watanabe-Galloway, Shinobu

    2014-10-01

    There is growing interest in using a combination of quantitative and qualitative methods to generate evidence about the effectiveness of health prevention, services, and intervention programs. With the emerging importance of mixed methods research across the social and health sciences, there has been an increased recognition of the value of using mixed methods for addressing research questions in different disciplines. We illustrate the mixed methods approach in prevention research, showing design procedures used in several published research articles. In this paper, we focused on two commonly used mixed methods designs: concurrent and sequential mixed methods designs. We discuss the types of mixed methods designs, the reasons for, and advantages of using a particular type of design, and the procedures of qualitative and quantitative data collection and integration. The studies reviewed in this paper show that the essence of qualitative research is to explore complex dynamic phenomena in prevention science, and the advantage of using mixed methods is that quantitative data can yield generalizable results and qualitative data can provide extensive insights. However, the emphasis of methodological rigor in a mixed methods application also requires considerable expertise in both qualitative and quantitative methods. Besides the necessary skills and effective interdisciplinary collaboration, this combined approach also requires an open-mindedness and reflection from the involved researchers.

  9. Model of Procedure Usage – Results from a Qualitative Study to Inform Design of Computer-Based Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Johanna H Oxstrand; Katya L Le Blanc

    2012-07-01

    The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use performance, researchers, together with the nuclear industry, have been looking at replacing the current paper-based procedures with computer-based procedure systems. The concept of computer-based procedures is not new by any means; however most research has focused on procedures used in the main control room. Procedures reviewed in these efforts are mainly emergency operating procedures and normal operating procedures. Based on lessons learned for these previous efforts we are now exploring a more unknown application for computer based procedures - field procedures, i.e. procedures used by nuclear equipment operators and maintenance technicians. The Idaho National Laboratory, the Institute for Energy Technology, and participants from the U.S. commercial nuclear industry are collaborating in an applied research effort with the objective of developing requirements and specifications for a computer-based procedure system to be used by field operators. The goal is to identify the types of human errors that can be mitigated by using computer-based procedures and how to best design the computer-based procedures to do this. The underlying philosophy in the research effort is “Stop – Start – Continue”, i.e. what features from the use of paper-based procedures should we not incorporate (Stop), what should we keep (Continue), and what new features or work processes should be added (Start). One step in identifying the Stop – Start – Continue was to conduct a baseline study where affordances related to the current usage of paper-based procedures were identified. The purpose of the study was to develop a model of paper based procedure use which will help to identify desirable features for computer based procedure prototypes. Affordances such as note taking, markups

  10. An automated procedure for covariation-based detection of RNA structure

    International Nuclear Information System (INIS)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs

  11. An automated procedure for covariation-based detection of RNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs.

  12. Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.

    Science.gov (United States)

    G.R. Johnson; J.N. King

    1998-01-01

    Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...

  13. Fixed structure feedforward controller design exploiting iterative trials: application to a wafer stage and a desktop printer

    NARCIS (Netherlands)

    Meulen, van der S.H.; Tousain, R.L.; Bosgra, O.H.

    2008-01-01

    In this paper, the feedforward controller design problem for high-precision electromechanical servo systems that execute finite time tasks is addressed. The presented procedure combines the selection of the fixed structure of the feedforward controller and the optimization of the controller

  14. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  15. Design-related influencing factors of the computerized procedure system for inclusion into human reliability analysis of the advanced control room

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Lee, Seung Jun; Jang, Seung Cheol; Ahn, Kwang-Il; Shin, Yeong Cheol

    2013-01-01

    This paper presents major design factors of the computerized procedure system (CPS) by task characteristics/requirements, with individual relative weight evaluated by the analytic hierarchy process (AHP) technique, for inclusion into human reliability analysis (HRA) of the advanced control rooms. Task characteristics/requirements of an individual procedural step are classified into four categories according to the dynamic characteristics of an emergency situation: (1) a single-static step, (2) a single-dynamic and single-checking step, (3) a single-dynamic and continuous-monitoring step, and (4) a multiple-dynamic and continuous-monitoring step. According to the importance ranking evaluation by the AHP technique, ‘clearness of the instruction for taking action’, ‘clearness of the instruction and its structure for rule interpretation’, and ‘adequate provision of requisite information’ were rated as of being higher importance for all the task classifications. Importance of ‘adequacy of the monitoring function’ and ‘adequacy of representation of the dynamic link or relationship between procedural steps’ is dependent upon task characteristics. The result of the present study gives a valuable insight on which design factors of the CPS should be incorporated, with relative importance or weight between design factors, into HRA of the advanced control rooms. (author)

  16. Contribution of the ergonomic analysis to the improvement of the design of operating procedures in nuclear power plants

    International Nuclear Information System (INIS)

    Dien, Y.; Montmayeul, R.

    1992-11-01

    The design of operating procedures for continuous processes is much too often based on implicit assumptions both concerning the operators and the operating conditions that must be dealt with. The merit of the ergonomic approach to the design of procedures is to take account of the way the various operators actually use operating procedures. The actual use is determined from the analysis of on-site operation (normal and incident operating conditions) and the analysis of full-scale simulators tests (incident operating conditions). The introduction of the ergonomic approach in the procedure design results in new design principles being proposed

  17. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  18. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    Science.gov (United States)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  19. SUPPORTING THE INDUSTRY BY DEVELOPING A DESIGN GUIDANCE FOR COMPUTER-BASED PROCEDURES FOR FIELD WORKERS

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna; LeBlanc, Katya

    2017-06-01

    The paper-based procedures currently used for nearly all activities in the commercial nuclear power industry have a long history of ensuring safe operation of the plants. However, there is potential to greatly increase efficiency and safety by improving how the human interacts with the procedures, which can be achieved through the use of computer-based procedures (CBPs). A CBP system offers a vast variety of improvements, such as context driven job aids, integrated human performance tools and dynamic step presentation. As a step toward the goal of improving procedure use performance, the U.S. Department of Energy Light Water Reactor Sustainability Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with CBPs. The main purpose of the CBP research conducted at the Idaho National Laboratory was to provide design guidance to the nuclear industry to be used by both utilities and vendors. After studying existing design guidance for CBP systems, the researchers concluded that the majority of the existing guidance is intended for control room CBP systems, and does not necessarily address the challenges of designing CBP systems for instructions carried out in the field. Further, the guidance is often presented on a high level, which leaves the designer to interpret what is meant by the guidance and how to specifically implement it. The authors developed a design guidance to provide guidance specifically tailored to instructions that are carried out in the field based.

  20. The Analytical Pragmatic Structure of Procedural Due Process: A Framework for Inquiry in Administrative Decision Making.

    Science.gov (United States)

    Fisher, James E.; Sealey, Ronald W.

    The study describes the analytical pragmatic structure of concepts and applies this structure to the legal concept of procedural due process. This structure consists of form, purpose, content, and function. The study conclusions indicate that the structure of the concept of procedural due process, or any legal concept, is not the same as the…

  1. The use of flow models for design of plant operating procedures

    International Nuclear Information System (INIS)

    Lind, M.

    1982-03-01

    The report describe a systematic approach to the design of operating procedures or sequence automatics for process plant control. It is shown how flow models representing the topology of mass and energy flows on different levels of function provide plant information which is important for the considered design problem. The modelling methodology leads to the definition of three categories of control tasks. Two tasks relate to the regulation and control of changes of levels and flows of mass and energy in a system within a defined mode of operation. The third type relate to the control actions necessary for switching operations involved in changes of operating mode. These control tasks are identified for a given plant as part of the flow modelling activity. It is discussed how the flow model deal with the problem of assigning control task precedence in time eg. during start-up or shut-down operations. The method may be a basis for providing automated procedure support to the operator in unforeseen situations or may be a tool for control design. (auth.)

  2. Development of mechanical structure design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang [and others

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme.

  3. Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme

  4. Hybrid Tower, Designing Soft Structures

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders

    2015-01-01

    and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....

  5. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Science.gov (United States)

    2010-04-01

    ... piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell concrete... shown in Figure A to this section. (3) The concrete blocks must be stacked with their hollow cells... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Design procedures for concrete...

  6. Static and dynamic buckling of large thin shells. (Design procedure, computation tools. Physical understanding of the mechanisms)

    International Nuclear Information System (INIS)

    Combescure, A.

    1986-04-01

    During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads [fr

  7. Problems and their solutions in practical application of Eurocodes in seismic design of RC structures

    Directory of Open Access Journals (Sweden)

    Milev Jordan

    2016-01-01

    Full Text Available The main purpose of the paper is to present practical application of Eurocodes in the field of RC structures design. The selected examples represent the main problems in practical application of Eurocodes for seismic analysis and design of RC Structures in Bulgarian construction practice. The analysis is focused on some structural and economic problems as well as on some contradictions in Eurocode 8 itself. Special attention is paid to the practical solution of the following problems: recognition of torsionally flexible systems, stiffness reduction of RC elements for linear analysis dimensions and detailing of confined boundary areas of shear walls, detailing of wall structures, etc. Those problems appear during the practical design of some buildings in Bulgaria. Several proposals for solving some problems defined in the paper are presented through some practical examples. Some conclusions are made for further application of Eurocode 8 in the design and construction practice. The importance of some rules and procedures in Eurocode 8 is supported by the examples of damaged RC members during the past earthquakes. The problems of Eurocode 8 and their solutions are illustrated through the experience of Bulgarian construction practice.

  8. Comparative design of structures concepts and methodologies

    CERN Document Server

    Lin, Shaopei

    2016-01-01

    This book presents comparative design as an approach to the conceptual design of structures. Primarily focusing on reasonable structural performance, sustainable development and architectural aesthetics, it features detailed studies of structural performance through the composition and de-composition of these elements for a variety of structures, such as high-rise buildings, long-span crossings and spatial structures. The latter part of the book addresses the theoretical basis and practical implementation of knowledge engineering in structural design, and a case-based fuzzy reasoning method is introduced to illustrate the concept and method of intelligent design. The book is intended for civil engineers, structural designers and architects, as well as senior undergraduate and graduate students in civil engineering and architecture. Shaopei Lin and Zhen Huang are both Professors at the Department of Civil Engineering, Shanghai Jiao Tong University, China.

  9. An investigation into the organisation and structural design of multi-computer process-control systems

    International Nuclear Information System (INIS)

    Gertenbach, W.P.

    1981-12-01

    A multi-computer system for the collection of data and control of distributed processes has been developed. The structure and organisation of this system, a study of the general theory of systems and of modularity was used as a basis for an investigation into the organisation and structured design of multi-computer process-control systems. A multi-dimensional model of multi-computer process-control systems was developed. In this model a strict separation was made between organisational properties of multi-computer process-control systems and implementation dependant properties. The model was based on the principles of hierarchical analysis and modularity. Several notions of hierarchy were found necessary to describe fully the organisation of multi-computer systems. A new concept, that of interconnection abstraction was identified. This concept is an extrapolation of implementation techniques in the hardware implementation area to the software implementation area. A synthesis procedure which relies heavily on the above described analysis of multi-computer process-control systems is proposed. The above mentioned model, and a set of performance factors which depend on a set of identified design criteria, were used to constrain the set of possible solutions to the multi-computer process-control system synthesis-procedure

  10. Configuration management and load monitoring procedures for nuclear plant structures

    International Nuclear Information System (INIS)

    Chu, S.L.; Skaczylo, A.T.

    1990-01-01

    This paper describes a computer-aided engineering tool called the Load Monitoring System (LMS) that was proven effective for monitoring floor framing, loads, and structural integrity. The system links structural analysis, design investigation, and reporting and automated drafting programs with a Data Base Management System (DBMS). It provides design engineers with a powerful tool for quickly incorporating, tracking, and assessing load revisions and determining effects on steel floor framing members and connections, thereby helping to reduce design man-hours, minimize the impact of structural modifications, and maintain and document the design baseline. The major benefit to utilities are the reduction in engineering costs, assistance with plant configuration management, and assurance of structural safety throughout the operating life of a nuclear plant and at evaluation for license renewal. (orig./HP)

  11. DEVELOPMENT OF METHODOLOGY FOR DESIGNING TESTABLE COMPONENT STRUCTURE OF DISCIPLINARY COMPETENCE

    Directory of Open Access Journals (Sweden)

    Vladimir I. Freyman

    2014-01-01

    Full Text Available The aim of the study is to present new methods of quality results assessment of the education corresponding to requirements of Federal State Educational Standards (FSES of the Third Generation developed for the higher school. The urgency of search of adequate tools for quality competency measurement and its elements formed in the course of experts’ preparation are specified. Methods. It is necessary to consider interference of competency components such as knowledge, abilities, possession in order to make procedures of assessment of students’ achievements within the limits of separate discipline or curriculum section more convenient, effective and exact. While modeling of component structure of the disciplinary competence the testable design of components is used; the approach borrowed from technical diagnostics. Results. The research outcomes include the definition and analysis of general iterative methodology for testable designing component structure of the disciplinary competence. Application of the proposed methodology is illustrated as the example of an abstract academic discipline with specified data and index of labour requirement. Methodology restrictions are noted; practical recommendations are given. Scientific novelty. Basic data and a detailed step-by-step implementation phase of the proposed common iterative approach to the development of disciplinary competence testable component structure are considered. Tests and diagnostic tables for different options of designing are proposed. Practical significance. The research findings can help promoting learning efficiency increase, a choice of adequate control devices, accuracy of assessment, and also efficient use of personnel, temporal and material resources of higher education institutions. Proposed algorithms, methods and approaches to procedure of control results organization and realization of developed competences and its components can be used as methodical base while

  12. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  13. A Novel Structure and Design Optimization of Compact Spline-Parameterized UWB Slot Antenna

    Directory of Open Access Journals (Sweden)

    Koziel Slawomir

    2016-12-01

    Full Text Available In this paper, a novel structure of a compact UWB slot antenna and its design optimization procedure has been presented. In order to achieve a sufficient number of degrees of freedom necessary to obtain a considerable size reduction rate, the slot is parameterized using spline curves. All antenna dimensions are simultaneously adjusted using numerical optimization procedures. The fundamental bottleneck here is a high cost of the electromagnetic (EM simulation model of the structure that includes (for reliability an SMA connector. Another problem is a large number of geometry parameters (nineteen. For the sake of computational efficiency, the optimization process is therefore performed using variable-fidelity EM simulations and surrogate-assisted algorithms. The optimization process is oriented towards explicit reduction of the antenna size and leads to a compact footprint of 199 mm2 as well as acceptable matching within the entire UWB band. The simulation results are validated using physical measurements of the fabricated antenna prototype.

  14. Structural Design of HRA Database using generic task for Quantitative Analysis of Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hwan; Kim, Yo Chan; Choi, Sun Yeong; Park, Jin Kyun; Jung Won Dea [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes a design of generic task based HRA database for quantitative analysis of human performance in order to estimate the number of task conductions. The estimation method to get the total task conduction number using direct counting is not easy to realize and maintain its data collection framework. To resolve this problem, this paper suggests an indirect method and a database structure using generic task that enables to estimate the total number of conduction based on instructions of operating procedures of nuclear power plants. In order to reduce human errors, therefore, all information on the human errors taken by operators in the power plant should be systematically collected and examined in its management. Korea Atomic Energy Research Institute (KAERI) is carrying out a research to develop a data collection framework to establish a Human Reliability Analysis (HRA) database that could be employed as technical bases to generate human error probabilities (HEPs) and performance shaping factors (PSFs)]. As a result of the study, the essential table schema was designed to the generic task database which stores generic tasks, procedure lists and task tree structures, and other supporting tables. The number of task conduction based on the operating procedures for HEP estimation was enabled through the generic task database and framework. To verify the framework applicability, case study for the simulated experiments was performed and analyzed using graphic user interfaces developed in this study.

  15. Structural Design of HRA Database using generic task for Quantitative Analysis of Human Performance

    International Nuclear Information System (INIS)

    Kim, Seung Hwan; Kim, Yo Chan; Choi, Sun Yeong; Park, Jin Kyun; Jung Won Dea

    2016-01-01

    This paper describes a design of generic task based HRA database for quantitative analysis of human performance in order to estimate the number of task conductions. The estimation method to get the total task conduction number using direct counting is not easy to realize and maintain its data collection framework. To resolve this problem, this paper suggests an indirect method and a database structure using generic task that enables to estimate the total number of conduction based on instructions of operating procedures of nuclear power plants. In order to reduce human errors, therefore, all information on the human errors taken by operators in the power plant should be systematically collected and examined in its management. Korea Atomic Energy Research Institute (KAERI) is carrying out a research to develop a data collection framework to establish a Human Reliability Analysis (HRA) database that could be employed as technical bases to generate human error probabilities (HEPs) and performance shaping factors (PSFs)]. As a result of the study, the essential table schema was designed to the generic task database which stores generic tasks, procedure lists and task tree structures, and other supporting tables. The number of task conduction based on the operating procedures for HEP estimation was enabled through the generic task database and framework. To verify the framework applicability, case study for the simulated experiments was performed and analyzed using graphic user interfaces developed in this study.

  16. Energy-Based Design Criterion of Dissipative Bracing Systems for the Seismic Retrofit of Frame Structures

    Directory of Open Access Journals (Sweden)

    Gloria Terenzi

    2018-02-01

    Full Text Available Direct sizing criteria represent useful tools in the design of dissipative bracing systems for the advanced seismic protection of existing frame structures, especially when incorporated dampers feature a markedly non-linear behaviour. An energy-based procedure is proposed herein to this aim, focusing attention on systems including fluid viscous devices. The procedure starts by assuming prefixed reduction factors of the most critical response parameters in current conditions, which are evaluated by means of a conventional elastic finite element analysis. Simple formulas relating the reduction factors to the equivalent viscous damping ratio of the dampers, ξeq, are proposed. These formulas allow calculating the ξeq values that guarantee the achievement of the target factors. Finally, the energy dissipation capacity of the devices is deduced from ξeq, finalizing their sizing process. A detailed description of the procedure is presented in the article, by distinguishing the cases where the prevailing structural deficiencies are represented by poor strength of the constituting members, from the cases having excessive horizontal displacements. A demonstrative application to the retrofit design of a reinforced concrete gym building is then offered to explicate the steps of the sizing criterion in practice, as well as to evaluate the enhancement of the seismic response capacities generated by the installation of the dissipative system.

  17. Design optimisation of the ATLAS Barrel Toroid structure - the warm structure

    International Nuclear Information System (INIS)

    Daeel, A.; Desvard, J-P.; Pabot, Y.; Sun, Z.; Hille, H. van; Vedrine, P.

    2001-01-01

    The magnetic bending of muon tracks for the ATLAS Muon Spectrometer is provided by the large air-core toroid magnets. The Barrel Toroid structure, named the warm structure, is an open structure inside which the muon chambers are installed. The physics performance of the muon spectrometer imposes stringent requirements on the design of the warm structure. It should support the muon chambers with required precision and stability, the deformation of the structure must be minimised. At the same time, the quantities of the materials used in the structure must also be minimised. Through extensive structural analyses, the design optimisation has been achieved to fit with the physics requirements. This paper gives an overview on the design considerations of the warm structure

  18. Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

    Directory of Open Access Journals (Sweden)

    Cho Dae Seung

    2015-04-01

    Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.

  19. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  20. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    1998-2002. The Guidelines comprise engineering aspects related to morphological impact and structure stability, biological aspects related to ecological impact, and socio-economical aspects related to the implementation of LCS-schemes. The guidelines are limited to submerged and regularly overtopped......The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP...

  1. Design verification for large reprocessing plants (Proposed procedures)

    International Nuclear Information System (INIS)

    Rolandi, G.

    1988-07-01

    In the 1990s, four large commercial reprocessing plants will progressively come into operation: If an effective and efficient safeguards system is to be applied to these large and complex plants, several important factors have to be considered. One of these factors, addressed in the present report, concerns plant design verification. Design verification provides an overall assurance on plant measurement data. To this end design verification, although limited to the safeguards aspects of the plant, must be a systematic activity, which starts during the design phase, continues during the construction phase and is particularly performed during the various steps of the plant's commissioning phase. The detailed procedures for design information verification on commercial reprocessing plants must be defined within the frame of the general provisions set forth in INFCIRC/153 for any type of safeguards related activities and specifically for design verification. The present report is intended as a preliminary contribution on a purely technical level, and focusses on the problems within the Agency. For the purpose of the present study the most complex case was assumed: i.e. a safeguards system based on conventional materials accountancy, accompanied both by special input and output verification and by some form of near-real-time accountancy involving in-process inventory taking, based on authenticated operator's measurement data. C/S measures are also foreseen, where necessary to supplement the accountancy data. A complete ''design verification'' strategy comprehends: informing the Agency of any changes in the plant system which are defined as ''safeguards relevant''; ''reverifying by the Agency upon receiving notice from the Operator on any changes, on ''design information''. 13 refs

  2. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  3. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  4. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-10-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-lined tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel liner on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  5. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-01-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-linked tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel linear on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  6. Advanced structural integrity assessment procedures. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility practice in the field of methodology for the structural integrity assessment of components including relevant non-codified procedures. The scope of the meeting included deterministic and probabilistic approaches. The papers covered the following topics: Leak-before-break concepts; non-destructive examination (NDE) and surveillance results; statistical evaluation of non-destructive examination data; pressurized thermal shock evaluation; fatigue effects (including vibration); and verification qualification. The meeting was attended by 32 specialists from 8 countries. Refs, figs and tabs

  7. Modeling the Design Team as a Temporary Management Structure: Reality versus Theory

    Directory of Open Access Journals (Sweden)

    Kathy Michell

    2012-11-01

    Full Text Available The focus of the cost management literature is almost exclusively on technical issues, with scant attention to its social, political and organisational dimensions. In this paper the authors document research examining the design team as a temporary management structure, with emphasis on the efficacy of the cost management system as a vehicle for attaining client objectives with respect to time, cost and quality. Soft systems methodology is used to explore the perceptions of stakeholders to the cost management system, thus developing conceptual models of the theory and practice of cost management. Significant differences were found to exist between the perceptions of individual stakeholders concerning design team participants, participants’ roles, and the very purpose of the cost management system. Recommendations are made for structural, attitudinal and procedural changes to the cost management system in order to facilitate its effective functioning in the achievement of the client’s needs and objectives.

  8. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  9. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  10. Conceptual design and technology development of containment structure in Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sato, Keisuke; Matsuoka, Fushiki; Kanamori, Naokazu; Koizumi, Koichi; Abe, Tetsuya; Hosobuchi, Hideo; Tada, Eisuke; Yamada, Masao.

    1991-05-01

    A conceptual design of FER (Fusion Experimental Reactor) containment structure and its associated R and D activities, conducted from '89 to '90, are described. The FER containment structure system which mainly consists of a vacuum vessel, shielding structures, in-vessel replaceable components, ports, a cooling pipe system, has been developed to fullfil the required function. As an initial stage of R and D activities, the elemental technologies common to a tokamak reactor have been developed. Among them, a locking mechanism for supporting in-vessel replaceable components and a technique for insulation/conduction are described. For the locking mechanism, a caulking cotter driven by hydraulic pressure has been employed. Three kinds of hydraulic driving mechanism have been manufactured by trial: a 'piston jack' type, a 'bellows' type and a 'flexible tube' type. In the latter type, the stroke is obtained by changing the cross section of the flexible tube from a flat racetrack shape to a fat shape by hydraulic pressure. As the result of preliminary performance test, the shape of 'flexible tube' has been found to be improved. For the insulation coating, Al 2 O 3 has been selected as the material and a plasma spray method has been applied as the coating procedure. For the conduction coating, Cr 3 C 2 has been selected as the material and JET-KOTE method has been applied as the coating procedure. Both methods have been successfully developed and have been confirmed to be applicable the actual machine. A one fifth scale model has been fabricated in order to verify the design feasibility, mainly geometrical consistency. Then some design modifications were found to be needed for some of the components based on the manufacturing experience. (author)

  11. Procedure and reference standard to determine the structural resolution in coordinate metrology

    Science.gov (United States)

    Illemann, Jens; Bartscher, Markus; Jusko, Otto; Härtig, Frank; Neuschaefer-Rube, Ulrich; Wendt, Klaus

    2014-06-01

    A new procedure and reference standards for specifying the structural resolution in coordinate metrology traceable to the SI unit the metre are proposed. With the definition of the structural resolution, a significant gap will be closed to complete ‘acceptance and verification tests’ of the coordinate measuring systems (CMSs) which are specified in the ISO 10360 series dealing with tactile sensors, optical sensors, and x-ray computed tomography measurement systems (CTs). The proposed new procedure uses reference standards with circular rounded edges. The idea is to measure the radius of curvature on a calibrated round edge structure. From the deviation between the measured and the calibrated radius, an analogue Gaussian broadening of the measurement system is determined. This value is a well-defined and easy-to-apply measure to define the structural resolution for dimensional measurements. It is applicable to CMSs which are based on different sensing principles, e.g. tactile, optical and CT systems. On the other hand, it has a physical meaning similar to the classical optical point-spread function. It makes it possible to predict which smallest details the CMS is capable of measuring reliably for an arbitrary object shape. The theoretical background of the new procedure is given, an appropriate reference standard is described and comparative, quantitative measurement data of CMSs featuring different sensors are shown.

  12. Design optimization applied in structural dynamics

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T

    2007-01-01

    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process

  13. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  14. Design flood hydrograph estimation procedure for small and fully-ungauged basins

    Science.gov (United States)

    Grimaldi, S.; Petroselli, A.

    2013-12-01

    The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.

  15. The anti corrosive design of structural metallic elements in buildings with large exploitation period

    International Nuclear Information System (INIS)

    Avila Ayon, V.; Rodriguez Quesada, A. L.

    2009-01-01

    The corrosion deterioration in metallic structural elements, with the consistent loss of his physical and mechanical properties, is cause by errors in the design or fabrication, that allows the accumulation of humidity and contaminants in the surfaces, or acceleration zones of the corrosion processes, as the bimetalics pairs. The aggressiveness of the environment and the productive processes that develop in industrial installations, causes the apparition of premature failures that engage the edification use. The identification of design errors is the first step in the conservation of these structures. the elimination and made a project adapted to the proper installations conditions, is essential procedures to prolong the edification useful life with an optimum and rational use of the resources that destined for this end. The investigation is about the results obtained in the diagnostic and the conservation of industrial installment, with large exploitation periods, in which existed evidences of failures by corrosion, specifically to the elimination of errors of design. (Author) 12 refs

  16. A simplified procedure for mass and stiffness estimation of existing structures

    Science.gov (United States)

    Nigro, Antonella; Ditommaso, Rocco; Carlo Ponzo, Felice; Salvatore Nigro, Domenico

    2016-04-01

    This work focuses the attention on a parametric method for mass and stiffness identification of framed structures, based on frequencies evaluation. The assessment of real structures is greatly affected by the consistency of information retrieved on materials and on the influence of both non-structural components and soil. One of the most important matter is the correct definition of the distribution, both in plan and in elevation, of mass and stiffness: depending on concentrated and distributed loads, the presence of infill panels and the distribution of structural elements. In this study modal identification is performed under several mass-modified conditions and structural parameters consistent with the identified modal parameters are determined. Modal parameter identification of a structure before and after the introduction of additional masses is conducted. By considering the relationship between the additional masses and modal properties before and after the mass modification, structural parameters of a damped system, i.e. mass, stiffness and damping coefficient are inversely estimated from these modal parameters variations. The accuracy of the method can be improved by using various mass-modified conditions. The proposed simplified procedure has been tested on both numerical and experimental models by means linear numerical analyses and shaking table tests performed on scaled structures at the Seismic Laboratory of the University of Basilicata (SISLAB). Results confirm the effectiveness of the proposed procedure to estimate masses and stiffness of existing real structures with a maximum error equal to 10%, under the worst conditions. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2015 - RS4 ''Seismic observatory of structures and health monitoring''.

  17. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  18. Problems of structural mechanics in nuclear design

    International Nuclear Information System (INIS)

    Patwardhan, V.M.; Kakodkar, Anil

    1975-01-01

    A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)

  19. Load assumption for fatigue design of structures and components counting methods, safety aspects, practical application

    CERN Document Server

    Köhler, Michael; Pötter, Kurt; Zenner, Harald

    2017-01-01

    Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors ...

  20. An Evaluation of the Use of Statistical Procedures in Soil Science

    Directory of Open Access Journals (Sweden)

    Laene de Fátima Tavares

    2016-01-01

    Full Text Available ABSTRACT Experimental statistical procedures used in almost all scientific papers are fundamental for clearer interpretation of the results of experiments conducted in agrarian sciences. However, incorrect use of these procedures can lead the researcher to incorrect or incomplete conclusions. Therefore, the aim of this study was to evaluate the characteristics of the experiments and quality of the use of statistical procedures in soil science in order to promote better use of statistical procedures. For that purpose, 200 articles, published between 2010 and 2014, involving only experimentation and studies by sampling in the soil areas of fertility, chemistry, physics, biology, use and management were randomly selected. A questionnaire containing 28 questions was used to assess the characteristics of the experiments, the statistical procedures used, and the quality of selection and use of these procedures. Most of the articles evaluated presented data from studies conducted under field conditions and 27 % of all papers involved studies by sampling. Most studies did not mention testing to verify normality and homoscedasticity, and most used the Tukey test for mean comparisons. Among studies with a factorial structure of the treatments, many had ignored this structure, and data were compared assuming the absence of factorial structure, or the decomposition of interaction was performed without showing or mentioning the significance of the interaction. Almost none of the papers that had split-block factorial designs considered the factorial structure, or they considered it as a split-plot design. Among the articles that performed regression analysis, only a few of them tested non-polynomial fit models, and none reported verification of the lack of fit in the regressions. The articles evaluated thus reflected poor generalization and, in some cases, wrong generalization in experimental design and selection of procedures for statistical analysis.

  1. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  2. Perspectives on "Bakke": Equal Protection, Procedural Fairness, or Structural Justice?

    Science.gov (United States)

    Tribe, Laurence H.

    1979-01-01

    The "Bakke" case is examined for what it has to say regarding first the area of equal protection, then the idea of procedural fairness as distinct from accuracy of result, and finally the notion of structural justice. Available from Harvard Law Review, Harvard Law Review Association, Gannett House, Cambridge, Massachusetts 02138; sc…

  3. Structural elements design manual

    CERN Document Server

    Draycott, Trevor

    2012-01-01

    Gives clear explanations of the logical design sequence for structural elements. The Structural Engineer says: `The book explains, in simple terms, and with many examples, Code of Practice methods for sizing structural sections in timber, concrete,masonry and steel. It is the combination into one book of section sizing methods in each of these materials that makes this text so useful....Students will find this an essential support text to the Codes of Practice in their study of element sizing'.

  4. Review: Janice M. Morse & Linda Niehaus (2009). Mixed method design: principles and procedures

    OpenAIRE

    Öhlen, Joakim

    2010-01-01

    Mixed-Method-Designs, in denen quantitative und qualitative Methoden Verwendung finden, erfreuen sich zunehmender Beliebtheit für die Untersuchung komplexer Phänomene. Die vorliegende Besprechung beschäftigt sich in diesem Zusammenhang mit dem Buch "Mixed Method Design: Principles and Procedures" von Janice M. MORSE und Linda NIEHAUS, die für solche Designs Kern- und Ergänzungskomponenten zu identifizieren versuchen. Hierzu differenzieren sie zwischen Projekten, die einer eher deduktiven oder...

  5. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  6. Research report on design allowable values of structural materials for LMFBR

    International Nuclear Information System (INIS)

    1978-11-01

    The present report is composed of following two main parts. i) review and re-evaluation on test results by FCI Sub-committee studies, performed from 1973 to 1976, ii) review on procedures for determining design allowable values of structural materials for LMFBR components. Re-evaluation works have been made on monotonic tensile properties at elevated temperatures, creep and creep rupture properties, creep-fatigue properties (strain rate and tensile strain hold time effects on strain fatigue properties at elevated temperatures) of Types 316 and 304 stainless steel and 2 1/4Cr-1Mo steel (base and weld metals) produced in Japan. In the first half of the present report, creep-fatigue test results obtained by FCI Sub-committee studies are subjected to re-evaluation by the present P-FCI Sub-committee. Reviews have been made on testing methods on FCI's-creep-fatigue experiments with other test data of the test materials; high temperature monotonic tensile data, creep and creep rupture data, and origin of the test materials. The data of FCI studies are compared with other reference data obtained by several Japanese laboratories. In the latter half of the present report, procedures including ASME's are reviewed for setting design allowable values for LMFBR components on the basis of high temperature strength properties obtained with materials produced in Japan. A creep rupture data of Japanese steels are issued and examined to make proposal for a design allowable stress of S sub(t) through parameter survey. (author)

  7. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  8. A procedure for building product models

    DEFF Research Database (Denmark)

    Hvam, Lars; Riis, Jesper; Malis, Martin

    2001-01-01

    This article presents a procedure for building product models to support the specification processes dealing with sales, design of product variants and production preparation. The procedure includes, as the first phase, an analysis and redesign of the business processes, which are to be supported...... with product models. The next phase includes an analysis of the product assortment, and the set up of a so-called product master. Finally the product model is designed and implemented using object oriented modelling. The procedure is developed in order to ensure that the product models constructed are fit...... for the business processes they support, and properly structured and documented, in order to facilitate that the systems can be maintained continually and further developed. The research has been carried out at the Centre for Industrialisation of Engineering, Department of Manufacturing Engineering, Technical...

  9. Design of test and emergency procedures to improve operator behaviour in French nuclear power plants

    International Nuclear Information System (INIS)

    Griffon-Fouco, M.; Gomolinski, M.

    1982-09-01

    The incident analyses performed in French nuclear power plants high-lighted that deficiencies in the design of procedures are frequent causes of human errors. The process for developing new guidelines for the writing of test and emergency procedures is presented: this process is based on operators interviews and observations at the plants or at simulators. The main principles for the writing of procedures are developed. For example: - the elaboration of a procedure for action and of a separate educational procedure, - the coordination of crew responses, - the choice of vocabulary, graphs, flow charts and so on as regards the format. Other complementary actions, such as the training of operators in the use of procedures, are described

  10. Design of test and emergency procedures to improve operator behavior in French nuclear power plants

    International Nuclear Information System (INIS)

    Griffon-Fouco, M.; Gomolinski, M.

    1983-01-01

    The incident analyses performed in French nuclear power plants high-lighted that deficiencies in the design of procedures are frequent causes of human errors. The process for developing new guidelines for the writing of test and emergency procedures is presented: this process is based on operators interviews and observations at the plants or at simulators. The main principles for the writing of procedures are developed. For example: the elaboration of a procedure for action and of separate educational procedure; the coordination of crew responses; and the choice of vocabulary, graphs, flow charts and so on as regards the format. Other complementary actions, such as the training of operators in the use of procedures, are described

  11. Observations on the structural design and analysis of a piping system

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    This paper reports on the structural design/analysis of a gas exhaust system at a nuclear facility used to investigate some aspects of current piping design procedures. Specifically the effect of using various stress measures including ASME Boiler and Pressure Vessel (B and PV) Code formulas is evaluated. It is found that large differences in local maximums tress values may be calculated depending on the stress criterion used. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis. It is shown that a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to the RMS analysis

  12. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  13. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  14. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    Science.gov (United States)

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design and fabrication of topologically optimized structures;

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  16. Review: Janice M. Morse & Linda Niehaus (2009). Mixed Method Design: Principles and Procedures

    OpenAIRE

    Öhlen, Joakim

    2010-01-01

    Mixed method design related to the use of a combination of methods, usually quantitative and qualitative, is increasingly used for the investigation of complex phenomena. This review discusses the book, "Mixed Method Design: Principles and Procedures," by Janice M. MORSE and Linda NIEHAUS. A distinctive feature of their approach is the consideration of mixed methods design out of a core and a supplemental component. In order to define these components they emphasize the overall conceptual dir...

  17. A novel gait-based synthesis procedure for the design of 4-bar exoskeleton with natural trajectories

    Directory of Open Access Journals (Sweden)

    Ramanpreet Singh

    2018-01-01

    The Translational Potential of this Article: Many hospitals and individuals have used the immobile and portable rehabilitation devices. These devices involve mechanisms, and the design of mechanism plays a vital role in the functioning of these devices; therefore, we have developed a new synthesis procedure for the design of the mechanism. Besides synthesis procedure, a mechanism is developed that can be used in the rehabilitation devices, bipeds, exoskeletons, etc., to benefit the society.

  18. Giga-voxel computational morphogenesis for structural design

    Science.gov (United States)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  19. Design procedures of hybrid PV/SMES system

    International Nuclear Information System (INIS)

    Hamad, Ismail; El-Sayas, M. A.

    2006-01-01

    This paper presents accurate procedures to determine the design parameters of an autonomous hybrid PV/SMES system. Integrating Superconductive magnetic energy storage as a recent storage technology with photovoltaic power system enhances the PV output utilization during the solar radiation fluctuations period. this is because of SMES fast response to any PV output fluctuation. The load demand is supplied either from PV plant or through SMES or from both. Imposed to the technical and economical constrains, the optimum solar cells area and the proper capacity and rating of SMES system are assessed. Regarding solar radiation profile, clear and cloudy days are accurately considered for investigation. Three indices are suggested to express the cloudy and fluctuations conditions. These indices represent the non-utilized PV energy due to clouds (x), fluctuation period (T f ) and location of fluctuations period(t s t). The incremental changes in the design parameters are computed for any variation in these indices. Differentiation between the role of BS and SMES in affecting the results is determined and quantitatively analyzed. The results of clear day condition with SMES are the bas quantities for these changes. Complete analysis of the most effective parameters is presented. Eventually, mathematical models are deduced for each parameter which assists in predicting its behavior against the independent variable.(Author)

  20. Framework for a procedure for design for durability

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1996-01-01

    The design for durability of structures and building components is in general based on implicit requirements with respect to the quality and dimensions of the composing building materials and components. These requirements are based on long term experience. This approach has disadvantages. It is

  1. Comparison of Designer's Design Thinking Modes in Digital and Traditional Sketches

    Science.gov (United States)

    Wu, Jun-Chieh; Chen, Cheng-Chi; Chen, Hsin-Chia

    2012-01-01

    The internal design thinking behaviour of designers in the concept development has been an important issue of cognitive psychology. In this study, the design thinking process designers have in applying digital media and traditional paper in the early concept development stage was explored. Special focus was made on the structure and procedure of…

  2. 40 CFR 63.8687 - What performance tests, design evaluations, and other procedures must I use?

    Science.gov (United States)

    2010-07-01

    ... evaluations, and other procedures must I use? 63.8687 Section 63.8687 Protection of Environment ENVIRONMENTAL... What performance tests, design evaluations, and other procedures must I use? (a) You must conduct each... run must last at least 1 hour. (e) You must use the following equations to determine compliance with...

  3. 40 CFR 63.7112 - What performance tests, design evaluations, and other procedures must I use?

    Science.gov (United States)

    2010-07-01

    ... evaluations, and other procedures must I use? 63.7112 Section 63.7112 Protection of Environment ENVIRONMENTAL..., design evaluations, and other procedures must I use? (a) You must conduct each performance test in Table... use wet dust suppression to control PM from PSH operations, a visible mist is sometimes generated by...

  4. Design bases - Concrete structures

    International Nuclear Information System (INIS)

    Diaz-Llanos Ros, M.

    1993-01-01

    The most suitable title for Section 2 is 'Design Bases', which covers not only calculation but also the following areas: - Structural design concepts. - Project criteria. - Material specifications. These concepts are developed in more detail in the following sections. The numbering in this document is neither complete nor hierarchical since, for easier cross referencing, it corresponds to the paragraphs of Eurocode 2 Part 1 (hereinafter 'EUR-2') which are commented on. (author)

  5. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  6. Optimal design of lossy bandgap structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2004-01-01

    The method of topology optimization is used to design structures for wave propagation with one lossy material component. Optimized designs for scalar elastic waves are presented for mininimum wave transmission as well as for maximum wave energy dissipation. The structures that are obtained...... are of the 1D or 2D bandgap type depending on the objective and the material parameters....

  7. Defining System Requirements: a critical assessment of the Niam conceptual design procedure

    Directory of Open Access Journals (Sweden)

    Peta Darke

    1995-05-01

    Full Text Available Requirements definition is a fundamental activity within information systems development. Social and organisational issues are at the centre of many of the problems experienced during the development and implementation of information systems, and these need to be explored during requirements definition. The NIAM Conceptual Schema Design Procedure (CSDP is a method for identifying and describing information requirements using fact types. This paper discusses some limitations of the information requirements definition step of the CSDP which result from its lack of focus on the socio-organisational dimension of information systems development. Four different approaches to exploring the socio-organisational contexts of systems are discussed. It is proposed that one of these, viewpoint development, be incorporated into the NIAM CSDP to provide a means of exploring and understanding a system's socio organisational context and to ensure that contextual information is a major input to the requirements definition process. This results in an enhanced design procedure. Future and current research areas are identified.

  8. CONFOUNDING STRUCTURE OF TWO-LEVEL NONREGULAR FACTORIAL DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Ren Junbai

    2012-01-01

    In design theory,the alias structure of regular fractional factorial designs is elegantly described with group theory.However,this approach cannot be applied to nonregular designs directly. For an arbitrary nonregular design,a natural question is how to describe the confounding relations between its effects,is there any inner structure similar to regular designs? The aim of this article is to answer this basic question.Using coefficients of indicator function,confounding structure of nonregular fractional factorial designs is obtained as linear constrains on the values of effects.A method to estimate the sparse significant effects in an arbitrary nonregular design is given through an example.

  9. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  10. Progress of Design Improvements for APR1400 Computerized Procedure System from HFE V and V results and Design Experience

    International Nuclear Information System (INIS)

    Lee, Sungjin; Seong, Nokyu

    2015-01-01

    This study shows major already improved design features from the above three processes and a design proposal for to-be-improving items. APR1400 CPS has been verified and validated by the HFE process, internal design review and site acceptance tests. APR1400 Computerized Procedure System (CPS) has been applied to Shin-Kori Nuclear Power Plant (SKN) 3 and 4 units, Shin-Hanul Nuclear Power Plant (SHN) 1 and 2 units and Baraka Nuclear Power Plant (BNPP) 1, 2, 3 and 4 units. Since APR1400 CPS is a first-of-a-kind (FOAK) human machine interface (HMI) for executing a computerized procedure in the nuclear power plant's main control room in South Korea, it has been continuously improved through a) the human factor engineering (HFE) verification and validation (V and V), b) the internal design review and c) prototype tests. Human engineering discrepancies (HEDs) can be identified by the HFE V and V activity. Some HEDs of APR1400 CPS for SKN 3 and 4 and SHN 1 and 2 have been adopted as a role of design improvement in the CPS system while others were regarded as an operator training requirement or part of task contents. Various requests for improving the CPS have been collected from those results. A HMI system should be improved continuously for removing potential defects. Some of introduced design features in this paper has been adopted for APR1400 nuclear power plants. Some of them are under the review in the CPS design team of KHNP

  11. Investigation of the Performance of Multidimensional Equating Procedures for Common-Item Nonequivalent Groups Design

    Directory of Open Access Journals (Sweden)

    Burcu ATAR

    2017-12-01

    Full Text Available In this study, the performance of the multidimensional extentions of Stocking-Lord, mean/mean, and mean/sigma equating procedures under common-item nonequivalent groups design was investigated. The performance of those three equating procedures was examined under the combination of various conditions including sample size, ability distribution, correlation between two dimensions, and percentage of anchor items in the test. Item parameter recovery was evaluated calculating RMSE (root man squared error and BIAS values. It was found that Stocking-Lord procedure provided the smaller RMSE and BIAS values for both item discrimination and item difficulty parameter estimates across most conditions.

  12. Structural elements design manual working with Eurocodes

    CERN Document Server

    Draycott, Trevor

    2009-01-01

    Structural Elements Design Manual: Working With Eurocodes is the structural engineers 'companion volume' to the four Eurocodes on the structural use of timber, concrete, masonry and steelwork. For the student at higher technician or first degree level it provides a single source of information on the behaviour and practical design of the main elements of the building structure. With plenty of worked examples and diagrams, it is a useful textbook not only for students of structural and civil engineering, but also for those on courses in related subjects such as

  13. New design procedure development of future reactor critical power estimation. (1) Practical design-by-analysis method for BWR critical power design correlation

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Mitsutake, Toru

    2007-01-01

    For present BWR fuels, the full mock-up thermal-hydraulic test, such as the critical power measurement test, pressure drop measurement test and so on, has been needed. However, the full mock-up test required the high costs and large-scale test facility. At present, there are only a few test facilities to perform the full mock-up thermal-hydraulic test in the world. Moreover, for future BWR, the bundle size tends to be larger, because of reducing the plant construction costs and minimizing the routine check period. For instance, AB1600, improved ABWR, was proposed from Toshiba, whose bundle size was 1.2 times larger than the conventional BWR fuel size. It is too expensive and far from realistic to perform the full mock-up thermal-hydraulic test for such a large size fuel bundle. The new design procedure is required to realize the large scale bundle design development, especially for the future reactor. Therefore, the new design procedure, Practical Design-by-Analysis (PDBA) method, has been developed. This new procedure consists of the partial mock-up test and numerical analysis. At present, the subchannel analysis method based on three-fluid two-phase flow model only is a realistic choice. Firstly, the partial mock-up test is performed, for instance, the 1/4 partial mock-up bundle. Then, the first-step critical power correlation coefficients are evaluated with the measured data. The input data, such as the spacer effect model coefficient, on the subchannel analysis are also estimated with the data. Next, the radial power effect on the critical power of the full-bundle size was estimated with the subchannel analysis. Finally, the critical power correlation is modified by the subchannel analysis results. In the present study, the critical power correlation of the conventional 8x8 BWR fuel was developed with the PDBA method by 4x4 partial mock-up tests and the subchannel analysis code. The accuracy of the estimated critical power was 3.8%. The several themes remain to

  14. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  15. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  16. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  17. Development of residual stress analysis procedure for fitness-for-service assessment of welded structure

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Jin, Tae Eun; Dong, P.; Prager, M.

    2003-01-01

    In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develop the residual stress analysis procedure for Fitness-For-Service(FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific thermomechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation

  18. The characteristics of the Westinghouse accident procedures and the main differences with SOP

    International Nuclear Information System (INIS)

    Hu Yan; Gan Peijiang; Sun Chen

    2014-01-01

    In this note, the Westinghouse operation file system is summarized. The structures of procedures, design methods, implementation logics of the Westinghouse accident procedures are discussed. And compared with the SOP principles, the main differences are clarified. (authors)

  19. Experimental design technique applied to the validation of an instrumental Neutron Activation Analysis procedure

    International Nuclear Information System (INIS)

    Santos, Uanda Paula de M. dos; Moreira, Edson Gonçalves

    2017-01-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) method were carried out for the determination of the elements bromine, chlorine, magnesium, manganese, potassium, sodium and vanadium in biological matrix materials using short irradiations at a pneumatic system. 2 k experimental designs were applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. The chosen experimental designs were the 2 3 and the 2 4 , depending on the radionuclide half life. Different certified reference materials and multi-element comparators were analyzed considering the following variables: sample decay time, irradiation time, counting time and sample distance to detector. Comparator concentration, sample mass and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations, it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN /CNEN-SP). Optimized conditions were estimated based on the results of z-score tests, main effect, interaction effects and better irradiation conditions. (author)

  20. Experimental design technique applied to the validation of an instrumental Neutron Activation Analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Uanda Paula de M. dos; Moreira, Edson Gonçalves, E-mail: uandapaula@gmail.com, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) method were carried out for the determination of the elements bromine, chlorine, magnesium, manganese, potassium, sodium and vanadium in biological matrix materials using short irradiations at a pneumatic system. 2{sup k} experimental designs were applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. The chosen experimental designs were the 2{sup 3} and the 2{sup 4}, depending on the radionuclide half life. Different certified reference materials and multi-element comparators were analyzed considering the following variables: sample decay time, irradiation time, counting time and sample distance to detector. Comparator concentration, sample mass and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations, it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN /CNEN-SP). Optimized conditions were estimated based on the results of z-score tests, main effect, interaction effects and better irradiation conditions. (author)

  1. Kinematics, structural mechanics, and design of origami structures with smooth folds

    Science.gov (United States)

    Peraza Hernandez, Edwin Alexander

    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a

  2. 13 CFR 113.135 - Designation of responsible employee and adoption of grievance procedures.

    Science.gov (United States)

    2010-01-01

    ... employee and adoption of grievance procedures. 113.135 Section 113.135 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NONDISCRIMINATION IN FINANCIAL ASSISTANCE PROGRAMS OF SBA-EFFECTUATION OF POLICIES... Programs or Activities Receiving Federal Financial Assistance Introduction § 113.135 Designation of...

  3. Design, realization and structural testing of a compliant adaptable wing

    International Nuclear Information System (INIS)

    Molinari, G; Arrieta, A F; Ermanni, P; Quack, M; Morari, M

    2015-01-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing. (paper)

  4. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  5. Criteria for design of the Yucca Mountain structures, systems and components for fault displacement

    International Nuclear Information System (INIS)

    Stepp, C.; Hossain, Q.; Nesbit, S.; Pezzopane, S.; Hardy, M.

    1995-01-01

    The DOE intends to design the Yucca Mountain high-level waste facility structures, systems and components (SSCs) for fault displacements to provide reasonable assurance that they will meet the preclosure safety performance objectives established by 10 CFR Part 60. To the extent achievable, fault displacement design of the facility will follow guidance provided in the NRC Staff Technical Position. Fault avoidance will be the primary design criterion, especially for spatially compact or clustered SSCs. When fault avoidance is not reasonably achievable, expected to be the case for most spatially extended SSCs, engineering design procedures and criteria or repair and rehabilitation actions, depending on the SSC's importance to safety, are provided. SSCs that have radiological safety importance will be designed for fault displacements that correspond to the hazard exceedance frequency equal to their established seismic safety performance goals. Fault displacement loads are generally localized and may cause local inelastic response of SSCs. For this reason, the DOE intends to use strain-based design acceptance criteria similar to the strain-based criteria used to design nuclear plant SSCs for impact and impulsive loads

  6. Calculation of hybrid joints used in modern aerospace structures

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2011-12-01

    Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.

  7. Reliability Evaluation and Probabilistic Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1993-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load, which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, e.g. the expectation (mean) value of the lOO-year return period event, however, often without consideration of the involved uncertainties. The resistance is in most cases defined in terms of the load which causes a certain design impact or damage to the structure and is not given as an ultimate...... force or deformation. This is because most of the available design formulae only give the relationship between wave characteristics and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc. An example is the Hudson formula for armour layer stability. Almost all such design...

  8. Material properties requirements for LMFBR structural design: General considerations and data needs

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C E [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Purdy, C M [U.S. Energy Research and Development Administration (United States)

    1977-07-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1/4 Cr-1 Mo steel. (author)

  9. Material properties requirements for LMFBR structural design: general considerations and data needs

    International Nuclear Information System (INIS)

    Pugh, C.E.; Purdy, C.M.

    1977-01-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1 / 4 Cr-1 Mo steel

  10. Airfoil design: Finding the balance between design lift and structural stiffness

    DEFF Research Database (Denmark)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup......, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared...... to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were...

  11. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  12. SSI response of a typical shear wall structure

    International Nuclear Information System (INIS)

    Johnson, J.J.; Maslenikov, O.R.; Schewe, E.C.

    1985-01-01

    The seismic response of a typical shear structure in a commercial nuclear power plant was investigated for a series of site and foundation conditions using best estimate and design procedures. The structure selected is a part of the Zion AFT complex which is a connected group of reinforced concrete shear wall buildings, typical of nuclear power plant structures. Comparisons between best estimate responses quantified the effects of placing the structure on different sites and founding it in different manners. Calibration factors were developed by comparing simplified SSI design procedure responses to responses calculated by best estimate procedures. Nineteen basic cases were analyzed - each case was analyzed for ten earthquakes targeted to the NRC R.G. 1.60 design response spectra. The structure is a part of the Zion auxiliary-fuel handling turbine building (AFT) complex to the Zion nuclear power plants. (orig./HP)

  13. Structural optimization via a design space hierarchy

    Science.gov (United States)

    Vanderplaats, G. N.

    1976-01-01

    Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.

  14. Upwind design basis (WP4 : Offshore foundations and support structures)

    NARCIS (Netherlands)

    Fischer, T.; De Vries, W.E.; Schmidt, B.

    2010-01-01

    The presented design basis gives a summarized overview of relevant design properties for a later offshore wind turbine design procedures within work package 4. The described offshore site is located in the Dutch North Sea and has a water depth of 21m. Therefore it will be chosen as shallow site

  15. An analytical inductor design procedure for three-phase PWM converters in power factor correction applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Niroumand, Farideh Javidi; Haase, Frerk

    2015-01-01

    This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyze...... to calculate the core loss in the PFC application. To investigate the impact of the dc link voltage level, two inductors for different dc voltage levels are designed and the results are compared.......This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyzes...... circuit is used to provide the inductor current harmonic spectrum. Therefore, using the harmonic spectrum, the low and high frequency copper losses are calculated. The high frequency minor B-H loops in one switching cycle are also analyzed. Then, the loss map provided by the measurement setup is used...

  16. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  17. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  18. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    Someya, Hiroyuki; Endoh, Yasuichi; Hoshiya, Taiji; Niimi, Motoji; Harayama, Yasuo

    1990-11-01

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  19. The quality of procedures to assess and credit prior learning: Implications for design.

    NARCIS (Netherlands)

    Joosten-ten Brinke, Desirée; Sluijsmans, Dominique; Brand-Gruwel, Saskia; Jochems, Wim

    2008-01-01

    Joosten-ten Brinke, D., Sluijsmans, D. M. A., Brand-Gruwel, S., & Jochems, W. M. G. (2008). The quality of procedures to assess and credit prior learning: Implications for design. Educational Research Review, 3, 51-65. doi:10.1016/j.edurev.2007.08.001.

  20. Optimum Design of High Speed Prop-Rotors

    Science.gov (United States)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  1. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  2. Efficient reanalysis of structures by a direct modification method. [local stiffness modifications of large structures

    Science.gov (United States)

    Raibstein, A. I.; Kalev, I.; Pipano, A.

    1976-01-01

    A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.

  3. Design and Optimization of a Turbine Intake Structure

    Directory of Open Access Journals (Sweden)

    P. Fošumpaur

    2005-01-01

    Full Text Available The appropriate design of the turbine intake structure of a hydropower plant is based on assumptions about its suitable function, and the design will increase the total efficiency of operation. This paper deals with optimal design of the turbine structure of run-of-river hydropower plants. The study focuses mainly on optimization of the hydropower plant location with respect to the original river banks, and on the optimal design of a separating pier between the weir and the power plant. The optimal design of the turbine intake was determined with the use of 2-D mathematical modelling. A case study is performed for the optimal design of a turbine intake structure on the Nemen river in Belarus. 

  4. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  5. Curative procedures of oral health and structural characteristics of primary dental care.

    Science.gov (United States)

    Baumgarten, Alexandre; Hugo, Fernando Neves; Bulgarelli, Alexandre Fávero; Hilgert, Juliana Balbinot

    2018-04-09

    To evaluate if the provision of clinical dental care, by means of the main curative procedures recommended in Primary Health Care, is associated with team structural characteristics, considering the presence of a minimum set of equipment, instrument, and supplies in Brazil's primary health care services. A cross-sectional exploratory study based on data collected from 18,114 primary healthcare services with dental health teams in Brazil, in 2014. The outcome was created from the confirmation of five clinical procedures performed by the dentist, accounting for the presence of minimum equipment, instrument, and supplies to carry them out. Covariables were related to structural characteristics. Poisson regression with robust variance was used to obtain crude and adjusted prevalence ratios, with 95% confidence intervals. A total of 1,190 (6.5%) dental health teams did not present the minimum equipment to provide clinical dental care and only 2,498 (14.8%) had all the instrument and supplies needed and provided the five curative procedures assessed. There was a positive association between the outcome and the composition of dental health teams, higher workload, performing analysis of health condition, and monitoring of oral health indicators. Additionally, the dental health teams that planned and programmed oral health actions with the primary care team monthly provided the procedures more frequently. Dentists with better employment status, career plans, graduation in public health or those who underwent permanent education activities provided the procedures more frequently. A relevant number of Primary Health Care services did not have the infrastructure to provide clinical dental care. However, better results were found in dental health teams with oral health technicians, with higher workload and that plan their activities, as well as in those that employed dentists with better working relationships, who had dentists with degrees in public health and who underwent

  6. Curative procedures of oral health and structural characteristics of primary dental care

    Directory of Open Access Journals (Sweden)

    Alexandre Baumgarten

    2018-04-01

    Full Text Available ABSTRACT OBJECTIVE To evaluate if the provision of clinical dental care, by means of the main curative procedures recommended in Primary Health Care, is associated with team structural characteristics, considering the presence of a minimum set of equipment, instrument, and supplies in Brazil’s primary health care services. METHODS A cross-sectional exploratory study based on data collected from 18,114 primary healthcare services with dental health teams in Brazil, in 2014. The outcome was created from the confirmation of five clinical procedures performed by the dentist, accounting for the presence of minimum equipment, instrument, and supplies to carry them out. Covariables were related to structural characteristics. Poisson regression with robust variance was used to obtain crude and adjusted prevalence ratios, with 95% confidence intervals. RESULTS A total of 1,190 (6.5% dental health teams did not present the minimum equipment to provide clinical dental care and only 2,498 (14.8% had all the instrument and supplies needed and provided the five curative procedures assessed. There was a positive association between the outcome and the composition of dental health teams, higher workload, performing analysis of health condition, and monitoring of oral health indicators. Additionally, the dental health teams that planned and programmed oral health actions with the primary care team monthly provided the procedures more frequently. Dentists with better employment status, career plans, graduation in public health or those who underwent permanent education activities provided the procedures more frequently. CONCLUSIONS A relevant number of Primary Health Care services did not have the infrastructure to provide clinical dental care. However, better results were found in dental health teams with oral health technicians, with higher workload and that plan their activities, as well as in those that employed dentists with better working relationships

  7. Curative procedures of oral health and structural characteristics of primary dental care

    Science.gov (United States)

    Baumgarten, Alexandre; Hugo, Fernando Neves; Bulgarelli, Alexandre Fávero; Hilgert, Juliana Balbinot

    2018-01-01

    ABSTRACT OBJECTIVE To evaluate if the provision of clinical dental care, by means of the main curative procedures recommended in Primary Health Care, is associated with team structural characteristics, considering the presence of a minimum set of equipment, instrument, and supplies in Brazil’s primary health care services. METHODS A cross-sectional exploratory study based on data collected from 18,114 primary healthcare services with dental health teams in Brazil, in 2014. The outcome was created from the confirmation of five clinical procedures performed by the dentist, accounting for the presence of minimum equipment, instrument, and supplies to carry them out. Covariables were related to structural characteristics. Poisson regression with robust variance was used to obtain crude and adjusted prevalence ratios, with 95% confidence intervals. RESULTS A total of 1,190 (6.5%) dental health teams did not present the minimum equipment to provide clinical dental care and only 2,498 (14.8%) had all the instrument and supplies needed and provided the five curative procedures assessed. There was a positive association between the outcome and the composition of dental health teams, higher workload, performing analysis of health condition, and monitoring of oral health indicators. Additionally, the dental health teams that planned and programmed oral health actions with the primary care team monthly provided the procedures more frequently. Dentists with better employment status, career plans, graduation in public health or those who underwent permanent education activities provided the procedures more frequently. CONCLUSIONS A relevant number of Primary Health Care services did not have the infrastructure to provide clinical dental care. However, better results were found in dental health teams with oral health technicians, with higher workload and that plan their activities, as well as in those that employed dentists with better working relationships, who had dentists

  8. Tolerance-based Structural Design of Tubular-Structure Loading Equipments

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-05-01

    is worked out under different ball screws, trapezoidal screw threads, worm and worm gears. To meet the requirement of tolerance in tubular-structure assembly, mechanisms for all motions are defined. The design of loading equipment is tested and assessed by experiments, and the result shows the design is highly qualified for its assembly.

  9. 44 CFR 19.135 - Designation of responsible employee and adoption of grievance procedures.

    Science.gov (United States)

    2010-10-01

    ... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Designation of responsible employee and adoption of grievance procedures. 19.135 Section 19.135 Emergency Management and Assistance...

  10. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  11. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    Science.gov (United States)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  12. Statistical modeling of static strengths of nuclear graphites with relevance to structural design

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1992-02-01

    Use of graphite materials for structural members poses a problem as to how to take into account of statistical properties of static strength, especially tensile fracture stresses, in component structural design. The present study concerns comprehensive examinations on statistical data base and modelings on nuclear graphites. First, the report provides individual samples and their analyses on strengths of IG-110 and PGX graphites for HTTR components. Those statistical characteristics on other HTGR graphites are also exemplified from the literature. Most of statistical distributions of individual samples are found to be approximately normal. The goodness of fit to normal distributions is more satisfactory with larger sample sizes. Molded and extruded graphites, however, possess a variety of statistical properties depending of samples from different with-in-log locations and/or different orientations. Second, the previous statistical models including the Weibull theory are assessed from the viewpoint of applicability to design procedures. This leads to a conclusion that the Weibull theory and its modified ones are satisfactory only for limited parts of tensile fracture behavior. They are not consistent for whole observations. Only normal statistics are justifiable as practical approaches to discuss specified minimum ultimate strengths as statistical confidence limits for individual samples. Third, the assessment of various statistical models emphasizes the need to develop advanced analytical ones which should involve modeling of microstructural features of actual graphite materials. Improvements of other structural design methodologies are also presented. (author)

  13. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  14. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  15. Bridgescaping - Contextual Structural Design

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    Large-scale infrastructural projects such as bridges used to be the monopoly of engineers. They were designed as – often very beautiful – expressions of how forces work in a structure, guided by the nature of materials and a rational construction process. However, in recent decades politicians an...

  16. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    Science.gov (United States)

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  17. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  18. Design of Multistable Origami Structures

    Science.gov (United States)

    Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip

    Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.

  19. Observations on the structural design and analysis of a piping system

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    The structural design/analysis of a gas exhaust system at a nuclear fuel facility is used to investigate some aspects of current piping design procedures. Specifically the effect of using various stress measures including ASME Boiler ampersand Pressure Vessel (B ampersand PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maxima for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an equivalent static method (ESM) analysis is also evaluated by comparing its results with those obtained from a response spectrum method (RSM) analysis. It is shown that a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to the RMS analysis. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 4 figs., 7 tabs

  20. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  1. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  2. Structural design considerations for a radwaste processing facility

    International Nuclear Information System (INIS)

    Foelber, S.C.; Sabbe, M.A.

    1985-01-01

    The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures

  3. State-of-the-practice : evaluation of sediment basin design, construction, maintenance, and inspection procedures.

    Science.gov (United States)

    2012-08-01

    The following document is the summary of results from a survey that was conducted to evaluate : the state-of-the-practice for sediment basin design, construction, maintenance, and inspection : procedures by State Highway Agencies (SHAs) across the na...

  4. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  5. Applications of Silicon-on-Insulator Photonic Crystal Structures in Miniature Spectrometer Designs

    Science.gov (United States)

    Gao, Boshen

    Optical spectroscopy is one of the most important fundamental scientific techniques. It has been widely adopted in physics, chemistry, biology, medicine and many other research fields. However, the size and weight of a spectrometer as well as the difficulty to align and maintain it have long limited spectroscopy to be a laboratory-only procedure. With the recent advancement in semiconductor electronics and photonics, miniaturized spectrometers have been introduced to complete many tasks in daily life where mobility and portability are necessary. This thesis focuses on the study of several photonic crystal (PC) nano-structures potentially suitable for miniaturized on-chip spectrometer designs. Chapter 1 briefly introduces the concept of PCs and their band structures. By analyzing the band structure, the origin of the superprism effect is explained. Defect-based PC nano-cavities are also discussed, as well as a type of coupled cavity waveguides (CCW) composed of PC nano-cavities. Chapter 2 is devoted to the optimization of a flat-band superprism structure for spectroscopy application using numerical simulations. Chapter 3 reports a fabricated broad-band superprism and the experimental characterization of its wavelength resolving performance. In chapter 4, the idea of composing a miniature spectrometer based on a single tunable PC nano-cavity is proposed. The rest of this chapter discusses the experimental study of this design. Chapter 5 examines the slow-light performance of a CCW and discusses its potential application in slow-light interferometry. Chapter 6 serves as a conclusion of this thesis and proposes directions for possible future work to follow up.

  6. EPRI's on-site soil-structure interaction research and its application to design/analysis verification

    Energy Technology Data Exchange (ETDEWEB)

    Stepp, J C; Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Soil structure, interaction (SSI) research at the Electric Power Research Institute (EPRI) is focused on validating modeling and computational procedures. A data base has been obtained with instrumented scale models of stiff structures founded both on unsaturated alluvial soils and on rock. Explosives were used to induce strong ground-motion for two experiments, one on rock and the other on alluvium. A third experiment, a one-fourth scale containment structure on saturated alluvium, relies on earthquakes as the energy source. Analysis of the explosion-induced SSI data shows a marked shift in the fundamental frequency of the soil-structure system to a lower frequency. The magnitude of the shift is a function of foundation conditions and level of excitation. Analytical simulation was found to require more sophisticated soil constitutive models and computer codes than are used in current practice. The current phase of the program concentrates on evaluating SSI models used in current design practice by comparing predicted with recorded data at points in the soil-structure system. (author)

  7. EPRI's on-site soil-structure interaction research and its application to design/analysis verification

    International Nuclear Information System (INIS)

    Stepp, J.C.; Tang, H.T.

    1988-01-01

    Soil structure, interaction (SSI) research at the Electric Power Research Institute (EPRI) is focused on validating modeling and computational procedures. A data base has been obtained with instrumented scale models of stiff structures founded both on unsaturated alluvial soils and on rock. Explosives were used to induce strong ground-motion for two experiments, one on rock and the other on alluvium. A third experiment, a one-fourth scale containment structure on saturated alluvium, relies on earthquakes as the energy source. Analysis of the explosion-induced SSI data shows a marked shift in the fundamental frequency of the soil-structure system to a lower frequency. The magnitude of the shift is a function of foundation conditions and level of excitation. Analytical simulation was found to require more sophisticated soil constitutive models and computer codes than are used in current practice. The current phase of the program concentrates on evaluating SSI models used in current design practice by comparing predicted with recorded data at points in the soil-structure system. (author)

  8. Guest-responsive structural adaptation of a rationally-designed ...

    Indian Academy of Sciences (India)

    adaptability of the TB core to undergo subtle structural changes in response to the guest that is included. The structural ... we report the design, synthesis and inclusion behaviour of a novel ..... Based on a rational design, we have shown from ...

  9. Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites

    Directory of Open Access Journals (Sweden)

    Casarejos E.

    2014-03-01

    Full Text Available In this paper we describe the DEMONSTRATOR structures and active units (PETALs developed for the detector CALIFA of the experiment R3B - FAIR. The design is based in the CALIFA BARREL mechanical solutions, but adapted to the characteristics of the PETALs, namely in what concerns the load distribution during setup and service. The R&D program defined the materials and procedures for both producing the pieces of carbon fiber (CF composites as well as the mounting of the bundles to make an alveolar structure. The procedures also include a quality control program to ensure the dimensional properties of the CF assemblies. We are also developing the use of tomographic imaging analysis for this quality program, that will be of mayor interest in the construction of the future CALIFA CF-structure.

  10. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  11. A procedure for the radioimmunochemical determination of antigens with different structures

    International Nuclear Information System (INIS)

    Galoci, J.; Machan, V.

    1990-01-01

    To a solution of a specific antibody, its antigen labelled with iodine 125, and of the unknown sample is added animal (e.g., goat) antibody against rabbit immunoglobulin immobilized on modified microcrystalline cellulose; always the same quantities are applied always for the same time. After incubation for 1 hr at 20 degC, the immunochemical complex formed is centrifuged and its radioactivity is measured, and the amount of the antigen in sample is determined by comparison with standards. The procedure is applicable to antigens with any structure. Assets of the separating system include a very good stability in solution, a low value of nonspecific bonding and a low sedimentation velocity of the particles used. The procedure is well suited to the quantitation of antigens present in very low concentrations in blood serum, urine, milk, and extracts from tissues or animal feed. In a modification of the procedure, the animal antibody against rabbit immunoglobulin is immobilized on the surface of modified cellulose particles 5 to 15 μm in size exhibiting a very low sedimentation velocity, activated with 1,1-carbonyldiimidazole. (M.D.)

  12. Design Procedure Enhanced with Numerical Modeling to Mitigate River-Bank Erosion

    Directory of Open Access Journals (Sweden)

    Elhakeem Mohamed

    2016-01-01

    Full Text Available In this study, the 2D Finite Element Surface Water Modeling System (FESWMS is used to design barb structures to mitigate river bank erosion in a stream reach located on the Raccoon River near Adel, Iowa, USA just upstream of the US Highway Bridge 169. FESWMS is used also to access the barbs effect on the study reach. The model results showed that the proposed barb structures successfully reduced the flow velocity along the outside bank and increased the velocity in the center of the stream, thereby successfully increased the conveyance towards the core of the river. The estimated velocities values along the river-banks where the barbs exist were within the recommended values for channel stability design. Thus, the barb structures were able to reduce the erosion along the bankline.

  13. Civil design aspects for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Bhalerao, Sandip; Subramanyam, P.; Sharma, Sudin; Bhargava, Kapilesh; Agarwal, Kailash; Rao, D.A.S.; Roy, Amitava; Basu, S.

    2015-01-01

    The civil design requirements of safety related nuclear structures are much more stringent and conservative as compared to that for conventional and industrial structures. Due to the importance of safety and desired reliability in the civil design of nuclear structures, International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various safety guides for their safe design. There has been advancement in theoretical and experimental knowledge pertaining to the design, construction, installation, maintenance, testing and inspection of structures, systems, and components (SSCs) of nuclear power plants (NPPs), such that, their quality and reliability is commensurate with safety functions. The well established procedures are available in the form of different codes, standards, guidelines and well proven research work for NPPs. However, such procedures are somewhat limited in nature for design of civil structures in nuclear fuel cycle facilities (NFCF), and till date no separate codes or standards have been published by regulatory authorities in India that cover civil design aspects for NFCF. Hence, design of civil structures of NFCF in India is performed by using different national and international standards, and the recommendations provided by BARC Safety Council (BSC). Present paper focuses civil design aspects for NFCF in India. (author)

  14. A simple method for the design of tension structures combining topological mapping and nonlinear structural analysis

    Directory of Open Access Journals (Sweden)

    Jurado-Piña, R.

    2014-12-01

    Full Text Available When designing a tension structure the shape is not known at the beginning of the process. Form-finding methods allow the designer to obtain an initial shape from given boundary conditions. Several form-finding methods for tension structures are already available in the technical literature; all of them posses certain limitations and drawbacks and no single method is optimal for all problems. The engineer may select the proper combination of methods best suited to the designer’s needs. In this paper it is proposed a combined method to achieve satisfactory equilibrium configurations for fabric tension structures. The force density method (FDM implemented with topological mapping (TM is used as a search engine for the preliminary design, and a procedure that employs nonlinear structural analysis is proposed for final refinement of the initial equilibrium configuration hence allowing the use of the same analysis tool for both refinement of the solution and analysis under loading.Al diseñar una estructura tensada la forma inicial es normalmente desconocida. Los métodos de búsqueda de forma permiten al ingeniero obtener una geometría inicial dadas unas condiciones de contorno. Existen diferentes métodos de búsqueda de formas de equilibrio, pero todos tienen limitaciones y no existe uno único óptimo para cualquier tipo de problema. El ingeniero debe elegir la combinación de métodos que mejor se adapte a sus necesidades. En este artículo se propone un método combinado para generar configuraciones de equilibrio satisfactorias en estructuras tensadas. Como motor de búsqueda para el diseño preliminar se emplea el método de las densidades de fuerza (FDM implementado con mallado en topología (TM, y se propone un procedimiento basado en análisis no lineal de estructuras para el refinamiento de la configuración inicial de equilibrio, permitiéndose así el empleo de las mismas herramientas tanto para el refinamiento de la solución inicial

  15. Structuring a generative model for urban design : Linking GIS to shape grammars

    NARCIS (Netherlands)

    Beirao, J.; Duarte, J.; Stouffs, R.

    2008-01-01

    Urban Design processes need to adopt flexible and adaptive procedures to respond to the evolving demands of the contemporary city. To support such dynamic processes, a specific design methodology and a supporting tool are needed. This design methodology considers the development of a design system

  16. Inelastic design of nuclear reactor structures and its implications on design of critical equipment

    International Nuclear Information System (INIS)

    Newmark, N.M.

    1977-01-01

    In considering the response of a nuclear reactor structure to seismic motions, one must take account of the implications of various levels of damage, short of impairment of safety, and definitely short of collapse, of the structure. Some structural elements of nuclear power plants must perforce remain elastic or nearly elastic in order to perform their allocated safety function. However, in many instances, a purely linear elastic analysis may be unreasonably conservative when one considers that even up to the near yield point range, there are nonlinearities of sufficient amount to reduce required design levels considerably. Moreover, limited yielding of a structure may reduce the response of equipment located in the structure below those levels of response that would be excited were the structure to remain elastic. Energy absorption in the inelastic range is most conveniently treated by use of the so-called 'ductility factor' introduced by the author for design of structures and equipment to resist explosion and blast forces. In general, for small excursions into the inelastic range, especially when the latter can be approximated by an elasto-plastic resistance curve, the design response spectrum is decreased by a simply determined factor that is related to the ductility factor. Many important parts of equipment of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response as well as by the general ground motion to which the structure is subjected. This matter involves some difficulty in analysis, but appropriate calculational techniques and design methods are available. A suitable design simplification is one in which the response of the attachment is related to the modal responses of the structure. This equipment response is affected by the relative mass of the attachment and the structure

  17. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  18. Comparison of Traditional Design Nonlinear Programming Optimization and Stochastic Methods for Structural Design

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2010-01-01

    Structural design generated by traditional method, optimization method and the stochastic design concept are compared. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions were produced by all the three methods. The variation in the weight calculated by the methods was modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliabilitytraced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  19. Acetylcholinesterase in motion : Visualizing conformational changes in crystal structures by a morphing procedure

    NARCIS (Netherlands)

    Zeev-Ben-Mordehai, T; Silman, I.; Sussman, J.L.

    In order to visualize and appreciate conformational changes between homologous three-dimensional (3D) protein structures or protein/inhibitor complexes, we have developed a user-friendly morphing procedure. It enabled us to detect coordinated conformational changes not easily discernible by analytic

  20. Designing of Metallic Photonic Structures and Applications

    International Nuclear Information System (INIS)

    Yong-Sung Kim

    2006-01-01

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result

  1. Generic procedure for designing and implementing plan management systems for space science missions operations

    Science.gov (United States)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and

  2. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  3. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  4. Fuel element cellular grid structure and procedure to insert and withdraw fuel rods from that structure

    International Nuclear Information System (INIS)

    1975-01-01

    A typical embodiment of the invention provides a means for selectively inserting and withdrawing one or more fuel rods from a fuel element cellular grid structure. The transverse stubs on one side of a long, thin bar are turned through 90deg to extend across the gap between mutually perpendicular grid structure plates. The extreme ends of these stubs engage the adhacent portions of the associated plates that form part of the grid cells. Pressing the stubs against the plate portions through the application of appropriate force in a longitudinal direction relative to the bar deflects the engaged plates through a sufficient distance to enable fuel rods to be inserted into or withdrawn from respective cells. After rod insertion, the force applied to the bar is released to enable the plates to relax and engage the fuel rods. The bars are rotated once more through 90deg and withdrawn from the grid structure. A similar procedure is employed to withdraw fuel rods from the grid structure

  5. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  6. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  7. Automated simulation and study of spatial-structural design processes

    NARCIS (Netherlands)

    Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are

  8. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...... in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating...

  9. The structure of an expert system to diagnose and supply a corrective procedure for nuclear power plant malfunctions

    International Nuclear Information System (INIS)

    Hajek, B.K.; Stasenko, J.E.; Hashemi, S.; Bhatnagar, R.; Punch, W.F. III; Yamada, N.

    1987-01-01

    During the past two years, two prototype knowledge based systems have been developed at the Ohio State University. These systems were the result of collaboration between the Nuclear Engineering Program and the Laboratory for Artificial Intelligence Research (LAIR). The first system uses hierarchical classification to diagnose malfunctions of the coolant system in a General Electric Boiling Water Reactor (BWR). The second system provides a plan of action, through a process of dynamic procedure management, to stabilize the plant once an abnormal transient has occurred. The objective of this paper is to discuss the structure that has been designed to integrate the two systems. The combined system will be capable of informing plant personnel about the nature of malfunctions, and of supplying to the operator the most direct corrective procedure available. Two important features of the integrated system are faulty sensor detection, based on malfunction context and unlike sensor data, and procedure management based on the initial state of the plant. Since the two knowledge based systems were developed separately, the integration has required a separate component currently under development, the Plant Status Monitoring System (PSMS). The task of PSMS is to monitor plant parameters in order to detect an abnormal condition developing within the plant. Based on the nature of the event, PSMS is capable of directing control to either the procedure management or diagnosis component. The integrated system plays only an advisory role, and any suggested action would be executed by the plant personnel

  10. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  11. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  12. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  13. Structured tradeoffs preference elicitation: Evaluating CRWMS design and operations

    International Nuclear Information System (INIS)

    Hartman, H.

    1994-01-01

    Preliminary studies over the past few years have yielded multiple design and operations alternatives for the planned Civilian Radioactive Waste Management System (CRWMS). Waste isolation, pre-closure health and safety, and life cycle cost are among the many factors considered in developing these alternatives. The task of CRWMS designers is complicated by substantial heat and nuclear radiation energy output of the spent nuclear fuel and high level waste intended for disposal in an underground repository. Not only must the usual effectiveness, operability and cost objectives be balanced, but done so in the context of a constantly changing environment. Particular alternatives sometimes are favored by virtue of their outstanding performance relative to one of these factors. The Ultimate success of the potential repository, however, depends on reaching a defensible and traceable final decision through simultaneous and systematic weighing of all relevant factors. This paper documents the outcome of Structured Tradeoffs Preference (STP) elicitation as a method for the simultaneous and systematic weighing of factors relevant to repository thermal loading, waste package (WP) design, and emplacement mode decisions. The study provided a low-cost early indication of directions of further research on CRWMS design and operations likely to be most fruitful. The method of STP elicitation was utilized to avoid potential biases documented in other efforts which use only unstructured decision making, or open-quotes well-considered judgmentclose quotes. The STP elicitation procedure presented here complements the use of a parameter network-model pyramid suggested elsewhere in this proceedings to provide a framework for precisely articulating technical questions needing answers. It also forms an independent crosscheck of systems engineering study results and performance assessment modeling

  14. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex....... The continuous relaxation of the mixed integer programming problems is being solved by an implementation of a primal–dual interior point method for nonlinear programming that updates the barrier parameter adaptively. The method is chosen for its excellent convergence properties and the ability of the method...... design phase results in structures with better structural performance reducing the need of manually post–processing the found designs....

  15. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  16. Democratic Deliberation Procedures : Theoretical and Practical Issues

    Directory of Open Access Journals (Sweden)

    Tutui Viorel

    2011-01-01

    Full Text Available Abstract : In contemporary political philosophy, the focus of the most important controversies is on the deliberative model of democracy. These controversies concern not only the theoretical problem of providing the best justification for a deliberative model of democratic legitimacy, but also the practical problem of designing the best deliberative procedure that will secure the implementation of deliberative democracy. In this paper I will present and analyze some of the most important deliberative designs: deliberative polls, citizens’ juries, consensus conferences and planning cells. I argue that these deliberative events can have a significant impact on the political behavior of a democratic community. However, I explain that all of them have only a limited influence on the policy-making activities in local and central governing structures. This is the reason why I believe we could only supplement and never fully replace the traditional aggregative procedures of democracy (voting and bargaining with a deliberative design.

  17. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  18. Design of marine structures with improved safety for environment

    International Nuclear Information System (INIS)

    Klanac, Alan; Varsta, Petri

    2011-01-01

    The paper describes a method for design of marine structures with increased safety for environment, considering also the required investment costs as well as the aspects of risk distribution onto the maritime stakeholders. Practically, the paper seeks to answer what is the optimal amount that should be invested into certain safety measure for any given vessel. Due to the uneven distribution of risk, as well as the differing impact of costs emerging from safety improvements, stakeholders experience conflicting ranking of alternatives. To solve this multi-stakeholder decision-making problem, in which each stakeholder is a decision-maker, the method applies concepts of group decision-making theory, namely the Game Theory. The method fosters axiomatic definition of the optimum solution, arguing that the solution, or the final selected design, should satisfy the non-dominance, efficiency, and fairness. These three are thoroughly discussed in terms of structural design, especially the latter. Considering the coupling of environmental risk and structural design, the method also builds on the preference structure of four maritime stakeholders: yards, owners, oil receivers and the public, who either share the risks or directly influence structural design. Method is presented on a practical study of structural design of a tanker with a crashworthy side structure that is capable of reducing the risk of collision. The outcome of this study outlines a number of possibilities for successful improvement of tanker safety that can benefit, concurrently, all maritime stakeholders.

  19. Use of virtual steam generator cassette for tube spatial design and SGC assembling procedure

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Ji, S. K.

    2003-01-01

    A method of determining spatial arrangement of tube connection and assembling procedure of once-through helical steam generator cassette utilizing three dimensional virtual steam generator cassette has been developed on the basis of recent 3-D modelling technology. One ends of the steam generator tubes are connected to the module feed water header and the other sides are connected to the module steam header. Due to the complex geometry of tube arrangement, it is very difficult to connect the tubes to the module headers without the help of a physical engineering mock up. A comparative study has been performed at each design step for the tube arrangement and heat transfer area. Heat transfer area computed from thermal sizing was 4% less than that of measured. Heat transfer area calculated from the virtual steam generator cassette mock up has only 0.2% difference with that of measured. Assembling procedure of the steam generator cassette also, can be developed in the design stage

  20. CRBR reactor structures design. BRC meeting presentation

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    Some of the more important developments in LMFBR structures design technology are described and the application of the technology to design of the CRBR reactor components is illustrated. The LMFBR is both a high-temperature and a high-ΔT machine. High-temperature operation (up to 1100 0 F) requires that the designer consider the effects of thermal creep as a deformation mechanism and stress rupture as a failure mode. The large ΔT across the core coupled with a low core thermal inertia and the high conductivity of the sodium coolant combine to produce severe temperature gradients during a reactor scram. Structures designed to operate in this environment must be both light and stiff to minimize transient thermal stresses and prevent unacceptable flow-induced vibrations. Thermal shields may be required to protect the load-bearing structure. At CRBR core-component goal fluence levels, the predicted magnitude of core-component dimensional changes due to irradiation swelling and creep is very large compared with the more familiar dimensional changes associated with thermal expansion and thermal creep. The design of the core components, and in particular the core restraint system, is dominated by the need to accommodate the effects of irradiation swelling, creep and du []tility loss considerations. (auth)

  1. Structured Assessment Approach: a procedure for the assessment of fuel cycle safeguard systems

    International Nuclear Information System (INIS)

    Parziale, A.A.; Patenaude, C.J.; Renard, P.A.; Sacks, I.J.

    1980-01-01

    Lawrence Livermore National Laboratory has developed and tested for the United States Nuclear Regulatory Commission a procedure for the evaluation of Material Control and Accounting (MC and A) Systems at Nuclear Fuel Facilities. This procedure, called the Structured Assessment Approach, SAA, subjects the MC and A system at a facility to a series of increasingly sophisticated adversaries and strategies. A fully integrated version of the computer codes which assist the analyst in this assessment was made available in October, 1979. The concepts of the SAA and the results of the assessment of a hypothetical but typical facility are presented

  2. On the design and structural analysis of jet engine fan blade structures

    Science.gov (United States)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  3. An Application of Graphical Approach to Construct Multiple Testing Procedure in a Hypothetical Phase III Design

    Directory of Open Access Journals (Sweden)

    Naitee eTing

    2014-01-01

    Full Text Available Many multiple testing procedures (MTP have been developed in recent years. Among these new procedures, the graphical approach is flexible and easy to communicate with non-statisticians. A hypothetical Phase III clinical trial design is introduced in this manuscript to demonstrate how graphical approach can be applied in clinical product development. In this design, an active comparator is used. It is thought that this test drug under development could potentially be superior to this comparator. For comparison of efficacy, the primary endpoint is well established and widely accepted by regulatory agencies. However, an important secondary endpoint based on Phase II findings looks very promising. The target dose may have a good opportunity to deliver superiority to the comparator. Furthermore, a lower dose is included in case the target dose may demonstrate potential safety concerns. This Phase III study is designed as a non-inferiority trial with two doses, and two endpoints. This manuscript will illustrate how graphical approach is applied to this design in handling multiple testing issues.

  4. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  5. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  6. Structuring Principles for the Designer

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    1998-01-01

    This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...

  7. Structural assessment procedure of corroding submarine gas pipelines using on-line inspection data

    International Nuclear Information System (INIS)

    Nordin Yahaya

    2000-01-01

    This paper presents 'the alternative approach of overall procedure in the assessment of corroded pipelines using data gathered by the on-line inspection device. The methodology adopts a generalised approach of analysing pipeline inspection data and a prediction of the structural reliability due to the deteriorating corrosion environment. The whole assessment methodology is divided into four separate stages; 1 to IV. Stages 1 and 11 are the initial procedure prior to the actual analysis of the inspection data. The scope of this paper is concerted into the procedure to be taken in Stage 111 where the stage is sub-divided into 3 major steps; Part A, B and C. These procedures are Part A (statistical and probabilistic analysis of the inspection data) and Part B (the application of extreme value statistics) and C (reliability assessment). Stage IV (risk assessment) is the final step in the procedure where the consequences of failure are evaluated. The proposed risk-based assessment procedure is more systematic and reliable to account for a huge amount of collected data usually obtained in an on-line inspection using the intelligent devices. The outcomes of this risk-based methodology can be very useful in the decision-making process by the operation management. This in turn will produce an efficient inspection, repair and maintenance program and enhanced the optimised return in investment. (author)

  8. Interdisciplinary Development of an Improved Emergency Department Procedural Work Surface Through Iterative Design and Use Testing in Simulated and Clinical Environments.

    Science.gov (United States)

    Zhang, Xiao C; Bermudez, Ana M; Reddy, Pranav M; Sarpatwari, Ravi R; Chheng, Darin B; Mezoian, Taylor J; Schwartz, Victoria R; Simmons, Quinneil J; Jay, Gregory D; Kobayashi, Leo

    2017-03-01

    A stable and readily accessible work surface for bedside medical procedures represents a valuable tool for acute care providers. In emergency department (ED) settings, the design and implementation of traditional Mayo stands and related surface devices often limit their availability, portability, and usability, which can lead to suboptimal clinical practice conditions that may affect the safe and effective performance of medical procedures and delivery of patient care. We designed and built a novel, open-source, portable, bedside procedural surface through an iterative development process with use testing in simulated and live clinical environments. The procedural surface development project was conducted between October 2014 and June 2016 at an academic referral hospital and its affiliated simulation facility. An interdisciplinary team of emergency physicians, mechanical engineers, medical students, and design students sought to construct a prototype bedside procedural surface out of off-the-shelf hardware during a collaborative university course on health care design. After determination of end-user needs and core design requirements, multiple prototypes were fabricated and iteratively modified, with early variants featuring undermattress stabilizing supports or ratcheting clamp mechanisms. Versions 1 through 4 underwent 2 hands-on usability-testing simulation sessions; version 5 was presented at a design critique held jointly by a panel of clinical and industrial design faculty for expert feedback. Responding to select feedback elements over several surface versions, investigators arrived at a near-final prototype design for fabrication and use testing in a live clinical setting. This experimental procedural surface (version 8) was constructed and then deployed for controlled usability testing against the standard Mayo stands in use at the study site ED. Clinical providers working in the ED who opted to participate in the study were provided with the prototype

  9. Procedure guide of design, construction of prototypes, calibration and sure operation of nucleonic control systems

    International Nuclear Information System (INIS)

    Banados Perez, H.; Griffith Martinez, J.; Desdin Garcia, L.F.; Rodriguez Cardona, R.L.; Molina, G.; Sebastian Calvo, C.

    1999-01-01

    This Guide was elaborated in the mark of the project RLA/8/024 ARCAL XLII 'Industrial Applications of the Tracer Technology and Nucleonic Control Systems'. Its objective is to establish the approaches for the design, the construction, the selection and the procedures for the sure operation of the Nucleonic Control Systems (NCS) in the industry. The NCS is used to control processes to high speeds, materials with extreme conditions or with noxious chemical properties, susceptible materials of being damaged by contact and packed products. In this document is defined the scope of the procedure. The SCN are classified according to: type of radiations, the mobility of the components, the degree of the beams collimation; and in function of the security. The design and construction criteria of the nuclear meters and of the systems of control nucleonic are exposed

  10. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  11. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  12. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  13. New procedures of ergonomics design in a large oil company.

    Science.gov (United States)

    Alhadeff, Cynthia Mossé; Silva, Rosana Fernandes da; Reis, Márcia Sales dos

    2012-01-01

    This study presents the challenge involved in the negotiation and construction of a standard process in a major petroleum company that has the purpose of guiding the implementation of ergonomic studies in the development of projects, systemising the implementation of ergonomics design. The standard was created by a multi-disciplinary working group consisting of specialists in ergonomics, who work in a number of different areas of the company. The objective was to guide "how to" undertake ergonomics in all projects, taking into consideration the development of the ergonomic appraisals of work. It also established that all the process, in each project phase, should be accompanied by a specialist in ergonomics. This process as an innovation in the conception of projects in this company, signals a change of culture, and, for this reason requires broad dissemination throughout the several company leadership levels, and training of professionals in projects of ergonomics design. An implementation plan was also prepared and approved by the corporate governance, complementing the proposed challenge. In this way, this major oil company will implement new procedures of ergonomics design to promote health, safety, and wellbeing of the workforce, besides improving the performance and reliability of its systems and processes.

  14. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  15. Towards Patient-Tailored Perimetry: Automated Perimetry Can Be Improved by Seeding Procedures With Patient-Specific Structural Information

    Science.gov (United States)

    Denniss, Jonathan; McKendrick, Allison M.; Turpin, Andrew

    2013-01-01

    Purpose: To explore the performance of patient-specific prior information, for example, from structural imaging, in improving perimetric procedures. Methods: Computer simulation was used to determine the error distribution and presentation count for Structure–Zippy Estimation by Sequential Testing (ZEST), a Bayesian procedure with prior distribution centered on a threshold prediction from structure. Structure-ZEST (SZEST) was trialled for single locations with combinations of true and predicted thresholds between 1 to 35 dB, and compared with a standard procedure with variability similar to Swedish Interactive Thresholding Algorithm (SITA) (Full-Threshold, FT). Clinical tests of glaucomatous visual fields (n = 163, median mean deviation −1.8 dB, 90% range +2.1 to −22.6 dB) were also compared between techniques. Results: For single locations, SZEST typically outperformed FT when structural predictions were within ± 9 dB of true sensitivity, depending on response errors. In damaged locations, mean absolute error was 0.5 to 1.8 dB lower, SD of threshold estimates was 1.2 to 1.5 dB lower, and 2 to 4 (29%–41%) fewer presentations were made for SZEST. Gains were smaller across whole visual fields (SZEST, mean absolute error: 0.5 to 1.2 dB lower, threshold estimate SD: 0.3 to 0.8 dB lower, 1 [17%] fewer presentation). The 90% retest limits of SZEST were median 1 to 3 dB narrower and more consistent (interquartile range 2–8 dB narrower) across the dynamic range than those for FT. Conclusion: Seeding Bayesian perimetric procedures with structural measurements can reduce test variability of perimetry in glaucoma, despite imprecise structural predictions of threshold. Translational Relevance: Structural data can reduce the variability of current perimetric techniques. A strong structure–function relationship is not necessary, however, structure must predict function within ±9 dB for gains to be realized. PMID:24049720

  16. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  17. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  18. STRUCTURAL AND DESIGN SPECIFICS OF SPACE GRID SYSTEMS

    Directory of Open Access Journals (Sweden)

    G. M. Gasii

    2017-01-01

    Full Text Available The aim of the study is to identify main trends in the development of space grid structures. In order to reach the purpose it is necessary to conduct a review of the known structural concepts, nodal connections and specifics of the space grid structures and to make conclusions on feasibility improvement of the considered structural concepts that make it possible to develop new solutions without disadvantages residing in the analogues. Analysis of papers written by foreign and national scientists and devoted to theoretical, numerical and experimental studies of stress-strain state, influence of different factors on it and geometrical optimization and designing of space grid structures has been conducted in order to achieve the objectives. Space grid structures and, in particular, flat double-layer grid and most frequent nodes have been studied in the paper. The paper contains a short review of the history on development of space grid structures. It has been found that a rapid development of structural designs was caused by scientific and technical progress and, in particular, improvement of physical and mechanical properties of materials, development of calculation methods, application of software systems for simulating behavior of the structure under load, which significantly increased the calculation accuracy and reduced complexity of design. It has been also established that main parameters that have influence on effectiveness of a structural design are geometric dimensions of its modular elements, ratio of its depth to the span. The world experience on development of connection components has been studied in the paper. The paper presents general classification of nodal connections. Main advantages and disadvantages of existing space grid structures are highlighted and it allows to determine possible methods for their improvement. Theoretical research has permitted to establish that the main direction of spatial grid structures improvement

  19. Improving stability and strength characteristics of framed structures with nonlinear behavior

    Science.gov (United States)

    Pezeshk, Shahram

    1990-01-01

    In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed structures. The design methodology presented here is a multiple-objective optimization procedure whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for solving complex design problems and generally leads to structures with better limit strength and stability. Many algorithms have been developed to improve the limit strength of structures. In most applications geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated. Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed structures while avoiding the nonlinear analysis. One of the novelties of the new design methodology is its ability to efficiently model and design structures under multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can be applied to the structure simultaneously or independently. Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint. Although researchers in the field of structural engineering generally agree that optimum design of three-dimension building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research in this area has dealt

  20. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  1. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  2. Configuration and structural design of Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brown, T.G.

    1985-01-01

    Viewgraphs are presented on the configuration and structural design of the Compact Ignition Tokamak, originally presented to the US/Japan Workshop on Next Step Machine Design. Items discussed in this presentation include: PPPL 0424 ref design; MIT LITE ref design; IGNITOR 1.01 M ref design; and IGNITOR 1.08 M press configuration

  3. Design of DOE facilities for wind-generated missiles

    International Nuclear Information System (INIS)

    Kuilanoff, G.; Drake, R.M.

    1991-01-01

    This paper presents criteria and procedures for the design of structures and components for wind-generated missiles. Methods for determining missile-induced loading, calculated structural response, performance requirements, and design considerations are covered. The presented criteria is applicable to Safety-Related concrete buildings as a whole and to all their exposed external components including walls, roofs, and supporting structural systems and elements

  4. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  5. Tools and procedures for a “maintenance oriented” design for buildings of worship

    Directory of Open Access Journals (Sweden)

    Cinzia Talamo

    2013-10-01

    Full Text Available The paper describes the results, achieved in the first year, of a three years research dealing with the themes connected with the methods and the tools for planned maintenance and concerning the proposal of a system of supports for a design “maintenance oriented”. The starting hypothesis is that most of maintenance problems emerging during the life time of a building are due to a lack of attention towards the use phase that both clients and designers demonstrate. Starting from this point of view the aim of the research was to develop and to check a system of supports, useful both for clients and for designs of buildings of worship, consisting in guide lines, procedures and evaluation tools, graduate according to the different steps of design process and carried out in order to assume and to verify the requirement of maintainability.

  6. Robust parameter design for integrated circuit fabrication procedure with respect to categorical characteristic

    International Nuclear Information System (INIS)

    Sohn, S.Y.

    1999-01-01

    We consider a robust parameter design of the process for forming contact windows in complementary metal-oxide semiconductor circuits. Robust design is often used to find the optimal levels of process conditions which would provide the output of consistent quality as close to a target value. In this paper, we analyze the results of the fractional factorial design of nine factors: mask dimension, viscosity, bake temperature, spin speed, bake time, aperture, exposure time, developing time, etch time, where the outcome of the experiment is measured in terms of a categorized window size with five categories. Random effect analysis is employed to model both the mean and variance of categorized window size as functions of some controllable factors as well as random errors. Empirical Bayes' procedures are then utilized to fit both the models, and to eventually find the robust design of CMOS circuit process by means of a Bootstrap resampling approach

  7. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  8. Research on Operating Procedure Development in View of RCM Theory

    International Nuclear Information System (INIS)

    Shi, J.

    2015-01-01

    The operation of NPPs (nuclear power plants) is closely related to SSCs (Structure, System and Component) function implementations and failure recoveries, and strictly follows operating procedure. The philosophy of RCM (Reliability Centered Maintenance) which is a widely-used systematic engineering approach in industry focusing on likewise facility functions and effectiveness of maintenance is accepted in relative analysis of NPPs operation in this paper. Based on the theory of RCM, the paper will discuss general logic of operating procedure development and framework optimization as well combining NPPs engineering design. Since the quality of operating procedures has a significant impact on the safe and reliable operation of NPPs, the paper provides a proposed operating procedure development logic diagramme for reference for the procedure optimization task ahead. (author)

  9. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  10. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  11. Structure design of primary heat-exchanger for the MHWRR

    International Nuclear Information System (INIS)

    Li Yanshui; Cao Zhibin

    1999-01-01

    Primary heat-exchanger is one of the key equipment in the Multi-application Heavy Water Research Reactor (MHWRR). Its structure design ought to meet as much possible as the demands for safety, feasibility and economy. To reduce the liquid resistance, the locating structure between inner tube and outer tube is distributed spirally. The edge of outer tube is processed in the shape of hexahedron and then splice-welded into honeycomb structure thereby the heat-exchanger has the smallest outer diameter compared with that with the same heat-exchanging area according to 'Normal Design', 'Anabasis Design' is applied to the design for parts with Safety Class I, to ensure safety of the heat-exchanger

  12. Design and manufacturing of the CFRP lightweight telescope structure

    Science.gov (United States)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  13. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    Energy Technology Data Exchange (ETDEWEB)

    Adib-Ramezani, H. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)]. E-mail: hradib_2000@yahoo.com; Jeong, J. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France); Pluvinage, G. [Laboratoire de Fiabilite Mecanique (LFM), Universite de Metz-ENIM, 57045 Metz (France)

    2006-06-15

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated.

  14. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    International Nuclear Information System (INIS)

    Adib-Ramezani, H.; Jeong, J.; Pluvinage, G.

    2006-01-01

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated

  15. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  16. Designing socio-technical systems : Structures and processes

    NARCIS (Netherlands)

    Bots, P.W.G.; Van Daalen, C.

    2012-01-01

    The Systems Engineering, Policy Analysis and Management (SEPAM) MSc curriculum taught at Delft University of Technology focuses on the design of socio-technical systems (STS). We teach our students to structure design activities by considering what we call the TIP aspects: Technical systems,

  17. Design of canals

    CERN Document Server

    Swamee, P K

    2015-01-01

    The book presents firsthand material from the authors on design of hydraulic canals. The book discusses elements of design based on principles of hydraulic flow through canals. It covers optimization of design based on usage requirements and economic constraints. The book includes explicit design equations and design procedures along with design examples for varied cases. With its comprehensive coverage of the principles of hydraulic canal design, this book will prove useful to students, researchers, and practicing engineers. End-of-chapter pedagogical elements make it ideal for use in graduate courses on hydraulic structures offered by most civil engineering departments across the world.

  18. Techniques for the design of highly damped structures

    International Nuclear Information System (INIS)

    Nelson, F.C.

    1975-01-01

    This paper discusses several techniques for the design of highly damped structures, techniques which have proven successful for large scale, low frequency steel and concrete structures which are typical of nuclear power reactors and their components. The ability to augment structural damping can be useful in increasing the seismic withstandability of structures. Seismic excitation is broadband in its frequency content and will excite many strutural resonances. Broadband damping will limit these resonant responses and thereby reduce the seismic load on structures and their components. This paper discusses three techniques: the design of structural joints and interfaces to promote damping; the use of layers of viscoelastic material; and the employment of damping links. The emphasis is on explaining the ways in which these techniques work and in describing the ways in which they have been used. (Auth.)

  19. Multidisciplinary Design and Optimization Framework for Aircraft Box Structures

    NARCIS (Netherlands)

    Van Dijk, R.E.C.; Zhao, X.; Wang, H.; Van Dalen, F.

    2012-01-01

    Competitive aircraft box structures are a perfect compromise between weight and price. The conceptual design process of these structures is a typical Multidisciplinary Design and Optimization effort, normally conducted by human engineers. The iterative nature of MDO turns development into a long and

  20. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  1. Flexibility in Flood Management Design: Proactive Planning Under Climate Change Uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2015-12-01

    This paper presents an innovative, value-enhancing procedure for effective planning and design of long-lived flood management infrastructure given uncertain future flooding threats due to climate change. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given uncertainty about rates and future impacts of climate change. This paper explores the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building of extra pump bays in a pumping station now enables the addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed procedure couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investments. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. This procedure is demonstrated using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. Flexibility in design decisions is modelled, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, as well as the options examined. This procedure could be applied more broadly to explore

  2. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  3. Revisiting the Concepts "Approach", "Design" and "Procedure" According to the Richards and Rodgers (2011) Framework

    Science.gov (United States)

    Cumming, Brett

    2012-01-01

    The three concepts Approach, Design and Procedure as proposed in Rodgers' Framework are considered particularly effective as a framework in second language teaching with the specific aim of developing communication as well as for better understanding methodology in the use of communicative language use.

  4. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  5. Evaluating procedural modelling for 3D models of informal settlements in urban design activities

    Directory of Open Access Journals (Sweden)

    Victoria Rautenbach

    2015-11-01

    Full Text Available Three-dimensional (3D modelling and visualisation is one of the fastest growing application fields in geographic information science. 3D city models are being researched extensively for a variety of purposes and in various domains, including urban design, disaster management, education and computer gaming. These models typically depict urban business districts (downtown or suburban residential areas. Despite informal settlements being a prevailing feature of many cities in developing countries, 3D models of informal settlements are virtually non-existent. 3D models of informal settlements could be useful in various ways, e.g. to gather information about the current environment in the informal settlements, to design upgrades, to communicate these and to educate inhabitants about environmental challenges. In this article, we described the development of a 3D model of the Slovo Park informal settlement in the City of Johannesburg Metropolitan Municipality, South Africa. Instead of using time-consuming traditional manual methods, we followed the procedural modelling technique. Visualisation characteristics of 3D models of informal settlements were described and the importance of each characteristic in urban design activities for informal settlement upgrades was assessed. Next, the visualisation characteristics of the Slovo Park model were evaluated. The results of the evaluation showed that the 3D model produced by the procedural modelling technique is suitable for urban design activities in informal settlements. The visualisation characteristics and their assessment are also useful as guidelines for developing 3D models of informal settlements. In future, we plan to empirically test the use of such 3D models in urban design projects in informal settlements.

  6. Probability based load factors for design of concrete containment structures

    International Nuclear Information System (INIS)

    Hwang, H.; Kagami, S.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper describes a procedure for developing probability-based load combinations for the design of concrete containments. The proposed criteria are in a load and resistance factor design (LRFD) format. The load factors and resistance factors are derived for use in limit states design and are based on a target limit state probability. In this paper, the load factors for accident pressure and safe shutdown earthquake are derived for three target limit state probabilities. Other load factors are recommended on the basis of prior experience with probability-based design criteria for ordinary building construction. 6 refs

  7. Robust parameter design for integrated circuit fabrication procedure with respect to categorical characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S.Y

    1999-12-01

    We consider a robust parameter design of the process for forming contact windows in complementary metal-oxide semiconductor circuits. Robust design is often used to find the optimal levels of process conditions which would provide the output of consistent quality as close to a target value. In this paper, we analyze the results of the fractional factorial design of nine factors: mask dimension, viscosity, bake temperature, spin speed, bake time, aperture, exposure time, developing time, etch time, where the outcome of the experiment is measured in terms of a categorized window size with five categories. Random effect analysis is employed to model both the mean and variance of categorized window size as functions of some controllable factors as well as random errors. Empirical Bayes' procedures are then utilized to fit both the models, and to eventually find the robust design of CMOS circuit process by means of a Bootstrap resampling approach.

  8. Development of expert system for structural design of FBR components

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Uno, Masayoshi; Ogawa, Hiroshi; Shimakawa, Takashi; Yoshimura, Shinobu; Yagawa, Genki.

    1995-01-01

    The characteristics of structural design processes for nuclear components can be summarized as follows : (1) Many engineers belonging to different fields are working in parallel, exchanging a huge amount of data and information. (2) A final solution is determined after a number of iterative design processes. (3) Solutions have to be examined many times based on sophisticated design codes. (4) Sophisticated calculation methods such as the finite element method are frequently utilized, and experts' knowledge on such analyses plays important roles in the design process. Taking these issues into consideration, a new expert system for structural design is developed in the present study. Here, the object-oriented data flow mechanism and the blackboard model are utilized to systematize structural design processes in a computer. An automated finite element calculation module is implemented, and experts' knowledge is stored in knowledge base. In addition, a new algorithm is employed to automatically draw the design window, which is defined as an area of permissible solutions in a design parameter space. The developed system is successfully applied to obtain the design windows of four components selected from the demonstration FBR structures. (author)

  9. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  10. Structural integrity and its role in nuclear safety recent UK developments in the development of high temperature design procedures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1991-01-01

    The structural design rules for the reactors which operate at high temperature are not yet well developed. There is not difficulty in producing the plants which meet the high standards required by nuclear industry. However, there are the issues to be resolved which are associated with the deterioration of components in service, in order to achieve the optimum use of materials and the reduction of capital costs. The safety of plants is not at risk since any deterioration is detected by in-service monitoring, nevertheless, there would be severe economic penalty, if a plant must be retired prematurely because the continuing safety could not be demonstrated. In this paper, a liquid metal fast breeder reactor is taken up as an example, and the topics in which research plays a role for providing improved design rules are identified. Shakedown interaction diagrams, the methods of analysis based on shakedown, inelastic analysis and constitutive equations, creep fatigue damage and thermal shock, thermal striping, welds, defect assessment and so on are discussed. (K.I.)

  11. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  12. Structure study and design of Qinshan NPP PCCV

    International Nuclear Information System (INIS)

    Xia Zufeng; Xu Yongzhi; Wang Tianzhen; Wu Jibiao

    1993-02-01

    The design process of Qinshan NPP (nuclear power plant) PCCV (prestressed concrete containment vessel) is summarized. The tendon test, structural description, design bases and analysis method are introduced. The arrangement for preventing concrete from cracking and design features of post-tensioning system and steel liner are presented. The results of model test and non-linear analysis for ultimate load in Qinshan NPP PCCV are also given. Through the integrity test of PCCV, it shows that the test values are in agreement with predicted values, the structure is excellent and the performance of leak tightness conforms to the safety requirements

  13. Interdisciplinary analysis procedures in the modeling and control of large space-based structures

    Science.gov (United States)

    Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.

    1987-01-01

    The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.

  14. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    Science.gov (United States)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between

  15. A structural keystone for drug design

    Directory of Open Access Journals (Sweden)

    Rother Kristian

    2006-06-01

    Full Text Available 3D-structures of proteins and potential ligands are the cornerstones of rational drug design. The first brick to build upon is selecting a protein target and finding out whether biologically active compounds are known. Both tasks require more information than the structures themselves provide. For this purpose we have built a web resource bridging protein and ligand databases. It consists of three parts: i A data warehouse on annotation of protein structures that integrates many well-known databases such as Swiss-Prot, SCOP, ENZYME and others. ii A conformational library of structures of approved drugs. iii A conformational library of ligands from the PDB, linking the realms of proteins and small molecules.

  16. Development of Tools for Engineering Analysis and Design of High-Performance FRP-Composite Structural Elements

    DEFF Research Database (Denmark)

    Mortensen, Fl.

    as general specification of loads and boundary conditions. For all the structural problems addressed, the analyses are carried out following the same principal approach, which is based on an explicit formulation of the governing set of differential equations. The governing differential equations...... in ESAComp. The solution procedures for the adhesive bonded joints have been used to conduct a parametric study, where the influence of using laminated adherends has been investigated. Based on this, a set of general design guidelines has been given in order to improve the structural performance and strength...... for joints with laminated adherends. The guidelines are also valid for the ply drop problems, since their mechanical behaviour are very similar. The results obtained for adhesive bonded joints, ply drops and insert problems have been compared with finite element analysis results. The results obtained...

  17. Analysis of the optimal design strategy of a magnetorheological smart structure

    International Nuclear Information System (INIS)

    Yang Likang; Duan Fubin; Eriksson, Anders

    2008-01-01

    The exploration of magnetorheological (MR) fluid applications involves many fields. During the phase of theory analysis and experimental investigations, most of the research has been in developing primary products, and the design method is becoming important in MR device design. To establish general design guidelines, not with the usual MR smart structure design method which just complies with the presented yield stress of smart materials, in this paper, an MR smart structure design method is presented according to the whole requirement of smart structure characteristics. In other words, the smart structure design method does not just execute its optimization according to the presented MR fluid features, and it can customize or select the properties of MR fluid obeying the whole system requirements. Besides the usual magnetic circuit design analysis, the MR fluid physical content, such as the volume fraction of particles, was incorporated into the design parameters of the products. At the same time, by utilizing the structural parameters, the response time of MR devices was considered by analyzing the time constant of electromagnetic coils inside the MR devices too. Additionally, the power consumption relevant to transient useful power was analyzed for structure design. Finally, based on the computation of the magnetic field in a finite element (COMSOL multiphysics), all these factors were illustrated in an MR fluid valve based on the results of a magnetic circuit design

  18. Concurrent semantics for structured design methods

    OpenAIRE

    Nixon, Patrick

    1996-01-01

    Also in Jelly, I., Gordon, I., & Groll, P. Software Engineering for Parallel and Distributed Systems. London: Chapman Hall. Design methods can be ambiguous due to di#11;erent interpretations of symbols or concepts. This paper presents a formal semantics for the Ward/Mellor Structured Analysis Method for Real Time systems. These semantics ensures that an unambiguous meaning can be attributed to a particular design. Speci#12;cally, it ensures that concurrent and real-time propert...

  19. Implementation procedures for design certification

    International Nuclear Information System (INIS)

    Ritterbusch, S. E.; Brinkman, C. B.; Crump, M. W.

    1995-01-01

    The desire for safer plants arose primarily as the result of the Three Mile Island accident and the realization that plant safety could be impacted by complex plant systems interactions that are not easily identified through the traditional 'system-by-system' design process. Hence, it became apparent that the ALWR designs would have to be addressed through plant-wide Probabilistic Safety Assessments (PSAs) that addressed both accident-prevention and accident-mitigation design features. Prior to Design Certification the 'two-step' licensing process in the United States was not efficient. Utilities had to commit large amounts of capital to plant construction without confidence that an operating license would be issued when construction permit was issued often required design changes that resulted in significant construction delays. The 55 utilities operating nuclear plants in the U. S. each had their own design and operating preferences, resulting in many customized plants with a minimum of economic benefit from standardization. This was addressed by the U. S. Nuclear Regulatory Commission (NRC) in a new regulation (Title 10 of the Code of Federal Regulations, Part 52 or '10 CFR 52') which provides certification of a design that can later be referenced by an applicant for a Combined Operating License (COL). Identifying an ALWR solution for previously unanalyzed severe accident scenarios appeared difficult, at best, since severe accident research had to be performed and since there was no regulatory precedent. This meant that complex technical issues and licensing review policies had to be developed without the benefit of licensing standards or experience. As a result, a system of iterative interactions between the regulator and the industry was established, wherein a design or safety requirement would be proposed, then discussed along with development of the corresponding design feature, and finally revised and documented via NRC 'guidance'

  20. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  1. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis

    International Nuclear Information System (INIS)

    Jienkulsawad, Prathak; Skogestad, Sigurd; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • Control structure of the combined fuel cell system is designed. • The design target is trade-off between power generation and carbon dioxide emission. • Constraints are considered according to fuel cell safe operation. • Eight variables have to be controlled to maximize profit. • Two control structures are purposed for three active constraint regions. - Abstract: The integrated system of a solid oxide fuel cell and molten carbonate fuel cell theoretically has very good potential for power generation with carbon dioxide utilization. However, the control strategy of such a system needs to be considered for efficient operation. In this paper, a control structure design for an integrated fuel cell system is performed based on economic optimization to select manipulated variables, controlled variables and control configurations. The objective (cost) function includes a carbon tax to get an optimal trade-off between power generation and carbon dioxide emission, and constraints include safe operation. This study focuses on the top-down economic analysis which is the first part of the design procedure. Three actively constrained regions as a function of the main disturbances, namely, the fuel and steam feed rates, are identified; each region represents different sets of active constraints. Under nominal operating conditions, the system operates in region I. However, operating the fuel cell system in region I and II can use the same structure, but in region III, a different control structure is required.

  2. Concrete structures. Contribution to the safety assessment of existing structures

    Directory of Open Access Journals (Sweden)

    D. COUTO

    Full Text Available The safety evaluation of an existing concrete structure differs from the design of new structures. The partial safety factors for actions and resistances adopted in the design phase consider uncertainties and inaccuracies related to the building processes of structures, variability of materials strength and numerical approximations of the calculation and design processes. However, when analyzing a finished structure, a large number of unknown factors during the design stage are already defined and can be measured, which justifies a change in the increasing factors of the actions or reduction factors of resistances. Therefore, it is understood that safety assessment in existing structures is more complex than introducing security when designing a new structure, because it requires inspection, testing, analysis and careful diagnose. Strong knowledge and security concepts in structural engineering are needed, as well as knowledge about the materials of construction employed, in order to identify, control and properly consider the variability of actions and resistances in the structure. With the intention of discussing this topic considered complex and diffuse, this paper presents an introduction to the safety of concrete structures, a synthesis of the recommended procedures by Brazilian standards and another codes, associated with the topic, as well a realistic example of the safety assessment of an existing structure.

  3. Conceptual design and structural analysis of the CFETR cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@ipp.ac.cn; Yang, Qingxi; Xu, Hao

    2015-04-15

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10{sup −4} Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results.

  4. Conceptual design and structural analysis of the CFETR cryostat

    International Nuclear Information System (INIS)

    Wang, Zhen; Yang, Qingxi; Xu, Hao

    2015-01-01

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10 −4 Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results

  5. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  6. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  7. Procedure to determine the optimal parameters of the main primary coolant pump after compacting the FRG-1 reactor. Pt. 2. Partial structures of the procedure

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1999-01-01

    On the basis of an extensive physical and technical analysis the partial structures of the procedure had been developed. They represent a logical linkage of determination elements in the form of decision and result units. The developed partial structures enable to determine the physical parameters, which characterize the primary circuit together with the compact core as well as the main primary coolant pump coming into question after compacting the core. The report also contains a discussions and a comparison of the partial structures. (orig.) [de

  8. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  9. Assisted design, implementation, and modification of procedure tracking and advisory systems

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Boy, G.A.; Conley, J.L.; Iverson, D.L.

    1991-01-01

    Automated procedure tracking systems have been of interest in the nuclear power industry due to the huge numbers of documented procedures required for the operation and maintenance of commercial power reactors. Tools are under development at Ames Research center that form the basis of an intelligent advisory system for process control applications. Two tools, one for documentation maintenance and management and the other for automated fault diagnosis, are being integrated to build an advisory system appropriate for use in facilities that require emergency readiness and safety-critical operations. The problem of automation of documents management and maintenance has been analyzed from artificial intelligence and from human factors viewpoints. A software tool, called computer-integrated documentation (CID), has been designed and is under further development to address these issues. A fault diagnosis algorithm has been developed and implemented in a software tool called the fault-tree diagnosis system (FTDS). The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. An integrated tool set consisting of CID and FTDS is being used to develop and demonstrate an intelligent advisory system for use in a flight test environment for advanced aircraft

  10. WIPP conceptual design report. Addendum A. Design calculations for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations

  11. Design and analysis of a lightweight prestressed antenna back-up structure

    Science.gov (United States)

    Ma, Zengxiang; Yang, Dehua; Cheng, Jingquan

    2010-07-01

    The planned Square Kilometer Array (SKA) includes three thousand 15m antennas. The radio flux density from the sun is stronger, so that a solar array, such as Frequency-Agile Solar Radiotelescope (FASR) with hundreds of dishes can have smaller dish size. Therefore, light weight, low cost dish design is of vital importance. The reflecting surface supported by an antenna back-up structure, generally, should have an RMS surface error less than λ/20 (λ. is the operating wavelength). For resisting gravitational, wind, and ice-snow loadings, an antenna dish also requires reasonable mode frequencies. In this paper, different low cost small or medium back-up structure designs are discussed, including double-layer truss design and prestressed dish design. Based on discussion, an innovative light weight, prestressed back-up structure is proposed for small or medium aperture antennas. Example of a small 4.5m aperture dish design working below 3GHz is presented. This design is a one-layer prestressed truss structure with low weight, ease installation, and low manufacture cost. Structural analysis and modal extraction results show the structure is much stiffer than the same structure without prestressed loading.

  12. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner is one piece of the process equipment for the Integral Fast Reactor (IFR) program. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  13. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips.

    Science.gov (United States)

    Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M

    2017-01-01

    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  14. Development of a design basis tornado and structural design criteria for the Nevada Test Site, Nevada. Final report

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-06-01

    In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loads for an example structure are included

  15. Procedure for the fabrication of ceramic fuel pellets with an adjustable structure

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.; Sobek, D.

    1986-01-01

    The invention concerns a procedure for the fabrication of ceramic fuel pellets of UO 2 , PuO 2 , ThO 2 and their mixtures with an adjustable structure. Before or during the milling the particle shaped fuel pellets have been added polyethylenglycol in a 20 - 60 % aqueous solution with an amount of 0.5 - 2.0 % in weight. This additive has an effect on a controlled pore formation and grain growth advancement

  16. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  17. LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2007-03-01

    Full Text Available Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the

  18. Hiding the weakness: structural robustness using origami design

    Science.gov (United States)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  19. A statistical characterization method for damping material properties and its application to structural-acoustic system design

    International Nuclear Information System (INIS)

    Jung, Byung C.; Lee, Doo Ho; Youn, Byeng D.; Lee, Soo Bum

    2011-01-01

    The performance of surface damping treatments may vary once the surface is exposed to a wide range of temperatures, because the performance of viscoelastic damping material is highly dependent on operational temperature. In addition, experimental data for dynamic responses of viscoelastic material are inherently random, which makes it difficult to design a robust damping layout. In this paper a statistical modeling procedure with a statistical calibration method is suggested for the variability characterization of viscoelastic damping material in constrained-layer damping structures. First, the viscoelastic material property is decomposed into two sources: (I) a random complex modulus due to operational temperature variability, and (II) experimental/model errors in the complex modulus. Next, the variability in the damping material property is obtained using the statistical calibration method by solving an unconstrained optimization problem with a likelihood function metric. Two case studies are considered to show the influence of the material variability on the acoustic performances in the structural-acoustic systems. It is shown that the variability of the damping material is propagated to that of the acoustic performances in the systems. Finally, robust and reliable damping layout designs of the two case studies are obtained through the reliability-based design optimization (RBDO) amidst severe variability in operational temperature and the damping material

  20. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  1. Fully probabilistic design: the way for optimizing of concrete structures

    Directory of Open Access Journals (Sweden)

    I. Laníková

    Full Text Available Some standards for the design of concrete structures (e.g. EC2 and the original ČSN 73 1201-86 allow a structure to be designed by several methods. This contribution documents the fact that even if a structure does not comply with the partial reliability factor method, according to EC2, it can satisfy the conditions during the application of the fully probabilistic approach when using the same standard. From an example of the reliability of a prestressed spun concrete pole designed by the partial factor method and fully probabilistic approach according to the Eurocode it is evident that an expert should apply a more precise (though unfortunately more complicated method in the limiting cases. The Monte Carlo method, modified by the Latin Hypercube Sampling (LHS method, has been used for the calculation of reliability. Ultimate and serviceability limit states were checked for the partial factor method and fully probabilistic design. As a result of fully probabilistic design it is possible to obtain a more efficient design for a structure.

  2. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Directory of Open Access Journals (Sweden)

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  3. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  4. Structural test of the parameterized-backbone method for protein design.

    Science.gov (United States)

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  5. Models and Methods for Structural Topology Optimization with Discrete Design Variables

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal shape and the topology of the structure. In some cases also the optimal material properties can be determined. Optimal structural design problems are modeled...... such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal......Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used...

  6. Using a standards committee to design practical procedure system improvements

    International Nuclear Information System (INIS)

    Grider, D.A.; Plung, D.

    1993-01-01

    In the post-Three Mile Island (TMI) environment, numerous reports have been issued on how to improve the quality of procedures used at government and commercial nuclear facilities. The studies tend to be long on what is wrong with existing procedures and short on practical directions on how to fix those faults. Few of these studies have been conducted by practitioners with full-time procedure-managing or procedure writing experience. None of these studies go into detail on how to improve the procedure system itself. Over the last 10 yr, various nuclear facilities within the US Department of Energy (DOE) have carried out individual programs to develop procedures that meet post-TMI standards. However, ∼2 yr ago, DOE formed a Procedures Standards Committee to advise DOE in developing a set of post-TMI guidelines that could be consistently applied throughout all DOE nuclear facilities. The committee has achieved not only its original mission by producing a series of integrated guidance documents but has also evolved a systems approach to procedures management that sets new standards for procedure quality and efficiency. As members of this committee, the authors want to describe what has made the group's approach so successful. The lessons learned may be translatable to a wide range of government and commercial industry procedure programs

  7. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  8. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  9. Structural Design and Sizing of a Metallic Cryotank Concept

    Science.gov (United States)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  10. Study on advanced structural design for commercialized fast breeder reactors

    International Nuclear Information System (INIS)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to structures

  11. Study on advanced structural design for commercialized fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Sagayama, Yutaka; Dozaki, Koji; Tanaka, Yoshihiko [Japan Atomic Power Co., Research and Development Department, Tokyo (Japan)

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to

  12. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

    Directory of Open Access Journals (Sweden)

    Sumit Tewari

    2017-11-01

    Full Text Available Scanning tunneling microscopes (STM are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  13. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    N. A. ISMAIL

    2015-07-01

    Full Text Available This paper presents a Genetic Algorithm (GA based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess the design specifications. The GA uses three operators which are reproduction, crossover and mutation to manipulate the genetic composition of the population. In this research, the microneedle is designed to meet a number of significant specifications such as nodal displacement, strain energy, equivalent stress and flow rate of the fluid / drug that flow through its channel / lumen. A comparison study is conducted to investigate the design of microneedle structure with and without the implementation of GA model. The results showed that GA is able to optimize the design parameters of microneedle and is capable to achieve the required specifications with better performance.

  14. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  15. Design development of graphite primary structures enables SSTO success

    Science.gov (United States)

    Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.

  16. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure.

    Science.gov (United States)

    Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-07-28

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.

  17. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  18. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  19. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.

    Science.gov (United States)

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-10-16

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  20. Virtual design and qualification of IC backend structures

    NARCIS (Netherlands)

    Silfhout, van R.B.R.; Sluis, van der O.; Driel, van W.D.; Janssen, J.H.J.; Zhang, G.Q.

    2006-01-01

    For Integrated Circuit (IC) wafer backend development, process developers have to design robust backend structures that guarantee both functionality and reliability during waferfab processes, packaging, qualification tests and lifetime. Figure 1 shows a simplified diagram for the design (and

  1. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.

    Science.gov (United States)

    Ludwiczak, Jan; Jarmula, Adam; Dunin-Horkawicz, Stanislaw

    2018-07-01

    Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A review of procedures available to seismically requalify operating nuclear plant structures, equipment and distribution systems

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    It is well known that the loads and procedures used to seismically qualify nuclear power plant structures and components have changed dramatically during the past 15 to 20 years. In this paper, the various methods available to seismically qualify or requalify structures and components in operating nuclear power plants are identified and the advantages and disadvantages of each briefly summarized. (orig.)

  3. Design of the exhale airway stents for emphysema (EASE) trial : an endoscopic procedure for reducing hyperinflation

    NARCIS (Netherlands)

    Shah, Pallav L.; Slebos, Dirk-Jan; Cardoso, Paulo F. G.; Cetti, Edward J.; Sybrecht, Gerhard W.; Cooper, Joel D.

    2011-01-01

    Background: Airway Bypass is a catheter-based, bronchoscopic procedure in which new passageways are created that bypass the collapsed airways, enabling trapped air to exit the lungs. The Exhale Airway Stents for Emphysema (EASE) Trial was designed to investigate whether Exhale (R) Drug-Eluting

  4. Optimization methods in structural design

    CERN Document Server

    Rothwell, Alan

    2017-01-01

    This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...

  5. Computer-Aided Design of RNA Origami Structures.

    Science.gov (United States)

    Sparvath, Steffen L; Geary, Cody W; Andersen, Ebbe S

    2017-01-01

    RNA nanostructures can be used as scaffolds to organize, combine, and control molecular functionalities, with great potential for applications in nanomedicine and synthetic biology. The single-stranded RNA origami method allows RNA nanostructures to be folded as they are transcribed by the RNA polymerase. RNA origami structures provide a stable framework that can be decorated with functional RNA elements such as riboswitches, ribozymes, interaction sites, and aptamers for binding small molecules or protein targets. The rich library of RNA structural and functional elements combined with the possibility to attach proteins through aptamer-based binding creates virtually limitless possibilities for constructing advanced RNA-based nanodevices.In this chapter we provide a detailed protocol for the single-stranded RNA origami design method using a simple 2-helix tall structure as an example. The first step involves 3D modeling of a double-crossover between two RNA double helices, followed by decoration with tertiary motifs. The second step deals with the construction of a 2D blueprint describing the secondary structure and sequence constraints that serves as the input for computer programs. In the third step, computer programs are used to design RNA sequences that are compatible with the structure, and the resulting outputs are evaluated and converted into DNA sequences to order.

  6. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  7. Effective Work Procedure design Using Discomfort and Effort Factor in Brick stacking operation-A case study

    Science.gov (United States)

    Rout, Biswaranjan; Dash, R. R.; Dhupal, D.

    2018-02-01

    In this work a typical planning of movement of limbs and torso of the worker to be well design to reduce fatigue and energy of the worker. A simulation model is generated to suit the procedure and comply with the constraints in the workspace. It requires verifying the capability of human postures and movements in different working conditions for the evaluation of effectiveness of the new design. In this article a simple human performance measure is introduce that enable the mathematical model for evaluation of a cost function. The basic scheme is to evaluate the performance in the form of several cost factors using AI techniques. Here two main cost factors taken in to consideration are discomfort factor and effort factor in limb movements. Discomfort factor measures the level of discomfort from the most neutral position of a given limb to the position of the corresponding limb after movement and effort factor is a measure of the displacement of the corresponding limbs from the original position. The basic aim is to optimize the movement of the limbs with the above mentioned cost functions. The effectiveness of the procedure is tested with an example of working procedure of workers used for stacking of fly ash bricks in a local fly ash bricks manufacturing unit. The objective is to find out the optimised movement of the limbs to reduce discomfort level and effort required of workers. The effectiveness of the procedure in this case study illustrated with the obtained results.

  8. comparative study of bs 8110 and eurocode 2 in structural design ...

    African Journals Online (AJOL)

    Izuchukwu Ugwu

    To accomplish this, the analysis and design of the main structural elements ... Reinforced concrete structure is a common composite ... combination of two dissimilar but complimentary ... Design methods are formulated based on philosophies, ... LITERATURE REVIEW ... Practice for Design and Construction): It is a revision.

  9. Design of reinforced concrete members based on structural mechanics

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.

    1984-01-01

    Up to now the design of reinforced concrete linear members is performed with the help of an inconsistent design theory, which nevertherless is sufficiently safe and simple to be used in the practice. The purpose of this paper is to present a rational reinforced concrete design method which is not too dissimilar to the present design rules, but is capable of defining consistently internal stresses along a reinforced concrete section. The present status of the completed computer procedures allows the analysis of linear reinforced concrete members formed by laminar reinforced concrete plates presenting variable thickness. A practical approach is presented for which the concrete and steel section is constant along the member axis. In this case, the concept of the equivalent section is introduced, which allows a simple analysis of the stress pattern along the member section. (Author) [pt

  10. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  11. R20 programme: Development of rock grouting design, techniques and procedures for ONKALO

    International Nuclear Information System (INIS)

    Sievaenen, U.

    2009-02-01

    Posiva Oy constructs an underground research facility ONKALO at Olkiluoto in Eurajoki. ONKALO is planned to be a part of the deep repository for the high level nuclear waste. Posiva Oy set up R20-programme for the years 2006-2008, with the target of having an acceptable grouting methodology in ONKALO. The programme was divided into three projects and the work and results of Technique-project is presented in this report. The implementation of the results (grouting design and execution) was outlined from the project. That work is under the responsibility of construction of the ONKALO-project. The Grouting Technique -project (INKE) studied the grouting experiences obtained from the first 2 km of the ONKALO access tunnel, searched for suitable grouting design approaches, carried out two grouting tests and one pilot grouting test with colloidal silica in ONKALO, analysed the expected grouting conditions in deep rock from the grouting point of view, studied the feasibility of so called optimal design solution in the expected grouting conditions. Based on these studies recommendations concerning the grouting design, design solutions for different rock conditions, grouting procedures, grouting stop criteria, the characterisation methods for grouting purposes, grouting materials and grouting work performance are presented. Swedish Time Stop Grouting, also named Grouting Time-Method was selected to be studied and used in this project and it was further developed. This work compiles the outcome of the project subtasks and presents the recommendations for developing the grouting in ONKALO. The key conclusion of this work are: (1) Grouting Time-method (time stop grouting) alone is not enough to be used as a grouting stop criterion due to the uncertainties related to the source parameters (fracture characteristics, rheological properties of grouts); these cause too high uncertainties when proving the sealing result via the grouting time, (2) due to the uncertainties related to

  12. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  13. Design, Analysis And Realization Of Topology Optimized Concrete Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2012-01-01

    This paper proposes the application of topology optimisation as a constitutive design tool for design and form-finding of architectural concrete structures, and realisation of these designs using large scale CNCmilling of polystyrene form-work for in situ casting....

  14. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  15. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner (ER) is one piece of the process equipment for the Integral Fast Reactor (IFR) program. The ER's principal function is to perform the pyrochemical and electrochemical refining of spent and experimental fuel elements. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  16. Study of structural reliability of existing concrete structures

    Science.gov (United States)

    Druķis, P.; Gaile, L.; Valtere, K.; Pakrastiņš, L.; Goremikins, V.

    2017-10-01

    Structural reliability of buildings has become an important issue after the collapse of a shopping center in Riga 21.11.2013, caused the death of 54 people. The reliability of a building is the practice of designing, constructing, operating, maintaining and removing buildings in ways that ensure maintained health, ward suffered injuries or death due to use of the building. Evaluation and improvement of existing buildings is becoming more and more important. For a large part of existing buildings, the design life has been reached or will be reached in the near future. The structures of these buildings need to be reassessed in order to find out whether the safety requirements are met. The safety requirements provided by the Eurocodes are a starting point for the assessment of safety. However, it would be uneconomical to require all existing buildings and structures to comply fully with these new codes and corresponding safety levels, therefore the assessment of existing buildings differs with each design situation. This case study describes the simple and practical procedure of determination of minimal reliability index β of existing concrete structures designed by different codes than Eurocodes and allows to reassess the actual reliability level of different structural elements of existing buildings under design load.

  17. Studies on structural analysis related to the design of the JT-60 vacuum vessel

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki

    1987-06-01

    Studies on structural analysis of a vacuum vessel of tokamak-type fusion devices are presented. The present studies are proposals for the structural analysis procedures of the tokamak-type fusion devices and are composed of five parts, each of which covers the fundamental area required for the structural analysis and design; stress analysis, dynamic response analysis, fatigue evaluation, buckling analysis and seismic analysis. Special attention is paid to the critical component, bellows and the critical load, electromagnetic forces. A new finite element method modeling technique is proposed for the stress analysis of U-shaped bellows, where the bellows is replaced by an orthotropic plate having the same stiffness as the bellows. The applicability of the present modeling technique is confirmed by verification tests. Dynamic response and fatigue of the vacuum vessel are critical issues of the structural analysis and design of the tokamak-type fusion devices. Detailed dynamic response analyses of the JT-60 vacuum vessel are presented paying special attention to the dynamic behavior of the U-shaped bellows, where the above-mentioned modeling technique of the U-shaped bellows is applied. A fatigue evaluation method of the vacuum vessel under the dynamic electromagnetic forces is proposed, which utilizes the results of the detailed dynamic response analysis. In the present method, fatigue evaluation method for random loads is applied. Torsional fatigue strength of the welded bellows is experimentally evaluated aiming the application to the port of the fusion device and it is shown that the welded bellows reveals elastic buckling and spiral distortion under a small angle of tortion. Two formulae are proposed to evaluate the stress of the welded bellows under the forced angle of tortion. (author)

  18. A structural design and analysis of a piping system including seismic load

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    The structural design/analysis of a piping system at a nuclear fuel facility is used to investigate some aspects of current design procedures. Specifically the effect of using various stress measures including ASME Boiler ampersand Pressure Vessel (B ampersand PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maximum for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis with the modal responses combined by using the absolute summation (ABS), by using the square root of the squares (SRSS), and by using the 10 percent method (10PC). It is shown that for a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to an RSM analysis based on ABS. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 3 figs., 3 tabs

  19. A structured representation for parallel algorithm design on multicomputers

    International Nuclear Information System (INIS)

    Sun, Xian-He; Ni, L.M.

    1991-01-01

    Traditionally, parallel algorithms have been designed by brute force methods and fine-tuned on each architecture to achieve high performance. Rather than studying the design case by case, a systematic approach is proposed. A notation is first developed. Using this notation, most of the frequently used scientific and engineering applications can be presented by simple formulas. The formulas constitute the structured representation of the corresponding applications. The structured representation is simple, adequate and easy to understand. They also contain sufficient information about uneven allocation and communication latency degradations. With the structured representation, applications can be compared, classified and partitioned. Some of the basic building blocks, called computation models, of frequently used applications are identified and studied. Most applications are combinations of some computation models. The structured representation relates general applications to computation models. Studying computation models leads to a guideline for efficient parallel algorithm design for general applications. 6 refs., 7 figs

  20. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  1. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  2. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  3. Seismic design technology for breeder reactor structures. Volume 2. Special topics in soil/structure interaction analyses

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes

  4. Design of a far infrared interferometer diagnostic support structure

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Rice, B.W.; Peebles, W.A.

    1987-10-01

    The Far Infrared Interferometer (FIR) diagnostic will operate in the 119 to 400 micron range to measure the plasma electron density on the Microwave Tokamak Experiment (MTX) being set up at LLNL. This diagnostic is a multi-channel system which incorporates a long elliptically shaped beam that passes through the plasma and is imaged onto an array of 14 detectors that are located on a table above the machine. The reference beam is brought around the machine and mixed with the plasma beam onto the detectors. The density is measured by a phase shift between these beams and is, therefore, very sensitive to path length changes between the two beam paths due to motion of the support structure. The design goal for allowable phase shifts caused by changes in the path length due to structure movement is 1/50th of a wavelength (2.4 to 8 microns). The structure needs to maintain this stability during the 0.5 second plasma shot. The structure is approximately 5 meters tall to support the optics table above the machine. In order to reduce the structure motion to the required level the forces acting on it were evaluated. The forces evaluated were eddy currents from the pulsed electromagnetic fields, the ambient ground motion, and the floor movement as the magnets are pulsed. The designs for similar diagnostic interferometers on other tokamaks were also reviewed to evaluate the forces and motions that might cause such small deflections in the support structure. Our structure is somewhat unique in that it is designed for operation in relatively large pulsed magnetic fields (100 to 7000 gauss) arising from the air core transformer of MTX. The design chosen incorporates a very rigid structure with high resistive and non-conductive materials. The choice of materials selected is discussed with reference to their response to expected forces. 14 refs., 10 figs

  5. U.S. fast reactor materials and structures program

    International Nuclear Information System (INIS)

    Harms, W.O.; Purdy, C.M.

    1984-01-01

    The U.S. DOE has sponsored a vigorous breeder reactor materials and structures program for 15 years. Important contributions have resulted from this effort in the areas of design (inelastic rules, verified methods, seismic criteria, mechanical properties data); resolution of licensing issues (technical witnessing, confirmatory testing); construction (fabrication/welding procedures, nondestructive testing techniques); and operation (sodium purification, instrumentation and chemical analysis, radioactivity control, and in-service inspection. The national LMFBR program currently is being restructured. The Materials and Structures Program will focus its efforts in the following areas: (1) removal of anticipated licensing impediments through confirmation of the adequacy of structural design methods and criteria for components containing welds and geometric discontinuities, the generation of mechanical properties for stainless steel castings and weldments, and the evaluation of irradiation effects; (2) qualification of modified 9 Cr-1 Mo steel and tribological coatings for design flexibility; (3) development of improved inelastic design guidelines and procedures; (4) reform of design codes and standards and engineering practices, leading to simpler, less conservative rules and to simplified design analysis methods; and (5) incorporation of information from foreign program

  6. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  7. Stiffness design of geometrically nonlinear structures using topology optimization

    DEFF Research Database (Denmark)

    Buhl, Thomas; Pedersen, Claus B. Wittendorf; Sigmund, Ole

    2000-01-01

    of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. A filtering scheme is used to obtain checkerboard-free and mesh-independent designs and a continuation approach improves convergence to efficient designs. Different objective......The paper deals with topology optimization of structures undergoing large deformations. The geometrically nonlinear behaviour of the structures are modelled using a total Lagrangian finite element formulation and the equilibrium is found using a Newton-Raphson iterative scheme. The sensitivities...... functions are tested. Minimizing compliance for a fixed load results in degenerated topologies which are very inefficient for smaller or larger loads. The problem of obtaining degenerated "optimal" topologies which only can support the design load is even more pronounced than for structures with linear...

  8. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  9. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  10. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  11. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  12. Continuous quality control of the blood sampling procedure using a structured observation scheme

    OpenAIRE

    Lindberg Seemann, Tine; Nybo, Mads

    2016-01-01

    INTRODUCTION: An observational study was conducted using a structured observation scheme to assess compliance with the local phlebotomy guideline, to identify necessary focus items, and to investigate whether adherence to the phlebotomy guideline improved.MATERIALS AND METHODS: The questionnaire from the EFLM Working Group for the Preanalytical Phase was adapted to local procedures. A pilot study of three months duration was conducted. Based on this, corrective actions were implemented and a ...

  13. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui; Tang, Chengcheng; Seidel, Hans-Peter; Wonka, Peter

    2017-01-01

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  14. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui

    2017-07-21

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  15. Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.; Anderson, C.A.

    1984-01-01

    The Seismic Category I Structures Program currently being carried out at the Los Alamos National Laboratory is sponsored by the Mechanical/Structural Engineering Branch, Division of Engineering Technology of the Nuclear Regulatory Commission (NRC). This project is part of a program designed to increase confidence in the assessment of Category I nuclear power plant structural behavior beyond the design limit. The program involves the design, construction, and testing of heavily reinforced concrete models of auxiliary buildings, fuel-handling buildings, etc., but doe not include the reactor containment building. The overall goal of the program is to supply to the Nuclear Regulatory Commission experimental information and a validated procedure to establish the sensitivity of the dynamic response of these structures to earthquakes of magnitude beyond the design basis earthquake

  16. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  17. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stre...... loads are appended....

  18. Modeling the Structure and Complexity of Engineering Routine Design Problems

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.

    2011-01-01

    This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development

  19. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  20. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    Bayne, C.K.

    1996-11-01

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10 -17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included