WorldWideScience

Sample records for structural characterization magnetochemistry

  1. Introduction to magnetochemistry

    CERN Document Server

    Earnshaw, Alan

    2013-01-01

    Introduction to Magnetochemistry provides an introduction to the more important aspects of magnetochemistry. The measurement of magnetic moment has been one of the most consistently useful to coordination chemists. For teaching purposes it provides a simple method of illustrating the ideas of electronic structure, and in research it can provide fundamental information about the bonding and stereochemistry of complexes. The book contains six chapters covering topics such as free atoms and ions, transition metal complexes, crystal field theory, second and third row transition metal complexes, a

  2. Synthesis, properties, and crystal structure of complex Cp2Yb(DAD)

    International Nuclear Information System (INIS)

    Trifonov, A.A.; Kirillov, E.N.; Bochkarev, M.N.; Shumani, G.; Myule, S.

    1999-01-01

    Diazadiene complex of trivalent ytterbium Cp 2 Yb(DAD) (1) (DAD = Bu 1 -N CH-CH = N-Bu 1 ) was obtained by three routes: the oxidation of Cp 2 Yb(THF) 2 by diazadiene in tetrahydrofuran (THF), the reaction of Cp 2 YbCl with DAD 2- Na 2 + (2:1), and the reaction of Cp 2 YbCl(THF) with DAD - K + in the 1:1 ratio. Complex 1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray structural analysis [ru

  3. Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC. Crystal structure of [Cu(PLITSC−HH2O]Br•H2O

    Directory of Open Access Journals (Sweden)

    Leovac Vukadin M.

    2014-01-01

    Full Text Available The synthesis and structural characterization of a square-planar copper(II complex with pyridoxal S-methylisothiosemicarbazone (PLITSC of the formula [Cu(PLITSC−HH2O]Br•H2O (1 as the first Cu(II complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSCBr2] (2 and [Cu(PLITSCBr(MeOH]Br (3 were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry. [Projekat Pokrajisnkog sekretarijata za nauku i tehnoloski razvoj Vojvodine i Ministarstva nauke Republike Srbije, br. 172014

  4. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  5. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  6. Molecular and electronic structures of oxo-bis(benzene-1,2-dithiolato)chromate(V) monoanions. A combined experimental and density functional study.

    Science.gov (United States)

    Kapre, Ruta; Ray, Kallol; Sylvestre, Isabelle; Weyhermüller, Thomas; DeBeer George, Serena; Neese, Frank; Wieghardt, Karl

    2006-05-01

    Two oxo-bis(benzene-1,2-dithiolato)chromate(V) complexes, namely, [CrO(L(Bu))2]1- and [CrO(L(Me))2]1-, have been synthesized and studied by UV-vis, EPR, magnetic circular dichroism (MCD), and X-ray absorption spectroscopy and by X-ray crystallography; their electro- and magnetochemistries are reported. H2L(Bu) represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol, and H2L(Me) is the corresponding 4-methyl-benzene-1,2-dithiol. A structural feature of interest for both the complexes is the folding of the dithiolate ligands about the S-S vector providing Cs symmetry to the complexes. Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic and S K-edge X-ray absorption spectra. From DFT calculations, the Cs instead of C2v symmetry for the complexes is attributed to the strong S(3p) --> Cr(3d(x2-y2)) pi-donation in Cs geometry providing additional stability to the complexes.

  7. New Fellows and Honorary Fellow

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1934 Section: Physics. Krishnan, Kariamanikkam Srinivasa D.Sc., FNA, FNASc 1936-61; Vice President 1940-43, 1946-49. Date of birth: 4 December 1898. Date of death: 14 June 1961. Specialization: Raman Effect, Crystal Magnetism, Magnetochemistry, Magnetic Anisotropy.

  8. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua ... Antimicrobial activity of 1 was tested. ... was prepared as good quality yellow single crystals .... at 540 nm. Increase of OD was compared to control.

  9. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard

    for different applications. We show how to correlate the structures of the polymer replicas with respect to their functionalities. Furthermore, we introduce how we coordinate with all partners in the “Nanoplast” project, and how we utilize the existing facilities of each method to understand structure......Microscopy has been widely applied to understand surface structures of solid samples. According to the instrumental methodology, there are different microscopy methods: optical microscopy, electron microscopy, and scanning probe microscopy (SPM). These microscopy methods have individual advantages...... and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These structures are used...

  10. COORDINATION COMPOUNDS OF 3D-METALS ACETYLACETONATES WITH THIOSEMICARBAZIDE

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2015-03-01

    Full Text Available Coordination Compounds of 3d-Metals acetylacetonates with Thiosemicarbazide were synthesized. Their physical and chemical properties and structure were studied by conductometry, IR spectroscopy, electronic spectroscopy, magnetochemistry and thermo-gravimetricstudies. The complexes compositions correspond to the formulas Co(L2(Acac and M(L(Acac, where M = Cu, Ni, Zn, HL is thiosemicarbazide, HAcac is acetylacetone. All of them are nonelectrolytes. Thiosemicarbazide is deprotonated and coordinated through the nitrogen and sulphur atoms with the formation of four-membered ring in all cases. Acetylacetonate co-ordination mode does not change at acetylacetonates with Thiosemicarbazide interaction. Copper(II and nickel(II complexes have square-planar structure, and cobalt(III complex is octahedral.

  11. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  12. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  13. Polarization Characterization of a Multi-Moded Feed Structure

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarization Characterization of a Multi-Moded Feed Structure projects characterize the polarization response of a multi-moded feed horn as an innovative...

  14. Vortex structure and characterization of quasiperiodic functions

    International Nuclear Information System (INIS)

    Dana, Itzhack; Chernov, Vladislav E

    2002-01-01

    Quasiperiodic functions (QPFs) are characterized by their full vortex structure in one unit cell. This characterization is much finer and more sensitive than the topological one given by the total vorticity per unit cell (the 'Chern index'). It is shown that QPFs with an arbitrarily prescribed vortex structure exist by constructing explicitly such a 'standard' QPF. Two QPFs with the same vortex structure are equivalent, in the sense that their ratio is a function which is strictly periodic, nonvanishing and at least continuous. A general QPF can then be approximately reconstructed from its vortex structure on the basis of the standard QPF and the equivalence concept. As another application of this concept, a simple method is proposed for calculating the quasiperiodic eigenvectors of periodic matrices. Possible applications to the quantum-chaos problem on a phase-space torus are briefly discussed

  15. Fabrication and characterization of woodpile structures

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Andryieuski, Andrei

    2011-01-01

    In this paper we present the whole fabrication and characterization cycle for obtaining 3D metal-dielectric woodpile structures. The optical properties of these structures have been measured using different setups showing the need of considering e.g. border effects when planning their use in real......-life devices. It was found that the behavior of the structures close to the edge is very different from the one in the middle. The existence of special features in the former spectra still needs to be completely understood and explained....

  16. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    2018-06-01

    Full Text Available Silver-doped hydroxyapatite (Ag-HAP was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM, X-ray diffraction, Fourier-transform infrared (FT-IR and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies. Keywords: Green synthesis, Ag nanoparticles, Hydroxyapatite, Structural characterization, Spectroscopy

  17. Synthesis and structural characterization of lithium

    Indian Academy of Sciences (India)

    synthesis and characterization of two new iminophos- phonamine ligands ... structures. 2.3 General synthetic method for ligands (1 and 2) ... 2.3b General method for the Synthesis of ligands ...... studies are currently underway in our laboratory.

  18. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.

    2014-01-01

    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  19. Characterization of genetic structure of Podophyllum hexandrum ...

    African Journals Online (AJOL)

    Characterization of genetic structure of Podophyllum hexandrum populations, an endangered medicinal herb of Northwestern Himalaya, using ISSR-PCR markers and its relatedness with podophyllotoxin content.

  20. Structural characterization of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Paulo Ricardo; Sousa, Edi Carlos Pereira de; Pontuschka, Walter Maigon; Oliveira, Cristiano Luis Pinto de, E-mail: pauloricardoafg@yahoo.com.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    Full text: Due to magnetic, optical and electrical properties metallic nanoparticles have been extensively studied to potential applications in biosensor production, separation of biological molecules, image techniques, drug delivery among several others. For such applications, it is crucial to have crystals with morphology and well defined structure. In this work we presented a detailed structured characterization of silver nanoparticles using small angle x-rays and light scattering methods. The comparison and correlation of these results with electron microscopy images permitted the determination of interesting structural parameters for the studied systems. The oscillations of the intensity curve of SAXS data reveal that this sample has particles with reasonable stability and well defined sizes. The mean radius obtained from the size distribution curve is in good agreement with the ones obtained by TEM images. As will be shown, the combination of several techniques and the correct analysis for the obtained experimental data provides unique information on the structure of the studied systems. (author)

  1. Fluorescence microscopy for the characterization of structural integrity

    Science.gov (United States)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  2. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    Science.gov (United States)

    Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    2018-06-01

    Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.

  3. Characterization of nano structured metallic materials

    International Nuclear Information System (INIS)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C.

    1997-01-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C 3 N 3 ) 2 (NH) 3 ] n doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  4. Identification and Structural Characterization of Unidentified Impurity in Bisoprolol Film-Coated Tablets

    Directory of Open Access Journals (Sweden)

    Ivana Mitrevska

    2017-01-01

    Full Text Available The aim of this study is the identification, structural characterization, and qualification of a degradation impurity of bisoprolol labeled as Impurity RRT 0.95. This degradation product is considered as a principal thermal degradation impurity identified in bisoprolol film-coated tablets. The impurity has been observed in the stress thermal degradation study of the drug product. Using HPLC/DAD/ESI-MS method, a tentative structure was assigned and afterwards confirmed by detailed structural characterization using NMR spectroscopy. The structure of the target Impurity RRT 0.95 was elucidated as phosphomonoester of bisoprolol, having relative molecular mass of 406 (positive ionization mode. The structural characterization was followed by qualification of Impurity RRT 0.95 using several different in silico methodologies. From the results obtained, it can be concluded that no new structural alerts have been generated for Impurity RRT 0.95 relative to the parent compound bisoprolol. The current study presents an in-depth analysis of the full characterization and qualification of an unidentified impurity in a drug product with the purpose of properly defining the quality specification of the product.

  5. Characterization of Creases in Polymers for Adaptive Origami Structures (Postprint)

    Science.gov (United States)

    2014-10-01

    in space. Shape change is seen in origami when a flat sheet of paper is folded into a complex geometry or model. Origami is not limited to artistic...AFRL-RX-WP-JA-2015-0036 CHARACTERIZATION OF CREASES IN POLYMERS FOR ADAPTIVE ORIGAMI STRUCTURES (POSTPRINT) Philip R. Buskohl UES, Inc. Richard...From – To) 08 June 2011 – 08 September 2014 4. TITLE AND SUBTITLE CHARACTERIZATION OF CREASES IN POLYMERS FOR ADAPTIVE ORIGAMI STRUCTURES

  6. Characterization of Structure and Damage in Materials in Four Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, I. M. [Univ. of Illinois, Urbana, IL (United States); Schuh, C. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vetrano, J. S. [U.S. Department of Energy, Washington, DC (United States); Browning, N. D. [Univ. of California, Davis, CA (United States); Field, D. P. [Washington State Univ., Pullman, WA (United States); Jensen, D. J. [Technical Univ. of Denmark, Roskilde (Denmark); Miller, M. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, I. [Darmouth College, Hanover, NH (United States); Dunand, D. C. [Northwestern Univ., Evanston, IL (United States); Dunin-Borkowski, R. [Technical Univ. of Denmark, Lyngby (Denmark); Kabius, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, T. [Cameca Instruments Corp., Madison, WI (United States); Lozano-Perez, S. [Univ. of Oxford (United Kingdom); Misra, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rohrer, G. S. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, A. D. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Taheri, M. [Drexel Univ., Philadelphia, PA (United States); Thompson, G. B. [Univ. of Alabama, Tuscaloosa, AL (United States); Uchic, M. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Wang, X. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Was, G. [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-09-30

    The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

  7. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  8. Structural characterization of vegetation in the fynbos biome

    CSIR Research Space (South Africa)

    Campbell, BM

    1981-08-01

    Full Text Available A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some...

  9. Synthesis and structural characterization of a calcium coordination ...

    Indian Academy of Sciences (India)

    gly = glycine) has been isolated from the calcium chloride-glycine-water system and structurally characterized. Each Ca(II) in 1 is eight-coordinated and is bonded to eight oxygen atoms three of which are from terminal water molecules and five ...

  10. Synthesis and structural characterization of a calcium coordination ...

    Indian Academy of Sciences (India)

    Synthesis and structural characterization of a calcium coordination polymer based on a μ3-bridging. tetradentate binding mode of glycine. SUBRAMANIAN NATARAJAN*a, BIKSHANDARKOIL R. SRINIVASANb , J. KALYANA SUNDARa, K. RAVIKUMARc , R.V. KRISHNAKUMARd , J. SURESHe,. aSchool of Physics, ...

  11. Characterization of technical surfaces by structure function analysis

    Science.gov (United States)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  12. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  13. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  14. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    Science.gov (United States)

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  15. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam; Pietroy, David; Eid, Jessica; Gourgon, Cé cile

    2013-01-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were

  16. Characterization of turbulent coherent structures in square duct flow

    Science.gov (United States)

    Atzori, Marco; Vinuesa, Ricardo; Lozano-Durán, Adrián; Schlatter, Philipp

    2018-04-01

    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl’s second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.

  17. Combustion synthesis and structural characterization of Li–Ti mixed

    Indian Academy of Sciences (India)

    Combustion synthesis and structural characterization of Li–Ti mixed nanoferrites ... were prepared by combustion method at lower temperatures compared to the ... first time at low temperatures, using PEG which acts as a new fuel and oxidant.

  18. Multiscale Persistent Functions for Biomolecular Structure Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Nanyang Technological University (Singapore). Division of Mathematical Sciences, School of Physical, Mathematical Sciences and School of Biological Sciences; Li, Zhiming [Central China Normal University, Wuhan (China). Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics; Mu, Lin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division

    2017-11-02

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first

  19. Structural characterization of indium oxide nanostructures: a Raman analysis

    International Nuclear Information System (INIS)

    Berengue, Olivia M; Rodrigues, Ariano D; Chiquito, Adenilson J; Dalmaschio, Cleocir J; Leite, Edson R; Lanfredi, Alexandre J C

    2010-01-01

    In this work we report on structural and Raman spectroscopy measurements of pure and Sn-doped In 2 O 3 nanowires. Both samples were found to be cubic and high quality single crystals. Raman analysis was performed to obtain the phonon modes of the nanowires and to confirm the compositional and structural information given by structural characterization. Cubic-like phonon modes were detected in both samples and their distinct phase was evidenced by the presence of tin doping. As a consequence, disorder effects were detected evidenced by the break of the Raman selection rules.

  20. Annual Conference on Magnetism and Magnetic Materials, 29th, Pittsburgh, PA, November 8-11, 1983, Proceedings

    International Nuclear Information System (INIS)

    Hasegawa, R.; Koon, N.C.; Cooper, B.R.

    1984-01-01

    Various topics on magnetism and magnetic materials are addressed. The subjects considered include: spin glasses, amorphous magnetism, actinide and rare earth intermetallics, magnetic excitation, itinerant magnetism and magnetic structure, valence instabilities, Kondo effect, transport and Hall effects, mixed valence and Kondo compounds, superconductivity and magnetism, d and f electron magnetism and superconductivity, Fe-based microcrystalline and permanent magnetic alloys, hard and soft magnetic materials, and magnetooptics. Also discussed are: numerical methods for magnetic field computation, recording theory and experiments, recording heads and media, magnetic studies via hyperfine interactions, magnetic semiconductors, magnet insulators, transition metal systems, random fields, critical phenomena and magnetoelastic effects and resonance, surfaces and interfaces, magnetostatic waves and resonance, bubble materials and implantation, bubble devices and physics, magnetic separation, ferrofluids, magnetochemistry, new techniques and materials, and new applications

  1. Structure characterization of Ni/NiO and Ti/TiO2 interfaces

    International Nuclear Information System (INIS)

    Lamine, Brahim

    1983-01-01

    This research thesis reports the structure characterization of Ni-NiO and Ti-TiO 2 interfaces through an in-situ investigation of thin blade oxidation, of oxide germination and growth, and through a determination of mutual metal/oxide orientation relationships. Thin films of TiO 2 have also been characterized and the study of the influence of vacuum annealing on TiO 2 layer structure and morphology has been attempted. The examination of metal-oxide interface reveals a duplex structure of NiO and TiO 2 layers, and a preferential grain boundary oxidation of the underlying metal [fr

  2. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  3. A new method for the characterization of micro-/nano-periodic structures based on microscopic Moiré fringes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn; Tang, Minjin; Hu, Zhenxing

    2014-01-15

    Linewidth and opening ratio (ratio of linewidth to period) are important parameters in characterizing micro-/nano-periodic and quasi-periodic structures. Periodic structures are conventionally characterized by the direct observation of specimens under a microscope. However, the field of view is relatively small, and only certain details can be acquired under a microscope. Moreover, the non-uniformity of the linewidth in quasi-periodic structures cannot be detected. This paper proposes a new characterization method for determining the linewidth and opening ratio of periodic structures based on Moiré fringe analysis. This method has the advantage of full-field characterization of the linewidth of micro-/nano-structures over a larger area than that afforded by direct observation. To validate the method, the linewidth of scanning electron microscope (SEM) scan lines was first calibrated with a standard grating. Next, a microperiodic structure with known geometry was characterized using this calibrated SEM system. The results indicate that the proposed method is simple and effective, indicating a potential approach for the characterization of gratings over large areas. This technique can be extended to various high-power scanning microscopes to characterize micro-/nano-structures. - Highlights: • A characterization method of the linewidth of high frequency gratings based on the microscope Moiré fringes is introduced. • The principle is according to the geometrical relationship between the gratings and the Moiré fringes. • This method has the potential application in characterization of the micro-/nano-structures. • The advantage of this method is that the micro-/nano-structures can be characterized in large view field under the full field of the microscope. • The microstructure of a butterfly has been characterized to declare the feasibility of this method.

  4. Structural characterization of galactomannan from Cassia fistula seeds

    International Nuclear Information System (INIS)

    Silva, Leonira M. da; Pires, Natalia R.; Sampaio, Joao Victor F.T. de; Cunha, Pablyana L.R.; Maciel, Jeanny da S.

    2011-01-01

    The objective of this paper was the partially structural characterization of galactomannan from endosperm Brasilian seeds of Cassia fistula (Caesalpinaceae Family). On the literature it is reported a few data related to structural characterization from this galactomannan from Indian species. The galactomannan was obtained by water extraction followed for precipitation with ethanol. The galactomannan yield in relation to seed mass was 27%. The intrinsic viscosity [η] value and Viscosity average molecular weight (M v ) obtained to GCF were 9,73 dL/g and 1.11 x 10 6 g/mol respectively. The peak molar mass (Mpk) obtained by GPC is 1.9 x 10 5 g/mol, the mannose:galactose (Man:Gal) ratio (3.2:1), amount of protein (7.52%) and uronic acid (3.2%) were similar to values reported for galactomannan extracted from other Cassia seeds. The analysis of δ 77.0 - 76.0 region on 13 NMR attributed to C-4 of mannose residue is coherent with the Man:Gal ratio about 3:1. (author)

  5. Structural and functional characterization of P4-ATPase lipid flippases

    DEFF Research Database (Denmark)

    Ulstrup, Jakob

    2018-01-01

    to its much larger substrate and how the mechanism allowing the transport unfolds. This is one of the central questions in the field known as the “giant substrate problem”. To this date, no structural information of P4-ATPases is available. The focus of this thesis is divided into two projects, both...... focusing on P4-ATPases from the yeast organism Saccharomyces cerevisiae: I. The structural characterization of the flippase Drs2p in complex with its auxiliary subunit Cdc50p. II. Establishing a protocol for obtaining a homogenous sample of the flippase Neo1p suitable for biochemical characterization...... and substrate identification. Part I was performed using X-ray crystallography and single-particle electron microscopy as the main methods. A 3D envelope was obtained by cryo-EM extending to a resolution of 4.4 Å. This envelope reveals the first structural insight of the conformational organization of the Drs2p...

  6. Structural characterization of asphaltenes from vacuum residue distillation

    International Nuclear Information System (INIS)

    Silva, Ronaldo C.; Seidl, Peter R.; Menezes, Sonia M.C. de; Teixeira, Marco A.G.

    2001-01-01

    The aim of this work was to do structural characterization of asphaltenes from different vacuum residues distillation. Several average molecular parameters using some analytical techniques were obtained and these techniques were: nuclear magnetic resonance ( 1 H and 13 C NMR), elemental analysis (C,H,N,O and S content), Fourier transform infrared (FT-IR), vapor pressure osmometry and gel permeation chromatography. Particularly from NMR, some important molecular parameters were obtained, such as aromatic carbon fraction, aliphatic carbons fraction, alkyl substituted aromatic carbons, unsubstituted aromatic carbons, etc. Molecular modeling will be employed to build the structure of asphaltenes using the experimental data. (author)

  7. Structural and optical characterization of the propolis films

    Energy Technology Data Exchange (ETDEWEB)

    Drapak, S.I. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)]. E-mail: drapak@unicom.cv.ua; Bakhtinov, A.P. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Gavrylyuk, S.V. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Drapak, I.T. [Chernivtsi National University, 2 Kotsyubynskii Str., 58012 Chernivtsi (Ukraine); Kovalyuk, Z.D. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)

    2006-10-31

    We have performed structural and optical characterizations of the propolis (an organic entity of biological nature) films grown on various non-organic substrates. The films were grown from a propolis melt or a propolis alcohol solution. The crystal structure has been observed in the films precipitated from the solution onto substrates such as an amorphous glass and sapphire or semiconductor indium monoselenide. For any growth method, the propolis film is a semiconductor with the bandgap of 3.07 eV at 300 K that is confirmed by a maximum in photoluminescence spectra at 2.86 eV. We argue that propolis films might be used in various optoelectronic device applications.

  8. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine; Narayan, Kartik; Bukhtiyarova, Marina; Hurzy, Danielle M.; Stump, Craig A.; Zhang, Xufang; Reid, John; Krasowska-Zoladek, Alicja; Tummala, Srivanya; Shipman, Jennifer M.; Kornienko, Maria; Lemaire, Peter A.; Krosky, Daniel; Heller, Amanda; Achab, Abdelghani; Chamberlin, Chad; Saradjian, Peter; Sauvagnat, Berengere; Yang, Xianshu; Ziebell, Michael R.; Nickbarg, Elliott; Sanders, John M.; Bilodeau, Mark T.; Carroll, Steven S.; Lumb, Kevin J.; Soisson, Stephen M.; Henze, Darrell A.; Cooke, Andrew J. (Merck)

    2016-12-30

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.

  9. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    Science.gov (United States)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  10. Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Vahtrus, Mikk; Umalas, Madis [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Dorogin, Leonid [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); ITMO University, Kronverkskiy pr., 49, 197101 Saint Petersburg (Russian Federation); Saar, Rando; Tamme, Maret; Saal, Kristjan [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Lõhmus, Rünno [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Materials Technologies Competence Centre, Riia 185b, 51014 Tartu (Estonia); Vlassov, Sergei [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia)

    2015-09-15

    We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing using SEM, transmission electron microscopy and X-ray diffraction methods. - Highlights: • Mechanical properties of individual alumina nanofibers were measured using in situ SEM cantilevered beam bending technique. • Improvement of mechanical properties of the alumina fibers after annealing at 1400 °C is demonstrated. • Formation of branched structures is demonstrated and their mechanical properties are studied. • XRD and electron microscopy were used for structural characterization of untreated and annealed nanofibers.

  11. Magnetic structures synthesized by controlled oxidative etching: Structural characterization and magnetic behavior

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available A facile strategy for the fabrication Fe3O4 nanostructures at room temperature and with well-defined morphology is proposed. In this methodology, the iron precursors were reduced by sodium borohydride. Subsequently an oxidative etching process promotes the formation of Fe2O3 nanostructures. Magnetic measurements revealed a well-defined superparamagnetic behavior for the material. The Zero-Field-Cooled (ZFC and Field-Cooled (FC magnetization curves reveals that critical and blocking temperature were 24 and 350 °C respectively. The Fe3O4 nanostructures were characterized using aberration-corrected (Cs scanning transmission electron microscopy (STEM and energy dispersive spectroscopy (EDS. Additionally, Raman spectra support the Fe3O4 presence and corroborate the efficiency of the synthesis process to obtain magnetite. Keywords: Chemical synthesis, Fe3O4 nanoparticles, Structural characterization, Magnetic properties

  12. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  13. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  14. Characterization of μc-Si:H/a-Si:H tandem solar cell structures by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Murata, Daisuke; Yuguchi, Tetsuya; Fujiwara, Hiroyuki

    2014-01-01

    In order to perform the structural characterization of Si thin-film solar cells having submicron-size rough textured surfaces, we have developed an optical model that can be utilized for the spectroscopic ellipsometry (SE) analysis of a multilayer solar cell structure consisting of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) layers fabricated on textured SnO 2 :F substrates. To represent the structural non-uniformity in the textured structure, the optical response has been calculated from two regions with different thicknesses of the Si layers. Moreover, in the optical model, the interface layers are modeled by multilayer structures assuming two-phase composites and the volume fractions of the phases in the layers are controlled by the structural curvature factor. The polarized reflection from the μc-Si:H layer that shows extensive surface roughening during the growth has also been modeled. In this study, a state-of-the-art solar cell structure with the textured μc-Si:H (2000 nm)/ZnO (100 nm)/a-Si:H (200 nm)/SnO 2 :F/glass substrate structure has been characterized. The μc-Si:H/a-Si:H textured structure deduced from our SE analysis shows remarkable agreement with that observed by transmission electron microscopy. From the above results, we have demonstrated the high-precision characterization of highly-textured μc-Si:H/a-Si:H solar cell structures. - Highlights: • Characterization of textured μc-Si:H/a-Si:H solar cell structures by ellipsometry • A new optical model using surface area and multilayer models • High precision characterization of submicron-range rough interface structures

  15. Structural characterization of hog iron oxide content glasses obtained from zinc hydrometallurgy wastes

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhujharov, W.

    1997-01-01

    It has been carried out the structural characterization of high oxide content glasses obtained by melting of a goethite industrial waste from the zinc hydrometallurgy with other raw materials as dolomite and glass cullet. The structural characterization has been carried out by X-ray Diffraction (XRD), X-Ray Diffraction by Amorphous Dispersion (RDF) and Mossbauer spectroscopy. It has been determined the interatomic distance, the oxidation state and the coordination of iron atoms in these glasses. (Author) 16 refs

  16. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  17. Effect of crumb cellular structure characterized by image analysis on cake softness.

    Science.gov (United States)

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2017-10-04

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image

  18. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  19. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    Science.gov (United States)

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  20. Electro-mechanical characterization of structural supercapacitors

    Science.gov (United States)

    Gallagher, T.; LaMaster, D.; Ciocanel, C.; Browder, C.

    2012-04-01

    The paper presents electrical and mechanical properties of structural supercapacitors and discusses limitations associated with the approach taken for the electrical properties evaluation. The structural supercapacitors characterized in this work had the electrodes made of carbon fiber weave, separator made of several cellulose based products, and the solid electrolyte made as PEGDGE based polymer blend. The reported electrical properties include capacitance and leakage resistance; the former was measured using cyclic voltammetry. Mechanical properties have been evaluated thorough tensile and three point bending tests performed on structural supercapacitor coupons. The results indicate that the separator material plays an important role on the electrical as well as mechanical properties of the structural capacitor, and that Celgard 3501 used as separator leads to most benefits for both mechanical and electrical properties. Specific capacitance and leakage resistance as high as 1.4kF/m3 and 380kΩ, respectively, were achieved. Two types of solid polymer electrolytes were used in fabrication, with one leading to higher and more consistent leakage resistance values at the expense of a slight decrease in specific capacitance when compared to the other SPE formulation. The ultimate tensile strength and modulus of elasticity of the developed power storage composite were evaluated at 466MPa and 18.9MPa, respectively. These values are 58% and 69% of the tensile strength and modulus of elasticity values measured for a single layer composite material made with the same type of carbon fiber and with a West System 105 epoxy instead of solid polymer electrolyte.

  1. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  2. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  3. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...

  4. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Zhigang Wu

    Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.

  5. Structural characterization and lipid composition of acquired cholesteatoma

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Svane-Knudsen, Viggo; Sørensen, Jens A

    2012-01-01

    HYPOTHESIS: The goal of this work is to characterize the morphology and lipid composition of acquired cholesteatoma. We hypothesize that constitutive lipid membranes are present in the cholesteatoma and resemble those found in human skin stratum corneum. METHODS: We performed a comparative...... noninvasive structural and lipid compositional study of acquired cholesteatoma and control human skin using multiphoton excitation fluorescence microscopy-related techniques and high-performance thin-layer chromatography. RESULTS: The structural arrangement of the cholesteatoma is morphologically invariant...... along a depth of more than 200 μm and resembles the stratum corneum of hyperorthokeratotic skin. Lipid compositional analyses of the cholesteatoma show the presence of all major lipid classes found in normal skin stratum corneum (ceramides, long chain fatty acids, and cholesterol). Consistent with this...

  6. Synthesis and structural characterization of oaklin-catechins.

    Science.gov (United States)

    Sousa, André; Fernandes, Ana; Mateus, Nuno; De Freitas, Victor

    2012-02-15

    Condensation reactions of procyanidin dimer B4 with two representative oak wood cinnamic aldehydes (coniferaldehyde and sinapaldehyde) were conducted in winelike model solutions. Coniferaldehyde led to the formation of guaiacylcatechin-pyrylium-catechin (GCP-catechin, 737 m/z), whereas sinapaldehyde led to the formation of syringylcatechin-pyrylium-catechin (SCP-catechin, 767 m/z). The former was also structurally characterized by 1D and 2D NMR, allowing an elucidation of the formation mechanism of these oaklin-catechin adducts and demonstrating the importance of procyanidins in the formation of colored compounds through the reaction with cinnamic aldehydes extracted from oaks during storage.

  7. In vitro and in silico characterization of open-cell structures of trabecular bone.

    Science.gov (United States)

    Ramos-Infante, S J; Pérez, M A

    2017-11-01

    This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and image-based computational methods were used to estimate Young's modulus and porosities of different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures with different porosities were characterized. Additionally, some open-cell structures were scanned using a microcomputed tomography system (μCT) to non-destructively predict specimen Young's modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. A 3D reconstruction and FE analyses were used. The experimental and computational results with different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young's modulus and porosities. The specimens with high and low volume fractions were best represented by linear and quadratic tetrahedrons, respectively. These results could be used to develop new osteoporosis-prevention strategies.

  8. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  9. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  10. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam

    2013-12-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were imprinted in a thermoplastic polymer by thermal nanoimprint lithography. Optical measurements were performed using spectroscopic ellipsometry in the spectral region of 1.5-4 eV. The geometrical profiles of the imprinted structures were reconstructed using the Rigorous Coupled-Wave Analysis (RCWA) to model the diffraction phenomena by periodic gratings. The technique was also adapted for large scale evaluation of the imprint process. Uniqueness of the solution was examined by analyzing the diffraction of the structure at different experimental conditions, for instance at various angles of incidence. © 2013 Elsevier B.V. All rights reserved.

  11. Characterization and global analysis of a family of Poisson structures

    International Nuclear Information System (INIS)

    Hernandez-Bermejo, Benito

    2006-01-01

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given

  12. Characterization and global analysis of a family of Poisson structures

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es

    2006-06-26

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.

  13. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  14. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  15. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  16. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    Science.gov (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  17. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    Science.gov (United States)

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Analysis, manufacture and characterization of Ni/Cu functionally graded structures

    International Nuclear Information System (INIS)

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H.; Silva, Emilio Carlos Nelli

    2012-01-01

    Highlights: ► Functionally graded structures (FGSs) of nickel and copper can be manufactured. ► The hardness curve of FGS can be used for approximating the gradation function of elastic properties. ► The graded finite element approaches with great accuracy the FGS resonance frequencies obtained experimentally. -- Abstract: In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni–Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young’s modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young’s modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained.

  19. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  20. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review.

    Science.gov (United States)

    Biniarz, Piotr; Łukaszewicz, Marcin; Janek, Tomasz

    2017-05-01

    Lipopeptide biosurfactants are surface active biomolecules that are produced by a variety of microorganisms. Microbial lipopeptides have gained the interest of microbiologists, chemists and biochemists for their high biodiversity as well as efficient action, low toxicity and good biodegradability in comparison to synthetic counterparts. In this report, we review methods for the production, isolation and screening, purification and structural characterization of microbial lipopeptides. Several techniques are currently available for each step, and we describe the most commonly utilized and recently developed techniques in this review. Investigations on lipopeptide biosurfactants in natural products require efficient isolation techniques for the characterization and evaluation of chemical and biological properties. A combination of chromatographic and spectroscopic techniques offer opportunities for a better characterization of lipopeptide structures, which in turn can lead to the application of lipopeptides in food, pharmaceutical, cosmetics, agricultural and bioremediation industries.

  1. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  2. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    Science.gov (United States)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer

  3. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  4. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes. The focus is placed on two main topics: First, an overview of advanced experimental small-angle X-ray scattering (SAXS) setups combined with various sample...... negatively charged vesicles with calcium ions, and in situ hydration-induced formation of inverted-type liquid-crystalline phases loaded with the local anesthetic bupivacaine are summarized. These in situ time-resolved experiments allow real-time monitoring of the dynamics of the structural changes...

  5. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  6. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Structural and morphological TEM characterization of GaAs based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Marcello

    2012-02-03

    The question of a structural and morphological characterization of GaAs based nanowires is the research interest of this thesis. For this purpose standard and analytical transmission electron microscopy techniques were employed. New investigation methodologies are introduced in order to obtain a reliable interpretation of the results. The principal motivation on developing a new investigation method is the necessity to relate the results of crystal structure and morphology characterizations to microscopic and NW-specific parameters and not to macroscopic and general growth parameters. This allows a reliable comparison of NW characteristics and enhances the comprehension of their growth mechanism.The analysis of the results on crystal structure investigations, assuming this new perspective, delivers the fundamental finding that the axial growth of Au-assisted GaAs NWs can change in a pseudo Ga-assisted growth due to a non steady-state regime of the Ga accumulation process in the liquid droplet. The attempt to associate the observed crystal structures to one of these two growth modes reveals that zinc blende segments are most probably generated when a pseudo Ga-assisted growth occurs. This experimental evidence is in accordance with investigations developed by Glas et al. and Spirkoska et al. and with the current understanding of the NW growth mechanism and unifies the interpretation of catalytic growth of GaAs NWs. A Mn doped GaAs shell deposited at low temperature on core GaAs NWs is characterized for the first time. The growth is found to be epitaxial and to confer the quality of the core crystal to the shell crystal. As a consequence a high stacking fault density of the core NW limits the temperature of the shell growth due to the formation of clusters. Cross sections of (Ga,Mn)As shells are investigated. Simple kinetic and thermodynamical considerations lead to the conclusion of morphological instability of the low temperature radial growth. Analytical

  8. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  9. Function Discovery and Structural Characterization of a Methylphosphonate Esterase

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao Feng [Texas A & M Univ., College Station, TX (United States); Patskovsky, Yury [Einstein College of Medicine, Bronx, NY (United States); Nemmara, Venkatesh V. [Texas A & M Univ., College Station, TX (United States); Toro, Rafael [Einstein College of Medicine, Bronx, NY (United States); Almo, Steven C. [Einstein College of Medicine, Bronx, NY (United States); Raushel, Frank M. [Texas A & M Univ., College Station, TX (United States)

    2015-05-12

    Pmi1525, an enzyme of unknown function from Proteus mirabilis HI4320 and the amidohydrolase superfamily, was cloned, purified to homogeneity, and functionally characterized. The three-dimensional structure of Pmi1525 was determined with zinc and cacodylate bound in the active site (PDB id: 3RHG). We also determined the structure with manganese and butyrate in the active site (PDB id: 4QSF). Pmi1525 folds as a distorted (β/α)8-barrel that is typical for members of the amidohydrolase superfamily and cog1735. Moreover, the substrate profile for Pmi1525 was determined via a strategy that marshaled the utilization of bioinformatics, structural characterization, and focused library screening. The protein was found to efficiently catalyze the hydrolysis of organophosphonate and carboxylate esters. The best substrates identified for Pmi1525 are ethyl 4-nitrophenylmethyl phosphonate (kcat and kcat /Km values of 580 s–1 and 1.2 × 105 M–1 s–1, respectively) and 4-nitrophenyl butyrate (kcat and kcat /Km values of 140 s–1 and 1.4 × 105 M–1 s–1, respectively). Pmi1525 is stereoselective for the hydrolysis of chiral methylphosphonate esters. The enzyme hydrolyzes the (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate 14 times faster than the corresponding (RP)-enantiomer. The catalytic properties of this enzyme make it an attractive template for the evolution of novel enzymes for the detection, destruction, and detoxification of organophosphonate nerve agents.

  10. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  11. Characterization of band structure for transverse acoustic phonons in Fibonacci superlattices by a bandedge formalism

    International Nuclear Information System (INIS)

    Hsueh, W J; Chen, R F; Tang, K Y

    2008-01-01

    We present a divergence-free method to determine the characteristics of band structures and projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of bandedge equations is formulated to solve the band structures for the phonon instead of using the traditional dispersion relation. Numerical calculations show band structures calculated by the present method for the Fibonacci superlattice without numerical instability, which may occur in traditional methods. Based on the present formalism, the band structure for the acoustic phonons has been characterized by closure points and the projected bandgaps of the forbidden bands. The projected bandgaps are determined by the projected band structure, which is characterized by the cross points of the projected bandedges. We observed that the band structure and projected band structure and their characteristics were quite different for different generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules to determine these characteristics of the band structure and the projected band structure, including the number and the location of closure points of forbidden bands and those of projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers are proposed.

  12. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    Science.gov (United States)

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  13. Structural Characterization of Iron Meteorites through Neutron Tomography

    Directory of Open Access Journals (Sweden)

    Stefano Caporali

    2016-02-01

    Full Text Available In this communication, we demonstrate the use of neutron tomography for the structural characterization of iron meteorites. These materials prevalently consist of metallic iron with variable nickel content. Their study and classification is traditionally based on chemical and structural analysis. The latter requires cutting, polishing and chemical etching of large slabs of the sample in order to determine the average width of the largest kamacite lamellae. Although this approach is useful to infer the genetical history of these meteorites, it is not applicable to small or precious samples. On the base of different attenuation coefficient of cold neutrons for nickel and iron, neutron tomography allows the reconstruction of the Ni-rich (taenite and Ni-poor (kamacite metallic phases. Therefore, the measure of the average width of the largest kamacite lamellae could be determined in a non-destructive way. Furthermore, the size, shape, and spatial correlation between kamacite and taenite crystals were obtained more efficiently and accurately than via metallographic investigation.

  14. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  15. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  16. Structural and functional characterization of two alpha-synuclein strains

    Science.gov (United States)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  17. Physical and structural characterization of oxides

    International Nuclear Information System (INIS)

    Hussain, A.

    2012-01-01

    Objective of this thesis was the synthesis of the nano whiskers of aluminum ammonium carbonate hydroxide (AACH) from the mixture of aluminum nitrate and urea with different content levels of urea by hydrothermal process. The AACH precursor of nano alumina whiskers is added into zirconia powder along with CTAB and ethanol to obtain fine precipitates ready for calcining at 650 C. Fine powder of zirconia with alumina whiskers is compacted to form pellets of 5 mm diameter. Sintering of pellets has been performed at 1500 C in open atmosphere. Fabrication of sintered pellets is being done by using uniaxial press under 5 ton loads. The addition of alumina whiskers resulted better mechanical properties like compactness, hardness and flexural strength etc. The influence of urea composition upon the growth of alumina whisker has been revealed by FE-SEM. Low content of urea at 6 gm. to 8 gm. formed urchin like morphology of AACH whiskers, while at higher level 12 gm. of urea independent whiskers obtained. In second stage the varying amount of urea in aluminum nitrate was performed and calcined at different temperatures 80, 100, 200, 300, 400 degree C to reveal the effect on the pure AACH whiskers morphologies. Different characterization like SEM is used for structure morphologies, XRD used for determining of type of structure, FTIR technique used for the study of nature of functional groups, and impedance spectroscopy applied for electrical properties measurements. XRD pattern show the presence of a-alumina, FTIR tells about the missing peaks and absence of functional group due to increases in the temperature and SEM analysis of fractured surface of sintered pellets done for revealing structure morphology. Fracture study of nuclear fuel has also done by SEM analysis in this work to study cause of peeling off flakes at the outer edge of sintered UO 2 pellets. (author)

  18. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  19. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  20. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  1. Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure

    Science.gov (United States)

    Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong

    2014-01-01

    Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799

  2. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  3. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  4. Geological heterogeneity: Goal-oriented simplification of structure and characterization needs

    Science.gov (United States)

    Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram

    2017-11-01

    Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.

  5. Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes.

    Directory of Open Access Journals (Sweden)

    Guillaume Gotthard

    Full Text Available BACKGROUND: Organophosphates (OPs are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-β-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities. PRINCIPAL FINDINGS: The X-ray structure of OPHC2 has been solved at 2.1 Å resolution. The enzyme is roughly globular exhibiting a αβ/βα topology typical of the metallo-β-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8°C. Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones. SIGNIFICANCE: OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis.

  6. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  7. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    Science.gov (United States)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  8. Design, Fabrication and Characterization of Thin Film Structures through Oxidation Kinetics

    Science.gov (United States)

    Diaz Leon, Juan Jose

    Materials science and engineering is devoted to the understanding of the physics and chemistry of materials at the mesoscale and to applying that knowledge into real-life applications. In this work, different oxide materials and different oxidation methods are studied from a materials science point of view and for specific applications. First, the deposition of complex metal oxides is explored for solar energy concentration. This requires a number of multi-cation oxide structures such as thin-film dielectric barriers, low loss waveguides or the use of continuously graded composition oxides for antireflection coatings and light concentration. Then, oxidation via Joule heating is used for the self-alignment of a selector on top of a memristor structure on a nanovia. Simulations are used to explore the necessary voltage for the insulator-to-metal transition temperature of NbO2 using finite element analysis, followed by the fabrication and the characterization of such a device. Finally, long-term copper oxidation at room temperature and pressure is studied using optical techniques. Alternative characterization techniques are used to confirm the growth rate and phase change, and an application of copper oxide as a volatile conductive bridge is shown. All these examples show how the combination of novel simulation, fabrication and characterization techniques can be used to understand physical mechanisms and enable disruptive technologies in fields such as solar cells, light emitting diodes, photodetectors or memory devices.

  9. Stigmasterol from Eichhornia crassipes (water hyacinth) : Isolation, characterization and X-ray structure

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Sawant, S.G.; PrabhaDevi; Kaminsky, W.

    >H48O by combination of NMR and mass spectroscopic data The sterol was fully characterized by FTIR,NMR(1H13C) and mass spectral data Solid state structure of the sterol was determined by single crystal X-Ray diffraction...

  10. Structural and functional characterization of HPHT diamond crystals used in photoconductive devices

    Energy Technology Data Exchange (ETDEWEB)

    Pace, E.; Pini, A. [Florence Univ. (Italy). Ist. di Astronomia; Vinattieri, A.; Bogani, F.; Santoro, M.; Messina, G.; Santangelo, S.; Sato, Y.

    2000-09-01

    Diamond films are extensively studied for applications as functional material for UV photoconductors. CVD-grown polycrystalline diamond films show very interesting performances, but their complete exploitation is actually limited by a slow time response if compared to other materials, by a relatively high concentration of structural defects, impurities and grain boundaries, which may affect the collection length of photogenerated charges. High-quality single crystal diamonds could solve some of these problems. The absence of grain boundaries can produce longer collection lengths. The nitrogen and impurity contents can be reduced and then large type-IIa diamond single-crystals can be obtained. In this work, a detailed structural and functional characterization of type Ib HPHT diamond crystals has been carried out and the results have been compared to similar characterizations of CVD films to evaluate the different behavior, taking also into account that these high pressure high temperature (HPHT) diamond crystals contain several tens ppm of nitrogen. (orig.)

  11. Characterization and TCAD modelling of termination structures for silicon radiation detectors

    International Nuclear Information System (INIS)

    Dittongo, S.; Boscardin, M.; Bosisio, L.; Ciacchi, M.; Dalla Betta, G.-F.; Gregori, P.; Piemonte, C.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We have recently proposed a novel junction termination structure for silicon radiation detectors, featuring all-p-type multiguard and scribe-line implants, with metal field-plates completely covering the gap between the implanted rings. The structure is intended for detector long-term stability enhancement even in adverse ambient conditions and for fabrication-process simplification. A thorough static characterization, including stability measurements in varying humidity conditions, has been carried out on a variety of samples fabricated at ITC-irst. Comparisons with diodes featuring an n-type implant along the border - or no edge structure at all - have been performed. The new structures show stable behaviour at relatively high bias (∼200 V), also in the presence of wide humidity changes (1-90%). A good qualitative agreement has been obtained between experimental results and simulation predictions, allowing to gain deep insight into the physical behaviour of the device

  12. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  13. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  14. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec......, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.......The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  15. Characterization of adhesive from oysters: A structural and compositional study

    Science.gov (United States)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  16. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  17. Characterization of nano structured metallic materials; Caracterizacion de materiales metalicos nanoestructurados

    Energy Technology Data Exchange (ETDEWEB)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C{sub 3}N{sub 3}){sub 2} (NH){sub 3}]{sub n} doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  18. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  19. Using the structure-function linkage database to characterize functional domains in enzymes.

    Science.gov (United States)

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. Copyright © 2014 John Wiley & Sons, Inc.

  20. Dynamic characterization of contact interactions of micro-robotic leg structures

    Science.gov (United States)

    Ryou, Jeong Hoon; Oldham, Kenn Richard

    2014-05-01

    Contact dynamics of microelectromechanical systems (MEMS) are typically complicated and it is consequently difficult to model all dynamic characteristics observed in time-domain responses involving impact. This issue becomes worse when a device, such as a mobile micro-robot, is not clamped to a substrate and has a complex mechanical structure. To characterize such a contact interaction situation, two walking micro-robot prototypes are tested having intentionally simple structures with different dimensions (21.2 mm × 16.3 mm × 0.75 mm and 32 mm × 25.4 mm × 4.1 mm) and weights (0.16 and 2.7 g). Contact interaction behaviors are characterized by analyzing experimental data under various excitation signals. A numerical approach was used to derive a novel contact model consisting of a coefficient of restitution matrix that uses modal vibration information. Experimental validation of the simulation model shows that it captures various dynamic features of the contact interaction when simulating leg behavior more accurately than previous contact models, such as single-point coefficient of restitution or compliant ground models. In addition, this paper shows that small-scale forces can be added to the simulation to improve model accuracy, resulting in average errors across driving conditions on the order of 2-6% for bounce frequency, maximum foot height, and average foot height, although there is substantial variation from case to case.

  1. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  2. Microstructural characterization and formation mechanism of 21° top facets of ZnO-based nanowall structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Ho [Reliability Technology Research Institute, Korea Electronics Technology Institute (KETI), 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Kim, Dong Chan [OLED Research Team 2, Samsung Mobile Display, San 24 Nonseo-dong, Giheung-gu, Yongin 446-711 (Korea, Republic of); Kim, Sang Yun [Department of Materials Science and Engineering, KAIST and Center for Nanomaterials and Chemical Reactions, IBS, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Choi, SungSoon [Reliability Technology Research Institute, Korea Electronics Technology Institute (KETI), 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Lee, Kwan-Hun [Electronics and Communication Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST and Center for Nanomaterials and Chemical Reactions, IBS, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Koun Cho, Hyung, E-mail: chohk@skku.edu [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-03-01

    This study reports the microstructural characterization and formation mechanism of the 21° top facets of ZnO-based nanowall structures. The ZnO-based nanowall structures reported previously by many other research groups have {112"¯0} planes as major planes and top facets with a specific angle in common, irrespective of the growth techniques and growth conditions. These nanowalls were found to exist between two adjacent nanowires with a c-axis preferred orientation, and the atoms at the junction of the nanowalls and nanowires perfectly coincided with each other at an atomic level, without any defects. The top facets of the nanowalls showed periodically stepped surfaces and were identified as {011"¯5} planes, which were perpendicular to the {112"¯0} major planes. On the basis of the microstructural characterization of the synthesized ZnO-based nanowall structures, the formation mechanism and atomic structure model of the 21° top facets of the nanowall structures are proposed.

  3. Cloning, expression, and preliminary structural characterization of RTN-1C

    International Nuclear Information System (INIS)

    Fazi, Barbara; Melino, Sonia; Sano, Federica Di; Cicero, Daniel O.; Piacentini, Mauro; Paci, Maurizio

    2006-01-01

    Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane

  4. Structural characterization of cellulosic materials using x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, P.

    2013-11-01

    Cellulosic biomass can be used as a feedstock for sustainable production of biofuels and various other products. A complete utilization of the raw material requires understanding on its structural aspects and their role in the various processes. In this thesis, x-ray and neutron scattering methods were applied to study the structure of various cellulosic materials and how they are affected in different processes. The obtained results were reviewed in the context of a model for the cellulose nanostructure. The dimensions of cellulose crystallites and the crystallinity were determined with wide-angle x-ray scattering (WAXS), whereas the nanoscale fibrillar structure of cellulose was characterized with small-angle x-ray and neutron scattering (SAXS and SANS). The properties determined with the small-angle scattering methods included specific surface areas and distances characteristic of the packing of cellulose microfibrils. Also other physical characterization methods, such as x-ray microtomography, infrared spectroscopy, and solid-state NMR were utilized in this work. In the analysis of the results, a comprehensive understanding of the structural changes throughout a range of length scales was aimed at. Pretreatment of birch sawdust by pressurized hot water extraction was observed to increase the crystal width of cellulose, as determined with WAXS, even though the cellulose crystallinity was slightly decreased. A denser packing of microfibrils caused by the removal of hemicelluloses and lignin in the extraction was evidenced by SAXS. This resulted in the opening of new pores between the microfibril bundles and an increase of the specific surface area. Enzymatic hydrolysis of microcrystalline cellulose (MCC) did not lead to differences in the average crystallinity or crystal size of the hydrolysis residues, which was explained to be caused by limitations due to the large size of the enzymes as compared to the pores inside the fibril aggregates. The SAXS intensities

  5. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1996-05-01

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  6. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  7. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    Science.gov (United States)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  8. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  9. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    International Nuclear Information System (INIS)

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.; Adhi, K. P.

    2011-01-01

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrant butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.

  10. Surface and interfacial structural characterization of MBE grown Si/Ge multilayers

    International Nuclear Information System (INIS)

    Saha, Biswajit; Sharma, Manjula; Sarma, Abhisakh; Rath, Ashutosh; Satyam, P.V.; Chakraborty, Purushottam; Sanyal, Milan K.

    2009-01-01

    Si/Ge multilayer structures have been grown by solid source molecular beam epitaxy (MBE) on Si (1 1 1) and (1 0 0) substrates and were characterized by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), high-depth-resolution secondary ion mass spectroscopy (SIMS) and cross-section high-resolution transmission electron microscopy (HRTEM). A reasonably good agreement has been obtained for layer thickness, interfacial structure and diffusion between SIMS and HRTEM measurements. Epitaxial growth and crystalline nature of the individual layer have been probed using cross-sectional HRTEM and XRD measurements. Surface and interface morphological studies by AFM and HRTEM show island-like growth of both Si and Ge nanostructures.

  11. Nonlinear characterization of a bolted, industrial structure using a modal framework

    Science.gov (United States)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  12. Synthesis and Structural Characterization of ZnS Quantum Dots

    International Nuclear Information System (INIS)

    Selim, H.; Khalil, M.M.H.; Al-Kotb, M.S.; Kotkata, M.F.; Amer, H.H.

    2013-01-01

    Zinc sulfide QDs have been synthesized via a simple reaction of Zn (CH 3 COO) 2 and Na 2 S in the presence of sodium dodecyl sulphate (SDS) acting as an anionic capping material. The structure as well as characterization of the synthesized materials has been studied by XRD, EDX, SEM, TEM, TGA and FT-IR spectroscopy. Analysis of the obtained results revealed products of zinc blende ZnS nanoparticles with an average size of 5.3±0.2 nm in diameter distributed spherically and uniformly. The UV-visible absorption spectrum of the synthesized ZnS nanoparticles reflects an energy gap of 4.30 eV

  13. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    Science.gov (United States)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  14. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard

    2010-01-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent...... DFT optimizations (B3LYP/6-31G(d)) provides a structure for the lowest energy conformer which agrees well with the structure determined by X-ray diffraction. In addition, a conformer at all energy of 7 kJ mol(-1) (B3LYP/6-311+G(2d,2p)) with respect to the lowest energy conformer is predicted...

  15. Dynamic characterization of contact interactions of micro-robotic leg structures

    International Nuclear Information System (INIS)

    Ryou, Jeong Hoon; Oldham, Kenn Richard

    2014-01-01

    Contact dynamics of microelectromechanical systems (MEMS) are typically complicated and it is consequently difficult to model all dynamic characteristics observed in time-domain responses involving impact. This issue becomes worse when a device, such as a mobile micro-robot, is not clamped to a substrate and has a complex mechanical structure. To characterize such a contact interaction situation, two walking micro-robot prototypes are tested having intentionally simple structures with different dimensions (21.2 mm × 16.3 mm × 0.75 mm and 32 mm × 25.4 mm × 4.1 mm) and weights (0.16 and 2.7 g). Contact interaction behaviors are characterized by analyzing experimental data under various excitation signals. A numerical approach was used to derive a novel contact model consisting of a coefficient of restitution matrix that uses modal vibration information. Experimental validation of the simulation model shows that it captures various dynamic features of the contact interaction when simulating leg behavior more accurately than previous contact models, such as single-point coefficient of restitution or compliant ground models. In addition, this paper shows that small-scale forces can be added to the simulation to improve model accuracy, resulting in average errors across driving conditions on the order of 2–6% for bounce frequency, maximum foot height, and average foot height, although there is substantial variation from case to case. (paper)

  16. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  17. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  18. Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes

    International Nuclear Information System (INIS)

    Allen-Brady, Kristina; Camp, Nicola J

    2005-01-01

    Characterization of the linkage disequilibrium (LD) structure of candidate genes is the basis for an effective association study of complex diseases such as cancer. In this study, we report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50. The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families. A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb. Using a matrix decomposition algorithm, based on principal component analysis, we captured >90% of the intragenetic variation for each gene. Our results revealed that three of the five genes did not conform to a haplotype block structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm, where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the analysis in cases and controls separately to determine whether LD structure was consistent across breast cancer cases and controls. No substantial difference in LD structures was found. This study suggests that appropriate SNP selection for an association study involving candidate genes should allow for both mutation and recombination, which shape the population-level genomic structure. Furthermore, LD structure characterization in either breast cancer cases or controls appears to be sufficient for future cancer studies utilizing these genes

  19. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    Science.gov (United States)

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal Analysis by Structural Characterization as a Method for Assessing Heterogeneity in Complex Solid Pharmaceutical Dosage Forms.

    Science.gov (United States)

    Alhijjaj, Muqdad; Reading, Mike; Belton, Peter; Qi, Sheng

    2015-11-03

    Characterizing inter- and intrasample heterogeneity of solid and semisolid pharmaceutical products is important both for rational design of dosage forms and subsequent quality control during manufacture; however, most pharmaceutical products are multicomponent formulations that are challenging in this regard. Thermal analysis, in particular differential scanning calorimetry, is commonly used to obtain structural information, such as degree of crystallinity, or identify the presence of a particular polymorph, but the results are an average over the whole sample; it cannot directly provide information about the spatial distribution of phases. This study demonstrates the use of a new thermo-optical technique, thermal analysis by structural characterization (TASC), that can provide spatially resolved information on thermal transitions by applying a novel algorithm to images acquired by hot stage microscopy. We determined that TASC can be a low cost, relatively rapid method of characterizing heterogeneity and other aspects of structure. In the examples studied, it was found that high heating rates enabled screening times of 3-5 min per sample. In addition, this study demonstrated the higher sensitivity of TASC for detecting the metastable form of polyethylene glycol (PEG) compared to conventional differential scanning calorimetry (DSC). This preliminary work suggests that TASC will be a worthwhile additional tool for characterizing a broad range of materials.

  1. Characterizing the Atomic Structure in Low Concentrations of Weakly Ordered, Weakly Scattering Materials Using the Pair Distribution Function

    Science.gov (United States)

    Terban, Maxwell W.

    Nanoscale structural characterization is critical to understanding the physical underpinnings of properties and behavior in materials with technological applications. The work herein shows how the pair distribution function technique can be applied to x-ray total scattering data for material systems which weakly scatter x-rays, a typically difficult task due to the poor signal-to-noise obtained from the structures of interest. Characterization and structural modeling are demonstrated for a variety of molecular and porous systems, along with the detection and characterization of disordered, minority phases and components. In particular, reliable detection and quantitative analysis are demonstrated for nanocrystals of an active pharmaceutical ingredient suspended in dilute solution down to a concentration of 0.25 wt. %, giving a practical limit of detection for ordered nanoscale phases within a disordered matrix. Further work shows that minority nanocrystalline phases can be detected, fingerprinted, and modeled for mixed crystalline and amorphous systems of small molecules and polymers. The crystallization of amorphous lactose is followed under accelerated aging conditions. Melt quenching is shown to produce a different local structure than spray drying or freeze drying, along with increased resistance to crystallization. The initial phases which form in the spray dried formulation are identified as a mixture of polymorphs different from the final alpha-lactose monohydrate form. Hard domain formation in thermoplastic polyurethanes is also characterized as a function of methylene diphenyl diisocyanate and butanediol component ratio, showing that distinct and different hard phase structures can form and are solved by indexing with structures derived from molecular dynamics relaxation. In both cases, phase fractions can be quantified in the mixed crystalline and amorphous systems by fitting with both standards or structure models. Later chapters, demonstrate pair

  2. Characterization of photonic structures using visible and infrared polarimetry

    Directory of Open Access Journals (Sweden)

    Kral Z.

    2010-06-01

    Full Text Available Photonic Crystals are materials with a spatial periodic variation of the refractive index on the wavelength scale. This confers these materials interesting photonic properties such as the existence of photonic bands and forbidden photon frequency ranges, the photonic band gaps. Among their applications it is worth mentioning the achievement of low-threshold lasers and high-Q resonant cavities. A particular case of the Photonic Crystals is well-known and widely studied since a long time: the periodic thin film coatings. The characterization of thin film coatings is a classical field of study with a very well established knowledge. However, characterization of 2D and 3D photonic crystals needs to be studied in detail as it poses new problems that have to be solved. In this sense, Polarimetry is a specially suited tool given their inherent anisotropy: photonic bands depend strongly on the propagation direction and on polarization. In this work we show how photonic crystal structures can be characterized using polarimetry equipment. We compare the numerical modeling of the interaction of the light polarization with the photonic crystal with the polarimetry measurements. With the S-Matrix formalism, the Mueller matrix of a Photonic Crystal for a given wavelength, angle of incidence and propagation direction can be obtained. We will show that useful information from polarimetry (and also from spectrometry can be obtained when multivariate spectra are considered. We will also compare the simulation results with Polarimetry measurements on different kinds of samples: macroporous silicon photonic crystals in the near-IR range and Laser-Interference-Lithography nanostructured photoresist.

  3. Structural, electrical, and electrochemical characterization of Ni--Pr oxide thick films

    Energy Technology Data Exchange (ETDEWEB)

    Mari, C; Scolari, V; Fiori, G; Pizzini, S

    1977-03-01

    Oxides with metallic conductivity could and have been used instead of noble metals as insert electrodes in aqueous solutions as well as electrodes for high temperature fuel cells and electrolyzers and as catalysts for the conversion of exhaust gases from internal combustion engines. The aim of this paper is to report the results of a physico-chemical characterization (structure, morphology, electrochemical behavior) of Ni--Pr oxides which have been proposed as electrode materials for high temperature fuel cells. The electrochemical characterization was carried out in aqueous solutions at room temperature and with solid electrolytes at high temperature. Evidence has been found in the former case for an oxide electrode type of behavior. In the high temperature case, very low overvoltage values have been observed during cathodic oxygen reduction, while the electrode undergoes a reaction with oxygen during anodic oxygen evolution.

  4. Complete characterization of the ground-space structure of two-body frustration-free Hamiltonians for qubits

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Wei Zhaohui; Zeng Bei

    2011-01-01

    The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground-state degeneracy is as hard as, but no harder than, its classical analog.

  5. Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings

    Science.gov (United States)

    Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.

    2018-05-01

    The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.

  6. Characterizing the Solvated Structure of Photoexcited [Os(terpy2]2+ with X-ray Transient Absorption Spectroscopy and DFT Calculations

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhang

    2016-02-01

    Full Text Available Characterizing the geometric and electronic structures of individual photoexcited dye molecules in solution is an important step towards understanding the interfacial properties of photo-active electrodes. The broad family of “red sensitizers” based on osmium(II polypyridyl compounds often undergoes small photo-induced structural changes which are challenging to characterize. In this work, X-ray transient absorption spectroscopy with picosecond temporal resolution is employed to determine the geometric and electronic structures of the photoexcited triplet state of [Os(terpy2]2+ (terpy: 2,2′:6′,2″-terpyridine solvated in methanol. From the EXAFS analysis, the structural changes can be characterized by a slight overall expansion of the first coordination shell [OsN6]. DFT calculations supports the XTA results. They also provide additional information about the nature of the molecular orbitals that contribute to the optical spectrum (with TD-DFT and the near-edge region of the X-ray spectra.

  7. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  8. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  9. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    Science.gov (United States)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  10. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    Science.gov (United States)

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-21

    Structural characterization of Low Molecular Weight Heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly Enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as "enoxaparin", "mass spectrometry", "low molecular weight heparin", "structural characterization", etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  11. Micro structural and magnetic characterization of Gd doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Adhikari, R.; Das, A.K.; Karmakar, D.; Chandrasekhar Rao, T.V.; Ghatak, J.

    2008-01-01

    Gd doped SnO 2 nanoparticles were prepared by a chemical co-precipitation method. The prepared samples were calcined at 600 deg C. The annealed samples were characterized using XRD, TEM and SQUID magnetometry. The structural characterizations showed formation of particles in the nanometer regime. The M(T) and M(H) studies indicated an antiferromagnetic (AFM) interaction in 3 and 6% (at. wt.) Gd doped SnO 2 nanoparticles. The M(H) plot of both samples indicate a super paramagnetic (SPM) behavior at 7K as against the perfect AFM nature at 300K. The samples exhibit an insulating DMS nature, but we do not observe any ferromagnetism as was observed for other Gd doped systems like GaN and ZnO. (author)

  12. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    Science.gov (United States)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  13. Wafer scale imprint uniformity evaluated by LSPR spectroscopy: a high volume characterization method for nanometer scale structures

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel Nilsson; Vig, Asger Laurberg

    2012-01-01

    numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results...

  14. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Saeed, S.; Buters, F.; Dohnalova, K.; Wosinski, L.; Gregorkiewicz, T.

    2014-01-01

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO2. Optical characterization

  15. A structural framework for anomalous change detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    We present a spatially adaptive scheme for automatically searching a pair of images of a scene for unusual and interesting changes. Our motivation is to bring into play structural aspects of image features alongside the spectral attributes used for anomalous change detection (ACD). We leverage a small but informative subset of pixels, namely edge pixels of the images, as anchor points of a Delaunay triangulation to jointly decompose the images into a set of triangular regions, called trixels, which are spectrally uniform. Such decomposition helps in image regularization by simple-function approximation on a feature-adaptive grid. Applying ACD to this trixel grid instead of pixels offers several advantages. It allows: (1) edge-preserving smoothing of images, (2) speed-up of spatial computations by significantly reducing the representation of the images, and (3) the easy recovery of structure of the detected anomalous changes by associating anomalous trixels with polygonal image features. The latter facility further enables the application of shape-theoretic criteria and algorithms to characterize the changes and recognize them as interesting or not. This incorporation of spatial information has the potential to filter out some spurious changes, such as due to parallax, shadows, and misregistration, by identifying and filtering out those that are structurally similar and spatially pervasive. Our framework supports the joint spatial and spectral analysis of images, potentially enabling the design of more robust ACD algorithms.

  16. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  17. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  18. Preparation and structural characterization of the thermoluminescent material CaSO4: Dy

    International Nuclear Information System (INIS)

    Sanchez R, A.; Azorin, J.; Gonzalez M, P.R.; Rivera, T.

    2005-01-01

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO 4 : Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 μm to 200 μm. (Author)

  19. Structural characterization of copper (II tetradecanoate with 2,2′-bipyridine and 4,4′-bipyridine to study magnetic properties

    Directory of Open Access Journals (Sweden)

    Noha Said Bedowr

    2018-03-01

    Full Text Available This paper presents synthesis, structural characterization and spintronic applications of copper (II tetradecanoate derived magnetic complexes. The complexes were prepared by a chemical reaction between [Cu2(CH3(CH212COO4](EtOH2 and 2,2′-bipyridine-4,4′-bipyridine ligands respectively. The complexes were further reacted between the product of the first reaction and 4,4′-bipyridine-2,2′-bipyridine respectively. The structural characterization techniques included elemental analysis, Fourier transformed infrared spectroscopy (FTIR, Ultra-violet–Visible (UV–Vis spectroscopy, polarized optical microscopy, magnetic moment and thermogravimetric analysis. The structural and characterization results suggested that the synthesized complexes were binuclear and mononuclear covalent complexes of copper(II with structural formulas [Cu2(η2-(OOCR4](4,4′-bpy2H2O] and [Cu(η1-(OOCR2(2,2′-bpy (4,4′-bpy] respectively.

  20. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  1. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  2. Characterization of structural and electrical properties of ZnO tetrapods

    Science.gov (United States)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  3. STRUCTURAL CHARACTERIZATION OF VOLCANIC ASH OF THE NEVADO DEL RUIZ: ZEOLITE PHASE IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Heiddy P. Quiroz

    2014-08-01

    Full Text Available This paper presents a study of the structural properties obtained from volcanic ash from Nevado del Ruiz located in the Central Range of Andes - Colombia. The volcanic ash samples were subjected to hydration processes and heat treatments in situ during characterization stage material. During the hydration process, which consisted of introducing 2.4875 ± 0.0002g of volcanic ash in 20ml of water for 48 hours, the organic fraction present was removed from the particulate suspension in the aqueous medium. From measurements of X-ray diffraction (XRD, it was observed, that the temperature variations between 323 and 673 K influence the phase formation of zeolite with structures Heulandite -Ca, Stellerita and gmelinite. XRD measurements were performed in vacuum and atmospheric pressure. X'pert Highscore Plus program and simulation Rietveld refinement were used for to obtain the structures of each of the phases. It was found, using the Scherrer equation, that crystallite sizes (Δ (2θ are influenced by changes crystal-chemical caused by hydration, heat treatment and pressure conditions during the characterization. A variation of Δ ( 2θ between 37 and 106.9 nm from XRD measurements was found. It was determined that from 423K in the sample of un-hydrated volcanic ash, the formation of zeolite Stellerita presents with a stable phase up to 673 K.

  4. Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus

    DEFF Research Database (Denmark)

    Cocaign, Angélique; Kubiak, Xavier Jean Philippe; Xu, Ximing

    2014-01-01

    Mycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural...... is endogenously expressed and functional in both the rough and smooth M. abscessus morphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related to Nocardia farcinica NAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from...... and functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme...

  5. Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bohr, Vilhelm A; Juel Rasmussen, Lene

    2015-01-01

    structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading...... double stranded DNA and has a modest endonuclease or 5' flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates...

  6. STRUCTURAL AND MECHANICAL CHARACTERIZATION OF DEFORMED POLYMER USING CONFOCAL RAMAN MICROSCOPY AND DSC

    Directory of Open Access Journals (Sweden)

    Birgit Neitzel

    2016-02-01

    Full Text Available Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.

  7. Structural characterization of dispersed metal catalysts. Progress report, September 1, 1982-August 31, 1983

    International Nuclear Information System (INIS)

    Reucroft, P.J.; De Angelis, R.J.; Bentley, J.

    1983-01-01

    Analytical electron microscopy characterization techniques have been developed to investigate the structural features of small metal particles (50 to 100 angstroms) in porous media. In the first phase of the project, bright and dark field imaging techniques have been emphasized with EDAX characterization. High quality images have been obtained in both bright field and dark field and earlier characterization studies on three catalyst systems have been confirmed and extended. Particle size growth (sintering) at low temperatures is much greater in the Au/SiO 2 system, indicating a weak metal-support interaction. A more uniform and generally smaller particle size distribution is observed in Ni/MgSiO 3 compared to Ni/SiO 2 . The nickel particles in Ni/SiO 2 show contrast effects which indicate that the particles contain faults or twins

  8. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  9. Microstructural characterization and pore structure analysis of nuclear graphite

    International Nuclear Information System (INIS)

    Kane, J.; Karthik, C.; Butt, D.P.; Windes, W.E.; Ubic, R.

    2011-01-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between ∼14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of ∼2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  10. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    Science.gov (United States)

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  11. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120.

    Science.gov (United States)

    Baune, Matthias; Qi, Yulin; Scholz, Karen; Volmer, Dietrich A; Hayen, Heiko

    2017-08-01

    The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.

  12. Structural characterization of recombinant crustacyanin subunits from the lobster Homarus americanus

    International Nuclear Information System (INIS)

    Ferrari, Michele; Folli, Claudia; Pincolini, Elisa; McClintock, Timothy S.; Rössle, Manfred; Berni, Rodolfo; Cianci, Michele

    2012-01-01

    The two recombinant apo subunits H1 and H2 from H. americanus have been structurally characterized. Reconstitution studies with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits. Crustacean crustacyanin proteins are linked to the production and modification of carapace colour, with direct implications for fitness and survival. Here, the structural and functional properties of the two recombinant crustacyanin subunits H 1 and H 2 from the American lobster Homarus americanus are reported. The two subunits are structurally highly similar to the corresponding natural apo crustacyanin CRTC and CRTA subunits from the European lobster H. gammarus. Reconstitution studies of the recombinant crustacyanin proteins H 1 and H 2 with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits from H. gammarus in complex with astaxanthin. Moreover, correlations between the presence of crustacyanin genes in crustacean species and the resulting carapace colours with the spectral properties of the subunits in complex with astaxanthin confirmed this genotype–phenotype linkage

  13. Structure characterization of the central repetitive domain of high molecular weight gluten proteins .2. Characterization in solution and in the dry state

    NARCIS (Netherlands)

    van Dijk, A.A.; De Boef, E.; Bekkers, A.; van Wijk, L.L.; van Swieten, E.; Hamer, R.J.; Robillard, G.T.

    The structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins was characterized in solution and in the dry state using HMW proteins Bx6 and Bx7 and a subcloned, bacterially expressed part of the repetitive domain of HMW Dx5. Model studies of the HMW consensus

  14. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    Science.gov (United States)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  15. Characterization of the Unit Tangent Sphere Bundle with $ g $-Natural Metric and Almost Contact B-metric Structure

    Directory of Open Access Journals (Sweden)

    Farshad Firuzi

    2017-06-01

    Full Text Available We consider unit tangent sphere bundle of a Riemannian manifold $ (M,g $ as a $ (2n+1 $-dimensional manifold and we equip it with pseudo-Riemannian $ g $-natural almost contact B-metric structure. Then, by computing coefficients of the structure tensor $ F$, we completely characterize the unit tangent sphere bundle equipped to this structure, with respect to the relevant classification of almost contact B-metric structures, and determine a class such that the unit tangent sphere bundle with mentioned structure belongs to it. Also, we find some curvature conditions such that the mentioned structure satisfies each of eleven basic classes.

  16. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  17. Monodentate Schiff base ligands: their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties.

    Science.gov (United States)

    Köse, Muhammet; Ceyhan, Gökhan; Tümer, Mehmet; Demirtaş, Ibrahim; Gönül, İlyas; McKee, Vickie

    2015-02-25

    Two Schiff base compounds, N,N'-bis(2-methoxy phenylidene)-1,5-diamino naphthalene (L(1)) and N,N'-bis(3,4,5-trimethoxy phenylidene)-1,5-diamino naphthalene (L(2)) were synthesized and characterized by the analytical and spectroscopic methods. The electrochemical and photoluminescence properties of the Schiff bases were investigated in the different conditions. The compounds L(1) and L(2) show the reversible redox processes at some potentials. The sensor properties of the Schiff bases were examined and color changes were observed upon addition of the metal cations, such as Hg(II), Cu(II), Co(II) and Al(III). The Schiff base compounds show the bathochromic shift from 545 to 585 nm. The single crystals of the compounds (L(1)) and (L(2)) were obtained from the methanol solution and characterized structurally by the X-ray crystallography technique. The molecule L(2) is centrosymmetric whereas the L(1) has no crystallographically imposed molecular symmetry. However, the molecular structures for these compounds are quite similar, differing principally in the conformation about methoxy groups and the dihedral angle between the two aromatic rings and diamine naphthalene. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  19. Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD.

    Science.gov (United States)

    Grande-García, Araceli; Lallous, Nada; Díaz-Tejada, Celsa; Ramón-Maiques, Santiago

    2014-02-04

    Upregulation of CAD, the multifunctional protein that initiates and controls the de novo biosynthesis of pyrimidines in animals, is essential for cell proliferation. Deciphering the architecture and functioning of CAD is of interest for its potential usage as an antitumoral target. However, there is no detailed structural information about CAD other than that it self-assembles into hexamers of ∼1.5 MDa. Here we report the crystal structure and functional characterization of the dihydroorotase domain of human CAD. Contradicting all assumptions, the structure reveals an active site enclosed by a flexible loop with two Zn²⁺ ions bridged by a carboxylated lysine and a third Zn coordinating a rare histidinate ion. Site-directed mutagenesis and functional assays prove the involvement of the Zn and flexible loop in catalysis. Comparison with homologous bacterial enzymes supports a reclassification of the DHOase family and provides strong evidence against current models of the architecture of CAD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis, characterization and crystal structure of N,N'-Bis(2,3-Dimethoxybenzylidene)-1,2-Diaminoethane

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Fejfarová, Karla; Dušek, Michal; Bijanzadeh, H.R.

    2011-01-01

    Roč. 41, č. 12 (2011), 1955-1960 ISSN 1074-1542 Institutional research plan: CEZ:AV0Z10100521 Keywords : Shiff bases * X-ray diffraction * Jana2006 * crystal structure * characterization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.566, year: 2011

  1. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  2. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  3. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    International Nuclear Information System (INIS)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-01-01

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor

  4. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    Science.gov (United States)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  6. Structural and photocarrier radiometric characterization of Cux(CdTe)yOz thin films growth by reactive sputtering

    International Nuclear Information System (INIS)

    Velazquez-Hernandez, R.; Rojas-Rodriguez, I.; Carmona-Rodriguez, J.; Jimenez-Sandoval, S.; Rodriguez-Garcia, M.E.

    2011-01-01

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu x (CdTe) y O z thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu 2 Te and CdO.

  7. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  8. Structural characterization of the gallery forest of the Guisa Agroforestry Experimental Station

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2018-01-01

    Full Text Available The work was carried out in the gallery forest of the Cupaynicú stream, belonging to the Guisa Agroforestry Experimental Station, with the objective of characterizing its structure. Eight parcels of 500 m2 were randomly raised, in them the species were identified, their height and diameter were measured. The flora was analyzed through the origin of the species and the frequency histogram. The structure of the forest was analyzed through the diametric structure and the Value Index of Ecological Importance, the vertical structure was described taking into consideration the forest strata as well as the preparation of the canopy diagram. A descriptive analysis of the parameters diameter, height and basal area was made to study the parametric structure. The richness of the riparian forest was evidenced by the registry of 25 families, 40 genera and 43 species, as well as the predominance of the Meliaceae family followed by Lauraceae, Mimosaceae and Sapindaceae, which reflects the high timber value, melliferous and ecological of the same. The species Roystonea regia, Sterculiaapetala, Dendropanaxarboreus, Andirainermis and Mangifera indica, determine the physiognomy of the gallery Forest. The trees reach 33 cm in diameter and 18.27 m in height on average, although the presence of trees with 30 m is the most frequent, which denotes the irregular structure of the forest.

  9. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization

    Directory of Open Access Journals (Sweden)

    Edgar A. Sanches

    2015-01-01

    Full Text Available Polypyrrole (PPY powder was chemically synthesized using ferric chloride (FeCl3 and characterized by X-ray diffraction (XRD, Le Bail Method, Fourier Transform Infrared Spectrometry (FTIR, and Scanning Electron Microscopy (SEM. XRD pattern showed a broad scattering of a semicrystalline structure composed of main broad peaks centered at 2θ = 11.4°, 22.1°, and 43.3°. Crystallinity percentage was estimated by the ratio between the sums of the peak areas to the area of amorphous broad halo due to the amorphous phase and showed that PPY has around 20 (1%. FTIR analysis allowed assigning characteristic absorption bands in the structure of PPY. SEM showed micrometric particles of varying sizes with morphologies similar to cauliflower. Crystal data (monoclinic, space group P 21/c, a=7.1499 (2 Å, b=13.9470 (2 Å, c=17.3316 (2 Å, α=90 Å, β=61.5640 (2 Å and γ=90 Å were obtained using the FullProf package program under the conditions of the method proposed by Le Bail. Molecular relaxation was performed using the density functional theory (DFT and suggests that tetramer polymer chains are arranged along the “c” direction. Average crystallite size was found in the range of 20 (1 Å. A value of 9.33 × 10−9 S/cm was found for PPY conductivity.

  10. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    International Nuclear Information System (INIS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-01-01

    Graphical abstract: NiWO 4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO 4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO 4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO 4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO 4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO 4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  11. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  12. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    International Nuclear Information System (INIS)

    Chiriac, L.B.; Trandafir, D.L.; Turcu, R.V.F.; Todea, M.; Simon, S.

    2016-01-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy_2O_3. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, "2"9Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T_1 and RARE-T_2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T_2-weighted MRI contrast properties.

  13. Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands

    Science.gov (United States)

    C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen

    2008-01-01

    In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...

  14. Structural characterization of copper (II) tetradecanoate with 2,2′-bipyridine and 4,4′-bipyridine to study magnetic properties

    OpenAIRE

    Noha Said Bedowr; Rosiyah Binti Yahya; Nesrain Farhan

    2018-01-01

    This paper presents synthesis, structural characterization and spintronic applications of copper (II) tetradecanoate derived magnetic complexes. The complexes were prepared by a chemical reaction between [Cu2(CH3(CH2)12COO)4](EtOH)2 and 2,2′-bipyridine-4,4′-bipyridine ligands respectively. The complexes were further reacted between the product of the first reaction and 4,4′-bipyridine-2,2′-bipyridine respectively. The structural characterization techniques included elemental analysis, Fourier...

  15. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  16. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    Science.gov (United States)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  17. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    Science.gov (United States)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  18. Structural characterization of complex systems by applying a combination of scattering and spectroscopic methods

    International Nuclear Information System (INIS)

    Klose, G.

    1999-01-01

    Lyotropic mesophases possess lattice dimensions of the order of magnitude of the length of their molecules. Consequently, the first Bragg reflections of such systems appear at small scattering angles (small angle scattering). A combination of scattering and NMR methods was applied to study structural properties of POPC/C 12 E n mixtures. Generally, the ranges of existence of the liquid crystalline lamellar phase, the dimension of the unit-cell of the lamellae and important structural parameters of the lipid and surfactant molecules in the mixed bilayers were determined. With that the POPC/C 12 E 4 bilayer represents one of the best structurally characterized mixed model membranes. It is a good starting system for studying the interrelation with other e.g. dynamic or thermodynamic properties. (K.A.)

  19. Znx-1CuxMn2O4 spinels; synthesis, structural characterization and electrical evaluation

    International Nuclear Information System (INIS)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H.; Gonzalez, F.

    2010-01-01

    This work presents the structural characterization and electrical evaluation of Zn x-1 Cu x Mn 2 O 4 spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn 2 O 4 spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn x-1 Cu x Mn 2 O 4 spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  20. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  1. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  2. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    Science.gov (United States)

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  3. Synthesis by irradiation and mechanism and structural characterization study of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, Ademar Benevolo

    2004-01-01

    Polypropylene molecular structure is made only by linear molecules interacting by weak forces. The resulting PP has very low melt strength (MS). MS is important to make feasible to process PP by all the transformation technologies based on the free expansion of the melt. The aim of this work was to develop a new process to synthesize PP with crosslinks and/or long chain branches, known as High Melt Strength Polypropylene (HMSPP) and to characterize its structure and synthesis mechanism. HMSPP was obtained by the irradiation of PP under a crosslinking (acetylene) atmosphere or inert or oxidative one, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals under reactive or inert atmosphere. The results from rheological characterization showed that the highest levels of MS were obtained by conducting irradiation and thermal treatments under crosslinking atmospheres. The results for the elucidation of reaction mechanism by electron spin resonance (ESR) showed that acetylene irradiation is effective in promoting the creation of double bonds, based on the formation of polyenil radicals. The results of structural unraveling showed that radiation promotes predominantly the degradation of atactic molecules or molecules with atactic defects. These results support the hypothesis of formation of branched PP molecules based on the reaction of those fragments with the double bonds created in the PP molecules. (author)

  4. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  5. Detection, characterization and evolution of internal repeats in Chitinases of known 3-D structure.

    Directory of Open Access Journals (Sweden)

    Manigandan Sivaji

    Full Text Available Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them. Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE did not contain any internal repeats of amino acid sequences. Ten sequences contained repeats of length <50, and the remaining 8 sequences contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural characteristics of internal repeats in Chitinase proteins.

  6. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  7. Structure Characterization of Modified Polyimide Films Irradiated by 2 MeV Si Ions

    International Nuclear Information System (INIS)

    Tian-Xiang, Chen; Shu-De, Yao; Kun, Wang; Huan, Wang; Zhi-Bo, Ding; Di, Chen

    2009-01-01

    Structures of polyimide (6051) films modified by irradiation of 2.0 MeV Si ions with different fluences are studied in detail. Variations of the functional groups in polyimide are investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. The results indicate that the functional groups can be destroyed gradually with the increasing ion fluence. The variations of structure and element contents are characterized by x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy (XPS). The results indicate that the contents of N and O decrease significantly compared with the original samples, some graphite-like and carbon-rich phases are formed in the process of irradiation

  8. Physicochemical and structural characterization of a two-dimensional polymer performed by using the Langmuir-Blodgett technique

    International Nuclear Information System (INIS)

    Lefevre, Didier

    1995-01-01

    This research thesis addresses the physicochemical and structural characterization of two-dimensional polymer made of polymerizable macro-cycles pre-organised in-plane by using the Langmuir-Blodgett technique. Macro-cycles are porphyrins with four acetylenic functions which bind in both plane directions by formation of diacetylenic covalent bonds. These porphyrins are adsorbed under a single layer of dihexadecyl-phosphoric acid to build up a monomer amphiphilic film. The author reports the characterization of the Langmuir film by the study of compression isotherms and by Brewster angle microscopy. Other techniques are used (UV, visible and infrared spectroscopy, Raman spectroscopy) to highlight the polymerization in LB film. X photo-electronic spectroscopy and secondary ion mass spectroscopy are also used. The author reports the study of the orientation of macro-cycles before and after polymerization by using linear dichroism, electronic paramagnetic resonance and X ray diffraction. The in-plane LB film structure is studied by transmission X ray diffraction, atomic force microscopy in correlation with molecular simulation. The two-dimensional feature of the polymer formed at the water surface is highlighted. The membrane is visualized by electronic and optic microscopy, and characterized by EDXS and electronic diffraction [fr

  9. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  10. Impedance measures in analysis and characterization of multistable structures subjected to harmonic excitation

    Science.gov (United States)

    Harne, Ryan L.; Goodpaster, Benjamin A.

    2018-01-01

    Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.

  11. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  12. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  13. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilizati...

  14. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it

  15. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural

  16. Structural characterization of half-metallic Heusler compound NiMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Abdul-Kader, A.M.; Bach, P.; Schmidt, G.; Molenkamp, L.W.; Turos, A.; Karczewski, G

    2004-06-01

    High resolution X-ray diffraction (HRXRD) and Rutherford backscattering/channeling (RBS/c) techniques were used to characterize layers of NiMnSb grown by molecular beam epitaxy (MBE) on InP with a In{sub x}Ga{sub 1-x}As buffer. Angular scans in the channeling mode reveal that the crystal structure of NiMnSb is tetragonally deformed with c/a=1.010{+-}0.002, in agreement with HRXRD data. Although HRXRD demonstrates the good quality of the pseudomorphic NiMnSb layers the channeling studies show that about 20% of atoms in the layers do not occupy lattice sites in the [0 0 1] rows of NiMnSb. The possible mechanisms responsible for the observed disorder are discussed.

  17. Superficial characterization and nano structural of nano multilayers Cr/Cr N obtained by UBM with different unbalance grades

    International Nuclear Information System (INIS)

    Piratoba, U.; Arenas A, J.; Olaya, J. J.

    2013-01-01

    Coatings of 25 bilayers of Cr/Cr N, with total thickness between 1.32 and 1.67 microns, were deposited by reactive sputtering on silicon and H13 steel, in argon and argon with nitrogen atmospheres. A power of 160 watts, flows of argon and nitrogen of 9 and 3 sc cm respectively, and an axial unbalanced magnetron, whose coefficient of geometrical unbalance K G was varied between 0.85 and 1.37. Of these coatings, micrographs of surface and cross section scanning electron microscopy were obtained, was make a micro structural characterization with X-ray diffraction, a nano structural characterization by transmission electron microscopy, and surface characterization by atomic force microscopy in tapping mode: analysis showed uniform surface coating with globular and pyramidal formations, which contain some granular inclusions and microscopic craters. With the increase in the unbalance of the magnetic field, the grain size, the roughness and the speed of the coatings growth were increased. (Author)

  18. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  19. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  20. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  1. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  2. Synthesis, characterization and structural refinement of polycrystalline uranium substituted zirconolite

    International Nuclear Information System (INIS)

    Shrivastava, O.P.; Narendra Kumar; Sharma, I.B.

    2005-01-01

    Ceramic precursors of Zirconolite (CaZrTi 2 O 7 ) family have a remarkable property of substitution Zr 4+ cationic sites. This makes them potential material for nuclear waste management in 'synroc' technology. In order to simulate the mechanism of partial substitution of zirconium by tetravalent actinides, a solid phase of composition CaZr 0.95 U 0.5 Ti 2 O 7 has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and nitrates of uranium and zirconium respectively. Solid state synthesis has been carried out by repeated pelletizing and sintering the finely powdered oxide mixture in a muffle furnace at 1050 degC. The polycrystalline solid phase has been characterized by its typical powder diffraction pattern. Step analysis data has been used for ab initio calculation of structural parameters. The uranium substituted zirconolite crystallizes in monoclinic symmetry with space group C2/c (15). The following unit cell parameters have been calculated: a =12.4883(15), b =7.2448(5), c 11.3973(10) and β = 100.615(9)0. The structure was refined to satisfactory completion. The Rp and Rwp are found to be 7.48% and 9.74% respectively. (author)

  3. Application of Characterization, Modeling, and Analytics Towards Understanding Process Structure Linkages in Metallic 3D Printing (Postprint)

    Science.gov (United States)

    2017-08-01

    METALLIC 3D PRINTING (POSTPRINT) M.A. Groeber, E. Schwalbach, S. Donegan, K. Chaput, T. Butler, and J. Miller AFRL/RX 27 JULY...MODELING, AND ANALYTICS TOWARDS UNDERSTANDING PROCESS- STRUCTURE LINKAGES IN METALLIC 3D PRINTING (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b...characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing M A Groeber, E Schwalbach, S Donegan, K

  4. Structure-based characterization of multiprotein complexes.

    Science.gov (United States)

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J

    2014-07-08

    Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium.

    Science.gov (United States)

    Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji

    2015-08-11

    Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.

  6. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  7. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    Science.gov (United States)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  9. Structural Characterization of Emeraldine-Salt Polyaniline/Gold Nanoparticles Complexes

    Directory of Open Access Journals (Sweden)

    E. A. Sanches

    2011-01-01

    Full Text Available Gold nanoparticles (Au NPs stabilized with polyamidoamine dendrimers (Au-PAMAM or sodium citrate (Au-CITRATE were synthesized and complexed with polyaniline emeraldine-salt form (ES-PANI. The complexes were characterized using structural and morphological techniques, including X-Ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Zeta Potential analyses, and Fourier-Transformed Infrared spectroscopy (FTIR. When the Au-CITRATE NPs are added to the polymeric solution, the formation of a precipitate is clearly observed. The precipitate exhibited a different morphology from that found for ES-PANI and Au-CITRATE NPs, suggesting the formation of ES-PANI coating over the surface of Au-CITRATE NPs. On the other hand, when the Au-PAMAM NPs are incorporated into the ES-PANI solution, none interaction was observed, probably due to the repulsive electrostatic interactions, being the organization of the ES-PANI chains unaffected by the presence of the Au-PAMAM NPs.

  10. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2017-03-01

    Full Text Available Erwinia amylovora (E. amylovora is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core, wabH and wabG (outer-LPS core mutants. The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR mass spectrometry.

  11. Structural characterization of AlN films synthesized by pulsed laser deposition

    International Nuclear Information System (INIS)

    Szekeres, A.; Fogarassy, Zs.; Petrik, P.; Vlaikova, E.; Cziraki, A.; Socol, G.; Ristoscu, C.; Grigorescu, S.; Mihailescu, I.N.

    2011-01-01

    We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 x 10 8 W/cm 2 , repetition rate 3 Hz, 10 J/cm 2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10 -4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.

  12. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  13. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  14. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  15. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    Science.gov (United States)

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Structural characterization of complex O-linked glycans from insect-derived material.

    Science.gov (United States)

    Garenaux, Estelle; Maes, Emmanuel; Levêque, S; Brassart, Colette; Guerardel, Yann

    2011-07-01

    Although insects are among the most diverse groups of the animal kingdom and may be found in nearly all environments, one can observe an obvious lack of structural data on their glycosylation ability. Hymenoptera is the second largest of all insect orders with more than 110,000 identified species and includes the most famous examples of social insects' species such as wasps, bees and ants. In this report, the structural variety of O-glycans has been studied in two Hymenoptera species. In a previous study, we showed that major O-glycans from common wasp (Vespula germanica) salivary mucins correspond to T and Tn antigen, eventually substituted by phosphoethanolamine or phosphate groups. More detailed structural analysis performed by mass spectrometry revealed numerous minor O-glycan structures bearing Gal, GlcNAc, GalNAc and Fuc residues. Thus, in order to investigate glycosylation diversity in insects, we used common wasp nest (V. germanica) and hornet nest (Vespa cabro) as starting materials. These materials were submitted to reductive β-elimination and the released oligosaccharide-alditols further fractionated by multidimensional HPLC. Tandem mass spectrometry analyses combined with NMR data revealed the presence of various families of complex O-glycans differing accordingly to both core structures and external motifs. Glycans from wasp were characterized by the presence of core types 1 and 2, Lewis X and internal Gal-Gal motifs. We also observed unusual O-glycans containing a reducing GalNAc unit directly substituted by a fucose residue. In contrast, hornet O-glycans appeared as a rather homogeneous family of core 1 type O-glycans extended by galactose oligomers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    International Nuclear Information System (INIS)

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 (angstrom) resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg 2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  18. Structural Characterization of 1,1,3,3-Tetramethylguanidinium Chloride Ionic Liquid by Reversible SO2 Gas Absorption

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Harris, Pernille; Riisager, Anders

    2013-01-01

    A unique new ionic liquid−gas adduct solid state compound formed between 1,1,3,3-tetramethylguanidinium chloride ([tmgH]Cl) and sulfur dioxide has been characterized by X-ray diffraction and Raman spectroscopy. The structure contains SO2 molecules of near normal structure kept at their positions ...... with bromide and iodide are discussed. Some of these salts may prove useful as reversible absorbents of SO2 in industrial flue gases....

  19. Structural and compositional characterization of the adhesive produced by reef building oysters.

    Science.gov (United States)

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.

  20. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  1. Characterizing the structure and content of nurse handoffs: A Sequential Conversational Analysis approach.

    Science.gov (United States)

    Abraham, Joanna; Kannampallil, Thomas; Brenner, Corinne; Lopez, Karen D; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L

    2016-02-01

    Effective communication during nurse handoffs is instrumental in ensuring safe and quality patient care. Much of the prior research on nurse handoffs has utilized retrospective methods such as interviews, surveys and questionnaires. While extremely useful, an in-depth understanding of the structure and content of conversations, and the inherent relationships within the content is paramount to designing effective nurse handoff interventions. In this paper, we present a methodological framework-Sequential Conversational Analysis (SCA)-a mixed-method approach that integrates qualitative conversational analysis with quantitative sequential pattern analysis. We describe the SCA approach and provide a detailed example as a proof of concept of its use for the analysis of nurse handoff communication in a medical intensive care unit. This novel approach allows us to characterize the conversational structure, clinical content, disruptions in the conversation, and the inherently phasic nature of nurse handoff communication. The characterization of communication patterns highlights the relationships underlying the verbal content of nurse handoffs with specific emphasis on: the interactive nature of conversation, relevance of role-based (incoming, outgoing) communication requirements, clinical content focus on critical patient-related events, and discussion of pending patient management tasks. We also discuss the applicability of the SCA approach as a method for providing in-depth understanding of the dynamics of communication in other settings and domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    Science.gov (United States)

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  3. Structural and IR-spectroscopic characterization of cadmium and lead(II) acesulfamates

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Gustavo A.; Piro, Oscar E. [Univ. Nacional de La Plata (Argentina). Dept. de Fisica y Inst. IFLP (CONICET- CCT-La Plata); Parajon-Costa, Beatriz S.; Baran, Enrique J. [Univ. Nacional de La Plata (Argentina). Centro de Quimica Inorganica (CEQUINOR/CONICET- CCT-La Plata)

    2017-07-01

    Cadmium and lead(II) acesulfamate, Cd(C{sub 4}H{sub 4}NO{sub 4}S){sub 2} . 2H{sub 2}O and Pb(C{sub 4}H{sub 4}NO{sub 4}S){sub 2}, were prepared by the reaction of acesulfamic acid and the respective metal carbonates in aqueous solution, and characterized by elemental analysis. Their crystal structures were determined by single crystal X-ray diffraction methods. The Cd(II) compound crystallizes in the monoclinic space group P2{sub 1}/c with Z=4 and the corresponding Pb(II) salt in the triclinic space group P anti 1 with Z=2. In both salts, acesulfamate acts both as a bi-dentate ligand through its nitrogen and carbonyl oxygen atoms and also as a mono-dentate ligand through this same oxygen atom, giving rise to polymeric structures; in the Pb(II) salt the ligand also binds the cation through its sulfoxido oxygen atoms. The FTIR spectra of the compounds were recorded and are briefly discussed. Some comparisons with other related acesulfamate and saccharinate complexes are made.

  4. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.

    Science.gov (United States)

    Rencoret, Jorge; Ralph, John; Marques, Gisela; Gutiérrez, Ana; Martínez, Ángel T; del Río, José C

    2013-03-13

    The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.

  5. New modeling and experimental approaches for characterization of two-phase flow interfacial structure

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun, Xiaodong

    2004-01-01

    This paper presents new experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the experiments, two objective approaches are developed to identify flow regimes and to obtain local interfacial structure data. First, a global measurement technique using a non-intrusive ring-type impedance void-meter and a self-organizing neural network is presented to identify the one-dimensional'' flow regimes. In the application of this measurement technique, two methods are discussed, namely, one based on the probability density function of the impedance probe measurement (PDF input method) and the other based on the sorted impedance signals, which is essentially the cumulative probability distribution function of the impedance signals (instantaneous direct signal input method). In the latter method, the identification can be made close to instantaneously since the required signals can be acquired over a very short time period. In addition, a double-sensor conductivity probe can also be used to obtain ''local'' flow regimes by using the instantaneous direct signal input method with the bubble chord length information. Furthermore, a newly designed conductivity probe with multiple double-sensor heads is proposed to obtain ''two-dimensional'' flow regimes across the flow channel. Secondly, a state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information. The four-sensor conductivity probe accommodates the double-sensor probe capability and can be applied in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. The signal processing scheme is developed such that it categorizes the acquired parameters into two groups based on bubble cord length information. Furthermore, for the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and

  6. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  7. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Directory of Open Access Journals (Sweden)

    C. Jackisch

    2017-07-01

    Full Text Available The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study and the hydrological processes (companion study Angermann et al., 2017, this issue.

  8. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Science.gov (United States)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  9. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization...

  10. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    Science.gov (United States)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  11. SDSL-ESR-based protein structure characterization.

    Science.gov (United States)

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  12. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    Science.gov (United States)

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  14. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  15. Structural characterization and optical properties of perovskite ZnZrO 3 nanoparticles

    KAUST Repository

    Zhu, Xinhua

    2014-03-17

    Perovskite ZnZrO3 nanoparticles were synthesized by hydrothermal method, and their microstructures and optical properties were characterized. The crystallinity, phase formation, morphology and composition of the as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), high-resolutiontransmission electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) spectroscopy analysis, respectively. TEM images demonstrated that the average particle size of the ZnZrO3 powders was increased with increasing the Zn/Zr molar ratios in the precursors, and more large ZnZrO3 particles with cubic morphology were observed at high Zn/Zr molar ratios. In addition, the phase structures of the ZnZrO3 particles were also evolved from a cubic to tetragonal perovskite phase, as revealed by XRD and SAED patterns. HRTEM images demonstrate that surface structures of the ZnZrO3 powders synthesized at high Zn/Zr molar ratios, are composed of corners bound by the {100} mini-facets, and the surface steps lying on the {100} planes are frequently observed, whereas the (101) facet isoccasionally observed. The formation of such a rough surface structure is understood from the periodic bond chain theory. Quantitative EDX analyses demonstrated that the atomic concentrations (at.%) of Zn:Zr:O in the particles were 20.70:21.07:58.23, as close to the composition of ZnZrO3. In the optical spectra, a significant red shift of the absorption edges (for the ZnZrO3 nanopowders) from UV to visible region (from 394 to 417 nm) was observed as increasing the Zn/Zr molar ratios in the precursors, which corresponds to that the band gap energies of the ZnZrO3 nanopowders can be continuously tuned from 3.15 to 2.97 eV. This opens an easy way to tune the band gap energies of the ZnZrO3 nanopowders. © 2014 The American Ceramic Society.

  16. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    Science.gov (United States)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the LWD) data allowed us to characterize structural, petrophysical and mineralogical properties at fracture and

  17. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    Science.gov (United States)

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  18. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property

    International Nuclear Information System (INIS)

    Zhai Jing; Tao Xia; Pu Yuan; Zeng Xiaofei; Chen Jianfeng

    2010-01-01

    ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO 2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO 2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO 2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO 2 nanoparticles with thinner SiO 2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.

  19. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures

    Science.gov (United States)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2012-04-01

    Damage detection and localization on composites can be impaired by inaccurate knowledge of the mechanical properties of the structure. This paper demonstrates the feasibility of using a chirplet-based correlation technique, called Excitelet, to evaluate the mechanical properties of orthotropic carbon fibre-based composite laminates. The method relies on the identification of an optimal correlation coefficient between measured and simulated dispersed signals measured on a structure using piezoceramic (PZT) transducers. Finite Element Model (FEM) is first conducted to demonstrate the capability of the approach to evaluate the mechanical properties of a composite structure. Experimental validation is then conducted on a unidirectionnal 2.30 mm thick laminate composed of unidirectional plies and a 2.35 mm thick laminate composed of unidirectional plies oriented at [0, 90]4s. Surface bonded PZT transducers were used both for actuation and sensing of guided waves bursts measured at 0° and 90° with respect to upper ply fibre orientation. The characterization is performed at various frequencies below 100 kHz using A0 or S0 modes and comparison with the material properties measured following ASTM standard testing is presented. The results indicate that large correlation coefficients are obtained between the measurements and simulated signals for both A0 and S0 modes when accurate properties are used as inputs for the model. Strategies based on multiple modes correlation are also assessed in order to improve the accuracy of the characterization approach. The results obtained using the proposed approach for the unidirectional plate and most of the results obtained using the proposed approach for the [0, 90]4s laminate are in agreement with the uncertainty associated with ASTM tests results while the proposed method is non destructive and can be performed prior to each imaging processing.

  20. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    Directory of Open Access Journals (Sweden)

    Claudio Davet Gutiérrez-Lazos

    2014-06-01

    Full Text Available This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size. Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent. The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

  1. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D. [School of Energy Studies, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, S. R., E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-13

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  2. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    Science.gov (United States)

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    Science.gov (United States)

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SDSL-ESR-based protein structure characterization

    NARCIS (Netherlands)

    Strancar, J.; Kavalenka, A.A.; Urbancic, I.; Ljubetic, A.; Hemminga, M.A.

    2010-01-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be

  6. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  7. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  8. Characterization of the electronic structure of C50Cl10 by means of soft x-ray spectroscopies

    International Nuclear Information System (INIS)

    Brena, Barbara; Luo Yi

    2005-01-01

    The electronic structure of the last synthesized fullerene molecule, the C 50 Cl 10 , has been characterized by theoretical simulation of x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and near-edge x-ray-absorption fine structure. All the calculations were performed at the gradient-corrected and hybrid density-functional theory levels. The combination of these techniques provides detailed information about the valence band and the unoccupied molecular orbitals, as well as about the carbon core orbitals

  9. Structural characterization and condition for measurement statistics preservation of a unital quantum operation

    International Nuclear Information System (INIS)

    Lee, Kai-Yan; Fung, Chi-Hang Fred; Chau, H F

    2013-01-01

    We investigate the necessary and sufficient condition for a convex cone of positive semidefinite operators to be fixed by a unital quantum operation ϕ acting on finite-dimensional quantum states. By reducing this problem to the problem of simultaneous diagonalization of the Kraus operators associated with ϕ, we can completely characterize the kinds of quantum states that are fixed by ϕ. Our work has several applications. It gives a simple proof of the structural characterization of a unital quantum operation that acts on finite-dimensional quantum states—a result not explicitly mentioned in earlier studies. It also provides a necessary and sufficient condition for determining what kind of measurement statistics is preserved by a unital quantum operation. Finally, our result clarifies and extends the work of Størmer by giving a proof of a reduction theorem on the unassisted and entanglement-assisted classical capacities, coherent information, and minimal output Renyi entropy of a unital channel acting on a finite-dimensional quantum state. (paper)

  10. Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids

    Directory of Open Access Journals (Sweden)

    A. Espíndola-Gonzalez

    2014-01-01

    Full Text Available This study shows the structural characterization of silica particles extracted from Stenotaphrum secundatum (St. Augustine grass using an annelid-based biotransformation process. This bioprocess starts when St. Augustine grass is turned into humus by vermicompost, and then goes through calcination and acid treatment to obtain silica particles. To determine the effect of the bioprocess, silica particles without biotransformation were extracted directly from the sample of grass. The characterization of the silica particles was performed using Infrared (FTIR and Raman spectroscopy, Transmission Electron Microscopy (TEM, X-ray Diffraction (XRD, Dynamic Light Scattering (DLS, and Energy Dispersion Spectroscopy (EDS. Both types of particles showed differences in morphology and size. The particles without biotransformation were essentially amorphous while those obtained via annelids showed specific crystalline phases. The biological relationship between the metabolisms of worms and microorganisms and the organic-mineral matter causes changes to the particles' properties. The results of this study are important because they will allow synthesis of silica in cheaper and more ecofriendly ways.

  11. Structure of dehaloperoxidase B at 1.58 Å resolution and structural characterization of the AB dimer from Amphitrite ornata

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Vesna de; D’Antonio, Jennifer; Franzen, Stefan; Ghiladi, Reza A., E-mail: reza-ghiladi@ncsu.edu [North Carolina State University (United States)

    2010-05-01

    The crystal structure of dehaloperoxidase (DHP) isoenzyme B from the terebellid polychaete A. ornata, which exhibits both hemoglobin and peroxidase functions, has been determined at 1.58 Å resolution. As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 Å resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H{sub 2}O{sub 2}-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure–function relationships.

  12. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    International Nuclear Information System (INIS)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V.; Salin, J.

    2011-01-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  13. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V. [EDF, LCND (France); Salin, J. [EDF Paris (France)

    2011-07-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  14. Monocrystalline Heusler Co2FeSi alloy glass-coated microwires: Fabrication and magneto-structural characterization

    Science.gov (United States)

    Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.

    2018-05-01

    Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.

  15. Stand structure and dead wood characterization in cork forest of Calabria region (southern Italy

    Directory of Open Access Journals (Sweden)

    Barreca L

    2010-07-01

    Full Text Available The cork forests are one the most interesting forest ecosystems in the Mediterranean area. Their distribution and ecological characteristics have undergone a significant transformation after the significant changes following the development and establishment of agricultural crops. Currently, only a few stands, which survive in hard to reach places, prove the wide spread distribution of this species was also in the recent past. This study describes the stand structure of some cork forests in Calabria region (southern Italy. In order, to characterize the vertical structure Latham index has been applied, while for the description of the horizontal distribution NBSI group indices has been used. Detailed surveys on dead wood were also conducted determining the occurring volume and its decay stage according to the decay classes system proposed by Hunter. The aim of this study is to provide guidelines for sustainable management of cork forests, improving and promoting the structural complexity and functional efficiency of these forest stands.

  16. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    Science.gov (United States)

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Structural and biocompatible characterization of TiC/a:C nanocomposite thin films

    International Nuclear Information System (INIS)

    Balázsi, K.; Vandrovcová, M.; Bačáková, L.; Balázsi, Cs.

    2013-01-01

    In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ∼ 20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbon matrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility. Highlights: ► The main goal of this work is the relatively easy preparation of nanocomposite TiC thin films by dc magnetron sputtering. ► TEM and HREM were applied for structural characterization of columnar TiC nanocrystals and amorphous carbon matrix. ► The biocompatibility of films was showed by MG63 human osteoblast like cells during 1, 3 and 7 days seeding

  18. Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment

    Science.gov (United States)

    Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.

    2016-12-01

    The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of

  19. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, Peter; MacDowell, Alastair; Schaible, Eirc; Wenk, H.R.; Macdowell, Alastair A.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper.

  20. Nanoparticle synthesis of zinc peroxide: structural and morphological characterization for bactericidal applications

    International Nuclear Information System (INIS)

    Colonia, Roberto; Martinez, Vanessa C.; Solis, Jose L.; Gomez, Monica M.

    2013-01-01

    Zinc peroxide (ZnO 2 ) nanoparticles were synthesized by sol-gel technique. The chemicals used for the synthesis were zinc acetate di-hydrate (Zn(CH 3 COO) 2. 2H 2 O) and hydrogen peroxide (H 2 O 2 ) at 30 % in an aqueous solution with sonication. The structure of the ZnO 2 nanoparticles was characterized by X-ray diffraction. While the morphology and the cluster size were determined using scanning and transmission electron microscopy. For a preliminary evaluation of the bactericidal properties of the ZnO 2 , the material was exposed to Staphylococcus aureus, Escherichia coli y Bacillus subtili, and the nanoparticles presented good bactericidal properties. (author)

  1. AFM tip characterization by using FFT filtered images of step structures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yongda, E-mail: yanyongda@hit.edu.cn [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Xue, Bo [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Hu, Zhenjiang; Zhao, Xuesen [Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2016-01-15

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. - Highlights: • The AFM tips with different radii were simulated to scan a nano-step structure. • The spectra of the simulation scans under different radii were analyzed. • The functions of tip radius and harmonic amplitude were used for evaluating tip. • The proposed method has been validated by SEM imaging and blind reconstruction.

  2. Piezomodulated reflectivity on CdMnTe/CdTe quantum well structures as a new standard characterization method

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, E.; Schmitt, K.; Hommel, D.; Waag, A.; Bicknell-Tassius, R.N.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1993-01-30

    Piezomodulated reflectivity (PZR) measurements are reported for the first time as a standard characterization method for CdMnTe/CdTe single (SQW) and multiple (MQW) quantum wells grown by molecular beam epitaxy on CdTe substrates 1 mm thick. Previously, modulation spectroscopy studies of II-VI structures required thin substrates which needed special preparation. In this paper we present studies of optical properties of CdMnTe/CdTe SQWs and MWQs using the PZR technique. The samples, mounted on a sinusoidally driven piezoelectric transducer are subjected to an alternating strain. Exploiting ''lock-in'' techniques, the first derivative of the reflectivity is measured directly. Specific electronic transitions, e.g. excitons, are well resolved in the modulated spectrum and can be easily identified. This makes PZR a very sensitive and powerful tool for the characterization of quantum well structures, and a useful complement to other standard techniques such as photoluminescence and excitation spectroscopy. (orig.).

  3. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  4. Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin.

    Science.gov (United States)

    Ramirez, Lisa; Shekhtman, Alexander; Pande, Jayanti

    2018-04-30

    In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled ( 15 N and 13 C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.

  5. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain.

    Science.gov (United States)

    Leung, Daisy W; Shabman, Reed S; Farahbakhsh, Mina; Prins, Kathleen C; Borek, Dominika M; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F; Amarasinghe, Gaya K

    2010-06-11

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled

  6. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  7. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  8. Structural characterization of Bacillus subtilis membrane protein Bmr: an in silico approach.

    Science.gov (United States)

    Nargotra, Amit; Rukmankesh; Ali, Shakir; Koul, Surrinder

    2014-01-01

    Efflux pump--a membrane protein belonging to Major Facilitator (MF) family and associated with Multi Drug Resistance (MDR) has been a major factor in drug resistance of bacteria. In the era when no new effective antibiotic had been reported for years, the detailed study of these membrane proteins became imperative in order to improve the efficacy of existing drugs. The Bacillus subtilis membrane protein Bmr belongs to the super family of major facilitator proteins and is one of the first-discovered bacterial multidrug-efflux transporters. Development of Bmr inhibitors (B. subtilis) for least resistance, better drug sustainability and effective cellular activity requires three dimensional structure of this protein which has not yet been determined. In this communication structural characterization of this important efflux pump has been attempted using in silico approaches. The modeled structure of Bmr has been found to have 12 main helical segments interspersed by loops of variable lengths at regular intervals with both N- and C-termini on the same side of membrane. Docking of the known inhibitor reserpine on to the predicted structure of Bmr and its mutants signified the importance of the residues Phe143, Val286 and Phe306 in the interaction with the ligand. Besides this, the role of Arg313 and Phe309 in the H-bond formation and π-π interaction respectively, with reserpine was the new significant finding based on the interaction studies. The structure elucidation of Bmr and the role of these residues in binding to the ligand are expected to have a great impact on the efflux pump inhibition studies around the world and hence in the efficiency of the existing antibiotic drugs.

  9. Structural characterization of novel L-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans.

    Science.gov (United States)

    Hantus, S; Pauly, M; Darvill, A G; Albersheim, P; York, W S

    1997-10-28

    Jojoba seed xyloglucan was shown to be a convenient source of biologically active xyloglucan oligosaccharides that contain both L- and D-galactosyl residues [E. Zablackis et al., Science, 272 (1996) 1808-1810]. Oligosaccharides were isolated by liquid chromatography of the mixture of oligosaccharides generated by treating jojoba seed xyloglucan with a beta-(1-->4)-endoglucanase. The purified oligosaccharides were reduced with NaBH4, converting them to oligoglycosyl alditol derivatives that were structurally characterized by a combination of mass spectrometry and 2-dimensional NMR spectroscopy. This analysis established that jojoba xyloglucan oligosaccharides contain the novel side-chain [alpha-L-Gal p-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-], which is structurally homologous to the fucose-containing side-chain [alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-] found in other biologically active xyloglucan oligosaccharides.

  10. Structure characterization of the central repetitive domain of high molecular weight gluten proteins. II. Characterization in solution and in the dry state

    OpenAIRE

    Dijk, Alard A. van; Boef, Esther de; Bekkers, August; Wijk, Lourens L. van; Swieten, Eric van; Hamer, Rob J.; Robillard, George T.

    1997-01-01

    The structure of the central repetitive domain of high molecular weight HMW) wheat gluten proteins was characterized in solution and in the dry state using HMW proteins Bx6 and Bx7 and a subcloned, bacterially expressed part of the repetitive domain of HMW Dx5. Model studies of the HMW consensus peptides PGQGQQ and GYYPTSPQQ formed the basis for the data analysis (van Dijk AA et al., 1997, Protein Sci 6:637-648). In solution, the repetitive domain contained a continuous nonoverlapping series ...

  11. Structure characterization of the central repetitive domain of high molecular weight gluten proteins .1. Model studies using cyclic and linear peptides

    NARCIS (Netherlands)

    VanDijk, AA; VanWijk, LL; VanVliet, A; Haris, P; VanSwieten, E; Tesser, GI; Robillard, GT

    The high molecular weight (HMW) proteins from wheat contain a repetitive domain that forms 60-80% of their sequence. The consensus peptides PGQGQQ and GYYPTSPQQ form more than 90% of the domain; both are predicted to adopt beta-turn structure. This paper describes the structural characterization of

  12. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).

    Science.gov (United States)

    Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart

    2016-05-15

    AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a

  13. Spectral characterization and crystal structure of 2-amino-N′-[(1Z-1-(4-chlorophenylethylidene]-benzohydrazide

    Directory of Open Access Journals (Sweden)

    Mohammad Arfan

    2016-01-01

    Full Text Available The crystal structure of 2-amino-N′-[(1Z-1-(4-chlorophenylethylidene]benzohydrazide (I is determined by X-ray diffraction at room temperature. The structure of I also was characterized by elemental analysis, mass, FT-IR and NMR spectroscopic techniques. The compound crystallizes in triclinic system, and space group is P1¯. Unit-cell dimensions are the following: a = 7.05380(10 Å, b = 7.65490(10 Å, c = 13.7094(4 Å, V = 694.01(2 Å3, Z = 2. The title compound is nearly planar and has intermolecular N–H⋯O hydrogen bonding. According to the spectral data, I exhibits an amide-iminol tautomerism.

  14. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  15. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  16. Synthesis and characterization of ZSM-5 and calcined kaolin evaluation using the content of structure-directing

    International Nuclear Information System (INIS)

    Rodrigues, J.J.; Silva, V.J. da; Rodrigues, M.G.F.

    2012-01-01

    This study aims to evaluate the effect of the structure-directing content, tetrapropylammonium bromide, on the structural and morphological characteristics of ZSM-5 zeolite obtained using calcined kaolin as silicon and aluminum. The samples were characterized by XRD, EDX, SEM and Physics Adsorption N 2 . Trough X ray diffraction patterns was possible to observed the formation of the structure of ZSM-5 with intense peaks and well-defined characteristic of crystalline. The micrographs showed that the samples consist of agglomerates and/or aggregates of particles characteristic of the MFI structure typical of ZSM-5 zeolite. And through the adsorption-desorption isotherms physical N2 was possible to observe that the samples show hysteresis type I typical of microporous materials with specific surface areas of 218 and 222 m 2 /g. Therefore, the use of calcined kaolin to obtain ZSM-5 zeolite was effective. (author)

  17. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Coutinho-Abreu, I V; Balbino, V Q; Valenzuela, J G; Sonoda, I V; Ramalho-Ortigão, J M

    2007-07-01

    Acetylcholinesterase (AChE) plays a key role in cholinergic impulse transmission, and it is the target enzyme for organophosphorus and carbamate insecticides. Two genes, AceI and AceII, have been characterized from different insect species, and point mutations in either gene can lead to significant resistance to these classes of insecticides. In this report, we describe the partial characterization of the AceI gene from Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae), and we show that the possibility exists for the development of a resistant phenotype to organophosphates and carbamates in sand flies. Our results point to the presence of a single AceI gene in L. longipalpis (LlAce1) and that AChE activity is inhibited by organophosphorus at a concentration of 5 x 10(-5) M. Regarding insecticide resistance, analysis of the truncated LlAce1 cDNA suggests that a single missense mutation leading to a glycine-to-serine substitution at amino acid position 119 (G119S) may arise in L. longipalpis, similar to what has been detected in Anopheles gambiae s.s. Another missense mutation involved in resistant phenotypes, F331W, detected in Culex tritaeniorhynchus Giles, is less likely to occur in L. longipalpis, because it faces codon constraint in this sand fly species. Comparison of the three-dimensional structures of the deduced amino acid sequence of the truncated LLAChE1 with that of An. gambiae and Cx. tritaeniorhynchus also suggests that similar structural modifications due to the missense amino acid changes in the active site gorge are detected in all three insects.

  18. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  19. Characterization of nephelium mutabile blume-like structure of carbon nanotubes prepared from palm oil by CVD method

    Science.gov (United States)

    Maryam, M.; Shamsudin, M. S.; Rusop, M.

    2017-09-01

    A new structure of carbon nanotube was produced from the Single furnace Aerosol-assisted Catalytic CVD (SFAACVD) method using Palm Oil (PO) as the precursor and Ferrocene (Fe) as the catalyst. A nephelium mutabile blume (rambutan)-like structure of CNTs was found from the black substance collected from the Alumina boat substrate placed inside the furnace. Temperature of furnace which was heated at 600 °C - 800 °C plays an important role in determining the formation of structure. The formation rambutan-like structure of CNTs was optimized at 700 °C and the samples collected were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to obtain the surface morphologies. Raman Spectroscopy (RS) and Thermogravimetric Analysis (TGA) were then used to further study the Raman Spectra and purity of samples.

  20. Electronic and structural characterizations of unreconstructed {l_brace}0001{r_brace} surfaces and the growth of graphene overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, Konstantin

    2009-06-03

    The present work is focused on the characterization of the clean unreconstructed SiC{l_brace}0001{r_brace} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  1. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  3. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  4. Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon.

    Science.gov (United States)

    Kahn, Cyril J F; Dumas, Dominique; Arab-Tehrany, Elmira; Marie, Vanessa; Tran, Nguyen; Wang, Xiong; Cleymand, Franck

    2013-10-01

    Multi-scale characterization of structures and mechanical behavior of biological tissues are of huge importance in order to evaluate the quality of a biological tissue and/or to provide bio-inspired scaffold for functional tissue engineering. Indeed, the more information on main biological tissue structures we get, the more relevant we will be to design new functional prostheses for regenerative medicine or to accurately evaluate tissues. From this perspective, we have investigated the structures and their mechanical properties from nanoscopic to macroscopic scale of fresh ex-vivo white New-Zealand rabbit Achilles tendon using second harmonic generation (SHG) microscopy, atomic force microscopy (AFM) and tensile tests to provide a "simple" model whose parameters are relevant of its micro or nano structure. Thus, collagen fiber's crimping was identified then measured from SHG images as a plane sine wave with 28.4 ± 5.8 μm of amplitude and 141 ± 41 μm of wavelength. Young's moduli of fibrils (3.0 GPa) and amorphous phases (223 MPa) were obtained using TH-AFM. From these investigations, a non-linear Zener model linking a statistical Weibull's distribution of taut fibers under traction to crimp fibers were developed. This model showed that for small strain (tendon observations under static or dynamic solicitations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    International Nuclear Information System (INIS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A

    2015-01-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d 33 and d 31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d 33 coefficient of the composite to the achieved d 33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d 33 of 3.2 pC N −1 . Moreover, the Young’s modulus of the composite structure has been characterized. (paper)

  6. Floristic and structural characterization of the main forest types in the Taraira Sierra (Department of the Vaupes)

    International Nuclear Information System (INIS)

    Rodriguez, Javier

    1999-01-01

    The Floristic and structural characterization of the main forest types in the Taraira Sierra, it was carried out to give to know the forests that exist there, since there were not preliminary studies on this ecosystem, and to enlarge the knowledge on the forests of the Colombian Guayana. For the composition study and it structures of the vegetation, three parcels of study of 0.05 hectares settled down, 10m x 50m each one; two in high Catinga and one in the Arbustiva; likewise they were traveled by different places of the Sierra to collect vegetable material. According to the floristic composition, to the covering analysis, and to the Sorensen index (Cordoba, 1995) they were defined three communities, the first of them in Catinga arbustiva, Clusia spathulaefolia - Retiniphyllum truncatum that is characterized to reach heights until of 10 meters, on sandy soils with inferior slope to 7%. In the high Catinga they were two communities, Micrandra sprucei - amazon Poecilanthe and Micrandra sprucei - Tovomita clarkii, which are characterized to present a superior stratum that reaches the 20 meters high. The Taraira Sierra, makes part of the high-priority of conservation areas due to its wealth of species as much animals as vegetables, to its high endemism that is developed on poor and fragile soils of the Guianese shield and to that this ecosystem is in risk, due to the mining exploitation

  7. Characterizing the nano and micro structure of concrete to improve its durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools will be shown on this paper.

  8. Synthesis, structural characterization and cytotoxic activity of two new organoruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    SANJA GRGURIC-SIPKA

    2008-06-01

    Full Text Available Two new p-cymene ruthenium(II complexes containing as additional ligands N-methylpiperazine ([(η6-p-cymeneRuCl2(CH3NH(CH24NH]PF6, complex 1 or vitamin K3-thiosemicarbazone ([(η6-p-cymeneRuCl2(K3tsc], complex 2 were synthesized starting from [(η6-p-cymene2RuCl2]2 and the corresponding ligand. The complexes were characterized by elemental analysis, IR, electronic absorption and NMR spectroscopy. The X-ray crystal structure determination of complex 1 revealed “piano-stool” geometry. The differences in the cytotoxic activity of the two complexes are discussed in terms of the ligand present.

  9. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.

    2009-09-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  10. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2009-01-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  11. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  12. Characterization of structure and activity of garlic peroxidase (POX(1B)).

    Science.gov (United States)

    El Ichi, Sarra; Miodek, Anna; Sauriat-Dorizon, Hélène; Mahy, Jean-Pierre; Henry, Céline; Marzouki, Mohamed Nejib; Korri-Youssoufi, Hafsa

    2011-01-01

    Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.

  13. Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques

    Science.gov (United States)

    Carletti, Paolo; Roldán, Maria Lorena; Francioso, Ornella; Nardi, Serenella; Sanchez-Cortes, Santiago

    2010-10-01

    Emission-excitation, synchronous fluorescence spectroscopy and surface-enhanced Raman scattering (SERS) combined with surface-enhanced fluorescence (SEF) were applied to aqueous solutions of a humic-like substance (HLS) extracted from earthworm faeces. All measurements were acquired in a wide range of pH (4-12) and analysed by the linear regression analysis. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were also acquired to assist in the structural characterization of this HLS. The emission and excitation spectra allowed the identification of two main fluorophores in the analysed sample. Moreover, a close correlation between fluorescence intensities of each fluorophore with pH variation was observed. SERS and SEF, in agreement with the fluorescence spectroscopy, showed that the HLS at low pH values exists in an aggregated and coiled molecular structure while it is dispersed and uncoiled at alkaline conditions. The obtained spectra also evidenced that different conditions modify the functional groups exposed to the surrounding aqueous environment.

  14. Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants

    OpenAIRE

    Santos, Karen B dos; Meneguim, Ana M; Santos, Walter J dos; Neves, Pedro M O J; Santos, Rachel B dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud;...

  15. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  16. Growth and characterization of para-hexaphenyl based organic hetero-structures

    International Nuclear Information System (INIS)

    Schwabegger, G.

    2013-01-01

    The properties of organic semiconductors have been studied intensively in the last two decades. The main motivation for these research efforts are possible applications of this material class as building blocks of organic light emitting diodes (OLEDs) and organic field effect transistors (OFETs). Additionally, there is considerable interest concerning the optical properties of this material class including strong fluorescence and a high absorption cross section for stimulated emission. Consequently, it seems to be promising to utilize such molecules for organic solid state lasers. A profound understanding of the crystallization processes of organic semiconductor materials is necessary in order to realize such applications. The latter statement motivates the main focus of this work, which is the preparation and characterization of crystalline organic nanostructures consisting of oligomer molecules vacuum deposited on inorganic substrates by means of hot wall epitaxy (HWE). With this respect, the molecule para-Hexaphenyl (6P) and the substrate muscovite mica have achieved outstanding importance, because this combination leads to the formation of crystalline and highly anisotropic nano-needles. These nano-needles exhibit intense polarized fluorescence in the blue spectral regime and they can be utilized as wave-guides and as sources for laser radiation. To enlarge the spectrum of conceivable applications and to change the emission properties of the nano-structures, 6P can be replaced by other organic molecules. However this usually leads to multiple (non-parallel) needle orientations causing crossing points, which is cumbersome for the proposed optical applications. Organic-organic multilayer systems are discussed in this work as a possible strategy to overcome these limitations, which combines the outstanding structural properties of 6P with different optical properties of molecules like sexithiophene (6T). The morphology and structure of such multilayer organic

  17. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    Science.gov (United States)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  18. Structure and Functional Characterization of Human Aspartate Transcarbamoylase, the Target of the Anti-tumoral Drug PALA.

    Science.gov (United States)

    Ruiz-Ramos, Alba; Velázquez-Campoy, Adrián; Grande-García, Araceli; Moreno-Morcillo, María; Ramón-Maiques, Santiago

    2016-07-06

    CAD, the multienzymatic protein that initiates and controls de novo synthesis of pyrimidines in animals, associates through its aspartate transcarbamoylase (ATCase) domain into particles of 1.5 MDa. Despite numerous structures of prokaryotic ATCases, we lack structural information on the ATCase domain of CAD. Here, we report the structure and functional characterization of human ATCase, confirming the overall similarity with bacterial homologs. Unexpectedly, human ATCase exhibits cooperativity effects that reduce the affinity for the anti-tumoral drug PALA. Combining structural, mutagenic, and biochemical analysis, we identified key elements for the necessary regulation and transmission of conformational changes leading to cooperativity between subunits. Mutation of one of these elements, R2024, was recently found to cause the first non-lethal CAD deficit. We reproduced this mutation in human ATCase and measured its effect, demonstrating that this arginine is part of a molecular switch that regulates the equilibrium between low- and high-affinity states for the ligands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  20. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Science.gov (United States)

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  1. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Directory of Open Access Journals (Sweden)

    Didier Barradas-Bautista

    Full Text Available Next-generation sequencing (NGS technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  2. Optical and magneto-optical characterization of TbFeCo thin films in trilayer structures

    International Nuclear Information System (INIS)

    McGahan, W.A.; He, P.; Chen, L.; Bonafede, S.; Woollam, J.A.; Sequeda, F.; McDaniel, T.; Do, H.

    1991-01-01

    A series of TbFeCo films ranging in thickness from 100 to 800 A have been deposited in trilayer structures on silicon wafer substrates, with Si 3 N 4 being employed as the dielectric material. These films have been characterized both optically and magneto-optically by variable angle of incidence spectroscopic ellipsometry, normal angle of incidence reflectometry, and normal angle of incidence Kerr spectroscopy. From these measurements, the optical constants n and k have been determined for the TbFeCo films, as well as the magneto-optical constants Q1 and Q2. Results are presented that demonstrate the lack of dependence of these constants on the thickness of the TbFeCo film, and which can be used for calculating the expected optical and magneto-optical response of any multilayer structure containing similar TbFeCo films

  3. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  4. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  5. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  6. New approach for extraction of cellulose from tucumã's endocarp and its structural characterization

    Science.gov (United States)

    Manzato, L.; Rabelo, L. C. A.; de Souza, S. M.; da Silva, C. G.; Sanches, E. A.; Rabelo, D.; Mariuba, L. A. M.; Simonsen, J.

    2017-09-01

    The recycling of plant wasted materials into useful products represents a green alternative to prevent environmental problems. Tucumã palm fruit (Astrocaryum aculeatum Meyer) is widely used in Amazon region for food and crafts. Due to the large amount of wasted Tucumã's endocarp, this work proposes a new approach for extraction of cellulose and its structural characterization. X-ray Diffraction (XRD), Rietveld Refinement, Scanning Electron Microscopy (SEM), Infrared-transform Fourier Spectroscopy (FTIR) and Thermal Analysis (TG/DSC) have been used for characterization of the extracted cellulose. XRD patterns of the in natura tucumã's endocarp has showed a natural crystalline content embedded in a non-crystalline matrix. Nanocrystals of cellulose have been observed in the XRD pattern of the extracted cellulose, showing a good agreement with type II. Rietveld refinement allowed the cell parameters obtainment (a = 8.43(1) Å, b = 9.50(1) Å, c = 9.39(3) Å and γ = 118.43(4)°). Apparent average crystallite size and microstrain were, respectively, 20.0 Å and 0.1%. Two different methods were applied for estimative of crystallinity percentage. In the first method the height ratio between the intensity of the crystalline peak and the total intensity after the subtraction of the non-crystalline content was applied, leading to 48.5%. The second approach was performed using the amorphous area and the total area of the (1 1 0) peak from the experimental diffractogram, leading to 31.5%. The difference in crystallinity percentage concerning these two used approaches may be explained due to the first method does not consider the broad peaks resulted from nanocrystals diffraction. FTIR spectroscopy has evidenced a cellulose type II structure. SEM images showed micrometric sized fibers with ranged thicknesses. However, a new morphology of spherical nanostructures was observed on the type II matrix fibers. Thermal analysis suggests that the extracted cellulose have low thermal

  7. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  8. Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide

    International Nuclear Information System (INIS)

    He Heming; Qin, Z.; Shoesmith, D.W.

    2010-01-01

    The ability of the UO 2 fluorite structure to accommodate large amounts of interstitial oxygen in various lattice sites leads to the formation of hyper-stoichiometric phases. The defect structures occurring in hyper-stoichiometric UO 2+x over the range 0.02 ≤ x ≤ 0.1 have been characterized by SEM/EDX and Raman analyses. The results demonstrate that as the nominal stoichiometry increases from 2.002 to 2.1, the diversity of defective structures existing on the UO 2+ surface also increases. Scanning electrochemical microscopy (SECM) measurements combined with a theoretical model were used to determine the rate constant for the reduction of the redox mediator ferrocene methanol, acting as a cathodic oxidant to corrode the four UO 2+x specimens. The rate constant was found to vary with location on the surface. Stoichiometric locations, with a well defined fluorite structure, exhibited very low corrosion rates. Higher rates were observed at more non-stoichiometric locations with the highest rates being obtained on locations exhibiting tetragonal distortions as their composition approached UO 2.33 . The distribution of rates increases with the degree of nominal non-stoichiometry as the diversity of microstructures existing on the UO 2+x surface increases.

  9. Neutral-helium-atom diffraction from a micron-scale periodic structure: Photonic-crystal-membrane characterization

    Science.gov (United States)

    Nesse, Torstein; Eder, Sabrina D.; Kaltenbacher, Thomas; Grepstad, Jon Olav; Simonsen, Ingve; Holst, Bodil

    2017-06-01

    Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example, for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane structure with a two-dimensional square lattice of 100 ×100 circular holes. The nominal period and the hole radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.

  10. Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay

    International Nuclear Information System (INIS)

    Morton, Craig J.; Cameron, Rachel; Lawrence, Lynne J.; Lin Bo; Lowe, Melinda; Luttick, Angela; Mason, Anthony; McKimm-Breschkin, Jenny; Parker, Michael W.; Ryan, Jane; Smout, Michael; Sullivan, Jayne; Tucker, Simon P.; Young, Paul R.

    2003-01-01

    Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors

  11. Characterization of the Young's modulus and residual stresses for a sputtered silicon oxynitride film using micro-structures

    International Nuclear Information System (INIS)

    Dong, Jian; Du, Ping; Zhang, Xin

    2013-01-01

    Silicon oxynitride (SiON) is an important material to fabricate micro-electro-mechanical system (MEMS) devices due to its composition-dependent tunability in electronic and mechanical properties. In this work, the SiON film with 41.45% silicon, 32.77% oxygen and 25.78% nitrogen content was deposited by RF magnetron sputtering. Two types of optimized micro-structures including micro-cantilevers and micro-rotating-fingers were designed and fabricated using MEMS surface micromachining technology. The micro-cantilever bending tests were conducted using a nanoindenter to characterize the Young's modulus of the SiON film. Owing to the elimination of the residual stress effect on the micro-cantilever structure, higher accuracy in the Young's modulus was achieved from this technique. With the information of Young's modulus of the film, the residual stresses were characterized from the deflection of the micro-rotating-fingers. This structure was able to locally measure a large range of tensile or compressive residual stresses in a thin film with sufficient sensitivities. The results showed that the Young's modulus of the SiON film was 122 GPa and the residual stresses of the SiON film were 327 MPa in the crystallographic orientation of the wafer and 334 MPa in the direction perpendicular to the crystallographic orientation, both in compression. This work presents a comprehensive methodology to measure the Young's modulus and residual stresses of a thin film with improved accuracy, which is promising for applications in mechanical characterization of MEMS devices. - Highlight: • We measured the Young's modulus and residual stress of SiON film by microstructure. • Micro cantilever structure improved the Young's modulus' measurement accuracy. • We explored the reason for the deviations of residual stress value of SiON film

  12. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  13. Characterizing the structural degradation in a PEMFC cathode catalyst layer : carbon corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.; Stumper, J. [Ballard Power Systems, Burnaby, BC (Canada); Gyenge, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    The structural degradation resulting from carbon corrosion of a cathode catalyst layer in a polymer electrolyte membrane fuel cell (PEMFC) was investigated in this study. In order to oxidize the catalyst carbon support, the PEMFC catalyst layer was subjected to a 30 hour accelerated stress test that cycled the cathode potential from 0.1 to 1.5 VRHE at 30 and 150 second intervals. The rate and amount of carbon loss was determined by measuring the carbon dioxide in the exhaust gas. The structural degradation of the catalyst layer was characterized and correlated to the PEMFC performance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and polarization analyses. This analysis revealed a clear thinning of the cathode catalyst layer and gas diffusion layer carbon sub-layer, and a reduction in the effective platinum surface area due to the carbon support oxidation. The thinned cathode catalyst layer changed the water management, and increased the voltage loss associated with the oxygen mass transport and catalyst layer ohmic resistance. In order to further develop and verify this methodology for other degradation mechanisms, emphasis was placed on EIS measurements.

  14. Structural and kinetic characterization of two 4-oxalocrotonate tautomerases in Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Terrell, Cassidy R; Burks, Elizabeth A; Whitman, Christian P; Hoffman, David W

    2013-09-01

    Methylibium petroleiphilum strain PM1 uses various petroleum products including the fuel additive methyl tert-butyl ether and straight chain and aromatic hydrocarbons as sole carbon and energy sources. It has two operons, dmpI and dmpII, that code for the enzymes in a pair of parallel meta-fission pathways. In order to understand the roles of the pathways, the 4-oxalocrotonate tautomerase (4-OT) isozyme from each pathway was characterized. Tautomerase I and tautomerase II have the lowest pairwise sequence identity (35%) among the isozyme pairs in the parallel pathways, and could offer insight into substrate preferences and pathway functions. The kinetic parameters of tautomerase I and tautomerase II were determined using 2-hydroxymuconate and 5-(methyl)-2-hydroxymuconate. Both tautomerase I and tautomerase II process the substrates, but with different efficiencies. Crystal structures were determined for both tautomerase I and tautomerase II, at 1.57 and 1.64Å resolution, respectively. The backbones of tautomerase I and tautomerase II are highly similar, but have distinct active site environments. The results, in combination with those for other structurally and kinetically characterized 4-OT isozymes, suggest that tautomerase I catalyzes the tautomerization of both 2-hydroxymuconate and alkyl derivatives, whereas tautomerase II might specialize in other aromatic hydrocarbon metabolites. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  16. Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing

    Science.gov (United States)

    Groeber, M. A.; Schwalbach, E.; Donegan, S.; Chaput, K.; Butler, T.; Miller, J.

    2017-07-01

    This paper presents methods for combining process monitoring, thermal modelling and microstructure characterization together to draw process-to-structure relationships in metal additive manufacturing. The paper discusses heterogeneities in the local processing conditions within additively manufactured components and how they affect the resulting material structure. Methods for registering and fusing disparate data sources are presented, and some effort is made to discuss the utility of different data sources for specific microstructural features of interest. It is the intent that this paper will highlight the need for improved understanding of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that understanding.

  17. Structural, morphological and magnetic characterization of electrodeposited Co–Fe–W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Noce, R. Della, E-mail: rodrnoce@iq.unesp.br [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Benedetti, A.V.; Magnani, M. [Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-900 Araraquara, SP (Brazil); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES (Brazil); Kumar, H.; Cornejo, D.R. [Instituto de Física, Universidade de São Paulo, USP, 05508-090 São Paulo, SP (Brazil); Ospina, C.A. [Electron Microscopy Laboratory, Brazilian Nanotechnology National Laboratory, 13083-970 Campinas, SP (Brazil)

    2014-10-25

    Highlights: • Small W additions (up to 9 at.%) to the Co{sub 35}Fe{sub 65} binary system. • Electrodeposited Co–Fe–W alloys characterization by XRD, SEM, TEM, Mössbauer spectroscopy and magnetic measurements. • Production of Co–Fe–W alloys with low values of coercivity and high saturation magnetization. • Potential materials for applications in magnetic devices such as read/write heads and hard disks. - Abstract: Structural, morphological and magnetic characterization of electrodeposited Co–Fe–W alloys, containing small amounts of W (up to 9 at.%), were performed using X-ray diffractometry, scanning (SEM) and transmission (TEM) electron microscopy, Mössbauer spectroscopy and magnetization measurements. Electrodeposited (Co{sub 100−x}Fe{sub x}){sub 100−y}W{sub y} films (x = 63–72 at.% Fe, y = 4–9 at.% W) were successfully produced varying the applied cathodic current density (i{sub c}) between 0.5 and 10 mA cm{sup −2}. X-ray diffraction results revealed a bcc-like structure for all studied compositions with average crystallite size ranging from 16 to 35 nm, as also confirmed by TEM results. SEM images indicated that needle-type morphology is dominant for the deposits containing lower W content (up to 4.5 at.%.), while a cauliflower-type behavior is observed for higher W content deposits. Room temperature Mössbauer spectra indicate the presence of two magnetic species for all samples; one component associated with an ordered Co–Fe–W fraction (crystalline grain core) and a magnetic disordered Co–Fe–W contribution, which can be attributed to the grain boundaries/grain surfaces. Magnetization was observed to be in the film plane along the film direction, except the sample prepared at i{sub c} = 10 mA cm{sup −2} that is slightly canted from in- to out-of-plane geometry. Magnetic measurements show high saturation magnetization values accompanied by low coercivity ones for the electrodeposited Co–Fe–W alloys, making these

  18. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery....... To better understand the underlying mechanisms of antibody-antigen interaction here we present a pipeline developed by us to structurally classify immunoglobulin antigen binding sites and to infer key sequence residues and other variables that have a prominent role in each structural class....

  19. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction ... tion, structure and electrical conductivity and the higher values of ..... type cavity structure. Acknowledgements. The authors would like to express their thanks to DST,. New Delhi, for financial assistance under the projects.

  20. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    Science.gov (United States)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  1. Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D Nuclear Magnetic Resonance spectroscopy

    International Nuclear Information System (INIS)

    Fernández-Costas, C.; Gouveia, S.; Sanromán, M.A.; Moldes, D.

    2014-01-01

    Three Kraft lignins isolated from black liquors of several paper pulp mills of the North of Spain and Portugal were structurally characterized by using monodimensional ( 1 H and 13 C) and bidimensional Nuclear Magnetic Resonance (NMR) spectrometry. From the latter, 13 C– 1 H heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) were employed. Lignins from black liquors are usually burned for power generation. Nevertheless, they could become high value added products within a biorefinery context. In that case, a good understanding of their structure is a prior step to transform them. From all the NMR techniques studied, HSQC has risen as the most powerful tool in lignin characterization. Kraft cooking conditions and the type of wood seem to be the main factors that determine the differences observed in the lignins. All the samples have shown an important decrease in the number of β–O–4′ linkages, due to the Kraft process, and resinol has become the most resistant linkage to the process. Moreover, all samples seem to be mainly linked to a one polysaccharide: xylan. Several parameters like S/G ratio, portion of phenolic and aliphatic hydroxyls, amount of aromatic protons and other structural aspects were also estimated. - Highlights: • Lignins from three Kraft spent liquors were obtained by acid precipitation. • Structural characterization of the dissolved lignins was performed by NMR. • Wood source and pulping conditions determine the lignin characteristics. • Kraft process implies cleavage of β–O–4 linkages and survival of resinol linkages. • Comparison of the samples would aid decisions on its future revalorization

  2. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  3. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    Science.gov (United States)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  4. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  5. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    International Nuclear Information System (INIS)

    Onojima, Norio; Kasamatsu, Akihumi; Hirose, Nobumitsu; Mimura, Takashi; Matsui, Toshiaki

    2008-01-01

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g m ) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f T compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel

  7. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    Energy Technology Data Exchange (ETDEWEB)

    Onojima, Norio [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)], E-mail: nonojima@nict.go.jp; Kasamatsu, Akihumi; Hirose, Nobumitsu [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Mimura, Takashi [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Matsui, Toshiaki [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)

    2008-07-30

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g{sub m}) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f{sub T} compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel.

  8. Structural characterization and immunomodulatory activity of a pectic polysaccharide (CALB-4) from Fructus aurantii.

    Science.gov (United States)

    Shu, Zunpeng; Yang, Yanni; Xing, Na; Wang, Yi; Wang, Qiuhong; Kuang, Haixue

    2018-02-01

    A purified polysaccharide, designated CALB-4, was acquired from Fructus aurantii that is the traditional edible/medicina plant in China. The present study was performed to characterize the CALB-4 and to evaluate its immunomodulatory activities on human peripheral blood mononuclear cells (PBMCs). The structure of CALB-4 was characterized by partial acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis combined with gas chromatography-mass spectrometry (GC-MS), Infrared Spectroscopy (IR) and scanning electron microscopy (SEM). The results indicated that CALB-4 was elucidated as a pectic polysaccharide and its main chain is composed of Man, Gal UA and Gal, interspersed with Ara, Rha, Man and Gal. Furthermore, immunological tests showed that CALB-4 exhibits the immunoenhancement effects. The mechanism for this action might be attributed to the increase of the cytoplasmic concentration of pro-IL-1 via the up-regulation of several mitogen-activated protein kinases (MAPKs) and the nuclear translocation of p65. This study clarified that CALB-4 could be as an efficacious biological response modifier in immunotherapy. Copyright © 2018. Published by Elsevier B.V.

  9. Characterization and radiation studies of diode test structures in LFoundry CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In order to prepare for the High Luminosity upgrade of the LHC, all subdetector systems of the ATLAS experiment will be upgraded. In preparation for this process, different possibilities for new radiation-hard and cost-efficient silicon sensor technologies to be used as part of hybrid pixel detectors in the ATLAS inner tracker are being investigated. One promising way to optimize the cost-efficiency of silicon-based pixel detectors is to use commercially available CMOS technologies such as the 150 nm process by LFoundry. In this talk, several CMOS pixel test structures, such as simple diodes and small pixel arrays, that were manufactured in this technology are characterized regarding general performance and radiation hardness and compared to each other as well as to the current ATLAS pixel detector.

  10. Strength analysis of support structure and characterization of prototype imaging portal monitor

    International Nuclear Information System (INIS)

    Khairul Handono; Alvano Yulian; Muhammad Awwaluddin

    2014-01-01

    The mechanical systems analysis and testing of control systems and data acquisition the prototype Portal Imaging Monitor Container has been conducted. Analysis of the mechanical system includes support holder important to maintain continuity of operations. While the analysis of the data acquisition system and electrically system done on the conveyor drive motor power supply. The purpose of the analysis and characterization for design improvements. The process of static analysis is done through a conveyor frame structure simulation in ANSYS 1.4 software. In the data acquisition system and the electrical system has been tested. From the results of the mechanical analysis showed that the design created has met the criteria of security and safety. While the data acquisition system testing the system can display the data through the Internet with either. (author)

  11. Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe{sub 12}O{sub 19}) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Zehra, E-mail: zdurmus@bezmialem.edu.tr [Department of Pharmaceutical Biotechnology, Bezmialem Vakif University, 34093, Fatih, Istanbul (Turkey); Kavas, Huseyin [Department of Engineering Physics, Istanbul Medeniyet University, 34700, Kadıköy, Istanbul (Turkey); Durmus, Ali [Department of Chemical Engineering, Istanbul University, 34320, Avcılar, Istanbul (Turkey); Aktaş, Bekir [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2015-08-01

    In this study, novel type carbon/ferrite nanocomposites were successfully prepared by decoration of graphene sheets with the magnetic strontium hexaferrite nanoparticles synthesized via the citrate sol–gel combustion method as microwave absorbing material. The microstructural features and physical properties of nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) methods. Magnetic properties of the nanocomposites were determined by a vibrating sample magnetometer (VSM). It was found that the surface of the graphene nanosheets were successfully decorated with the strontium hexaferrite nanoparticles and the resulting layered nanocomposite structures exhibited sufficiently high magnetic saturation values compared to the agglomerated structure of strontium hexaferrite nanoparticles although the nanocomposites include less active magnetic component than the bulk hexaferrite. - Highlights: • Novel type, two-dimensional carbon-ferrite nanocomposites were prepared. • 2D graphene sheets were successfully decorated with the SrFe{sub 12}O{sub 19} nanoparticles. • Morphologies of nanocomposites were characterized with SEM, TEM and AFM methods. • Graphene/SrFe{sub 12}O{sub 19} nanocomposites exhibited sufficiently high M{sub s} values.

  12. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patches, edge-like structures and junctions. The main novelty of our approach......Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...... is the representation of confidences as prior probabilities which can be used within a probabilistic framework. To show the potential of our continuous representation, we highlight applications in various contexts such as image structure classification, feature detection and localisation, visual scene statistics...

  13. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    Science.gov (United States)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  14. Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subtilissimus UCP 1262.

    Science.gov (United States)

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Tatiana Souza; Costa, Romero Marcos Pedrosa Brandão; Breydo, Leonid; Uversky, Vladimir N; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2017-08-01

    Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu 2+ , Mg 2+ , and Fe 2+ . The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  15. Structural and photocarrier radiometric characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films growth by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Hernandez, R., E-mail: ruvel2@yahoo.com.m [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro, Qro., Mexico, C.P. 76010 (Mexico); Rojas-Rodriguez, I. [Universidad Tecnologica de Queretaro, Av. Pie de la Cuesta S/N, Sn. Pedrito Penuelas, Queretaro, Qro. Mexico (Mexico); Carmona-Rodriguez, J.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Apartado Postal 1-798, Queretaro, Qro., Mexico C.P.76001 (Mexico); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriqulla, Apartado Postal 1-1010, Queretaro, Qro. Mexico (Mexico)

    2011-01-31

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu{sub 2}Te and CdO.

  16. Structural characterization of hydrogen separating membranes based on lanthanide-tungstates

    International Nuclear Information System (INIS)

    Scherb, Tobias

    2011-01-01

    . The oxygen vacancies are not ordered in this system. In the NdWO system, cations order at temperatures above 1300 C to form a superstructure. For Nd/W ∝ 5.6, these compounds crystallize with the tetragonal space group I-4. For a Nd/W ratio of 6, an additional Nd 2 O 3 phase has been observed. For a Nd/W ratio of 5, the cations and the oxygen vacancies order completely, and the compound crystallizes in space group Pbcn with a composition of Nd 10 W 2 O 21 . In the YWO system, the previously known crystal structure, with ordered cations and oxygen vacancies in the space group R-3, has been confirmed. Single phase samples can only be synthesized with a precise Y/W ratio of 6. In addition to structural characterization, the water absorption and transport properties of the samples Ln 2y W 1-Y O 3 were investigated by thermogravimetry, and electrical conductivity was studied under reducing and oxidizing atmospheres. The water absorption and protonic conductivity of the samples is strongly dependent on the crystal structure, the Ln/W ratio and the phase composition. Among the materials studied here, La 6 WO 12 showed high water absorption and the best protonic conductivity, mainly due to the disordered oxygen vacancies in the crystal structure. It was demonstrated that Ln 6 WO 12 compounds, crystallizing in a cubic crystal structure with ordered cations and highly delocalized oxygen atom positions, show the highest water uptake and protonic conductivity. This connection has been developed and proven in this work.

  17. In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein

    Directory of Open Access Journals (Sweden)

    Martin Omulindi Oyugi

    2018-01-01

    Full Text Available Ticks cause approximately $17–19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host’s immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681, the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.

  18. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    Science.gov (United States)

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  19. Characterization of the passivation processes for PIN structures

    Energy Technology Data Exchange (ETDEWEB)

    Avila Garcia, Alejandro; Reyes Barranca, Mario Alfredo [Instituto Politecnico Nacional, Mexico, D.F (Mexico); Zarate Corona, Oscar [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-02-01

    Result on the evaluation of PIN structures made on crystalline silicon, processed in our laboratory, which underwent several gettering treatments are reported. Structures were evaluated through the measurement of lifetime {tau} and I-V characteristic. Also, deep levels due to defects were characterized; the activation energy (E{sub c} -E{sub t}), capture cross section {sigma} and relative concentration (N{sub t} / N{sub d}) were obtained. Techniques used in the characterization were Output Circuit Voltage Decay (OCVD), Current-Voltage measurements (I-V) and Deep Level Transient Spectroscopy (DLTS), respectively. These measurements show variations in the parameters, as a result of the gettering techniques applied. The best results were achieved for two types of samples: the first having high phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere; the second having low phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere. For these samples, the minority carrier lifetime was near 3{upsilon}s, the I-V characteristics imply that conductivity modulation takes place within the intrinsic region even for low voltages, as in commercial diodes. Two defects were observed to remain after the gettering processes: one is related to the phosphorus-vacant pair and the other to the divacancy. Concentrations could be decreased from {approx}4 x 10{sup 1}1cm{sup -3} down to 3 x 10{sup -9} cm{sup -3} for the first and down to 2 x 10{sup 1}0 cm{sup -3} for the second one. [Spanish] Se reportan resultados de la evaluacion de estructuras PIN en silicio procesadas en nuestro laboratorio, las cuales fueron sometidas a diversos tratamientos de gettering. Las estructuras fueron evaluadas a traves de la medicion de tiempo de vida {tau} y la caracteristica I-V. Se caracterizaron tambien los defectos que introducen niveles profundos en la region activa del dispositivo, obteniendo energia de

  20. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  1. Structure Characterization and Immunomodulating Effects of Polysaccharides Isolated from Dendrobium officinale.

    Science.gov (United States)

    Wei, Wei; Feng, Lei; Bao, Wan-Rong; Ma, Dik-Lung; Leung, Chung-Hang; Nie, Shao-Ping; Han, Quan-Bin

    2016-02-03

    A crude polysaccharide fraction (cDOP) has been determined to be the characteristic marker of Dendrobium officinale, an expensive tea material in Asia, but its chemistry and bioactivity have not been studied. In work reported here, cDOP was destarched (DOP, 90% yield) and separated into two subfraction polysaccharides, DOPa and DOPb, which were characterized by monosaccharide composition and methylation analyses and spectral analyses (FT-IR and (1)H and (13)C NMR). Both are composed of mannose and glucose at similar ratios and have a similar structure with a backbone of 1,4-linked β-D-mannopyranosyl and β-D-glucopyranosyl residues. Significant differences were observed only in their molecular weights. Bioassay using mouse macrophage cell line RAW264.7 indicated that DOP and its two subfractions enhance cell proliferation, TNF-α secretion, and phagocytosis in a dose-dependent manner. They also induced the proliferation of lymphocytes alone and with mitogens. DOPa and DOPb are thus proven to be major, active polysaccharide markers of D. officinale.

  2. Sulfaguanidine cocrystals: Synthesis, structural characterization and their antibacterial and hemolytic analysis.

    Science.gov (United States)

    Abidi, Syed Sibte Asghar; Azim, Yasser; Khan, Shahper Nazeer; Khan, Asad U

    2018-02-05

    Sulfaguanidine (SG), belongs to the class of sulfonamide drug used as an effective antibiotic. In the present work, using crystal engineering approach two novel cocrystals of SG were synthesized (SG-TBA and SG-PT) with thiobarbutaric acid (TBA) and 1,10-phenanthroline (PT), characterized by solid state techniques viz., powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and the crystal structures were determined by single crystal X-ray diffraction studies. A comparative antibacterial activity and hemolytic potential was done on SG drug, coformers and their cocrystals. The tested cocrystals formulations showed almost two fold higher antibacterial activity against the tested strains of bacteria Gram-positive bacteria (S. mutans and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumonia and E. clocae) over SG alone and their coformers. Cocrystal SG-TBA showed better antibacterial activity and reduced hemolysis, thereby, reduced cytotoxicity than SG-PT. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  4. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  5. Structural and thermophysical properties characterization of continuously reinforced cast Al matrix composite

    Directory of Open Access Journals (Sweden)

    Brian Gordon

    2010-11-01

    Full Text Available In this work the process of manufacturing a continuously reinforced cast Al matrix composite and its properties are presented. The described technology permits obtaining a structural material of competitive properties compared to either heat treatable aluminum alloys or polymer composites for several types of applications. The examined thermophysical properties and structural characterization, including material anisotropy, coupled with the results of previous measurements of the mechanical properties of both Al2O3 reinforcing filaments and metallic prepregs have proven the high quality of this material and the possibility of its operation under special loading modes and environmental conditions. Microscopic examinations (LM, SEM were carried out to reveal the range of morphological homogeneity of the microstructure, the anisotropy of the filament band distribution, and simultaneously the adhesive behavior of the metal/fiber interface. The 3D morphology of the chosen microstructure components was revealed by computed tomography. The obtained results indicate that special properties of the examined prepreg materials have been strongly influenced, on the one hand, by the geometry of its internal microstructure, i.e. spatial distribution and volume fraction of the Al2O3 reinforcing filaments and, on the other hand, by a very good compatibility obtained between the individual metal prepreg components.

  6. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  7. Structural characterization and comparative analysis of human and piscine cartilage acidic protein (CRTAC1/CRTAC2)

    OpenAIRE

    Guerreiro, Marta Lúcia Amaro

    2014-01-01

    Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014 CRTAC (Cartilage Acidic Protein) firstly identified as a chondrocyte marker in humans and implicated in a number of diseases. This ancient protein is present from prokaryotes to vertebrates and the teleost are the only group that contain duplicates (CRTAC1/CRTAC2). The structure of CRTACs is poorly characterized and was the starting point of the present study. To establi...

  8. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  9. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network

    Science.gov (United States)

    Eggo, Rosalind M; Lenczner, Michael

    2015-01-01

    Background Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. Objective The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. Methods We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network’s ability to produce multiwave epidemics. Results We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. Conclusions Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic

  10. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking.

    Science.gov (United States)

    Fernandes, Catarina G; Plácido, Diana; Lousa, Diana; Brito, José A; Isidro, Anabela; Soares, Cláudio M; Pohl, Jan; Carrondo, Maria A; Archer, Margarida; Henriques, Adriano O

    2015-09-22

    Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.

  11. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R. Raj [Department of ECE, Gojan School of Business and Technology, Chennai (India); Rajendran, K. [Department of Electronics, Government Arts College for Women, Ramanathapuram, TN (India); Sambath, K. [Department of ECS, Sri Krishna Arts and Science College, Coimbatore, TN (India)

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  12. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus

    DEFF Research Database (Denmark)

    Wilkens, Casper; Poulsen, Jens-Christian Navarro; Ramløv, Hans

    2014-01-01

    Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform......, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18...... equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge...

  13. Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery

    Science.gov (United States)

    Wallace, C.S.A.; Marsh, S.E.

    2005-01-01

    Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.

  14. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  15. First discovery and structural characterization of a new compound in Al-Si-O-C system

    International Nuclear Information System (INIS)

    Iwata, Tomoyuki; Kaga, Motoaki; Nakano, Hiromi; Fukuda, Koichiro

    2009-01-01

    A quaternary oxycarbide, [Al 16.77(5) Si 1.23(5) ] Σ 18 [O 3.04(9) C 10.96(9) ] Σ 14 , has been for the first time discovered in the Al-Si-O-C system. The crystal structure was characterized by X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The atom ratios [Al:Si] were determined by EDX, and the initial structural model was derived by the direct methods. The structural parameters as well as the atom ratios [O:C] were determined by the Rietveld method. The crystal is monoclinic (space group C2/m, Z=1) with lattice dimensions a=0.57404(1) nm, b=0.331435(5) nm, c=1.92410(2) nm, β=90.036(1) o and V=0.366076(9) nm 3 . The final structural model showed the positional disordering of Al/Si sites. The validity of the split-atom model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The reliability indices calculated from the MPF were R wp =4.20% (S=1.14), R p =3.09%, R B =0.92% and R F =1.05%. The crystal was an inversion twin with nearly the same twin fraction. - Graphical abstract: A quaternary oxycarbide firstly discovered in the Al-Si-O-C system. The crystal is an inversion twin, and hence the structure is represented by a split-atom model. The three-dimensional electron density distribution is determined by the maximum-entropy methods-based pattern fitting, being consistent with the disordered structural model.

  16. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  17. Optical and structural characterization od titanium dioxide films used for construction of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ivanovska, Tanja

    2012-01-01

    The dye-sensitized solar cells are the most serious concept that could replace the silicon solar cells. These are low-cost photovoltaic, and represent a technology which could seriously decrease the cost of the electrical energy they produce. The dye-sensitized solar cells are composed of several layers of materials that belong to the group of inorganic semiconductors. For the efficiency improvement of these cells, there are two basic concepts of research regarding the construction materials. On one side, investigation of new materials that will, as a result of their physical and electrochemical characteristics, increase the cell efficiency, and on the other side, use of materials that will contribute to the long term stability of the cell in atmospheric conditions. As a part of this Master thesis, compact and meso porous Ti(>2 films for dye- sensitized solar cells have been prepared. The compact Ti0 2 films were deposited with the technique of spray pyrolysis, and the preparation of the meso porous films was made with a blade casting technique. The optical and structural analysis and characterization of the films was done with optical spectroscopy in the visible and ultraviolet spectral region (UV- Vis), Raman spectroscopy and atomic force microscopy (AFM). The crystal structure of the films, surface uniformity, thickness and grain size dependence on the deposition parameters was investigated, this led to calculation of the optical constants for the compact films, as well as the determination of the electron transitions and the determination of the bang gap energy. Also regarding the structure and porosity of the meso porous films, characterization of the quality of the film depending on the chemical composition of the paste used for deposition was made. As a result of the preformed investigations, through defining the structural and optical parameters of quality compact and meso porous TiC>2 films for dye-sensitized solar cells, the optimal parameters for film

  18. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  19. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    Directory of Open Access Journals (Sweden)

    Giuseppe eForlani

    2015-07-01

    Full Text Available The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L. for δ1-pyrroline-5-carboxylate (P5C reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in E. coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human and bacterial enzymes.

  20. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  1. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  2. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM

    KAUST Repository

    Rahbani, Janane; Behzad, Ali Reza; Khashab, Niveen M.; Al-Ghoul, Mazen

    2012-01-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM

    KAUST Repository

    Rahbani, Janane

    2012-12-26

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM.

    Science.gov (United States)

    Rahbani, Janane; Behzad, Ali R; Khashab, Niveen M; Al-Ghoul, Mazen

    2013-02-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  6. Structural and microstructural characterization of U3Si2 nuclear fuel using X-ray diffraction

    International Nuclear Information System (INIS)

    Ichikawa, Rodrigo U.; Garcia, Rafael H.L.; Silva, Andre S.B. da; Saliba-Silva, Adonis M.; Lima, Nelson B.; Martinez, Luis G.; Turrillas, Xavier

    2017-01-01

    In this work, two uranium silicide powdered samples, containing 67% and 42 mol% of Si, were analyzed using X-ray diffraction (named as 67 Si and 42 Si). For structural characterization, Rietveld refinement was used to estimate cell parameters, volume fraction (weight percent) of crystalline phases and atomic positions. For the main phases, X-ray line profile analysis (XLPA) was used to estimate mean crystallite sizes and micro strains. The 67 Si sample presents higher content of USi 2( tetragonal) and the 42 Si sample presents higher content of U 3 Si 2 (tetragonal) as identified and calculated from the XRD profiles. Overall there are no appreciable structural changes and the parameters refined are in good accordance with the ones reported in the literature. Mean crystallite sizes determined by XLPA revealed small crystallites of the order of 10 1 nm and low micro strain for all samples. (author)

  7. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Oujja, M.; Vila, A.; Rebollar, E.; Garcia, J.F.; Castillejo, M.

    2005-01-01

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints

  8. Synthesis and Structural Characterization of 1-[2-(5-Nitro-1H-indol-2-ylphenyl]methylpyridinium Chloride

    Directory of Open Access Journals (Sweden)

    John B. Bremner

    2011-09-01

    Full Text Available In the course of studies on hybrid antibacterials incorporating 2-aryl-5-nitro-1H-indole moieties as potential bacterial NorA efflux pump inhibitors, the compound 1-[2-(5-nitro-1H-indol-2-ylphenyl]methylpyridinium chloride (2 was synthesized and structurally characterized. This pyridinium chloride salt crystallized in the monoclinic space group P21/c with the following unit cell dimensions: a 10.274(3 Å, b 13.101(4 Å, c 13.439(4 Å, b 107.702(7°, V 1723.2(9 Å3, Z (f.u. = 4; R1 = 0.048, and wR2 = 0.13. Of interest in the single crystal X-ray structure is the (intramolecular disposition of the pyridinium plane over the indole heterocyclic residue [interplanar dihedral angle 17.91(4°].

  9. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    Science.gov (United States)

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

  10. Characterization of Ti6Al4V for integral transition structures in FRP-aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schimanski, Kai; Schumacher, Jens; Von Hehl, Axel; Zoch, Hans-Werner [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Wottschel, Vitalij; Vollertsen, Frank [Bremer Institut fuer Angewandte Strahltechnik, Bremen (Germany)

    2012-08-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context, the demand for weight saving in aerospace industry leads to increase numbers of applications of fiber reinforced composites for primary structural components. In consequence, the use of FRP-metal compounds is necessary. In the context of the investigations of the researcher group named ''Black-Silver'' (''Schwarz Silber'', FOR 1224) founded by the DFG (German Research Foundation) material optimized interface structures for advanced carbon fiber reinforced plastic (CFRP)-aluminum compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium), and fibers (glass fiber) as transition elements between CFRP and aluminum. For the connection of the aluminum sheet and the transition element die-casting and laser beam welding are basically used. The paper concentrates on the characterization of suitable materials for transition structures. Due to their high strength and low density (in comparison to steel) and the resulting potential in view on light-weight design Ti-alloys were investigated. Because of the increased availability of Ti-wires compared to Ti-foils in suitable thickness the former were used for the basic investigations on Ti-alloys which are suitable for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F

    Energy Technology Data Exchange (ETDEWEB)

    Green, Robert L., E-mail: rgreen@flpoly.org [Chemistry, Florida Polytechnic University, Lakeland, FL 33805 (United States); Avdeev, Maxim [Australian Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2017-06-15

    The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphical abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.

  12. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania); Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Vasiliu, F., E-mail: fvasiliu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania)

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd–Fe–B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L1{sub 0} phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L1{sub 0} phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L1{sub 0} ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L1{sub 0} tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L1{sub 0} phases (disorder–order transition). The resulting CoPt and CoFePt L1{sub 0} phases have grains of around 5–20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L1{sub 0} FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are

  13. Structural and optical characterization of porous anodic aluminum oxide

    International Nuclear Information System (INIS)

    Galca, Aurelian C.; Kooij, E. Stefan; Wormeester, Herbert; Salm, Cora; Leca, Victor; Rector, Jan H.; Poelsema, Bene

    2003-01-01

    Spectroscopic ellipsometry and scanning electron microscopy (SEM) experiments are employed to characterize porous aluminum oxide obtained by anodization of thin aluminum films. Rutherford backscattering spectra and x-ray diffraction experiments provide information on the composition and the structure of the samples. Results on our thin film samples with a well-defined geometry show that anodization of aluminum is reproducible and results in a porous aluminum oxide network with randomly distributed, but perfectly aligned cylindrical pores perpendicular to the substrate. The ellipsometry spectra are analyzed using an anisotropic optical model, partly based on the original work by Bruggeman. The model adequately describes the optical response of the anodized film in terms of three physically relevant parameters: the film thickness, the cylinder fraction, and the nanoporosity of the aluminum oxide matrix. Values of the first two quantities, obtained from fitting the spectra, are in perfect agreement with SEM results, when the nanoporosity of the aluminum oxide matrix is taken into account. The validity of our optical model was verified over a large range of cylinder fractions, by widening of the pores through chemical etching in phosphoric acid. While the cylinder fraction increases significantly with etch time and etchant concentration, the nanoporosity remains almost unchanged. Additionally, based on a simple model considering a linear etch rate, the concentration dependence of the etch rate was determined

  14. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, Mariagrazia, E-mail: Mariagrazia.Tortora@univaq.it [University of L’Aquila, Department of Physical and Chemical Sciences, Via Vetoio (Coppito 1), I-67100, Loc. Coppito, L’Aquila, AQ (Italy); Sfarra, Stefano, E-mail: Stefano.Sfarra@univaq.it [Las.E.R. Laboratory, University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ, Italy, (Italy); Chiarini, Marco, E-mail: mchiarini@unite.it [University of Teramo, Department of Bioscience and Technology for Food Agriculture and Environment, Via Carlo Lerici 1, I-64023, Mosciano Sant’Angelo, Teramo, TE, Italy, (Italy); Daniele, Valeria, E-mail: Valeria.Daniele@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ (Italy); Taglieri, Giuliana, E-mail: Giuliana.Taglieri@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ (Italy); Cerichelli, Giorgio, E-mail: Giorgio.Cerichelli@univaq.it [University of L’Aquila, Department of Physical and Chemical Sciences, Via Vetoio (Coppito 1), I-67100, Loc. Coppito, L’Aquila, AQ (Italy)

    2016-11-30

    Highlights: • Infrared thermography allowed to identify structural damage and rising damp effect. • The present approach provided insights on the used pigments and painting techniques. • FT-IR, XRF and XRD analyses of the mortar sample showed the peculiar composition. • 1D, 2D NMR analyses were useful for the identification of the restoration polymer. • NMR technique also allowed to characterize the plasticizing agents. - Abstract: In this paper, chemical and structural studies of medieval wall paintings in Ocre (L’Aquila, Italy) are presented. During the latest restoration campaign, non-destructive (Near-Infrared Reflectography and Infrared Thermography) and micro-invasive (Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, μ-Raman, Scanning Electron Microscopy with X-ray Microanalysis, X-Ray Diffraction, X-Ray Fluorescence, Optical Microscopy, Mass Spectrometry, Thermogravimetry) analyses were performed in order to determine the detachments of wall surfaces and the characterization of original and restoration materials. Data integration allowed to reconstruct the conservative history, the execution techniques and the conservation problems of the artefact, as well as to assess the effectiveness of restoration activities adopted. The combined use of physical and micro-chemical techniques proved to be effective for an in-depth study of materials stratification of paintings.

  15. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings

    International Nuclear Information System (INIS)

    Tortora, Mariagrazia; Sfarra, Stefano; Chiarini, Marco; Daniele, Valeria; Taglieri, Giuliana; Cerichelli, Giorgio

    2016-01-01

    Highlights: • Infrared thermography allowed to identify structural damage and rising damp effect. • The present approach provided insights on the used pigments and painting techniques. • FT-IR, XRF and XRD analyses of the mortar sample showed the peculiar composition. • 1D, 2D NMR analyses were useful for the identification of the restoration polymer. • NMR technique also allowed to characterize the plasticizing agents. - Abstract: In this paper, chemical and structural studies of medieval wall paintings in Ocre (L’Aquila, Italy) are presented. During the latest restoration campaign, non-destructive (Near-Infrared Reflectography and Infrared Thermography) and micro-invasive (Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, μ-Raman, Scanning Electron Microscopy with X-ray Microanalysis, X-Ray Diffraction, X-Ray Fluorescence, Optical Microscopy, Mass Spectrometry, Thermogravimetry) analyses were performed in order to determine the detachments of wall surfaces and the characterization of original and restoration materials. Data integration allowed to reconstruct the conservative history, the execution techniques and the conservation problems of the artefact, as well as to assess the effectiveness of restoration activities adopted. The combined use of physical and micro-chemical techniques proved to be effective for an in-depth study of materials stratification of paintings.

  16. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  17. Characterization of the Population Structures in Wildland Collections of Dalea Ornata and Dalea Searlsiae from the Western U.S.A.

    Science.gov (United States)

    Dalea ornata and D. searlsiae are non-toxic native legumes that have potential for increasing forage production and forage quality of degraded rangelands in the western U.S.A. It is important to characterize the population structures in both species for developing new plant materials through plant ...

  18. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  19. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available Understanding the structure of cellulose is of utmost importance in order to enhance its accessibility and reactivity to chemical processing. Therefore, the aim of this study was to evaluate the effect of ultrasound pretreatment on the structure...

  20. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    Science.gov (United States)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  1. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    Methods: Pyridine-based thiosemicarbazide was synthesized, characterized and evaluated for antimicrobial activity. ... homogeneity of the compounds was checked by. TLC performed ..... properties of novel N-methyl-1,3,4-thiadiazol-2- amine.

  2. Structural and physicochemical characterization of pyridine derivative salts of anti-inflammatory drugs

    Science.gov (United States)

    Nechipadappu, Sunil Kumar; Trivedi, Darshak R.

    2017-08-01

    Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.

  3. Dynamic adsorption properties of xenon on activated carbons and their structure characterization

    International Nuclear Information System (INIS)

    Liu Suiqing; Liu Jing; Qian Yuan; Zeng Youshi; Du Lin; Pi Li; Liu Wei

    2013-01-01

    Background: In recent years, adsorption of radioactive xenon by activated carbon has been increasingly applied to the treatment of off-gas in nuclear power project. Though pore structure of activated carbon has a great impact on its dynamic adsorption coefficients for xenon, the concerned research is rare. Purpose: It is very necessary to figure out the relationship between the pore structure and the dynamic adsorption coefficients for the purpose of the selection and development of activated carbon. Methods: In this study, the dynamic adsorption coefficients of xenon on four kinds of activated carbons were measured on a dynamic adsorption platform under the condition of 25℃, OMPa (gauge pressure). And these four kinds of activated carbons were characterized by nitrogen adsorption and SEM. Results: The results show that the activated carbon of JH12-16 with the specific surface area of 991.9 m 2 ·g -1 has the largest xenon dynamic adsorption coefficient among these activated carbons. Conclusions: The dynamic adsorption coefficient of xenon on activated carbon doesn't increase with the specific surface area or the pore volume. The mesopore and macropore only play the role of passageway for xenon adsorption. The most suitable pore for xenon adsorption is the pore with the pore size ranged from 0.55 to 0.6 nm. (authors)

  4. Characterizing urban structure using taxi GPS data

    NARCIS (Netherlands)

    Zheng, Zhong; Zhou, Suhong; Rasouli, S.; Timmermans, H.J.P.

    2014-01-01

    Scholars have explored urban structure from many perspectives. Developments in ICT have made it possible to discover spatial patterns in activities using big data. The identified patterns allow us to better understand urban structure. This chapter reports the collection of taxi GPS records for a

  5. Biferroic LuCrO3: Structural characterization, magnetic and dielectric properties

    International Nuclear Information System (INIS)

    Durán, A.; Meza F, C.; Morán, E.; Alario-Franco, M.A.; Ostos, C.

    2014-01-01

    Multiferroic LuCrO 3 perovskite-type structure (Pbnm) obtained via auto-ignition synthesis was characterized by a combination of X-ray diffraction (XRD) and thermogravimetric (TG) techniques, and through magnetization and permittivity measurements. Results showed that amorphous combustion powders were fully transformed to orthorhombic LuCrO 3 structure at 1200 K after the first LuCrO 4 crystallization at 700 K. The magnetic response displays thermal irreversibility between zero-field-cooling and field-cooling condition which is due to spin canted AF switching at 116 K. Accordingly, a hysteresis loop in the M(H) data confirms weak ferromagnetism in LuCrO 3 . On the other hand, the permittivity measurement shows a broad peak transition typical of relaxor-type ferroelectrics transition at ∼450 K. Electrical conductivity increases as temperature increases showing an anomaly around the diffuse phase transition. The diffuse phase transition and the formation of the charge carriers are discussed in terms of a local distortion around the Lu Site. - Highlights: • Multiferroic LuCrO 3 was successfully obtained via auto-ignition synthesis. • Amorphous powder is transformed first to LuCrO 4 (700 K) and next to LuCrO 3 (1100 K). • The CrO 6 octahedra are tilted away and rotates from the ideal octahedral shape. • LuCrO 3 exhibits a canted AFM transition (116 K) and a relaxor ferroelectric behavior. • Tilting and rotation of CrO 6 octahedra influenced transport properties on LuCrO 3

  6. Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W

    International Nuclear Information System (INIS)

    Gong Rui; Peng Xiaoxue; Kang Shuli; Feng Huixing; Huang Jianying; Zhang Wentao; Lin Donghai; Tien Po; Xiao Gengfu

    2005-01-01

    Syncytin is a captive retroviral envelope protein, possibly involved in the formation of the placental syncytiotrophoblast layer generated by trophoblast cell fusion at the maternal-fetal interface. We found that syncytin and type I viral envelope proteins shared similar structural profiling, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR). We expressed the predicted regions of NHR (41 aa) and CHR (34 aa) in syncytin as a native single chain (named 2-helix protein) to characterize it. 2-helix protein exists as a trimer and is highly α-helix, thermo-stable, and denatured by low pH. NHR and CHR could form a protease-resistant complex. The complex structure built by the molecular docking demonstrated that NHR and CHR associated in an antiparallel manner. Overall, the 2-helix protein could form a thermo-stable coiled coil trimer. The fusion core structure of syncytin was first demonstrated in endogenous retrovirus. These results support the explanation how syncytin mediates cytotrophoblast cell fusion involved in placental morphogenesis

  7. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    Science.gov (United States)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  8. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2− Ions

    Directory of Open Access Journals (Sweden)

    Loredana Schiavo

    2016-01-01

    Full Text Available Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2− ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone (PVP as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis has been performed in order to evaluate the structure and oxidation state of nanopalladium.

  9. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    International Nuclear Information System (INIS)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.; Perez, R.

    2007-01-01

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface and traces of TiAl 3 in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al 4 C 3 at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms with flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-β phase was detected through XRD

  10. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  11. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    International Nuclear Information System (INIS)

    Gil, C.; Pomes, R.; Nombela, C.

    1990-01-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species

  12. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  13. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    Science.gov (United States)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  14. Structural and immunological characterization of the N-glycans from the major yellow jacket allergen Ves v 2: The N-glycan structures are needed for the human antibody recognition

    DEFF Research Database (Denmark)

    Seppälä, Ulla; Selby, David; Monsalve, Rafael

    2009-01-01

    of the study was to characterize the glycosylation patterns in Ves v 2 isoallergens and to assess their immunological properties regarding antibody binding and T cell activation. The glycosylation sites and the carbohydrate structures were verified by use of tandem mass spectrometry (MS/MS). The immunological....... Non-glycosylated rVes v 2, however, induced T cell and cytokine responses comparable to glycosylated nVes v 2. The present study shows that N-glycan structures are needed for the antibody recognition but not for the T cell reactivity of Ves v 2 in vitro. The occurrences of carbohydrate......-specific antibodies against nVes v 2, however, suggest that non-mammalian glycan structures as in nVes v 2 may provide a link between T cells and other effector cells in allergic responses....

  15. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  16. Vanadium(II-diamine complexes: synthesis, UV-Visible, infrared, thermogravimetry, magnetochemistry and INDO/S characterisation

    Directory of Open Access Journals (Sweden)

    Niedwieski Antonio C.

    2003-01-01

    Full Text Available The synthesis, spectroscopic characterisation and reactivity of a series of vanadium(II complexes, [VCl2(diamine2] (diamine = dmeda: N,N'-dimethylethane-1,2-diamine, deeda: N,N'diethylethane-1,2-diamine, tmeda: N,N,N',N'-tetramethylethane-1,2-diamine, dieda: N,N'diisopropylethane-1,2-diamine, teeda: N,N,N',N'-tetraethylethane-1,2-diamine, dtbeda: N,N'-ditert-butylethane-1,2-diamine and dfeda: N,N'-diphenylethane-1,2-diamine are reported. Some of these complexes can be converted into the trinuclear cation [V3(µCl3(µ3Cl2(diamine 3]+ through the reaction with [V2(µ-Cl3(thf3]+ under mild conditions. The compounds were characterised by microanalysis, positive ion FAB mass spectrometry, UVvisible and infrared spectroscopies, thermogravimetric analysis and magnetic moment measurements in the solid state. We characterised fully by single-crystal X-ray diffraction analysis the complex [VCl2(deeda2]. The stability of [VCl2(diamine2] as they vary with the different diamines is correlated with crystal field and infrared parameters along with decomposition temperatures and the calculated molecular orbital energies. We also presented a new synthetic route to prepare [V3(µ-Cl3(µ3-Cl2(diamine 3]+ which allows a better control of the reaction pathway, avoiding the formation of undesired redox reaction products.

  17. Hydrothermal syntheses and characterization of uranyl tungstates with electro-neutral structural units

    Energy Technology Data Exchange (ETDEWEB)

    Balboni, Enrica; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Dept. of Civil and Enviromental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2015-11-01

    Two uranyl tungstates, (UO{sub 2})(W{sub 2}O{sub 7})(H{sub 2}O){sub 3} (1) and (UO{sub 2}){sub 3}(W{sub 2}O{sub 8})F{sub 2}(H{sub 2}O){sub 3} (2), were synthesized under hydrothermal conditions at 220 C and were structurally, chemically, and spectroscopically characterized. 1 Crystallizes in space group Pbcm, a = 6.673(5) Aa, b = 12.601(11) Aa, c = 11.552 Aa; 2 is in C2/m, a = 13.648(1) Aa, b = 16.852(1) Aa, c = 9.832(1) Aa, β = 125.980(1) {sup circle}. In 1 the U(VI) cations are present as (UO{sub 2}){sup 2+} uranyl ions that are coordinated by five oxygen atoms to give pentagonal bipyramids. These share two edges with two tungstate octahedra and single vertices with four additional octahedra, resulting in a sheet with the iriginite-type anion topology. Only water molecules are located in the interlayer. The structural units of 2 consist of (UO{sub 2}){sup 2+} uranyl oxy-fluoride pentagonal bipyramids present as either [UO{sub 2}F{sub 2}O{sub 3}]{sup -6} or [UO{sub 2}FO{sub 4}]{sup -5}, and strongly distorted tungstate octahedra. The linkage of uranyl pentagonal bipyramids and tungstate octahedra gives a unique sheet anion topology consisting of pentagons, squares and triangles. In 2, the uranyl tungstates sheets are connected into a novel electro-neutral three-dimensional framework through dimers of uranyl pentagonal bipyramids. These dimers connecting the sheets share an edge defined by F anions. 2 is the first example of a uranyl tungstate oxy-fluoride, and 1 and 2 are rare examples of uranyl compounds containing electro-neutral structural units.

  18. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    Science.gov (United States)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  19. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    Science.gov (United States)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  20. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    Science.gov (United States)

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  1. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  2. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  3. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    Science.gov (United States)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  4. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Novotný, M; Bulíř, J; Lančok, J; Čížek, J; Kužel, R; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P; Anwand, W; Brauer, G

    2012-01-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ∼ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ∼ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate. (paper)

  5. Functional and structural characterization of a eurytolerant calsequestrin from the intertidal teleost Fundulus heteroclitus.

    Directory of Open Access Journals (Sweden)

    A Carl Whittington

    Full Text Available Calsequestrins (CSQ are high capacity, medium affinity, calcium-binding proteins present in the sarcoplasmic reticulum (SR of cardiac and skeletal muscles. CSQ sequesters Ca²⁺ during muscle relaxation and increases the Ca²⁺-storage capacity of the SR. Mammalian CSQ has been well studied as a model of human disease, but little is known about the environmental adaptation of CSQ isoforms from poikilothermic organisms. The mummichog, Fundulus heteroclitus, is an intertidal fish that experiences significant daily and seasonal environmental fluctuations and is an interesting study system for investigations of adaptation at the protein level. We determined the full-length coding sequence of a CSQ isoform from skeletal muscle of F. heteroclitus (FCSQ and characterized the function and structure of this CSQ. The dissociation constant (K(d of FCSQ is relatively insensitive to changes in temperature and pH, thus indicating that FCSQ is a eurytolerant protein. We identified and characterized a highly conserved salt bridge network in FCSQ that stabilizes the formation of front-to-front dimers, a process critical to CSQ function. The functional profile of FCSQ correlates with the natural history of F. heteroclitus suggesting that the eurytolerant function of FCSQ may be adaptive.

  6. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

    Science.gov (United States)

    Filippi, Carla V; Aguirre, Natalia; Rivas, Juan G; Zubrzycki, Jeremias; Puebla, Andrea; Cordes, Diego; Moreno, Maria V; Fusari, Corina M; Alvarez, Daniel; Heinz, Ruth A; Hopp, Horacio E; Paniego, Norma B; Lia, Veronica V

    2015-02-13

    Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent

  7. A structurally characterized organometallic plutonium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Christos; Walter, Olaf [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Karlsruhe (Germany); Vogt, Jochen; Liebing, Phil; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Maron, Laurent [Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Universite de Toulouse/INSA/CNRS (UMR5215), Toulouse (France)

    2017-04-24

    The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η{sup 8}-bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT''){sub 2}] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Panel 3 - characterization

    Energy Technology Data Exchange (ETDEWEB)

    Erck, R.A.; Erdemir, A.; Janghsing Hsieh; Lee, R.H.; Xian Zheng Pan; Deming Shu [Argonne National Lab., IL (United States); Feldman, A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Glass, J.T. [North Carolina State Univ., Raleigh (United States); Kleimer, R. [Coors Ceramics Co., Golden, CO (United States); Lawton, E.A. [JPL/Caltech, Pasadena, CA (United States); McHargue, C.J. [Univ. of Tennessee, Knoxville (United States)

    1993-01-01

    The task of this panel was to identify and prioritize needs in the area of characterization of diamond and diamond-like-carbon (DLC) films for use in the transportation industry. Until recent advances in production of inexpensive films of diamonds and DLC, it was not feasible that these materials could be mass produced. The Characterization Panel is restricting itself to identifying needs in areas that would be most useful to manufacturers and users in producing and utilizing diamond and DLC coatings in industry. These characterization needs include in-situ monitoring during growth, relation of structure to performance, and standards and definitions.

  9. Synthesis, structure and characterization of two new open-framework gallium phosphite-oxalates of varying dimensionality

    International Nuclear Information System (INIS)

    Li, Caixia; Huang, Liangliang; Zhou, Mingdong; Xia, Jing; Ma, Hongwei; Zang, Shuliang; Wang, Li

    2013-01-01

    Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates [Ga 2 (HPO 3 ) 2 (H 2 PO 3 ) 2 (C 2 O 4 )](C 6 N 2 H 16 ) (I) and [Ga 2 (HPO 3 ) 2 (H 2 PO 3 )(C 2 O 4 )](C 6 N 2 H 16 ) 0.5 (II) have been synthesized under solvothermal and hydrothermal conditions, respectively and further characterized by powder X-ray diffraction, IR spectroscopy, TGA, ICP-AES and elemental analyses. Single crystal X-ray diffraction reveals that the striking feature of I and II is that they possess the same second building unit (SBU) Ga 2 P 2 constructed from two GaO 6 octahedra and two [HPO 3 2− ] pseudo-pyramids sharing oxygen atoms. However, due to the different connecting fashions of SBUs, [C 2 O 4 2− ] groups and [H 2 PO 3 − ] pseudo-pyramids, the final frameworks of them are distinctly different. Compound I shows 2D layered structures with 8-membered ring (8-MR) windows in the ab plane while compound II presents a 3D open-framework with 8-MR channels along the b axis. - Graphical abstract: Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates I showing 2D layered structure and II presenting 3D open-framework have been synthesized under solvothermal and hydrothermal conditions, respectively. - Highlights: • Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates have been synthesized under solvothermal and hydrothermal conditions, respectively. • The same second building unit (SBU) is displayed in both compounds. • Compound I shows 2D layered structure with 8-MR windows while compound II presents 3D open-framework with 8-MR channels. • The solvent plays an important role on the formation of microporous compounds

  10. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com [ITM University, Department of Chemistry (India); Tarannum, Nazia [Ch. Charan Singh University, Department of Chemistry (India); Butcher, R. J. [Howard University, Chemistry Department (United States)

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  11. Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen.

    Science.gov (United States)

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Peng, Lincai; Zhuang, Junping

    2012-11-01

    The cooking with solid alkali and active oxygen has a high selectivity for delignification. In the present work, the O(2) and H(2)O(2) were separately combined with MgO used in cornstalk cooking for investigating their effects on delignification. After cooking, the lignins in raw material, pulp, and yellow liquor were all characterized by HSQC NMR. The results showed that the syringyl (S/S'/S″) units and β-O-4' (A/A'/A″) structures had different reactivity in the cooking with MgO and H(2)O(2) due to their different structures on side-chains. Whereas the syringyl (S/S'/S″) units could be completely decomposed when the MgO and O(2) were used, and the β-O-4' (A/A'/A″) structures could be partly degraded. A novel structure G' unit with a carbonyl group was only generated in the cooking with MgO and O(2). In addition, the H unit, non-phenolic β-β' (B) and β-5' (C) structures were all stable in both of the two cooking processes. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  13. Characterization of carbohydrate structures of bovine MUC15 and distribution of the mucin in bovine milk

    DEFF Research Database (Denmark)

    Pallesen, Lone Tjener; Pedersen, Lise Refstrup Linnebjerg; Petersen, Torben Ellebæk

    2007-01-01

    by densitometric scanning of Western blots. In raw milk, MUC15 was shown to constitute 0.08% (wt) of the protein and approximately 1.5% (wt) of the MFGM-associated proteins. Surprisingly, this study showed that in addition to the fat-containing fractions, such as MFGM and buttermilk, MUC15 was present in nonfat......The present work reports the characterization of carbohydrate structures and the distribution of the newly identified mucin MUC15, a highly glycosylated protein associated with the bovine milk fat globule membrane (MFGM). Distribution of MUC15 was investigated in various fractions of bovine milk......-containing fractions as well, such as skim milk and whey. Compositional and structural studies of the carbohydrates of bovine milk MUC15 showed that the glycans are composed of fucose, galactose, mannose, N-acetylgalactosamine, N-acetylglycosamine, and sialic acid. The carbohydrate was shown to constitute 65...

  14. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    Science.gov (United States)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  15. Functional Group and Structural Characterization of Unmodified and Functionalized Lignin by Titration, Elemental Analysis, 1H NMR and FTIR Techniques

    Directory of Open Access Journals (Sweden)

    Ramin Bairami Habashi

    2017-11-01

    Full Text Available Lignin is the second most abundant polymer in the world after cellulose. Therefore, characterization of the structure and functional groups of lignin in order to assess its potential applications in various technical fields has become a necessity. One of the major problems related to the characterization of lignin is the lack of well-defined protocols and standards. In this paper, systematic studies have been done to characterize the structure and functional groups of lignin quantitatively using different techniques such as elemental analysis, titration and 1H NMR and FTIR techniques. Lignin as a black liquor was obtained from Choka Paper Factory and it was purified before any test. The lignin was reacted with α-bromoisobutyryl bromide to calculate the number of hydroxyl and methoxyl moles. Using 1H NMR spectroscopic method on α-bromoisobutyrylated lignin (BiBL in the presence of a given amount of N,N-dimethylformamide (DMF as an internal standard, the number of moles of hydroxyl and methoxyl groups per gram of lignin was found to be 6.44 mmol/g and 6.64 mmol/g, respectively. Using aqueous titration, the number of moles of phenolic hydroxyl groups and carboxyl groups of the lignin were calculated as 3.13 mmol/g and 2.84 mmol/g, respectively. The findings obtained by 1H NMR and elemental analysis indicated to phenyl propane unit of the lignin with C9 structural formula as C9 HAl 3.84HAr2.19S0.2O0.8(OH1.38(OCH31.42. Due to poor solubility of the lignin in tetrahydrofuran (THF, acetylated lignin was used in the GPC analysis, by which number-average molecular weight  of the lignin was calculated as 992 g/mol.

  16. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae.

    Science.gov (United States)

    Rosconi, Federico; Davyt, Danilo; Martínez, Verónica; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Zane, Hannah; Butler, Alison; de Souza, Emanuel M; Fabiano, Elena

    2013-03-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Production and structural and magnetic characterization of a Bi1-xYxFeO3(x = 0, 0.25 and 0.30) system

    International Nuclear Information System (INIS)

    Gómez, J A Mejía; Palacio, C A; García, G I Supelano; Vargas, C A Parra

    2015-01-01

    The production and the structural and magnetic characterization of the Bi 1-x Y x FeO 3 (x= 0, 0.25 and 0.3) system is reported in this work. The system was produced through the solid-state reaction technique. The morphological characterization obtained by scanning electron microscopy technique evidences the granular behavior. The structural properties were studied by means of X-ray diffraction technique. Magnetization measurements in function of temperature of the Bi 1-x Y x FeO 3 (x= 0, 0.25 and 0.3) system were performed with the magnetometer VSM by means of the Zero Field Cooled-Field Cooled method. The results obtained from all the techniques evidence the effect of yttrium on the physical properties of BiFeO 3 . (paper)

  18. Crystal structure and characterization of a novel layered copper-lithium phosphonate with antiferromagnetic intrachain Cu(II)···Cu(II) interactions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelbaky, Mohammed S.M. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain); Amghouz, Zakariae [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); Department of Materials Science and Metallurgical Engineering, University of Oviedo, Campus Universitario, 33203 Gijón (Spain); Blanco, David Martínez [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago; García, José R. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain)

    2017-04-15

    Novel metal phosphonate [CuLi(PPA)] [H{sub 3}PPA=3-phosphonopropionic acid] was synthesized hydrothermally and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. It crystallizes in the space group C2/c, with cell parameters a=21.617(2) Å, b=4.9269(2) Å, c=14.342(1) Å, β=132.3(2)°, and Z=8. Its framework is built up from a main trimer, acting as a secondary building unit (SBU), which is formed by vertex-shared between two (LiO{sub 4}) and one (Cu(1)O{sub 4}) polyhedra. These units repeat along b-axis forming infinite inorganic chains, these chains are in turn cross-linked by corner sharing with (Cu(2)O{sub 4}) polyhedra to produce inorganic layers lying in the bc-plane. The neighboring layers are connected through the PPA ligand, leading to a 3D pillared-layered structure. The topological analysis reveals that the compound exhibits 3,4,10-c net. Finally, magnetic susceptibility measurement of this compound over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic intrachain interactions. - Graphical abstract: Hydrothermal synthesis and structural characterization of a novel lithium-copper phosphonate, formulated as [CuLi(PPA)] (H{sub 3}PPA=3-phosphonopropionic acid), have been reported. This compound has a 3D pillared-layered structure with 3,4,10-c net topology. The magnetic susceptibility data over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic interactions. - Highlights: • Novel metal phosphonate, [CuLi(PPA)] (1), has been synthesized and characterized. • Compound 1 has a 3D pillared-layered structure with 3,4,10-c net topology. • Magnetic susceptibility data reveals the occurrence of weak antiferromagnetic interactions.

  19. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  20. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  1. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea.

    Science.gov (United States)

    Atiş, Murat; Karipcin, Fatma; Sarıboğa, Bahtiyar; Taş, Murat; Çelik, Hasan

    2012-12-01

    A new thiourea derivative, 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea (bcht) has been synthesized from the reaction of 2-amino-4-chlorophenol with benzoyl isothiocyanate. The title compound has been characterized by elemental analyses, FT-IR, (13)C, (1)H NMR spectroscopy and the single crystal X-ray diffraction analysis. The structure of bcht derived from X-ray diffraction of a single crystal has been presented. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts ((13)C NMR and (1)H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The UV absorption spectra of the compound that dissolved in ACN and MeOH were recorded. Bcht was also screened for antimicrobial activity against pathogenic bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  3. New bismuth calcium oxysilicate with apatite structure: Synthesis and structural characterization

    International Nuclear Information System (INIS)

    Uvarov, Vladimir; Shenawi-Khalil, Sanaa; Popov, Inna

    2010-01-01

    New bismuth calcium silicon oxide Ca 4 Bi 4.3 (SiO 4 )(HSiO 4 ) 5 O 0.95 , with apatite structure has been synthesized. The structure was refined from powder X-ray diffraction data. The refinement revealed that the phase has P6 3 /m (176) space group with unit cell parameters a=b=9.6090(7) A, c=7.0521(7) A, V=563.9 A 3 and c/a=0.734. The R wp factor at Rietveld refinement was equal to 0.082. The synthesized phase has an unusual quantity of cation vacancies in a crystal lattice. Mechanisms of compensation of the excess charge of a lattice are considered and checked experimentally using the FT-IR spectroscopy, the thermal analysis and the XPS analysis. - Graphical abstract: The fragment Ca 4 Bi 4.3 (SiO 4 )(HSiO 4 ) 5 O 0.95 structure along c-axis in polygonal mode.

  4. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization

    International Nuclear Information System (INIS)

    Santos, Desireé M. de los; Navas, Javier; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-01-01

    Highlights: • Highly Al-doped TiO 2 nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO 2 nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti 4+ ions by Al 3+ in the TiO 2 lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature

  5. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  6. 1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from X-ray powder diffraction using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Estevez H, O.; Duque, J. [Universidad de La Habana, Instituto de Ciencia y Tecnologia de Materiales, 10400 La Habana (Cuba); Rodriguez H, J. [UNAM, Instituto de Investigaciones en Materiales, 04510 Mexico D. F. (Mexico); Yee M, H., E-mail: oestevezh@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2015-07-01

    1-Furoyl-3,3-diphenylthiourea (FDFT) was synthesized, and characterized by Ftir, {sup 1}H and {sup 13}C NMR and ab initio X-ray powder structure analysis. FDFT crystallizes in the monoclinic space group P2{sub 1} with a = 12.691(1), b = 6.026(2), c = 11.861(1) A, β = 117.95(2) and V = 801.5(3) A{sup 3}. The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. The thiourea group makes a dihedral angle of 73.8(6) with the furoyl group. In the crystal structure, molecules are linked by van der Waals interactions, forming one-dimensional chains along the a axis. (Author)

  7. Characterizing the nano-structure and defect structure of nano-scaled non-ferrous structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Samimi, Peyman; Liu, Yue [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States); Poorganji, Behrang; Vasudevan, Vijay K. [Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Peter C. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States)

    2016-03-15

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterization of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.

  8. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  9. Structural and surface compositional characterization of silver thin ...

    African Journals Online (AJOL)

    Silver thin films were deposited on microscope glass slides by the electroless Solution Growth Technique (SGT). The films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). The films were found to exhibit a random orientation with peak positions ...

  10. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    Science.gov (United States)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  11. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    Science.gov (United States)

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  12. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    Directory of Open Access Journals (Sweden)

    Patrizia Bocchetta

    2016-01-01

    Full Text Available This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM and Atomic Force Microscope (AFM; (ii local electrical conductivity, as measured by Scanning Probe Microscopy (SPM; and (iii molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt. Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

  13. Underground structure characterization using motor vehicles as passive seismic sources

    Science.gov (United States)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  14. Powder diffraction in structural characterization of ...

    Indian Academy of Sciences (India)

    Administrator

    scientists for studying the structure and microstruc- ture of crystalline solids. .... No specific colour brown habit, brown habit, dark red habit, brown habit, dark red ..... polymorphic modifications of this compound, where atom N14 will play a role ...

  15. Structural and photoluminescence characterization of vertically aligned multiwalled carbon nanotubes coated with ZnO by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ouldhamadouche, N. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Achour, A., E-mail: a_aminph@yahoo.fr [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Musa, I.; Ait Aissa, K.; Massuyeau, F.; Jouan, P.Y. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Kechouane, M. [Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Le Brizoual, L.; Faulques, E.; Barreau, N.; Djouadi, M.A. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France)

    2012-05-01

    Zinc oxide (ZnO) nanostructures are very attractive in various optoelectronic applications such as light emitting devices. A fabrication process of these ZnO nanostructures which gives a good crystalline quality and being compatible with that of micro-fabrication has significant importance for practical application. In this work ZnO films with different thicknesses were deposited by RF-sputtering on vertically aligned multiwalled carbon nanotube (MWCNTs) template in order to obtain ZnO nanorods. The obtained hybrid structures (ZnO/MWCNTs) were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and time resolved photoluminescence spectroscopy (PL). Results show that the ZnO/MWCNTs have a nanorod structure like morphology with a good crystalline quality of the deposited ZnO on the MWCNTs. PL measurements reveal an enhancement of the band edge signal of ZnO/MWCNTs which is three times of magnitude higher compared to the ZnO film deposited on silicon. Moreover, the intensity enhancement varies as function of the ZnO thickness. Such hybrid structures are promising for optoelectronic application, such as blue-violet sources.

  16. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  17. Thermodynamic Characterization of Humic Acid-surfactant Interaction: New Insights into the Characteristics and Structure of Humic Acids

    Directory of Open Access Journals (Sweden)

    Leonardus Vergütz

    2015-12-01

    Full Text Available ABSTRACT Humic acids (HA are a component of humic substances (HS, which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.

  18. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    Science.gov (United States)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  19. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1.

    Science.gov (United States)

    Tang, Weizhi; Dong, Mingsheng; Wang, Weilu; Han, Shuo; Rui, Xin; Chen, Xiaohong; Jiang, Mei; Zhang, Qiuqin; Wu, Junjun; Li, Wei

    2017-10-01

    Three released exopolysaccharide fractions (r-EPS1, r-EPS2 and r-EPS3) were isolated from the fermented milk of Lactobacillus delbrueckii ssp. bulgaricus SRFM-1 and purified by anion exchange chromatography, and characterizations of the structures were conducted. The r-EPS1 and r-EPS2 were homogenous with the average molecular weights of 3.97×10 5 Da and 3.86×10 5 Da, respectively. Three r-EPS fractions were composed of galactose and glucose with a molar ratio of 1.23: 1.00, 1.33: 1.00 and 1.00: 1.34, respectively. Structural characterization indicated that the r-EPS1 contained a backbone of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→6)-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→4)-α-d-Glcp-(1→, and had three branching points which existed in terminal with D-Glcp residues with α/β-d-(1→6) linkages. The r-EPS2 was composed of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→6)-α-d-Galp-(1→ as the backbone chain with a branching point which also existed in terminal D-Glcp residue with β-(1→6) linkage. In addition, three r-EPS fractions exhibited strong scavenging activities on superoxide radical, hydroxyl radical, DPPH radical and chelating activity on ferrous ion, and their antioxidant activities decreased in the order of r-EPS1>r-EPS2>r-EPS3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Collagen Peptides from Crucian Skin Improve Calcium Bioavailability and Structural Characterization by HPLC-ESI-MS/MS.

    Science.gov (United States)

    Hou, Tao; Liu, Yanshuang; Guo, Danjun; Li, Bo; He, Hui

    2017-10-11

    The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm 2 ; tibia, 0.33 ± 0.02 g/cm 2 ) than in the model group (femur, 0.26 ± 0.01 g/cm 2 ; tibia, 0.23 ± 0.02 g/cm 2 ). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.

  1. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    Science.gov (United States)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  2. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    Science.gov (United States)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  3. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Katherine A.; Ealick, Steven E.

    2016-05-25

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.

  4. Predictions of flavonoid solubility in ionic liquids by COSMO-RS: experimental verification, structural elucidation, and solvation characterization

    DEFF Research Database (Denmark)

    Guo, Zheng; Lue, Bena-Marie; Thomsen, Kaj

    2007-01-01

    Predictions of the solubility of flavonoids in a large variety of ionic liquids (ILs) with over 1800 available structures were examined based on COSMO-RS computation. The results show that the solubilities of flavonoids are strongly anion-dependent. Experimental measurement of the solubilities...... of esculin and rutin in 12 ILs with varying anions and cations show that predicted and experimental results generally have a good agreement. Based on the sound physical basis of COSMO-RS, the solubility changes of flavonoids were quantitatively associated with solvation interactions and structural...... characteristics of ILs. COSMO-RS derived parameters, i.e. misfit, H-bonding and van der Waals interaction energy, are shown to be capable of characterizing the complicated multiple interactions in the IL system effectively. H-bonding interaction is the most dominant interaction for ILs (followed by misfit and van...

  5. Improving the characterization of fish assemblage structure through the use of multiple sampling methods: a case study in a subtropical tidal flat ecosystem.

    Science.gov (United States)

    Contente, Riguel Feltrin; Del Bianco Rossi-Wongtschowski, Carmen Lucia

    2017-06-01

    The use of multiple sampling gears is indispensible to obtain robust characterizations of fish assemblage structure in species-rich subtropical ecosystems. In this study, such a dependence was demonstrated by characterizing the structure of the high-tide fish assemblage in a subtropical tidal flat ecosystem (the Araçá Bay, southeastern Brazil) using eight different gears along five seasonal surveys and estimating the bay's fish species richness, combining these data with those from local tide pool fish surveys. The high-tide fish assemblage was spatially structured, contained five threatened species, and was dominated by persistent and large populations of Eucinostomus argenteus and of the fisheries species Mugil curema and Diapterus rhombeus that intensively use the bay throughout their life cycles. Large, small-bodied fish populations supported a regular use of the bay by piscivores. The autumn-winter peak in abundance of juvenile fishes caused a subsequent increase in piscivore abundance, and both events explained the bulk of the seasonal variability of the fish assemblage. The estimated richness revealed that the combination of sampling methods was enough for sampling the bulk of the local richness, and the bay may hold a surprisingly high richness compared to other costal ecosystem of the region. This faunal characterization, only viable using multiple gears, will be critical to support the implementation of a future study to monitor the impacts on local fish biodiversity of an imminent port expansion over the tidal flat.

  6. Characterization of a multilayer Laue lens with imperfections

    International Nuclear Information System (INIS)

    Yan, H.; Kang, H.C.; Maser, J.; Macrander, A.T.; Kewish, C.M.; Liu, C.; Conley, R.; Stephenson, G.B.

    2007-01-01

    We present a simulation result of the focusing performance of a multilayer Laue lens (MLL) with imperfections. Imperfections we have studied correspond to deviations of sequence of layers in the fabricated structure from the zone plate law. The actual sequence of layers of the MLL is measured by scanning electron microscope (SEM), and fitted by second order polynomials. X-ray characterization of the MLL structures is performed using coherent X-rays at the Advanced Photon Source. We observe very good agreement between experiment and simulation. This demonstrates that our simulation method can serve as an efficient tool to characterize the focusing performance of MLLs with imperfections, and thereby allows us to provide feedback following deposition and fabrication of the MLL structures and optimization of focusing structures prior to X-ray characterization

  7. Structural and thermodynamic characterization of the Escherichia coli RelBE toxin-antitoxin system: indication for a functional role of differential stability

    DEFF Research Database (Denmark)

    Cherny, Izhack; Overgaard, Martin; Borch, Jonas

    2007-01-01

    on the folding and stability of the protein pair in solution. Here we structurally and thermodynamically characterize the RelBE system components from E. coli in solution, both separately and in their complexed state. The RelB antitoxin, an alpha-helical protein according to circular dichroism and infrared.......5 degrees C, and exhibits exceptional sensitivity to heat. Complex formation, accompanied by a structural transition, leads to a 12 degrees C increase in the TM and substantial heat resistance. Moreover, in vivo interaction and protein footprint experiments indicate that the C-terminal part of Rel...

  8. Structural characterization of Fe−Pd nanowires grown by electrodeposition using an acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Domenichini, P. [Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Condó, A.M. [Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Haberkorn, N., E-mail: nhaberk@cab.cnea.gov.ar [Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2016-07-01

    Fe{sub 70}Pd{sub 30} nanostructures have potential application in actuators due to their conventional and magnetic shape memory. Here, we report the microstructure of electrodeposition grown Fe−Pd nanowires in which the process was confined to polycarbonate membranes with a nominal pore diameter of 200 nm. We used an acid electrolyte (pH ≈ 5) in which the solution was stabilized with sulfosalicylic acid. The average chemical concentration of the nanowires can be systematically shifted from rich palladium to rich iron by changing the growth potential. The study of the microstructure by transmission electron microscopy indicates high chemical inhomogeneities due to phase coexistence between rich palladium regions (with FCC structure) and rich iron regions. The latter present a combination of BCC and amorphous phases. The average chemical composition of the nanowires can be better adjusted by using a low frequency square wave voltage excitation (alternating rich Pd and rich Fe regions). However, independently of the growth process, the nanowires morphology collapses after thermal annealing. This could be ascribed to fragile grain boundaries due to the presence of amorphous hydroxides and chemical impurities produced during the electrochemical process. - Highlights: • Synthesis of Fe−Pd nanowires by electrodeposition is reported. • Structural characterization of the nanowires by transmission electron microscopy. • The synthesis of nanowires with austenitic phase is limited by fragile grain boundaries.

  9. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  10. Defects in ZnO, CdTe, and Si: Optical, structural, and electrical characterization

    CERN Multimedia

    Deicher, M; Kronenberg, J; Johnston, K; Roder, J; Byrne, D J

    Electronic and optical properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photo-luminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness" radioactive isotopes are used as a tracer. Moreover, the recoil energies involved in ${\\beta}$- and ${\\gamma}$-decays can be used to create intrinsic, isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. These techniques will be used to...

  11. Growth And Characterization Of LPE CdHgTe/CdZnTe/CdZnTe Structure

    Science.gov (United States)

    Pelliciari, B.; Chamonal, J. P.; Destefanis, G. L.; Dicioccio, L.

    1988-05-01

    The liquid phase epitaxial technique is used to grow Hgl_x Cdx Te (x = .23) from a Te - rich solution onto a Cdl_y ZnyTe (y = .04) buffer layer grown from a Te-rich solution onto a Cdi_yZnyTe bulk substrate in an open tube multibin horizontal slider apparatus.Growth conditions and physical characterizations of both the buffer layer and the CdHgTe layer are given ; electrical properties of the CdHgTe layer are also presen-ted. PV detectors were successfully obtained on such a structure using an ion-implanted technology and their characteristics at 77 K for a 10.1 ,um cut-off wavelength are given.

  12. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    Science.gov (United States)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  13. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  14. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood.

    Science.gov (United States)

    Renault, Emmanuel; Barbat-Rogeon, Aline; Chaleix, Vincent; Calliste, Claude-Alain; Colas, Cyril; Gloaguen, Vincent

    2014-09-01

    4-O-Methylglucuronoxylans (MGX) were isolated from chestnut wood sawdust using two different procedures: chlorite delignification followed by the classical alkaline extraction step, and an unusual green chemistry process of delignification using phthalocyanine/H2O2 followed by a simple extraction with hot water. Antioxidant properties of both MGX were evaluated against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) by electronic spin resonance (ESR). IC50 of water-extracted MGX was found to be less than 225 μg mL(-1), in contrast with alkali-extracted MGX for which no radical scavenging was observed. Characterization of extracts by colorimetric assay, GC, LC-MS and NMR spectroscopy provided some clues to understanding structure-function relationships of MGX in connection with their antioxidant activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Cizek, Jakub; Kuriplach, Jan; Prochazka, Ivan [Department of Low Temperature Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik, Fakultaet fuer Luft- und Raumfahrttechnik, Universitaet der Bundeswehr, Heisenbergweg 39, 85579 Neubiberg (Germany)

    2010-11-15

    Nominally undoped, hydrothermally grown ZnO single crystals have been investigated before and after exposure to remote H plasma. Structural characterizations have been made by various positron annihilation spectroscopies (continuous and pulsed slow positron beams, conventional lifetime). The content of bound hydrogen (H-b) before and after the remote H plasma treatment at the polished side of the crystals was determined at depths of 100 and 600 nm, respectively, using nuclear reaction analysis. At a depth of 100 nm, H-b increased from (11.8{+-}2.5) to (48.7{+-}7.6) x 10{sup 19} cm{sup -3} after remote H plasma treatment, whereas at 600 nm no change in H-b was observed. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. STRUCTURAL CHARACTERIZATION OF LITHIUM DOPED NZP Na1

    African Journals Online (AJOL)

    DR. AMIN

    2011-06-01

    Jun 1, 2011 ... belong to the rhombohedral crystal system and were indexed based on hexagonal lattice structure. The density of the ... compounds have special structural features such that .... equation , in comparison with published data.

  17. Biferroic LuCrO{sub 3}: Structural characterization, magnetic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Durán, A., E-mail: dural@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, BC (Mexico); Meza F, C.; Morán, E.; Alario-Franco, M.A. [Departamento de Química Inorgánica y Laboratorio Complutense de Altas Presiones, Facultad de Química, Universidad Complutense de Madrid, EU, 28040 Madrid (Spain); Ostos, C., E-mail: ceostoso@gmail.com [Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-14

    Multiferroic LuCrO{sub 3} perovskite-type structure (Pbnm) obtained via auto-ignition synthesis was characterized by a combination of X-ray diffraction (XRD) and thermogravimetric (TG) techniques, and through magnetization and permittivity measurements. Results showed that amorphous combustion powders were fully transformed to orthorhombic LuCrO{sub 3} structure at 1200 K after the first LuCrO{sub 4} crystallization at 700 K. The magnetic response displays thermal irreversibility between zero-field-cooling and field-cooling condition which is due to spin canted AF switching at 116 K. Accordingly, a hysteresis loop in the M(H) data confirms weak ferromagnetism in LuCrO{sub 3}. On the other hand, the permittivity measurement shows a broad peak transition typical of relaxor-type ferroelectrics transition at ∼450 K. Electrical conductivity increases as temperature increases showing an anomaly around the diffuse phase transition. The diffuse phase transition and the formation of the charge carriers are discussed in terms of a local distortion around the Lu Site. - Highlights: • Multiferroic LuCrO{sub 3} was successfully obtained via auto-ignition synthesis. • Amorphous powder is transformed first to LuCrO{sub 4} (700 K) and next to LuCrO{sub 3} (1100 K). • The CrO{sub 6} octahedra are tilted away and rotates from the ideal octahedral shape. • LuCrO{sub 3} exhibits a canted AFM transition (116 K) and a relaxor ferroelectric behavior. • Tilting and rotation of CrO{sub 6} octahedra influenced transport properties on LuCrO{sub 3}.

  18. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent

    International Nuclear Information System (INIS)

    Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio

    2013-01-01

    In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  19. Unified integration intervals for the structural characterization of oil, coal or fractions there of by 1h NMR and 13c NMR

    International Nuclear Information System (INIS)

    Avella, Eliseo; Fierro, Ricardo

    2010-01-01

    Based on an analysis of publications reported between 1972 and 2006, it became clear that there are inaccuracies in the limits of the ranges of integration that the authors assigned to signals in nuclear magnetic resonance (NMR) to the structural characterization of petroleum, coals and their derived fractions, from their hydrogen (1H NMR) and carbon (13C NMR) spectra. Consequently, consolidated limits were determined for the integration of 1H NMR spectra and 13C NMR of these samples using a statistical treatment applied to the limits of integration intervals already published. With these unified limits, correlation NMR charts were developed that are useful for the allocation of the integral at such intervals, and at smaller intervals defined in terms of the intersection between different assignments. Also raised equations needed to establish the integral attributable to specific fragments in an attempt to make a more accurate structural characterization from NMR spectra of oil, coal or fractions derived.

  20. Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals

    International Nuclear Information System (INIS)

    Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Bischoff, M.; Perov, N.S.; Semisalova, A.S.; Krivtsov, I.V.; Isaenko, L.I.; Mikhailov, G.G.; Niewa, R.

    2014-01-01

    Highlights: • Growth of large Al-substituted crystals BaFe 12−x Al x O 19. • Al-content controllable by flux composition. • Crystallographic site preference of Al unraveled. • Magnetic characterization depending on Al-content. - Abstract: Large single crystals of aluminum-substituted M-type barium hexaferrite BaFe 12−x Al x O 19 were obtained from carbonate flux. The Al content in the crystals can be controlled via the Al content of the flux up to x = 1.1 according to single crystal X-ray structure refinements. Al shows a distinct preference to substitute Fe on crystallographic sites with high coordination numbers by oxygen atoms, whereas no significant amounts of Al can be found on a tetrahedrally coordinated site. An increasing amount of the aluminum dopant results in a monotonous reduction of the Curie temperature from 440 to 415 °C and the saturation magnetization at room temperature from 68 to 57 emu/g for single crystal and from 61 to 53 emu/g for powder samples

  1. Peak load-impulse characterization of critical pulse loads in structural dynamics

    International Nuclear Information System (INIS)

    Abrahamson, G.R.; Lindberg, H.E.

    1975-01-01

    In presenting the characterization scheme, some general features are described first. A detailed analysis is given for the rigid-plastic system of one degree of freedom to illustrate the calculation of critical load curves in terms of peak load and impulse. This is followed by the presentation of critical load curves for uniformly loaded rigid-plastic beams and plates and for dynamic buckling of cylindrical shells under uniform lateral loads. The peak load-impulse characterization of critical pulse loads is compared with the dynamic load factor characterization, and some aspects of the history of the peak load-pulse scheme are presented. (orig./HP) [de

  2. Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate

    Science.gov (United States)

    Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.

  3. Synthesis, characterization, electrochemical studies and X-ray structures of mixed-ligand polypyridyl copper(II complexes with the acetate

    Directory of Open Access Journals (Sweden)

    Adekunle Oluwafunmilayo F.

    2016-01-01

    Full Text Available [Cu(phen2(CH3COO](ClO4.2H2O (1 and [Cu(bipy2(CH3COO]-(ClO4.H2O (2 {phen = 1,10-phenanthroline, bipy = 2,2’-bipyridine}were synthesized and characterized. The complexes were characterized by employying elemental analyses, infrared and UV-Visible spectroscopy, room temperature magnetic measurements and the crystal structures elucidated using X-ray diffraction experiment. The redox properties of the complexes were also investigated. Both structures have a square pyramidal CuN4O chromophore which exhibit significant distortions due to long Cu-O [2.217(3 Å for (1 and 2.179 (1 for (2] and Cu-N [2.631(2 Å for (1 and 2.714(1 Å for (2] bonds. This distortion if further shown by the O-Cu-N bond angles [147.71(8 o for (1 and 153.40(5 o for (2]. The elemental analyses further support the structural details unveiled by the single crystal X-ray diffraction analysis. The infrared spectra shows the acetate vibrational frequencies at 1587 cm-1,1428 cm-1, 1314 cm-1 for (1 and 1571 cm-1, 1441 cm-1, 1319c m-1 for (2 and the perchlo-rate bands at 1059 cm-1, 720 cm-1 (1 and 1080 cm-1,768 cm-1 (2. The broad d-d bands for the copper ion at 14,514 cm-1(1 and 14,535 cm-1(2 support the adoption of square pyramid geometries. The magnetic moments for the two complexes are 1.83 B.M for (1 and 1.72 B.M for (2. The peak to peak values of the two complexes show that the electrode reactions are quasi-reversibile with ΔEp = 0.023V (1 and 0.025V for (2. In both structures, there are π-π intermolecular interactions in addition to hydrogen bonding between the units.

  4. Tree crown structural characterization: A study using terrestrial laser scanning and three-dimensional radiative transfer modeling

    Science.gov (United States)

    Moorthy, Inian

    Spectroscopic observational data for vegetated environments, have been coupled with 3D physically-based radiative transfer models for retrievals of biochemical and biophysical indicators of vegetation health and condition. With the recent introduction of Terrestrial Laser Scanning (TLS) units, there now exists a means of rapidly measuring intricate structural details of vegetation canopies, which can also serve as input into 3D radiative transfer models. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns in laboratory, and field-based experiments. The ILRIS-3D uses the Time-Of-Flight (TOF) principle to measure the distances of objects based on the time interval between laser pulse exitance and return, upon reflection from an object. At the laboratory-level, this exploratory study demonstrated and validated innovative approaches for retrieving crown-level estimates of Leaf Area Index (LAI) (r2 = 0.98, rmse = 0.26m2/m2), a critical biophysical parameter for vegetation monitoring and modeling. These methods were implemented and expanded in field experiments conducted in olive (Olea europaea L.) orchards in Cordoba, Spain, where ILRIS-3D observations for 24 structurally-variable trees were made. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21m), crown width (r 2 = 0.98, rmse = 0.12m), crown height (r2 = 0.81, rmse = 0.11m), crown volume (r2 = 0.99, rmse = 2.6m3), and LAI (r2 = 0.76, rmse = 0.27m2/ m2). These parameters were subsequently used as direct inputs into the Forest LIGHT (FLIGHT) 3D ray tracing model for characterization of the spectral behavior of the olive crowns. Comparisons between FLIGHT-simulated spectra and measured data showed small differences in the visible (measurements were significantly correlated to TLS-derived tree crown complexity metrics. The specific implications of internal crown

  5. Synthesis and structural characterization of inorganic luminescent materials of Cs2NaErBr6 and Cs2NaHoBr6

    International Nuclear Information System (INIS)

    Poblete, V.H; Fack, G

    2003-01-01

    The synthesis and structural characterization is described of two luminescent materials, with technological [1] and spectroscopic [2] interest, whose crystallographic charts have not been published in the literature. The synthesis of both systems: Cs 2 NaErBr 6 and CS 2 NaHoBr 6 , was done using solid state reactions in a controlled environment. The thermal analyses DTA/TGA, applied with a temperature gradient of 10 o C/min., established crystallization ranges of 490,4 o C to 545,4 o C, for the elpasolite CS 2 NaHoBr 6 and 501 o C to 556 o C, for the structure CS 2 NaErBr 6 .. The heat vacuum treatments were carried out at 505 o C and 526 o C respectively, obtaining optimum crystallization. The structural characterization was performed with powdered X-ray diffraction (XRD). The range between 12 o and 80 o (2θ), was analyzed for 3352 points, measured steps of 0.02 o (2θ using the Rietveld profile refining program. The following crystallographic parameters were established: a 0 = 11,279(1), and 11,293(4) Angstroms, for the two structures analyzed, respectively. The relationship R exp wp in both cases is highly accurate for the 32 test lines that were analyzed. The structures present cubic closed packing Cs 1+ 3 Cl 1- , with Ho 3+ and Er 3+ atoms, filling the octahedral holes. The test data obtained will be very useful for completing the mass of experimental data needed to develop the design engineering, with specific applications for luminescent devices (au)

  6. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding.

    Science.gov (United States)

    Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T

    2014-08-14

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Syntheses, structures, and characterizations of a new second-order nonlinear optical material: Pb2(SeO3)(NO3)2

    International Nuclear Information System (INIS)

    Meng, Chang-Yu; Geng, Lei; Chen, Wen-Ting; Wei, Ming-Fang; Dai, Kai; Lu, Hong-Yan; Cheng, Wen-Dan

    2015-01-01

    Highlights: • The new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional hydrothermal method. • The compound was characterized structurally and optically, showing SHG efficiency about 2 times that of KDP. • The electronic band structures and density of states are investigated theoretically. - Abstract: A new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional facile hydrothermal method at middle temperature 200 °C and characterized by X-ray single crystal diffraction, powder diffraction, UV–vis−NIR optical absorption spectrum and infrared spectrum. It crystallizes in the orthorhombic system, space group Pmn2 1 with a = 5.4669(3) Å, b = 10.3277(6) Å, c = 7.2610(4) Å, V = 409.96(4) Å 3 . The compound features a 2D [Pb 2 (SeO 3 )] 2 ∞ architectures composed of SeO 3 and PbO 2 /PbO 3 units. Two unequivalent N(1)O 3 and N(2)O 3 units is inserted between adjacent [Pb 2 (SeO 3 )] 2 ∞ layers to stabilize the whole crystal structure. Second-harmonic generation (SHG) efficiency has been evaluated for powder Pb 2 (SeO 3 )(NO 3 ) 2 samples, showing about 2 times that of KDP reference. Moreover, the compound can achieve I-type phase-matching according to measurements by the Kurtz–Perry method. Theoretical investigations based on the first-principle DFT method were also performed to gain further insights into the crystal structure and optical properties relationship. The calculated band gap value of 3.38 eV is consistent with the optical reflectance measurements value of 3.76 eV

  8. Structural and morphological characterization of TiO2-ZrO2 powders obtained by the polymeric precursors method

    International Nuclear Information System (INIS)

    Ribeiro, M.A.; Gama, L.; Bispo, A.; Neiva, L.S.; Bernardi, M.I.B.; Kiminami, R.H.G.A.

    2010-01-01

    This work aims to characterize the structure and morphology of TiO 2 -ZrO 2 powders obtained by polymeric precursor method. For this we studied the following compositions: 0.25, 0.5 and 0.75 moles of Zr and calcined at 800 deg C for one hour. The powders obtained were characterized by XRD, SEM and nitrogen adsorption (BET). The analysis of X-ray diffraction showed that the powders had a phase of TiO 2 in the anatase form and a tetragonal phase of ZrO 2 . The crystallite size was between 8, 13 and 11 nm respectively. The analysis of scanning electron microscopy showed the growth of ZrO 2 nanoparticles and that these comprise spherical agglomerates of less than 100 nm. Particle size determined by the BET ranging 28.1-29.5 nm, showing thereby the character of nanosized powders. (author)

  9. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen.

    Directory of Open Access Journals (Sweden)

    Yvonne Resch

    Full Text Available The house dust mite (HDM allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated.To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level.Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects. IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98 and its allergenic activity was analyzed in basophil activation experiments.Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients.Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy.

  10. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases.

    Science.gov (United States)

    Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y

    2017-05-01

    The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of the SnO{sub 2}:F/CdS:In structures prepared by the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, Shadia J.; Ahmad-Bitar, Riyad N. [University of Jordan, Faculty of Science, Physics Department, Queen Rania Street, Amman 11942 (Jordan)

    2010-05-15

    SnO{sub 2}:F/CdS:In bilayers were spray-deposited on glass substrates. The structures were characterized by recording and investigating their transmittance curves, I-V plots, X-ray diffractograms (XRD) and by observing their scanning electron microscope (SEM) images. From the I-V plots it was found that the SnO{sub 2}:F forms an ohmic or quasi-ohmic contact with CdS:In. XRD patterns show the polycrystalline nature of the films and show that there is a small shift in the position of the (2 0 0) line of SnO{sub 2}:F without the appearance of new peaks. The morphology of the structures are compared with those of SnO{sub 2}:F alone and CdS:In alone on glass substrates. (author)

  12. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  13. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  14. Synthesis, crystal structure, characterizations and magnetic study of a novel two-dimensional iron fluoride

    Science.gov (United States)

    Bouketaya, Sabrine; Smida, Mouna; Abdelbaky, Mohammed S. M.; Dammak, Mohamed; García-Granda, Santiago

    2018-06-01

    A new hybrid compound formulated as [Fe3F8(H2O)2](Am2TAZ)2 (Am2TAZ= 3,5-diamino-1,2,4-triazole) was prepared under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by thermal analyses (TG-MS), vibrational spectroscopy (FTIR, Raman), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM-EDX). It crystallizes in the triclinic system space group P 1 ̅ with unit cell parameters a= 7.100(2) Å, b= 7.658(2) Å, c= 8.321(2) Å, α = 107.330(20)°, β = 111.842(18)°, γ = 93.049(17)°, Z = 1 and V= 394.01(17) Å3. The studied X-ray crystal structure shows the two oxidation states for iron atoms (Fe2+, Fe3+) and generates a 2D inorganic network, built up of inorganic layers constructed from infinite inorganic chains running along a axis. In fact, these chains are connected via (Fe3+(3)F6) octahedral. OW-H…F and N-H…F hydrogen bonds, making up the whole 3D network, are strongly linked in the layers. Magnetization measurements were performed, exhibiting the paramagnetic feature of the studied compound above 150 K.

  15. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  16. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay.

    Science.gov (United States)

    Sun, Daekyu; Hurley, Laurence H

    2010-01-01

    The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.

  17. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  18. Structural and Enzymatic Characterization of NanS (YjhS) a 9-O-Acetyl N-acetylneuraminic Acid Esterase from Escherichia coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    E Rangarajan; K Ruane; A Proteau; J Schrag; R Valladares; C Gonzalez; M Gilbert; A Yakunin; M Cygler

    2011-12-31

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.

  19. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    International Nuclear Information System (INIS)

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-01-01

    In the present work, K 2 Ti 2 O 5 , K 2 Ti 4 O 9 and K 2 Ti 6 O 13 are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO 2 . Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO 3 ) 2 precursor. It is found that the binding energy of K in K 2 Ti 2 O 5 is much higher than those in K 2 Ti 4 O 9 and K 2 Ti 6 O 13 , and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K 2 Ti 2 O 5 is much easier to be exchanged out.

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.