WorldWideScience

Sample records for structural ceramic components

  1. Structural Design of Glass and Ceramic Components for Space System Safety

    Science.gov (United States)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  2. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    International Nuclear Information System (INIS)

    Masanta, Manoj; Ganesh, P.; Kaul, Rakesh; Nath, A.K.; Roy Choudhury, A.

    2009-01-01

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al 2 O 3 -TiB 2 -TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO 2 ) and boron carbide (B 4 C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV 0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al 2 O 3 ), titanium di-boride (TiB 2 ) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB 2 and Al 2 O 3 , which are discussed in detail.

  3. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Masanta, Manoj [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Ganesh, P.; Kaul, Rakesh [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Nath, A.K. [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Roy Choudhury, A., E-mail: roychoudhuryasimava@gmail.com [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India)

    2009-05-20

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al{sub 2}O{sub 3}-TiB{sub 2}-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO{sub 2}) and boron carbide (B{sub 4}C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV{sub 0.025} was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al{sub 2}O{sub 3}), titanium di-boride (TiB{sub 2}) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB{sub 2} and Al{sub 2}O{sub 3}, which are discussed in detail.

  4. Ceramic component with reinforced protection against radiations

    International Nuclear Information System (INIS)

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  5. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  6. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  7. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  8. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  9. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  10. Use of SiCf/SiC ceramic composites as structure material of a fusion reactor toroid internal components

    International Nuclear Information System (INIS)

    Aiello, G.

    2001-01-01

    The use of low neutron-induced activation structural materials seems necessary in order to improve safety in future fusion power reactors. Among them, SiC f /SiC composites appear as a very promising solution because of their low activation characteristics coupled with excellent mechanical properties at high temperatures. With the main objective of evaluating the limit of present-day composites, a tritium breeding blanket using SiC f /SiC as structural material (the TAURO blanket) has been developed in the last years by the Commissariat a l'Energie Atomique (CEA). The purpose of this thesis was to modify the available design tools (computer codes, design criteria), normally used for the analyses of metallic structures, in order to better take into account the mechanical behaviour of SiC f /SiC. Alter a preliminary improvement of the calculation methods, two main topics of study could be identified: the modelling of the mechanical behaviour of the composite and the assessment of appropriate design criteria. The different behavioural models available in literature were analysed in order to find the one that was the best suited to the specific problems met in the field of fusion power. The selected model was then implemented in the finite elements code CASTEM 2000 used within the CEA for the thermo-mechanical analyses of the TAURO blanket. For the design of the blanket, we proposed a new resistance criterion whose main advantage, with respect to the other examined, lies in the easiness of identification. The suggested solutions were then applied in the design studies of the TAURO blanket. We then could show that the use of appropriate calculation methodologies is necessary in order to achieve a correct design of the blanket and a more realistic estimate of the limits of present day composites. The obtained results can also be extended to all nuclear components making use of SiC f /SiC structures. (author) [fr

  11. Additively Manufactured Ceramic Rocket Engine Components

    Data.gov (United States)

    National Aeronautics and Space Administration — HRL Laboratories, LLC, with Vector Space Systems (VSS) as subcontractor, has a 24-month effort to develop additive manufacturing technology for reinforced ceramic...

  12. Development of impact design methods for ceramic gas turbine components

    Science.gov (United States)

    Song, J.; Cuccio, J.; Kington, H.

    1990-01-01

    Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.

  13. Novel gelforming process for near net shape ceramic component production

    International Nuclear Information System (INIS)

    Franks, G.V.; Johnson, S.B.; Dunstan, D.E.

    2000-01-01

    A novel gelforming process for producing near-net shape ceramic components has been developed. A low viscosity, high volume fraction, ceramic suspension containing a small amount of bio-polymer is poured or injected into a mould. The suspension is gelled within the mould by a temperature activated crosslinking mechanism. The rheological behaviour of the body within the mould is changed from liquid-like to solid-like in a short period of time. The wet mechanical strength of the gelled bodies is sufficient to allow the body to be demoulded and handled without damaging the component. Near net shapes of complex geometry are formed in this way. The wet green body is then dried and densified using traditional methods. Potentially this process can be used to produce inexpensive reliable high strength ceramic components quickly and safely. Copyright (2000) The Australian Ceramic Society

  14. Ceramic component for M.H.D electrode

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1980-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)

  15. Structure and conductivity of nanostructured YBCO ceramics

    Science.gov (United States)

    Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.

    2017-12-01

    Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.

  16. Continuously variable transmission (CVT) with ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Albers, A.; Stuffer, A.; Bernhardt, J. [Universitaet Karlsruhe (T.H.), IPEK Institut fuer Produktentwicklung, Kaiserstr. 10, 76131 Karlsruhe (Germany)

    2005-03-01

    Continuously Variable Transmissions (CVTs) are a powerful alternative to automatic gearboxes for passenger cars. Some of these CVTs transmit the power via traction forces through highly loaded lubricated contacts. The aim of the presented work is to increase the capability of this system by means of appropriate engineering ceramics. The modifications are investigated on a machine element test bench. The necessary new tools for the design process and the configuration of the test bench are presented. Measurements show that the desired improvements can be achieved by using engineering ceramics but lifetime requirements have not been met yet. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Stufenlos verstellbare Getriebe sind eine leistungsfaehige Alternative zu konventionellen Stufenautomaten in Kraftfahrzeugen. Die Leistung wird bei einigen dieser stufenlosen Getriebe reibschluessig ueber hoch belastete geschmierte Friktionswirkflaechen uebertragen. Die vorgestellten Arbeiten haben das Ziel, durch den Einsatz von geeigneten Ingenieurkeramiken die Leistungsfaehigkeit des Systems weiter zu steigern. Die Modifikationen werden an einem Bauteilpruefstand untersucht. Es werden die Werkzeuge fuer den Systemdesignprozess und der Aufbau des Pruefstands vorgestellt. Messergebnisse zeigen, dass mit der eingesetzten Ingenieurkeramik die gewuenschten Verbesserungen erzielt werden koennen, die Lebensdaueraspekte werden jedoch noch nicht erfuellt. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Mechanical behaviour of structural ceramics

    Directory of Open Access Journals (Sweden)

    Bueno, S.

    2007-06-01

    Full Text Available The use of ceramic materials in structural applications is limited by the lack of reliability associated with brittle fracture behaviour. In order to extend the structural use of ceramics, the design of microstructures which exhibit flaw tolerance due to toughening mechanisms which produce an increase in crack growth resistance during crack propagation has been proposed. This work is a review of the mechanical behaviour of structural ceramic materials and its characterisation. Firstly, the basic brittle fracture parameters and the statistical criteria to determine the probability of exceeding the safety factors demanded for a particular application are analysed. Then, the toughening mechanisms which can be developed in the materials through microstructural design as well as the mechanical characterisation of toughened ceramics are discussed. The experimental values of linear elastic fracture toughness parameters (critical stress intensity factor, KIC, and critical energy release rate, GIC are not intrinsic properties for toughened materials and depend on crack length and the loading system. In this work, the different mechanical parameters proposed to characterise such materials are reviewed. The following fracture parameters are analysed: work of fracture (γWOF, critical J-integral value (JIC and R-curve. For the determination, stable fracture tests are proposed in order to ensure that the energy provided during the test is no more than the necessary one for crack propagation.

    El uso de los materiales cerámicos en aplicaciones estructurales está limitado por la falta de fiabilidad asociada a su comportamiento frágil durante la fractura. Para extender su aplicación se ha propuesto el diseño de microestructuras que presenten tolerancia a los defectos debido a la actuación de mecanismos de refuerzo. Este trabajo es una puesta al día sobre el estudio del comportamiento mecánico de los materiales cerámicos estructurales y su

  18. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  19. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  20. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  1. Insulating Structural Ceramics Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas

  2. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  3. Structure and properties of interfaces in ceramics

    International Nuclear Information System (INIS)

    Bonnell, D.; Ruehle, M.; Chowdhry, U.

    1995-01-01

    The motivation for the symposium was the observation that interfaces in crystallographically and compositionally complex systems often dictate the performance and reliability of devices that utilize functional ceramics. The current level of understanding of interface-property relations in silicon-based devices required over 30 years of intensive research. Similar issues influence the relationship between atomic bonding at interfaces and properties in functional ceramic systems. The current understanding of these complex interfaces does not allow correlation between atomic structure and interface properties, in spite of their importance to a number of emerging technologies (wireless communications, radar-based positioning systems, sensors, etc.). The objective of this symposium was to focus attention on these fundamental issues by featuring recent theoretical and experimental work from various disciplines that impact the understanding of interface chemistry, structure, and properties. The emphasis was on relating properties of surfaces and interfaces to structure through an understanding of atomic level phenomena. Interfaces of interest include metal/ceramic, ceramic/ceramic, ceramic/vapor, etc., in electronic, magnetic, optical, ferroelectric, piezoelectric, and dielectric applications. Sixty one papers have been processed separately for inclusion on the data base

  4. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  5. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  6. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  7. Origin and type of flaws in heat engine ceramic materials and components

    International Nuclear Information System (INIS)

    Govila, R.K.

    1995-01-01

    A number of ceramic materials such as Silicon Nitrides and Carbides, Sialons, Whisker-Reinforced Ceramic Composites and Partially-Stabilized Zirconias (PSZs) have been developed for use as structural components in heat engine applications. The reliability and durability of a structural engine component is critically dependent on the size, density of distribution and location of flaws. This information is critical for the processing and design engineers in order to design structural components using suitable materials and thus minimize stress intensity. In general, the failure initiating flaws are associated or produced due to material impurity, processing methods and parameters, and fabrication techniques (machining and grinding). Examples of each type of flaws associated with material impurity, processing methods and fabrication techniques are illustrated

  8. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  9. Study of dielectric properties and structural ceramics Na_2Nb_4O_1_1 matrices for applications in components of radio frequency and microwave

    International Nuclear Information System (INIS)

    Oliveira, R.G.M.; Romeu, M.C.; Sombra, A.S.B.; Silva, P.M.O.; Filho, J.M.S.; Sales, J.C.

    2011-01-01

    The ferroelectric phase Na_2Nb_4O_1_1 has shown a great potential for Y applications: in electromagnetic components. In literature we find studies where their ferroelectric properties are examined. This work aims to characterize the electrical and structural properties (in region of 10Hz to 110MHz) of Na_2Nb_4O_1_1: Y, in which additions were made Bi2O3 in proportions = 0%, 1%, 2% and 10%. As for conductivity, we find that this increases with the increase of the addition of bismuth oxide. We observed that the addition of bismuth increased the electric permittivity (ε) and loss (tan δ). At high frequencies (f = 10MHz) the sample that showed smaller loss was the Y = 10% (tg δ = 3.10-2) and was more permissive by Y = 5% (with εR = 30). We can conclude that the addition of bismuth provided an improvement in densification and led to an increase in permissiveness and increased losses. The study indicates that large possible applications of the matrix Na_2Nb_4O_1_1: Y components in radio frequency. (author)

  10. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  11. Stress relief of ceramic components in high voltage assemblies. Final report

    International Nuclear Information System (INIS)

    Heinen, R.J.

    1979-02-01

    Two types of ceramic packages were evaluated to determine the effectiveness of encapsulating the ceramic components in beta eucryptite filled epoxy. The requirements (no high voltage breakdown, no ceramic cracking, and no encapsulant cracking) were met by the spark gap assembly, but the sprytron assembly had cracking in the encapsulant after thermal cycling. The encapsulation of the ceramic component in beta eucryptite filled epoxy with a stress decoupling material selectively applied in the stress concentrated areas were used to prevent cracking in the sprytron encapsulant. This method is proposed as the standard encapsulation process for high voltage ceramic components

  12. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  13. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    International Nuclear Information System (INIS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-01-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  14. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  15. The Structural Ceramics Database: Technical Foundations

    Science.gov (United States)

    Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.

    1989-01-01

    The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397

  16. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  17. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  18. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  19. Processing development for ceramic structural components: the influence of a presintering of silicon on the final properties of reaction bonded silicon nitride. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The influence of a presintering of silicon on the final properties of reaction bonded silicon nitride has been studied using scanning electron and optical microscopy, x-ray diffraction analysis, 4 pt. bend test, and mecury intrusion porosimetry. It has been shown that presintering at 1050/sup 0/C will not affect the final nitrided properties. At 1200/sup 0/C, the oxide layer is removed, promoting the formation of B-phase silicon nitride. Presintering at 1200/sup 0/C also results in compact weight loss due to the volatilization of silicon, and the formation of large pores which severely reduce nitrided strength. The development of the structure of sintered silicon compacts appears to involve a temperature gradient, with greater sintering observed near the surface.

  20. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  1. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  2. Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component

    Science.gov (United States)

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    2015-06-09

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  3. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  4. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. Structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  5. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. In this paper, structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  6. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  7. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  8. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  9. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  10. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    Science.gov (United States)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to membranes may be non-porous or porous (with controllable pore sizes from 200 nm to technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  11. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E. [Allison Engine Co., Indianapolis, IN (United States)

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  12. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  13. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  14. CARES/PC - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    Science.gov (United States)

    Szatmary, S. A.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES/PC performs statistical analysis of data obtained from the fracture of simple, uniaxial tensile or flexural specimens and estimates the Weibull and Batdorf material parameters from this data. CARES/PC is a subset of the program CARES (COSMIC program number LEW-15168) which calculates the fast-fracture reliability or failure probability of ceramic components utilizing the Batdorf and Weibull models to describe the effects of multi-axial stress states on material strength. CARES additionally requires that the ceramic structure be modeled by a finite element program such as MSC/NASTRAN or ANSYS. The more limited CARES/PC does not perform fast-fracture reliability estimation of components. CARES/PC estimates ceramic material properties from uniaxial tensile or from three- and four-point bend bar data. In general, the parameters are obtained from the fracture stresses of many specimens (30 or more are recommended) whose geometry and loading configurations are held constant. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests measure the accuracy of the hypothesis that the fracture data comes from a population with a distribution specified by the estimated Weibull parameters. Ninety-percent confidence intervals on the Weibull parameters and the unbiased value of the shape parameter for complete samples are provided

  15. Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO-Al2O3-TeO2-GeO2-SiO2 glass ceramic system- a possible material for memory switching devices

    Science.gov (United States)

    Tirupataiah, Ch.; Narendrudu, T.; Suresh, S.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-11-01

    Multi-component glass ceramics with composition 29PbO-5Al2O3-1TeO2 -10GeO2- (55-x) SiO2 doped with different concentrations of CuO (0 ≤ x ≤ 1.0 mol %) were synthesized by melt quenching technique and subsequent heat treatment. These glass ceramics were characterized by X-ray diffraction, scanning electron microscope, differential thermal analysis, optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman studies. The absorption spectra of these glass ceramics exhibited a broad absorption band in the range 650-950 nm which is ascribed to 2B1g → 2B2g octahedral transition of Cu2+ ions. A feeble band around 364 nm is also identified in the samples doped with CuO up to 0.6 mol% as being due to charge transfer between the two oxidation states Cu2+ and Cu+ of copper ions. The EPR spectrum recorded at room temperature exhibited a strong resonance signal at g⊥ = 2.072 and a shallow quadruplet at about gǁ = 2.401. FTIR and Raman spectra of the titled samples provide significant information about various structural units viz., silicate, germanate, PbO4, PbO6, AlO6, TeO4 and TeO3 that are present in these ceramic matrix. Analysis of the spectroscopic investigations reveals that with an increase in the concentration of CuO up to 0.6 mol% copper ions do exist in Cu2+ and Cu+ states and they act as modifiers and net work formers respectively. Therefore, glass ceramic sample contains 0.6 mol% of CuO is favorable for memory switching action.

  16. Structure and multiferroic properties of barium hexaferrite ceramics

    International Nuclear Information System (INIS)

    Tan, Guolong; Chen, Xiuna

    2013-01-01

    Simultaneous occurrence of large ferroelectricity and strong ferromagnetism have been observed in barium hexaferrite ceramics. Barium hexaferrite (BaFe 12 O 19 ) powders with hexagonal crystal structure were successfully synthesized in a polymer precursor method using barium acetate and ferric acetylacetonate as the precursors. The powders were pressed into pellets which were sintered into ceramics at 1200 °C and 1300 °C for 1 h. The structure and morphology of the ceramics were examined using X-ray diffraction and field emission scanning electron microscopy. Large spontaneous polarization was observed in the BaFe 12 O 19 ceramics at room temperature, revealing a clear ferroelectric hysteresis loop. The maximum remanent polarization of the BaFe 12 O 19 ceramic was estimated approximately 11.8 μC cm −2 . The FeO 6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe 3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe 12 O 19 . The BaFe 12 O 19 ceramics also showed strong ferromagnetism at room temperature. - Graphical abstract: Ferroelectric hysteresis loops of BaFe 12 O 19 ceramics measured at a frequency of 120 Hz, which shows that the ceramics sintered at 1200 °C is ferroelectric with P r ∼11.8 μC/cm 2 . Highlights: ► Large ferroelectricity and strong ferromagnetism were observed in barium hexaferrite ceramics. ► The maximum remanent polarization of the BaFe 12 O 19 ceramic was estimated to be 11.8 μC cm −2 . ► The FeO 6 octahedron and off-center shift of Fe 3+ are suggested to be the origin of the polarization.

  17. Investigation of properties and performance of ceramic composite components: Final report on Phases 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Halverson, H.; Carter, R.H.; Miraj, N.; Reifsnider, K.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1998-01-15

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The research program of the Materials Response Group at Virginia Tech addresses the need for reliable and durable structural ceramic composites to perform in high temperature environments. The research effort provides an experimental and analytical basis for the transition from properties of materials to performance of actual component structures. Phases 1 and 2 of the present program focused on the development of test capabilities, initial studies of component mechanical response under various conditions and the development of a life prediction methodology. These efforts have been described in previous reports. This report summarizes the major tasks completed under Phases 3 and 4 of the project. Overall, the authors have made significant progress in a broad spectrum of tasks in this program. Their efforts have encompassed component evaluation, assessment of new SiC-based composites with improved high-temperature potential, development of oxide coating materials for SiC, and the extension and development of new models for predicting the durability of composite components under specific operating conditions for various CMC applications. Each of these areas of work is an important area for achieving the ultimate goal of usable SiC-based composites in high-temperature corrosive environments typical of fossil energy applications.

  18. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  19. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  20. Surface modification method for reactor incore structural component

    International Nuclear Information System (INIS)

    Obata, Minoru; Sudo, Akira.

    1996-01-01

    A large number of metal or ceramic small spheres accelerated by pressurized air are collided against a surface of a reactor incore structures or a welded surface of the structural components, and then finishing is applied by polishing to form compression stresses on the surface. This can change residual stresses into compressive stress without increasing the strength of the surface. Accordingly, stress corrosion crackings of the incore structural components or welded portions thereof can be prevented thereby enabling to extend the working life of equipments. (T.M.)

  1. Structural response testing of thermal barrier load bearing ceramic pads

    International Nuclear Information System (INIS)

    Pickering, J.L.; Black, W.E.; Luci, R.K.; Oland, C.B.

    1983-01-01

    A load-bearing insulating structure for use in a high-temperature gas-cooled reactor (HTGR) was investigated. The structure was composed of dense ceramic materials in the form of circular pads arranged in a stack. Specifically, the test program was structured to investigate the isolation effectiveness of interface materials placed between the ceramic pads to reduce the effectiveness of mechanically induced loads. The tests were conducted at room temperature using tapered loading platens on single ceramic pads. Seventeen alumina specimens, representing two types of material and two thicknesses, were tested. Three interface material thicknesses were introduced using silica cloth and graphite foil. Pre- and post-test nondestructive examinations were conducted in an effort to identify potential damage-inducing anomalies in the ceramic pads. A total of 62 tests was conducted with all specimens eventually loaded to failure

  2. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  3. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  4. Joining of metals to structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sistiaga, J M; Salvador, J M

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considsered. At last, different joint testing ands evaluation procedures are presented. (Author)

  5. Joining of metals to structural ceramics

    International Nuclear Information System (INIS)

    Sistiaga, J.M.; Salvador, J.M.

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considered. At last, different joint testing and evaluation procedures are presented. (Author)

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  7. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  8. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  9. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.

    1983-05-01

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  10. Structural analysis of NPP components and structures

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Keinaenen, H.; Talja, H.

    1998-01-01

    Capabilities for effective structural integrity assessment have been created and extended in several important cases. In the paper presented applications deal with pressurised thermal shock loading, PTS, and severe dynamic loading cases of containment, reinforced concrete structures and piping components. Hydrogen combustion within the containment is considered in some severe accident scenarios. Can a steel containment withstand the postulated hydrogen detonation loads and still maintain its integrity? This is the topic of Chapter 2. The following Chapter 3 deals with a reinforced concrete floor subjected to jet impingement caused by a postulated rupture of a near-by high-energy pipe and Chapter 4 deals with dynamic loading resistance of the pipe lines under postulated pressure transients due to water hammer. The reliability of the structural integrity analysing methods and capabilities which have been developed for application in NPP component assessment, shall be evaluated and verified. The resources available within the RATU2 programme alone cannot allow performing of the large scale experiments needed for that purpose. Thus, the verification of the PTS analysis capabilities has been conducted by participation in international co-operative programmes. Participation to the European Network for Evaluating Steel Components (NESC) is the topic of a parallel paper in this symposium. The results obtained in two other international programmes are summarised in Chapters 5 and 6 of this paper, where PTS tests with a model vessel and benchmark assessment of a RPV nozzle integrity are described. (author)

  11. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  12. Printed sub-100 nm polymer-derived ceramic structures.

    Science.gov (United States)

    Duong, Binh; Gangopadhyay, Palash; Brent, Josh; Seraphin, Supapan; Loutfy, Raouf O; Peyghambarian, Nasser; Thomas, Jayan

    2013-05-01

    We proposed an unconventional fabrication technique called spin-on nanoprinting (SNAP) to generate and transfer sub-100 nm preceramic polymer patterns onto flexible and rigid substrates. The dimensions of printed nanostructures are almost the same as those of the mold, since the ceramic precursor used is a liquid. The printed patterns can be used as a replica for printing second-generation structures using other polymeric materials or they can be further converted to desirable ceramic structures, which are very attractive for high-temperature and harsh environment applications. SNAP is an inexpensive parallel process and requires no special equipment for operation.

  13. Functional Generalized Structured Component Analysis.

    Science.gov (United States)

    Suk, Hye Won; Hwang, Heungsun

    2016-12-01

    An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

  14. The Influence of Tool Composite's Structure During Process of Diamond Grinding of Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Gawlik Józef

    2014-12-01

    Full Text Available This paper presents the results of the tests performed during the grinding process of the ceramic materials: – polycrystalline ceramics (Zirconium ZrO2 and mono-crystalline ceramics (sapphire α-Al2O3 by the diamond tools. Studies have shown that the concentration (thickening of the tool composite changes the tool's pore structure when using suitable wetted adamantine additives. Such modified composite has positive impact on tribological properties of the subsurface layer of the machined components. This is manifested by the reduction of the surface roughness and reduction of the vibration amplitude of the coefficient of friction. The possibilities of the positive effects when using wetted additives on the tool's composite during the pressing (briquetting stage confirm the study results.

  15. Hydrothermal degradation of tetragonal ZrO2 ceramic components used in dental applications

    International Nuclear Information System (INIS)

    Mukaeda, L.E.; Robin, A.; Taguchi, S.P.

    2009-01-01

    With the evolution of the dental restoration techniques, a considerable growth in the demand of ceramic products occurred. These materials present good strength associated to reliability. In this work, micrometric and nanometric scale tetragonal ZrO 2 blocks were sintered at 1500 deg C-2h and 1350 deg C-2h, respectively, ground and polished. Ceramics with relative density higher than 98% were obtained. The specimens were immersed in hot water (150 deg C), for times ranging from 10h to 30h. The mass variation of the samples was measured and the crystalline phases present before and after the degradation tests were identified by X-ray diffractometry, in order to evaluate the capacity of these ceramics in resisting to aqueous medium exposure. Materials with nanometric structure present higher resistance to degradation than those with micrometric scale, and this interferes in structural stability after the test, and reduces the martensitic transformation. (author)

  16. Current status and future aspects of R&D activities on electro- ceramic components in Japanese industry

    Science.gov (United States)

    Takagi, Hiroshi

    2011-05-01

    The oldest pottery in Japan was made 16,500 years ago in Jomon period. On the background of a long history of Japanese ceramics, Murata and other Japanese manufacturers have been developing electro-ceramic materials and manufacturing many kinds of electronic components using them. In 1937, TDK manufactured ferrite cores first in the world. Then, Japanese electro-ceramic industry has led the world on electro-ceramic materials and components until now, especially in the fields of BaTiO3, PZT, PTC thermistor, ZnO varistor and insulating ceramics. From the analysis of the papers reported lately, R&D activities of Japanese manufacturers are understood to cover not only improving properties of electro-ceramics, but also appropriate technologies and basic technologies.

  17. [Clinical evaluation of the ceramic femoral component used for reconstruction of total knee replacement].

    Science.gov (United States)

    Vavrík, P; Landor, I; Denk, F

    2008-12-01

    The study evaluates mid-term results of total knee replacement with a zirconia ceramic (ZrO2) femoral component. The evaluated group comprised 20 knees in 19 patients (4 men and 15 women). In one patient the replacement was performed bilaterally. Two patients had in the contralateral knee the same type of prosthesis with a femoral chrome-cobalt component.The mean age at the time of operation was 65.2 years (range, 38-81 years).The primary indication was 14 times osteoarthritis and 5 times rheumatoid arthritis. The average follow-up period was 6.5 years (range, 2.1-8.5 years). Patients included in the study regardless of age, body mass and the basic diagnosis, agreed with the use of the ceramic femoral component. The evaluation covered a range of motion, mechanical axis, joint stability, pain, swelling, ability to walk on level ground and on stairs, subjective satisfaction (EULAR Knee Chart). Radiograph were assessed at one year intervals in two projections to identify the incidence of radiolucency around the implant. The Kaplan-Meier survival curve was used and compared with the survival curve in identical chrome-cobalt implants. At he final follow-up, 14 knees were evaluated, because 3 patients died without any connection with the implant, in one case the tibial component migrated due to necrosis of the tibial condyle in a patient with RA and two implants had to be revised and replaced due to polyethylene wear. No infection or negative tissue reaction was recorded in the evaluated group. The average flexion range was 109 degrees. All knees were stable and without swelling, in two cases there occurred slight femoropatellar pain. Twelve patients were fully satisfied, 2 patients were satisfied with a certain reservation. The differences in the course of the survival curves of chrome-cobalt and ceramic implants were statistically insignificant. Although the use of zirconia ceramics in vitro reduces the amount of polyethylene wear, the clinical outcomes of total knee

  18. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  20. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  1. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  2. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia; Barg, Suelen; Ni, Na; Maher, Robert C.; Garcίa-Tuñ ó n, Esther; Zaiviji Ismail, Muhammad Muzzafar; Babot, Flora; Saiz, Eduardo

    2013-01-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting

  3. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  4. Structural and impedance characterization of ceramics prepared from NPK fertilizer

    Directory of Open Access Journals (Sweden)

    Diouma Kobor

    2015-06-01

    Full Text Available One of the main objectives of this work was to study the possibilities of valorising the phosphates through the development of a conductive ceramics using NPK fertilizer as a precursor. Phosphorus based powders were synthesized using solid state technique from NPK fertilizer, lithium chloride and iron chloride at different temperatures up to 900 °C and ceramic samples were prepared by the powder pressing and sintering at 1100 °C. XRD spectra of the calcined powders show various sharp peaks indicating a relatively high degree of crystallinity and presence of different crystalline phases, such as: phosphorus based crystalline compounds (AlPO4 and LiFePO4, ferrite (Fe3O4 and DyFeO3, CaSO4 and K3DyCl6. The prepared phosphorus based ceramics showed very interesting electrical and dielectric properties. Thus, in the future the obtained ceramics could find application in electronic or energy storage devices. However, further investigations are necessary to understand the exact chemical composition and structural characteristics of this material, to better understand the origin of the obtained electrical and dielectric behaviour.

  5. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  6. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  7. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  8. The defect structure of ceramic high Tc superconductors

    International Nuclear Information System (INIS)

    Van Tendeloo, G.; Amelinckx, S.; Zandbergen, H.W.; Verwerft, M.

    1989-01-01

    In this paper an overview is given of electron microscopy studies on the different ceramic superconductors: YBa 2 Cu 3 O 7 , Bi(Tl)-Sr(Ba)- Ca-Cu-O and Pb 2 Sr 2 Y 0.5 Ca 0.5 Cu 3 O x . Planar defects in these materials play an important role in the superconducting properties. Their structural characteristics are discussed

  9. Measurement of elastic modules of structural ceramic by acoustic resonance

    International Nuclear Information System (INIS)

    Ahn, Bong Young; Lee Seong Suck; Kim, Young Gil

    1993-01-01

    Elastic moduli of structural ceramic materials, Al 2 O 3 , SiC, Si 3 N 4 , were measured by acoustic resonance method. Young's modulus, shear modulus, and Poisson's ratio were calculated from the torsional and flexural resonant frequencies, densities, and the dimensions of the specimen. The results by acoustic resonance method were compared with the results by ultrasonic method and the differences were less than 4%.

  10. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  11. Testing of ceramic gas turbine components under service-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Siebmanns, W [Motoren- und Turbinen-Union G.m.b.H., Muenchen (Germany, F.R.)

    1978-08-01

    If all gas turbine components which are in contact with hot gas are manufactured from special ceramics (silicon nitride, silicon carbide), cycle and component temperatures can be increased up to 1600/sup 0/K. MTU is developing various components, such as combustor and turbine wheel, step by step until they are ready for service. At present, combustors are surviving comprehensive service-like cyclic tests in hot gas at atmospheric pressure (1000 h, 1000 starts per component) without damage. Tests above atmospheric pressure (5 bar) are underway. At MTU, a rotor wheel variant consisting of a metallic hub with inserted single blades is being constructed. The step to aerodynamically contoured airfoils will follow, as soon as the stress problems encountered in connection with the blade root are fully under control. The program will be completed in 1980 with a test run of a prototype turbine made from ceramic components developed by various companies under the leadership of the DFVLR (Aerospace Research and Testing Institute).

  12. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  13. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    Science.gov (United States)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  14. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  15. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    International Nuclear Information System (INIS)

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  16. Revision of cemented hip arthroplasty using a hydroxyapatite-ceramic-coated femoral component.

    Science.gov (United States)

    Raman, R; Kamath, R P; Parikh, A; Angus, P D

    2005-08-01

    We report the clinical and radiological outcome of 86 revisions of cemented hip arthroplasties using JRI-Furlong hydroxyapatite-ceramic-coated acetabular and femoral components. The acetabular component was revised in 62 hips and the femoral component in all hips. The mean follow-up was 12.6 years and no patient was lost to follow-up. The mean age of the patients was 71.2 years. The mean Harris hip and Oxford scores were 82 (59 to 96) and 23.4 (14 to 40), respectively. The mean Charnley modification of the Merle d'Aubigné and Postel score was 5 (3 to 6) for pain, 4.9 (3 to 6) for movement and 4.4 (3 to 6) for mobility. Migration of the acetabular component was seen in two hips and the mean acetabular inclination was 42.6 degrees. The mean linear polyethylene wear was 0.05 mm/year. The mean subsidence of the femoral component was 1.9 mm and stress shielding was seen in 23 (28%) with bony ingrowth in 76 (94%). Heterotopic ossification was seen in 12 hips (15%). There were three re-revisions, two for deep sepsis and one for recurrent dislocation and there were no re-revisions for aseptic loosening. The mean EuroQol EQ-5D description scores and health thermometer scores were 0.69 (0.51 to 0.89) and 79 (54 to 95), respectively. With an end-point of definite or probable loosening, the probability of survival at 12 years was 93.9% and 95.6% for the acetabular and femoral components, respectively. Overall survival at 12 years, with removal or further revision of either component for any reason as the end-point, was 92.3%. Our study supports the continued use of this arthroplasty and documents the durability of hydroxyapatite-ceramic-coated components.

  17. Structure of ion-implanted ceramics

    International Nuclear Information System (INIS)

    Naramoto, Hiroshi

    1983-01-01

    The variation of structure of LiF, MgO, Al 2 O 3 and TiO 2 accompanying annealing after ion implantation is explained. The analysis of structure is usually made by the perturbed gamma ray angular correlation, the internal electron Moessbauer method, or the ion scattering method. The results of analyses are discussed for alkali ion implantation, Fe-ion implantation, In-ion implantation, Au-ion implantation, Pt-ion implantation, Pb-ion implantation and transition metal ion implantation. The coupling of the implanted elements with lattice defects and matrix elements, and the compatibility between deposited elements and matrix crystal lattice were studied. The variation of physical properties due to ion implantation such as phase transition, volume change, the control of single crystal region, and the variation of hardness near surface were investigated, and the examples are presented. (Kato, T.)

  18. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  19. Structural analysis of ceramic blocks sealing or structural incorporated with the industrial laundry sludge

    International Nuclear Information System (INIS)

    Almeida, P.H.S.; Grippe, V.Y.Q.; Goulart, J.V.

    2016-01-01

    Industrial and commercial development of recent decades has led to an increase in waste generation. Thus, it is necessary to develop alternative and effective methods of treatment, replacing the simple disposal of these wastes in landfills. The objective of this work is to study the incorporation of textile industrial laundries sludge in ceramic blocks sealing or structural. Samples of ceramic blocks were produced using formulation with 20% sludge, the mass of ceramic clay. Structural analysis of the block was observed the tendency of most empty emergence (pores) during the firing of the blocks, as textile sludge was added in the ceramic paste composition. The mechanical testing of blocks compressive strength was above the minimum 3.0 MPa specified by the standard limit. The physical test water absorption of the blocks was within the range 8 to 22% specified by the standard. (author)

  20. Optimization of structures and components

    CERN Document Server

    Muñoz-Rojas, Pablo Andrés

    2013-01-01

    Written by an international group of active researchers in the field, this volume presents innovative formulations and applied procedures for sensitivity analysis and structural design optimization. Eight chapters discuss subjects ranging from recent developments in the determination and application of topological gradients, to the use of evolutionary algorithms and meta-models to solve practical engineering problems. With such a comprehensive set of contributions, the book is a valuable source of information for graduate students and researchers entering or working in the matter.

  1. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  2. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Klym, H; Shpotyuk, O; Hadzaman, I; Ingram, A; Filipecki, J

    2011-01-01

    The new transition-metal manganite Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  3. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  4. Material interactions between system components and glass product melts in a ceramic melter

    International Nuclear Information System (INIS)

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  5. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  6. Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors

    NARCIS (Netherlands)

    With, de G.

    1993-01-01

    An review with 61 refs. is given of the fracture of and stress situation in ceramic capacitor materials and ceramic multilayer capacitors. A brief introduction to the relevant concepts is given first. Next the data for capacitor materials and the data for capacitors are discussed. The materials data

  7. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  8. Structural mechanics of nuclear plant components

    International Nuclear Information System (INIS)

    Roche, R.

    1986-10-01

    Sound structural analysis are needed for designing safe and reliable components, hence his play is very important in nuclear industry. This report is a provisional writing on the good practice in structural mechanics. Emphasis is put on non elastic analysis, damage appraisal, fatigue, fracture mechanics and also on elevated temperature behaviour [fr

  9. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  10. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    Science.gov (United States)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  11. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  12. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    Science.gov (United States)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  13. Structured Performance Analysis for Component Based Systems

    OpenAIRE

    Salmi , N.; Moreaux , Patrice; Ioualalen , M.

    2012-01-01

    International audience; The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed...

  14. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  15. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  16. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  17. Welding of structural components and vessels

    International Nuclear Information System (INIS)

    1989-01-01

    'Welding of structural components and vessels' was chosen as the guiding topic for the 17th special conference in Munich so that current problems of this important area of application for welding engineering could be discussed in detail. The following topics were in the focus of the discussions: developments in steel, steel production and steel processing, reports on the practical application of welding in the manufacture of containers and pipes, quality assurance, product liability, safety considerations regarding creep-stressed components, problems of welding in large structures. 7 of the total number of 12 contributions were recorded separately for the data base ENERGY. (orig./MM) [de

  18. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  19. Relating structural parameters to leachability in a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Frank, S. M.; Johnson, S. G.; Moschetti, T. L.

    1998-01-01

    Lattice parameters for a crystalline material can be obtained by several methods, notably by analyzing x-ray powder diffraction patterns. By utilizing a computer program to fit a pattern, one can follow the evolution or subtle changes in a structure of a crystalline species in different environments. This work involves such a study for an essential component of the ceramic waste form that is under development at Argonne National Laboratory. Zeolite 4A and zeolite 5A are used to produce two different types of waste forms: a glass-bonded sodalite and a glass-bonded zeolite, respectively. Changes in structure during production of the waste forms are discussed. Specific salt-loadings in the sodalite waste form are related to relative peak intensities of certain reflections in the XRD patterns. Structural parameters for the final waste forms will also be given and related to leachability under standard conditions

  20. Energy Materials Coordinating Committee (EMACC) contractors meeting on problems and opportunities in structural ceramics

    International Nuclear Information System (INIS)

    1983-04-01

    This report consists mainly of viewographs and summaries of DOE and other programs on structural ceramics. Applications include heat engines, fusion reactors, solar absorbers, heat exchangers, coal conversion, turbines, material substitution, etc. Research centers and their capabilities are described. Panel discussions on fabrication reliability, market, ceramic producers and engine manufacturers, and conclusions are summarized

  1. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  2. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  3. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  4. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  5. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  6. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  7. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  8. The dynamic properties of sandwich structures based on metal-ceramic foams.

    Science.gov (United States)

    2014-01-01

    The present research program has studied the fracture properties of closed pore metal-ceramic foams for their potential applications as core systems in sandwich structures. The composite foams were created at Fireline, Inc. (Youngstown, OH) using the...

  9. Structured automated code checking through structural components and systems engineering

    NARCIS (Netherlands)

    Coenders, J.L.; Rolvink, A.

    2014-01-01

    This paper presents a proposal to employ the design computing methodology proposed as StructuralComponents (Rolvink et al [6] and van de Weerd et al [7]) as a method to perform a digital verification process to fulfil the requirements related to structural design and engineering as part of a

  10. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  11. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  12. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  13. Packaging of structural health monitoring components

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.

    2004-07-01

    Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.

  14. MULTIMETAL - Structural performance of multimetal component

    International Nuclear Information System (INIS)

    Keim, Elisabeth; Blasset, Sebastien; Tiete, Ralf; Gilles, Philippe; Karjalainen-Roikonen, Paeivi

    2012-01-01

    The main objectives of the project are: - Develop a standard for fracture resistance testing in multi-metal specimens; - Develop harmonized procedures for dissimilar metal welds brittle and ductile integrity assessment. The underlying aim of the project is to provide recommendations for a good practice approach for the integrity assessment (including testing) of dissimilar metal welds as part of overall integrity analyses and leak-before-break (LBB) procedures. In a nuclear power plant (NPP) a single metallic component may be fabricated from different materials. For example, reactor pressure vessel (RPV) components are mainly made of ferritic steel, whereas some of the connecting pipelines are fabricated from austenitic stainless steel. As a consequence, components made of different kind of steels need to be connected. Their connecting welds are called dissimilar metal welds (DMW). Despite extensive research in the past within the EURATOM Framework, e.g. the projects BIMET and ADIMEW, further work is needed to quantify the structural performance of DMWs. The first step of the project is to gather relevant information from field experience. Typical locations of DMWs in Western as well as Eastern type light water reactors (LWRs) will be identified together with their physical and metallurgical characteristics, as well as applicable structural integrity assessment methods. The collection of relevant field information including findings position (flaw) will be followed by computational structural integrity assessment analyses of DMWs for dedicated test configurations and real cases. These analyses will involve simple engineering methods and numerical analyses. The latter also involves the use of innovative micro-mechanical modelling approaches for ductile failure processes in order to augment existing numerical methods for structural integrity assessment of DMWs. Ageing related phenomena and realistic stress distributions in the weld area will be considered. The

  15. Structural response testing of thermal barrier load-bearing ceramic pads

    International Nuclear Information System (INIS)

    Black, W.E.; Luci, R.K.; Pickering, J.L.; Oland, G.B.

    1983-01-01

    A load bearing insulating structure for use in a HTGR was investigated. The structure was composed of dense ceramic materials in the form of circular pads arranged in a stack. Specifically, the test program was structured to investigate the isolation effectiveness of interface materials placed between the ceramic pads to reduce the effectiveness of mechanically induced loads. The tests were conducted at room temperature using tapered loading platens on single ceramic pads. Seventeen alumina specimens, representing two types of material and two thicknesses, were tested. Three interface material thicknesses were introduced using silica cloth and graphite foil. Pre and post test nondestructive examinations were conducted in an effort to identify potential damage-inducing anomalies in the ceramic pads. A total of 62 tests was conducted with all specimens eventually loaded to failure. (orig./HP)

  16. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia

    2013-11-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.

  17. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cuccio, J.C.; Brehm, P.; Fang, H.T. [Allied-Signal Aerospace Co., Phoenix, AZ (United States). Garrett Engine Div.] [and others

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  18. Synthesis and characterization of lead-free ternary component BST–BCT–BZT ceramic capacitors

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2014-04-01

    Full Text Available Polycrystalline sample of lead-free 1/3(Ba0.70Sr0.30TiO3 + 1/3(Ba0.70Ca0.30TiO3 + 1/3(BaZr0.20Ti0.80O3(BST-BCT-BZT ceramic was synthesized by solid state reaction method. Phase purity and crystal structure of as-synthesized materials was confirmed by X-ray diffraction (XRD. Temperature-dependent dielectric permittivity studies demonstrated frequency-independent behavior, indicating that the studied sample has typical diffuse phase transition behavior with partial thermal hysteresis. A ferroelectric phase transition between cubic and tetragonal phase was noticed near room temperature (~ 330 K. Bulk P–E hysteresis loop showed a saturation polarization of 20.4 μC/cm2 and a coercive field of ~ 12.78 kV/cm at a maximum electric field of ~ 115 kV/cm. High dielectric constant (ε ~ 5773, low dielectric loss (tan δ ~ 0.03 were recorded at room temperature. Discharge energy density of 0.44 J/cm3 and charge energy density of 1.40 J/cm3 were calculated from nonlinear ferroelectric hysteresis loop at maximum electric field. Dielectric constant at variable temperatures and electric fields, ferroelectric to paraelectric phase transition and energy storage properties were thoroughly discussed.

  19. Study of potentiality of raw material of Crato/CE for use in structural ceramics - part I - technological characterization

    International Nuclear Information System (INIS)

    Andrade, J.C.S.; Santos, G.M.; Saldanha, K.M.; Sales Junior, J.C.C.; Nascimento, R.M.; Paskocimas, C.A.

    2011-01-01

    The limitation of information on chemical, mineralogical and thermal characteristics of raw material used in process of manufacture of ceramic products in the region of Cariri, specifically the city of Crato, state of Ceara, motivated the development of this work, since this region ceramics exist that in a general context they appear as important productive chains in the state. The characteristics were evaluated by tests of limit of liquidity, limit of plasticity, index of plasticity, but also by chemical analysis for fluorescence of rays X, analysis of phases for diffraction of rays X, and thermal analysis (thermogratimetric analysis). The results showed that the raw material has excellent size distribution and characteristics acceptable to the processing of structural components of dark color the red, requiring a mixture of clay with coarse less plastic which granulation, that functions as reducer of plasticity. (author)

  20. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  1. Laser-assisted turning of components made of silicon-nitride ceramics

    International Nuclear Information System (INIS)

    Klocke, F.; Bausch, S.

    2001-01-01

    The manufacture of high-precision parts made of silicon-nitride ceramic, such as roller bearing rings or valves, currently involves finishing in the form of time and cost intensive grinding operations. This has resulted in demands for the development of more efficient machining techniques and for the subsequent provision of these within a manufacturing environment. A prototype of a precision lathe with an integrated high power diode laser for laser-assisted turning has been developed at the Fraunhofer IPT in close co-operation with industrial partners. When the workpiece is heated continuously by the laser, the resultant localized material softening enables the ceramic to be machined using a defined cutting edge. The application of this technique allows complex silicon nitride ceramic parts with surface qualities of up to R a = 0.3 μm to be produced considerably more flexibly than before, with no requirement for cooling lubricant. (author)

  2. Oxidation resistant filler metals for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  3. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  4. Scandium doped Strontium Titanate Ceramics: Structure, Microstructure, and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Tkach, Alexander

    2008-08-01

    Full Text Available Sc-doped strontium titanate (ST ceramics were synthesised by solid state reaction, according to the composition Sr1-1.5xScxTiO3 with x = 0-0.01. Structural properties and microstructure development was examined by XRD and SEM. The dielectric properties were evaluated as a function of the temperature and frequency in the radio frequency range. Lattice parameter, density and grain size, were found to decrease slightly with increasing Sc content. The dielectric permittivity and losses decrease also. Sc-doping has only a weak effect on the quantum paraelectric behaviour of ST and no dielectric anomaly was observed, what is probably related to the limited solubility of Sc on the Sr site of the perovskite lattice of ST.

    Se sintetizaron materiales cerámicos de titanato de estroncio dopado con escandio mediante reacción en estado sólido De acuerdo a la composición Sr1-1.5xScxTiO3 con x= 0-0.1. Las propiedades estructurales y el desarrollo microestructural se estudiaron mediante XRD y SEM. La propiedades dieléctricas se estudiaron como función de la temperatura y de la frecuencia en el rango de la frecuencias de radio. Se observó que los parámetros de red, la densidad y el tamaño del grano disminuyen ligeramente con el contenido en Sc. La permitividad dieléctrica y las perdidas también disminuyen. El dopado con Sc tiene un efecto muy ligero sobre el comportamiento paraeléctrico cuántico del titanato de estroncio y no se observó anomalías dioeléctricas , lo que está probablemente relacionado con la baja solubilidad del Sc en posiciones del Sr en la estructura tipo perovskita del titanato de estroncio.

  5. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  6. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  7. Structural characterization of clays commercially used in red ceramics

    International Nuclear Information System (INIS)

    Brito, E.M.; Moura, J.K.L.; Souza, R.B.; Brandim, A.S.

    2014-01-01

    The use of clays hills being an alternative to clay floodplain, due to environmental protection laws. The research project aims at the morphological and chemical characterization of hills clays used industrially for the production of ceramic tiles and blocks. Therefore, two types of methods were known commercially in the region of Teresina-PI through diffraction of X-rays (X-DR), scanning electron microscopy (SEM) and energy dispersive spectrometry X-ray (EDS). It can be observed that the samples have a high percentage of quartz, hematite still having in its constitution aluminum oxide, zirconium oxide and titanium oxide. The results show that the clays are clays and montmorillonites may be used for the production of ceramic tiles and blocks, but as the proportion of using the same will be focusing the next job. (author)

  8. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  9. Transmission electron microscopy: direct observation of crystal structure in refractory ceramics.

    Science.gov (United States)

    Shaw, T M; Thomas, G

    1978-11-10

    Using high-resolution multibeam interference techniques in the transmission electron microscope, images have been obtained that make possible a real-space structure analysis of a beryllium-silicon-nitrogen compound. The results illustrate the usefulness of lattice imaging in the analysis of local crystal structure in these technologically promising ceramic materials.

  10. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gadow, R. [Universitaet Stuttgart, Institut fuer Fertigungstechnik keramischer Bauteile, D-70569 Stuttgart, Allmandring 7b (Germany)], E-mail: rainer.gadow@ifkb.uni-stuttgart.de; Kern, F.; Killinger, A. [Universitaet Stuttgart, Institut fuer Fertigungstechnik keramischer Bauteile, D-70569 Stuttgart, Allmandring 7b (Germany)

    2008-02-25

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  11. Piezoelectric micromotor using a metal-ceramic composite structure.

    Science.gov (United States)

    Koc, B; Bouchilloux, P; Uchino, K

    2000-01-01

    This paper presents a new piezoelectric micromotor design, in which a uniformly electroded piezoelectric ring bonded to a metal ring is used as the stator. Four inward arms at the inner circumference of the metal ring transfer radial displacements into tangential displacements. The rotor ends in a truncated cone shape and touches the tips of the arms. A rotation takes place by exciting coupled modes of the stator element, such as a radial mode and a second bending mode of the arms. The behavior of the free stator was analyzed using the ATILA finite element software. Torque vs. speed relationship was measured from the transient speed change with a motor load. A starting torque of 17 microNm was obtained at 20 Vrms. The main features of this motor are low cost and easy assembly because of a simple structure and small number of components.

  12. Influence of beryllium ceramics nano-structuring by iron atoms on increase of their stability to ionizing radiations effect

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Bitenbaev, M.I

    2007-01-01

    In the work a new results on beryllium ceramics nano-structuring effect by iron oxide atoms on radiation defects quantum yield value G in these materials and defects depth constants in ionizing radiation fields k are presented. Experimental data under dependence of G and k values from concentration of iron atoms in beryllium ceramic matrix are presented. It is shown, that structure modification of beryllium ceramics by feedings on the iron base leads to sharp decrease (almost in 30 times) of radiation defects quantum yield value, i.e. to increase of these ceramics stability enhancement to ionizing radiation effect

  13. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  14. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  15. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  16. Comparison of thermal analysis, micro structural and compositional of archaeological indigenous ceramic (Caninhas site of Canas - SP) with actual clay/ceramic of region

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Matos, C.C.; Ribeiro, R.B.

    2009-01-01

    The ceramic material found at the archaeological site in Caninhas, shows funerary structures of combustion and various objects of Tupi-Guarani indigenous use. These pieces and fragments were saved and cataloged, in approximately 4000 units. The ceramics present a gradient of color, from ochre to dark gray, when from the surface to the center of the piece, indicating compositional variation caused by inefficient sintering carried out by indigenous people. The goal of this study was to observe the phase transition temperature, decomposition, mass variation and reactions that occur in the archaeological and nowadays ceramics (by DSC/TG), together with micro structural analysis (by SEM), phase analysis (by XRD) and chemical composition (by EDS). Ceramics nowadays are sintered with air, in a temperature ranging between 400-800 °C for one hour, and presents heterogeneous microstructure. The archaeological ceramics were identified by the illite, hydrated alumina, lutecite and quartz phase, and the caulinite, lutecite and quartz phase in clay produced today from that region differs in all characteristics and aspects according to time. The interaction between different areas of expertise is fundamental to aggregate knowledge: the use of ceramic material engineering to archaeological application. (author)

  17. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    fundamental material parameters that can be determined for use in design or evaluation. ... of plain and reinforced concrete beams using fracture mechanics principles. Design equations ... components accounting for tension softening effect.

  18. Sediment management and the renewability of floodplain clay for structural ceramics

    NARCIS (Netherlands)

    Meulen, M.J. van der; Wiersma, A.P.; Perk, M. van der; Middelkoop, H.; Hobo, N.

    2009-01-01

    Background, aim, and scope: The Netherlands has vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. Most clay is extracted from the so-called embanked floodplains along the rivers Rhine and Meuse, areas that are flooded during

  19. Sediment management and the renewability of floodplain clay for structural ceramics

    NARCIS (Netherlands)

    Meulen, van der M.J.; Wiersma, A.P.; Perk, van der M.; Middelkoop, H.; Hobo, N.

    2009-01-01

    The Netherlands has vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. Most clay is extracted from the so-called embanked floodplains along the rivers Rhine and Meuse, areas that are flooded during high-discharge conditions.

  20. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  1. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  2. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report.

    Science.gov (United States)

    Tavarez, Rudys Rodolfo de Jesus; Goncalves, Leticia Machado; Dias, Ana Paula; Dias, Anna Claudia Pereira; Malheiros, Adriana Santos; Silva, Alice Carvalho; Bandeca, Matheus Coelho

    2014-06-01

    The rehabilitation of patients requiring an esthetic smile demands a multidisciplinary approach. This clinical report describes a treatment plan for recovery aesthetics' smile of anterior teeth using ceramic prosthesis with zirconia structure. Initially, a review of aesthetic parameters, diagnostic waxing, mock-up and provisional restorations was performed. A contextual assessment of aesthetic, proportion and shape of teeth was done to recreate a natural looking for teeth in consonance with the smile line. Subsequently, based on these parameters, fixed prostheses of the upper anterior teeth using ceramic restorations with zirconia infrastructures were performed. The use of ceramic restorations with zirconia structures associated with a careful treatment plan allows the professional to integrate esthetic and function for satisfactory clinical results. How to cite the article: Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC, Bandeca MC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: A case report. J Int Oral Health 2014;6(3):90-2.

  3. Structural integrity assessment of piping components

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Chattopadhyay, J.

    2008-01-01

    Integrity assessment of piping components is very essential for safe and reliable operation of power plants. Over the last several decades, considerable work has been done throughout the world to develop a methodology for integrity assessment of pipes and elbows, appropriate for the material involved. However, there is scope of further development/improvement of issues, particularly for pipe bends, that are important for accurate integrity assessment of piping. Considering this aspect, a comprehensive Component Integrity Test Program was initiated in 1998 at Bhabha Atomic Research Centre (BARC), India. In this program, both theoretical and experimental investigations were undertaken to address various issues related to the integrity assessment of pipes and elbows. Under the experimental investigations, fracture mechanics tests have been conducted on pipes and elbows of 200-400 mm nominal bore (NB) diameter with various crack configurations and sizes under different loading conditions. Tests on small tensile and three point bend specimens, machined from the tested pipes, have also been done to evaluate the actual stress-strain and fracture resistance properties of pipe/elbow material. The load-deflection curve and crack initiation loads predicted by non-linear finite element analysis matched well with the experimental results. The theoretical collapse moments of throughwall circumferentially cracked elbows, predicted by the recently developed equations, are found to be closer to the test data compared to the other existing equations. The role of stress triaxialities ahead of crack tip is also shown in the transferability of J-Resistance curve from specimen to component. The cyclic loading and system compliance effect on the load carrying capacity of piping components are investigated and new recommendations are made. (author)

  4. Factor structure underlying components of allostatic load.

    Directory of Open Access Journals (Sweden)

    Jeanne M McCaffery

    Full Text Available Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental demands (e.g., stress engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation. Here, we employ confirmatory factor analysis to test: 1 whether a single common factor underlies variation in physiological systems associated with allostatic load; and 2 whether allostatic load parameters continue to load on a single common factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny County, PA (30-54 years old, 82% non-Hispanic white, 52% female who were free of confounding medications. Model fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study (metabolic, inflammatory and vagal measures. Further, this common factor reflecting covariation among allostatic load components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized. Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the metabolic syndrome.

  5. Structural study of some gadolinium glass ceramics obtained by sol-gel method

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Simiti, Vida I.; Bratu, I.; Borodi, Gh.; Darabont, Al.

    2004-01-01

    Increased interest in silicate systems containing different rare earth oxides has resulted from their important applications in various fields of technology including laser, optical fiber and optical waveguides in telecommunication applications, microelectronics and catalysis. Glass-ceramics of 0.95 SiO 2 -0.05 Na 2 O composition containing up to 15% molar Gd 2 O 3 were obtained by the sol-gel method. We chose the sol-gel method because this offers the advantage of a good chemical homogeneity and a better control of physical and chemical properties in comparison with traditional methods used to obtain glasses and ceramics. The obtained samples were pressed at 200 kgf/cm 2 as disks with a diameter of Φ=22 mm and a thickness of around 1 mm. Then, they were heat-treated at 250 deg C, 500 deg C and 1000 deg C for about 48 hours. The structural study was made using X-ray diffraction, scanning electron microscopy (SEM) and IR spectroscopy. The X-ray diffraction patterns show that addition of Gd 2 O 3 exerts an important influence on the crystallization process of the studied samples. The crystalline phase decreases with increasing the Gd 2 O 3 concentration. SEM data support this assertion. IR spectra point out also that the increasing of the gadolinium oxide content and the thermal treatment temperature produce the strengthening of the glass ceramic network. Thus, the gadolinium ions play the role of network modifier of the glass ceramic structure. (authors)

  6. Repair of pathology of structure with mortar to reject the red ceramics

    International Nuclear Information System (INIS)

    Santana, Claudeir de Souza; Santos, Juzelia

    2010-01-01

    The aim of this research is the use of the reject of red ceramic from an industry of bricks and tiles from the region of Cuiaba as mortar for repair of structural pathology, looking for their application to replace the sand and gravel in the process. The mortar produced restores a park bench made of concrete which seat was made of red ceramic and legs of soil-cement bricks. The reject of red ceramic used is from an industry in the region of Cuiaba, discarded at the end of the production process, ground in an appropriate granulometry to simulate a generic type of sand and gravel. Grinding processes were developed and various granulometric curves were drawned. The aggregates produced were characterized from the deposit until the final grinding according to ABNT norms in force, the specific area by BET, was used for microanalysis X-ray diffraction. ABNT standards were used to characterize and compare the results. The mortar produced proved to be adequate for the proposal restoration, it was consistent and cohesive. It was concluded that the mortar produced with recycled aggregate of red ceramic can be used in structural restoration in civil construction to replace the natural aggregate, with cost and environmental benefits. (author)

  7. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  8. Evaluation of aging degradation of structural components

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at 8 n/cm 2 ·s at the low operating temperature of the Shippingport NST, i.e., 55 degrees C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J IC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of ∼15 y

  9. Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics

    International Nuclear Information System (INIS)

    Qu Yanfang; Shan Dan; Song Jianjing

    2005-01-01

    A-site replacement is common used in optimizing the electric properties of Bi 0.5 Na 0.5 TiO 3 (abbreviated to BNT). The effect of Ba 2+ doping in BNT capacitor ceramics is investigated here. After the samples containing 6 at.% Ba 2+ was sintered at 1180 deg. C for 2 h, capacitor ceramics with enhanced dielectric properties was fabricated, compared with pure BNT ceramics. It can be concluded from the experiment results that Ba 2+ replaced the ions in A-site, and the lattice structure was altered, which led to the improvement of dielectric properties in BNT ceramics. Then we discussed the phase transformation process from room temperature to 400 deg. C according to the dielectric properties-temperature graphs

  10. Mechanical components: fabrication of major reactor structures

    International Nuclear Information System (INIS)

    Nicholson, S.

    1985-01-01

    The paper examines the validity of criticisms of quality assurance of mechanical plant and welded products within major reactor structures, taking into account experience gained on the AGR's. Various constructive recommendations are made aimed at furthering the objectives of quality assurance in the nuclear industry and making it more cost-effective. Current levels of quality related costs in the fabrication industry are provided as a basis for discussion. (U.K.)

  11. Base isolation strategies for structures and components

    International Nuclear Information System (INIS)

    Varma, Veto; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    In the present report the effect of laminated rubber bearing (LRB) system on the dynamic response of the structure was studied. A LRB system was designed and tested in the laboratory for its dynamic characteristics. Finite element analysis was also performed and based on this analysis, isolator for PHWR nuclear power plant was designed. Analysis of the building was performed with and without isolator. Comparison of responses was made in terms of frequencies, accelerations and displacements and floor response spectra. (author)

  12. Structure and grain coarsening during the processing of engineering ceramics

    International Nuclear Information System (INIS)

    Shaw, N.J.

    1987-11-01

    Studies have been made of three ceramic systems (Al 2 O 3 , Y 2 O 3 /MgO, and SiC/C/B), both to explore a surface area/density diagram approach to examining the coarsening processes during sintering and to explore an alternative coarsening parameter, i.e., the grain boundary surface area (raising it at a given value of the density) and not the pore surface area; therefore, pinning of the grain boundaries by solid-solution drag is the only function evidenced by these results. The importance of such pinning even at densities as low as 75% of theoretical is linked to the existence of microstructural inhomogeneities. The early stages of sintering of Y 2 O 3 powder have been examined using two techniques, BET surface area analysis and transmission electron microscopy. Each has given some insight into the process occurring and, used together, have provided some indication of the effect of MgO on coarsening during sintering. Attempts to further elucidate effects of MgO on the coarsening behavior of Y 2 O 3 by the surface area/density diagram approach were unsuccessful due to masking effects of contaminating reactions during sintering and/or thermal etching. The behavior of the undoped SiC which only coarsens can be clearly distinguished by the surface area/density diagram from that of SiC/C/B which also concurrently densifies. Little additional information was obtainable by this method due to unfavorable sample etching characteristics. The advantages, disadvantages, and difficulties of application of these techniques to the study of coarsening during sintering are discussed

  13. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  14. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  15. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    Science.gov (United States)

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.

  16. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-11-01

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  17. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  18. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  19. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sen

    2015-03-01

    Full Text Available The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4 tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3. This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  20. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics.

    Science.gov (United States)

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-03-17

    The intermediate-range packing of SiN x C 4- x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29 Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN₄ tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si₃N₄ clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiN x C 4- x tetrahedra that are inefficiently packed with a mass fractal dimension of D f ~2.5 that is significantly lower than the embedding Euclidean dimension ( D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiC x N 4- x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  1. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Lantada, Andrés Díaz; De Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-01-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted. (paper)

  2. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Directory of Open Access Journals (Sweden)

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  3. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  4. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  5. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  6. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  7. Structural and electrical properties of Sm{sup 3+} substituted PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India)], E-mail: 628@ssplnet.org; Thakur, O.P.; Bhattacharya, D.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India); Prakash, Chandra [DRDO Bhawan, DHQ, New Delhi 110 011 (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2009-01-22

    Samarium modified lead zirconate titanate (PSZT: Pb{sub 1-x}Sm{sub x}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3}: x = 0, 0.02, 0.04, 0.06) ceramics were synthesized by solid state ceramic route. XRD shows single-phase formation with rhombohedral structure up to x = 0.04. With Sm-substitution, the grain size first increases up to x = 0.02 and then decreases. A metal/ferroelectric/metal (MFM) structure was made by depositing gold electrode on the flat surfaces for electrical measurements. All samples show normal ferroelectric behaviour, however, a squareness of P-E loop (polarization vs. electric field) was observed to increase with Sm content. Higher electromechanical coupling coefficients (K{sub p} and K{sub t}) have been achieved for the PZT with 6 mol% Sm substitution and having fine grain size.

  8. Structural investigations of Lu.sub.2./sub.O.sub.3./sub. as single crystal and polycrystalline transparent ceramic

    Czech Academy of Sciences Publication Activity Database

    Guzik, M.; Pejchal, Jan; Yoshikawa, A.; Ito, A.; Goto, T.; Siczek, M.; Lis, T.; Boulon, J.

    2014-01-01

    Roč. 14, č. 7 (2014), 3327 -3334 ISSN 1528-7483 Institutional support: RVO:68378271 Keywords : lutetium oxide * structure * crystal growth * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.891, year: 2014

  9. Mechanical properties and structural of metal-ceramic tungsten heterogeneity

    International Nuclear Information System (INIS)

    Gnuchev, V.S.; Zasimchuk, E.Eh.; Kas'yan, K.N.; Kravchenko, V.S.; Rabinovich, E.M.; Kharchenko, V.K.; Sheina, I.V.

    1978-01-01

    The influence of the grain size and the structure nonuniformity of cermet tungsten has been studied on its stre--ngth properties at temperatures of 500, 1000, and 1500 deg C. It has been shown that at a high temperature, the samples having a coarse-grained structure (about 50/m) preserve a high level of strength with an elevated plasticity. In the samples having the fine-grained (about 16/m) and the coarse-grained (about 114/m) structure, an abrupt decrease in the plasticity is observed along with a decrease in the strength. By investigating the influence of the annealing conditions on the structure of tungsten, the temperature range of the secondary recrystallization (about 2000 to 2200 deg C) has been established. The rolling temperature of sintered tungsten does not exceed 1700 deg C; thus a supposition is made that the structural nonuniformity of the material is attributable to the process of primary recrystallization and the amount of admixtures present

  10. Procedure for the fabrication of ceramic fuel pellets with an adjustable structure

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.; Sobek, D.

    1986-01-01

    The invention concerns a procedure for the fabrication of ceramic fuel pellets of UO 2 , PuO 2 , ThO 2 and their mixtures with an adjustable structure. Before or during the milling the particle shaped fuel pellets have been added polyethylenglycol in a 20 - 60 % aqueous solution with an amount of 0.5 - 2.0 % in weight. This additive has an effect on a controlled pore formation and grain growth advancement

  11. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation

    Energy Technology Data Exchange (ETDEWEB)

    Raut Dessai, R., E-mail: reshooin@yahoo.com [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Desa, J.A.E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-07-05

    Highlights: ► A porous ceramic has been prepared from silica obtained from rice husk. ► The ceramic has a hierarchical pore structure from micrometric to nano-metric. ► Small Angle Neutron Scattering data indicate nano-pore connectivity to micro-pores. ► Pore morphology can be tuned by compaction pressure and sintering temperature. -- Abstract: Ceramic powder has been synthesized from rice husk as the source of silica. In order to probe the evolution of its hierarchical mesoscopic and microscopic porous structure, the ceramic powder was compacted at different pressures and was sintered at different temperatures. A glassy ceramic to crystalline transition under thermal treatment (up to 1000 °C) was revealed by X-ray diffraction. Existence of pores in two widely separated length scales was indicated by small angle neutron scattering with the smaller ones having mass fractal arrangement. Although no significant change in small pore structure under thermal effect was indicated, a significant modification of the same has been revealed by small angle neutron scattering at different compaction pressures. Connectivity between the pores was ascertained from scattering experiments on the ceramic compact impregnated with heavy water. Scanning electron microscopy shows the microstructure to undergo appreciable coalescence of micrometric ceramic particles for sintering temperature and pressure changes.

  12. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  13. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  14. Identifying the Component Structure of Satisfaction Scales by Nonlinear Principal Components Analysis

    NARCIS (Netherlands)

    Manisera, M.; Kooij, A.J. van der; Dusseldorp, E.

    2010-01-01

    The component structure of 14 Likert-type items measuring different aspects of job satisfaction was investigated using nonlinear Principal Components Analysis (NLPCA). NLPCA allows for analyzing these items at an ordinal or interval level. The participants were 2066 workers from five types of social

  15. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  16. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  17. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  18. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  19. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  20. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  1. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  2. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  3. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  4. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Science.gov (United States)

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  5. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  6. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  7. Development of wear resistant ceramic coatings for diesel engine components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. [Caterpillar, Inc., Peoria, IL (United States)

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  8. Residual life estimation of cracked aircraft structural components

    OpenAIRE

    Maksimović, Mirko S.; Vasović, Ivana V.; Maksimović, Katarina S.; Trišović, Nataša; Maksimović, Stevan M.

    2018-01-01

    The subject of this investigation is focused on developing computation procedure for strength analysis of damaged aircraft structural components with respect to fatigue and fracture mechanics. For that purpose, here will be defined computation procedures for residual life estimation of aircraft structural components such as wing skin and attachment lugs under cyclic loads of constant amplitude and load spectrum. A special aspect of this investigation is based on using of the Strain Energy Den...

  9. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  10. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    Science.gov (United States)

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  11. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    Science.gov (United States)

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  12. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Marcondes Mendes Souza

    2015-03-01

    Full Text Available This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays. The porcelain tiles mass is composed of five formulations containing 57% of feldspar, 37% of clay and 6% of residues of quartzite with different coloration. For the preparation of the specimens, it was used uniaxial pressing, which afterwards were synthesized at 1150°C, 1200°C and 1250°C. After the sintering, the specimens were submit for tests of technological characterization like: water absorption, linear shrinkage, apparently porosity, density and flexural strain at three points. The results presented in the fluorescence of x-rays showed a high-content of iron oxide on black quartzite that is why it was discarded the utilization of it in porcelain stoneware. All quartzite formulations had low water absorption achieved when synthesized at 1200°C, getting 0.1 to 0.36% without having gone through the atomization process. At the tests of flexural strain, all the quartzite had in acceptance limits, according to the European norm EN 100, overcoming 27 MPA at 1200°C

  13. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  14. Protein structure similarity from principle component correlation analysis

    Directory of Open Access Journals (Sweden)

    Chou James

    2006-01-01

    Full Text Available Abstract Background Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. Results We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. Conclusion The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum

  15. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    International Nuclear Information System (INIS)

    Babelot, Carole

    2013-01-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO 4 ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO 4 (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C. Structural

  16. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, Carole

    2013-07-01

    . Structural and morphological characteristics (using X-ray diffraction (XRD) and scanning electron microscope (SEM)) combined with physical and thermal properties of samples (using thermogravimetry, differential scanning calorimetry (TG-DSC) and dilatometry) are realized in order to study the behavior of monazite-type powder and pellets. The access to short-range-order spectroscopy (time resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS)) permits to understand the structure of ceramic waste forms at the molecular level. La-monazite matrices being doped with Eu (III) (as a non-radioactive chemical homologue for Am (III)) and Cm (III), TRLFS is used to explore the local structural environment of Eu and Cm within the monazite crystal structure. Eu (III) and Cm (III) are substituted on the La site of LaPO{sub 4}. The single site of Cm (III) is found in four slightly different environments which is assumed to be due to a difference in the four La sites within a LaPO4 unit cell. Structural parameters of the Eu (III) species were also analyzed by EXAFS. The nearest neighbors of Eu (III) are modeled as 9.5 oxygen atoms (N{sub O1} = 4 at r(EuO1) = 2.37 Aa, N{sub O2} = 4 at r(Eu-O2) = 2.53 Aa, and N{sub O3} = 1.5 at r(Eu-O3) = 2.83 Aa). An essential parameter that describes the stability of the host phases is their dissolution rate obtained under conditions of relevance for final repositories. In this context, a set-up is developed and tested on crushed pellets. Normalized weight losses of lanthanumphosphates and europium-doped lanthanum-phosphates, measured in acidic media at 90 C, are interpreted and compared against the previous findings from the literature. The normalized dissolution rate for La and Eu within (La, Eu)PO{sub 4} is between 1.10{sup -5} and 1.10{sup -4} g.m{sup -2}.d{sup -1}, whereas the rate of Na, Cs and Sr in phosphate glass at room temperature in deionized water is about 1.10{sup -2} g.m{sup -2}.d{sup -1}. Another

  17. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Science.gov (United States)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  18. XPS studies of ceramics with pyrochlore structure for radioactive wastes disposal

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Vukchevich, L.; Ivanov, K.E.; Utkin, I.O; Teterin, A. Yu.; Maslakov, K.I.; Yudintseva, T.S.; Yudintsev, S.V.; Stefanovsky, S.V.; Lapina, M.I. . E-mail address of corresponding author: vukas@rc.pmf.cg.ac.yu; Vukchevich, L.)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) study of ceramics CaThSn 2 O 7 and CaThZr 2 O 7 with pyrochlore structure used as matrixes for the disposal of long lived high level radioactive wastes was done. On the basis of the XPS parameters of the core and outer electrons in the binding energy range 0 - 1000 eV the oxidation states of the included metals were determined, quantitative elemental and ionic analysis was carried out and a conclusion on the monophaseness of the studied samples was drawn. The obtained data agree with the X-ray diffraction and scanning electron microscopy results. (author)

  19. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    , the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction

  20. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    Science.gov (United States)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  1. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  2. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    Science.gov (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  3. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics.

    Science.gov (United States)

    Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin

    2017-01-01

    The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Non-structural Components influencing Hospital Disaster Preparedness in Malaysia

    Science.gov (United States)

    Samsuddin, N. M.; Takim, R.; Nawawi, A. H.; Rosman, M. R.; SyedAlwee, S. N. A.

    2018-04-01

    Hospital disaster preparedness refers to measures taken by the hospital’s stakeholders to prepare, reduce the effects of disaster and ensure effective coordination during incident response. Among the measures, non-structural components (i.e., medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are critical towards hospital disaster preparedness. Nevertheless, over the past few years these components are badly affected due to various types of disasters. Hence, the objective of this paper is to investigate the non-structural components influencing hospital’s disaster preparedness. Cross-sectional survey was conducted among thirty-one (31) Malaysian hospital’s employees. A total of 6 main constructs with 107 non-structural components were analysed and ranked by using SPSS and Relative Importance Index (RII). The results revealed that 6 main constructs (i.e. medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are rated as ‘very critical’ by the respondents. Among others, availability of medical laboratory equipment and supplies for diagnostic and equipment was ranked first. The results could serve as indicators for the public hospitals to improve its disaster preparedness in terms of planning, organising, knowledge training, equipment, exercising, evaluating and corrective actions through non-structural components.

  5. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  6. Crystal structure and ferroelectric properties of Ca(Cu3−xMx)Ti4O12 (M = Fe and Ni) ceramics

    International Nuclear Information System (INIS)

    Moriyama, Tohru; Kan, Akinori; Ogawa, Hirotaka

    2013-01-01

    Highlights: ► M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized. ► The influence of M substitution for Cu on crystal structure and ferroelectric properties of CCMTO ceramics were investigated. ► Analysis of CCMTO ceramics revealed the single phase of CCMTO ceramics belongs to I23 non-centrosymmetric space group of I23. ► As a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. -- Abstract: M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized and the influence of M substitutions for Cu on the crystal structure and ferroelectric properties of CCMTO ceramics were investigated in this study. From the variations in the lattice parameters of CCMTO ceramics, the solubility limit of Ni substitution for Cu in CaCu 3−x Ni x Ti 4 O 12 (CCNTO) ceramics was x = 0.2, whereas that of CaCu 3−x Fe x Ti 4 O 12 (CCFTO) ceramics was x = 0.05. The crystal structural analysis of CCMTO ceramics revealed that the single phase of CCMTO ceramics belongs to the I23 non-centrosymmetric space group of I23; as a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. The ferroelectric behavior of CCMTO ceramics by the M substitutions for Cu may be related to the displacement of a Ti 4+ cation in the TiO 6 octahedra and tilting of the Ti–O–Ti angle because of the non-centrosymmetric space group

  7. Analysis of a ceramic filled bio-plastic composite sandwich structure

    International Nuclear Information System (INIS)

    Habib Ullah, M.; Islam, M. T.

    2013-01-01

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz

  8. Analysis of a ceramic filled bio-plastic composite sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Habib Ullah, M. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia); Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 (Malaysia); Islam, M. T. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia)

    2013-11-25

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz.

  9. Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics

    Science.gov (United States)

    Jindal, Shilpi; Devi, Sheela; Batoo, Khalid Mujasam; Kumar, Gagan; Vasishth, Ajay

    2018-05-01

    The copper substituted tungsten bronze ceramics with generic formula Ba5CaCuXTi2-xNb8O30(x = 0.0, 0.02, 0.04, 0.06 and 0.08) were successfully synthesized for the first time by solid state reaction method. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were utilized to examine the different structural parameters and elemental compositions. XRD study depicted the single phase tetragonal structure having space group P4bm. The crystallite size was observed to be in the range 14.4-30.23 nm. The coexistent of ferroelectricity and magnetism was established by P-E and M-H measurements. The P-E loop study indicated an increase in the coercive field (11.805-23.736 kVcm-1) while the M-H study depicted adecrease in the magnetization (7.65 × 10-4-5.32 × 10-4 emu/g) with the incorporation of Cu2+ ions. Raman spectrum depicted that there is shift in the position of Raman modes with the substitution of copper which revealed one-mode behavior in the synthesized ceramics.

  10. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  11. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  12. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    Science.gov (United States)

    Tian, Ye; Shao, Gang; Wang, Xingwei; An, Linan

    2013-09-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications.

  13. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    International Nuclear Information System (INIS)

    Tian, Ye; Wang, Xingwei; Shao, Gang; An, Linan

    2013-01-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications. (paper)

  14. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  15. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.

    Science.gov (United States)

    Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun

    2016-10-15

    Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (Mg

  16. NASA/CARES dual-use ceramic technology spinoff applications

    Science.gov (United States)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  17. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  18. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Perez, A.S.; Le Bars, N.; Giancarli, L.; Proust, E.; Salavy, J.F.

    1994-01-01

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  19. Automatic capability to store and retrieve component data and to calculate structural integrity of these components

    International Nuclear Information System (INIS)

    McKinnis, C.J.; Toor, P.M.

    1985-01-01

    In structural analysis, assimilation of material, geometry, and service history input parameters is very cumbersome. Quite often with changing service history and revised material properties and geometry, an analysis has to be repeated. To overcome the above mentioned difficulties, a computer program was developed to provide the capability to establish a computerized library of all material, geometry, and service history parameters for components. The program also has the capability to calculate the structural integrity based on the Arrhenius type equations, including the probability calculations. This unique combination of computerized input information storage and automated analysis procedure assures consistency, efficiency, and accuracy when the hardware integrity has to be reassessed

  20. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  1. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state to the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.

  2. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  3. Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics

    International Nuclear Information System (INIS)

    Da-Wei, Wang; De-Qing, Zhang; Quan-Liang, Zhao; Hong-Mei, Liu; Zhi-Ying, Wang; Mao-Sheng, Cao; Jie, Yuan

    2009-01-01

    A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb 1–3x/2 Nd x Zr 0.52 Ti 0.48 O 3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate after the reaction of zirconium nitrate with tetrabutyl titanate in the ethylene glycol system for preparing PNZT with an exact fraction of titanium content. It has been observed that the dopant of excess Nd ions can effectively improve the sintered densification and activity of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric properties of the PNZT ceramics are remarkably enhanced as compared with those of monolithic lead zirconate titanate (PZT). Especially, the supreme values of piezoelectric constant (d 33 ) and dielectric constant ( element of ) for the PNZT are both about two times that of the monolithic PZT and moreover, the remnant polarization (P r ) also increases by 30%. According to the analysis of the structures and properties, we attribute the improvement in electrical properties to the lead vacancies caused by the doping of Nd ions

  4. Structural properties of a bone-ceramic composite as a promising material in spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, I. A., E-mail: IKirilova@mail.ru; Sadovoy, M. A.; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru; Taranov, O. S. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation); Klinkov, S. V.; Kosarev, V. F. [Christianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk (Russian Federation); Shatskaya, S. S. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk (Russian Federation)

    2015-11-17

    The paper describes the results of in vitro tests of composite bone-ceramic implants and procedures for modifying implant surfaces to enhance osteogenesis. Analysis of CBCI ESs demonstrated that they have a porous structure with the mean longitudinal pore size of 70 µm and the mean transverse pore size of 46 µm; surface pores are open, while inner pores are closed. Elemental analysis of the CBCI surface demonstrates that CBCIs are composed of aluminum and zirconium oxides and contain HA inclusions. Profilometry of the CBCI ES surface revealed the following deviations: the maximum deviation of the profile in the sample center is 15 µm and 16 µm on the periphery, while the arithmetical mean and mean square deviations of the profile are 2.65 and 3.4 µm, respectively. In addition, CBCI biodegradation products were pre-examined; a 0.9% NaCl solution was used as a comparison group. Potentially toxic and tissue accumulated elements, such as cadmium, cobalt, mercury, and lead, are present only in trace amounts and have no statistically significant differences with the comparison group, which precludes their potential toxic effects on the macroorganism. Ceramic-based CBCI may be effective and useful in medicine for restoration of the anatomic integrity and functions of the bone tissue.

  5. Fabrication of unglazed ceramic tile using dense structured sago waste and clay composite

    International Nuclear Information System (INIS)

    Aripin; S Tani; S Mitsudo; T Saito; T Idehara

    2010-01-01

    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting this waste into a useful material is possible. In the present study, physical properties of dense structured sago waste and clay composite were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of ash (obtained from the sago waste) and clay was characterized. The prepared sample was sintered at the temperature range from 800 to 1,200 °C using electric furnace. The density, linear shrinkage and water absorption of the sintered sample were determined by using the Archimedes' method. The experimental result indicated that the density of the sintered sample increased with increasing sintering temperature up to 1100°C and then slightly decreased afterward. The water absorption of the products decreased with an increase in sintering temperature. In the sintered sample at 1,100 °C, the water absorption decreased rapidly and water adsorption of less than 1 % was achieved. This water absorption was less than 5 % which was needed for unglazed floor tile. The result of water adsorption suggest that it is possible to use this sample as a raw material for producing the ceramic floor tile. (author)

  6. Structural evaluation of safety class components to natural phenomena loadings

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1989-01-01

    This paper addresses the efforts completed at the US Department of Energy Hanford Site near Richland, Washington, to qualify structurally a number of existing safety class components in the Plutonium Finishing Plant complex. Design, fabrication, and installation of the facility occurred in the 1950s and 1960s and were based on the Uniform Building Code criteria for wind and earthquake loads. Recently the buildings were qualified to site-specific wind and seismic hazards. The methodology employed to qualify seismically the safety class components is discussed

  7. INFLUENCE OF STRUCTURE COMPONENTS ON MACHINE TOOL ACCURACY

    Directory of Open Access Journals (Sweden)

    ConstantinSANDU

    2017-11-01

    Full Text Available For machine tools, the accuracy of the parts of the machine tool structure (after roughing should be subject to relief and natural or artificial aging. The performance of the current accuracy of machine tools as linearity or flatness was higher than 5 μm/m. Under this value there are great difficulties. The performance of the structure of the machine tools in the manufacture of structural parts of machine tools, with a flatness accuracy that the linearity of about 2 μm/m, are significant deviations form of their half-finished. This article deals with the influence of errors of form of semifinished and machined parts on them, on their shape and especially what happens to structure machine tools when the components of the structure were assembling this.

  8. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  9. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in a assessment of the performance of these structural components, probabilistic methods. The benefits of a probabilistic approach are the clear treatment of uncertainly and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel). (authors)

  10. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in an assessment of the performance of these structural components, probabilistic methods provide an attractive alternative or supplement to more conventional deterministic methods. The benefits of a probabilistic approach are the clear treatment of uncertainty and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel)

  11. Probabilistic structural analysis methods for select space propulsion system components

    Science.gov (United States)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  12. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  14. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  15. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  16. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  17. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  18. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  19. Structural ECM components in the premetastatic and metastatic niche

    DEFF Research Database (Denmark)

    Høye, Anette M; Erler, Janine T

    2016-01-01

    The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites...... aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care....

  20. Seismic fragility analysis of structural components for HFBR facilities

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1992-01-01

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations

  1. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  2. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  3. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  4. Extraction of Independent Structural Images for Principal Component Thermography

    Directory of Open Access Journals (Sweden)

    Dmitry Gavrilov

    2018-03-01

    Full Text Available Thermography is a powerful tool for non-destructive testing of a wide range of materials. Thermography has a number of approaches differing in both experiment setup and the way the collected data are processed. Among such approaches is the Principal Component Thermography (PCT method, which is based on the statistical processing of raw thermal images collected by thermal camera. The processed images (principal components or empirical orthogonal functions form an orthonormal basis, and often look like a superposition of all possible structural features found in the object under inspection—i.e., surface heating non-uniformity, internal defects and material structure. At the same time, from practical point of view it is desirable to have images representing independent structural features. The work presented in this paper proposes an approach for separation of independent image patterns (archetypes from a set of principal component images. The approach is demonstrated in the application of inspection of composite materials as well as the non-invasive analysis of works of art.

  5. Structural Components of Lifestyle and Beyond: The Case of Hungary

    Directory of Open Access Journals (Sweden)

    Tamás Keller

    2011-06-01

    Full Text Available This paper deals with the question of when and how lifestyle and its components are important in social stratification. There is considerable consensus among scholars about the structure of the society being a consequence of hierarchical dimensions like occupation, income, or wealth. Some thirty years ago, largely based on Bourdieu’s “Distinction”, a new paradigm emerged highlighting the lifestyle components and the value-oriented cultural and material consumption in stratifi cation. The idea refl ects the empirical fi nding that inequality between social classes has largely decreased, giving priority to horizontal lifestyle differentiation instead of vertical inequality dimensions. From a theoretical viewpoint, a challenge in the approach is finding out to what extent lifestyle typology is of a non-vertical character in reality. This social determination of lifestyle is investigated for Hungary when comparing an occupation-based typology with a consumption-based one. On the one hand, results reveal that the effects of structural components on social status are stronger than those of lifestyle. On the other hand, lifestyle turns out to be less independent of social position and the top and bottom levels of the lifestyle typology are particularly predictable by structural measures.

  6. Additive manufacturing of polymer-derived ceramics

    Science.gov (United States)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  7. The XPS study of the structure of uranium-containing ceramics

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The samples of the (Ca0.5GdU0.5Zr2O7 and (Ca0.5GdU0.5(ZrTiO7 ceramics with the fluorite and pyrochlore structures used as matrixes for the long-lived high-level radioactive waste disposal were studied with the X-ray photoelectron spectroscopy method. On the basis of the X-ray photoelectron spectroscopy parameters of the outer and core electrons from the binding energy range of 0-1250 eV the oxidation states of the included metal ions were determined, the quantitative elemental and ionic analysis was done, and the orderliness (monophaseness was evaluated. The obtained data agree with the X-ray diffraction and the scanning electron microscopy results.

  8. The Alarcos settlement (Ciudad Real in the early first millennium BC: Structures and ceramics

    Directory of Open Access Journals (Sweden)

    M.ª del Rosario García Huerta

    2017-07-01

    Full Text Available The final Bronze Age and Early Iron Age of the south-western Meseta were insufficiently documented to be properly characterized until the final years of the 20th century. However, recent work at settlements such as Alarcos (Ciudad Real has obtained valuable information about the habitat structures and a large amount of well contextualized archaeological material (mainly pottery painted after firing. These are carefully-made tablewares whose decoration indicates a selective adoption of fashions and customs of Tartessian inspiration (e.g., Carambolo type and burnished-lattice ceramics as consequence of commercial exchanges. This new data is helping us achieve a better understanding of the new settlement patterns that started to appear at that time in the middle valley of the Guadiana river and shows the dynamism of the communities located there.

  9. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    Science.gov (United States)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  10. Structure, composition and function of interfaces in ceramic fibre/matrix composites

    International Nuclear Information System (INIS)

    Pippel, E.

    1993-01-01

    Improving the properties of fibre reinforced ceramics and glasses by optimizing their microstructure requires the knowledge of this structure down to the atomic level. In these materials energy-dissipative processes during fracture particularly act within an interface layer or layer system between fibre and matrix which can either be produced by fibre coating, or which develops during the processing of the composites. Examples are presented of the microstructural phenomena of such layers revealed by HVEM and HREM and complemented by microchemical information via a nanoscale EDXS equipment. The investigations are carried out on Nicalon fibres in Duran glass as well as on Tyranno, Nicalon and carbon fibres in different SiC-matrices. Finally, a process is discussed which may control the important interface parameters. (orig.)

  11. Development of expert system for structural design of FBR components

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Uno, Masayoshi; Ogawa, Hiroshi; Shimakawa, Takashi; Yoshimura, Shinobu; Yagawa, Genki.

    1995-01-01

    The characteristics of structural design processes for nuclear components can be summarized as follows : (1) Many engineers belonging to different fields are working in parallel, exchanging a huge amount of data and information. (2) A final solution is determined after a number of iterative design processes. (3) Solutions have to be examined many times based on sophisticated design codes. (4) Sophisticated calculation methods such as the finite element method are frequently utilized, and experts' knowledge on such analyses plays important roles in the design process. Taking these issues into consideration, a new expert system for structural design is developed in the present study. Here, the object-oriented data flow mechanism and the blackboard model are utilized to systematize structural design processes in a computer. An automated finite element calculation module is implemented, and experts' knowledge is stored in knowledge base. In addition, a new algorithm is employed to automatically draw the design window, which is defined as an area of permissible solutions in a design parameter space. The developed system is successfully applied to obtain the design windows of four components selected from the demonstration FBR structures. (author)

  12. Effects of air blast on power plant structures and components

    International Nuclear Information System (INIS)

    Kot, C.A.; Valentin, R.A.; McLennan, D.A.; Turula, P.

    1978-10-01

    The effects of air blast from high explosives detonation on selected power plant structures and components are investigated analytically. Relying on a synthesis of state of the art methods estimates of structural response are obtained. Similarly blast loadings are determined from compilations of experimental data reported in the literature. Plastic-yield line analysis is employed to determine the response of both concrete and steel flat walls (plates) under impulsive loading. Linear elastic theory is used to investigate the spalling of concrete walls and mode analysis methods predict the deflection of piping. The specific problems considered are: the gross deformation of reinforced concrete shield and containment structures due to blast impulse, the spalling of concrete walls, the interaction or impact of concrete debris with steel containments and liners, and the response of exposed piping to blast impulse. It is found that for sufficiently close-in detonations and/or large explosive charge weights severe damage or destruction will result. This is particularly true for structures or components directly exposed to blast impulse

  13. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    Hanley, N.E.; Banerjee, A.K.; Woods, P.B.; Perrin, J.S.; Marian, F.A.

    1992-01-01

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  14. Structure of the vault, a ubiquitous celular component.

    Science.gov (United States)

    Kong, L B; Siva, A C; Rome, L H; Stewart, P L

    1999-04-15

    The vault is a ubiquitous and highly conserved ribonucleoprotein particle of approximately 13 MDa. This particle has been shown to be upregulated in certain multidrug-resistant cancer cell lines and to share a protein component with the telomerase complex. Determination of the structure of the vault was undertaken to provide a first step towards understanding the role of this cellular component in normal metabolism and perhaps to shed some light on its role in mediating drug resistance. Over 1300 particle images were combined to calculate an approximately 31 A resolution structure of the vault. Rotational power spectra did not yield a clear symmetry peak, either because of the thin, smooth walls or inherent flexibility of the vault. Although cyclic eightfold (C8) symmetry was imposed, the resulting reconstruction may be partially cylindrically averaged about the eightfold axis. Our results reveal the vault to be a hollow, barrel-like structure with two protruding caps and an invaginated waist. Although the normal cellular function of the vault is as yet undetermined, the structure of the vault is consistent with either a role in subcellular transport, as previously suggested, or in sequestering macromolecular assemblies.

  15. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  16. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  17. The maintenance optimization of structural components in nuclear power plants

    International Nuclear Information System (INIS)

    Bryla, P.; Ardorino, F.; Aufort, P.; Jacquot, J.P.; Magne, L.; Pitner, P.; Verite, B.; Villain, B.; Monnier, B.

    1997-10-01

    An optimization process, called 'OMF-Structures', is developed by Electricite de France (EDF) in order to extend the current 'OMF' Reliability Centered Maintenance to piping structural components. The Auxiliary Feedwater System of a 900 MW French nuclear plant has been studied in order to lay the foundations of the method. This paper presents the currently proposed principles of the process. The principles of the OMF-Structures process include 'Risk-Based Inspection' concepts within an RCM process. Two main phases are identified: The purpose of the first phase is to select the risk-significant failure modes and associated elements. This phase consists of two major steps: potential consequences evaluation and reliability performance evaluation. The second phase consists of the definition of preventive maintenance programs for piping elements that are associated with risk-significant failure modes. (author)

  18. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  19. Progress In Developing an Impermeable, High Temperature Ceramic Composite for Advanced Reactor Clad And Structural Applications

    International Nuclear Information System (INIS)

    Feinroth, Herbert; Hao, Bernard; Fehrenbacher, Larry; Patterson, Mark

    2002-01-01

    Most Advanced Reactors for Energy and Space Applications require higher temperature materials for fuel cladding and core internal structures. For temperatures above 500 deg. C, metal alloys do not retain sufficient strength or long term corrosion resistance for use in either water, liquid metal or gas cooled systems. In the case of water cooled systems, such metals react exo-thermically with water during core overheating accidents, thus requiring extensive and expensive emergency systems to protect against major releases. Past efforts to apply ceramic composites (oxide, carbide or nitride based) having passive safety characteristics, good strength properties at high temperatures, and reasonable resistance to crack growth, have not been successful, either because of irradiation induced effects, or lack of impermeability to fission gases. Under a Phase 1 SBIR (Small Business Innovative Research) project sponsored by DOE's Office of Nuclear Energy, the authors have developed a new material system that may solve these problems. A hybrid tubular structure (0.6 inches in outside diameter) consisting of an inner layer of monolithic silicon carbide (SiC) and outer layers of SiC-SiC composite, bonded to the inner layer, has been fabricated in small lengths. Room temperature permeability tests demonstrate zero gas leakage at pressures up to 120 psig internal pressure. Four point flexural bending tests on these hybrid tubular specimens demonstrate a 'graceful' failure mode: i.e. - the outer composite structure sustains a failure mode under stress that is similar to the yield vs. stress characteristics of metal structures. (authors)

  20. Analysis methods for structure reliability of piping components

    International Nuclear Information System (INIS)

    Schimpfke, T.; Grebner, H.; Sievers, J.

    2004-01-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour (BMWA) GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The long-term objective of this development is to provide failure probabilities of passive components for probabilistic safety analysis of nuclear power plants. Up to now the code can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents some of the results of a benchmark analysis in the frame of the European project NURBIM (Nuclear Risk Based Inspection Methodologies for Passive Components). (orig.)

  1. Improved computation method in residual life estimation of structural components

    Directory of Open Access Journals (Sweden)

    Maksimović Stevan M.

    2013-01-01

    Full Text Available This work considers the numerical computation methods and procedures for the fatigue crack growth predicting of cracked notched structural components. Computation method is based on fatigue life prediction using the strain energy density approach. Based on the strain energy density (SED theory, a fatigue crack growth model is developed to predict the lifetime of fatigue crack growth for single or mixed mode cracks. The model is based on an equation expressed in terms of low cycle fatigue parameters. Attention is focused on crack growth analysis of structural components under variable amplitude loads. Crack growth is largely influenced by the effect of the plastic zone at the front of the crack. To obtain efficient computation model plasticity-induced crack closure phenomenon is considered during fatigue crack growth. The use of the strain energy density method is efficient for fatigue crack growth prediction under cyclic loading in damaged structural components. Strain energy density method is easy for engineering applications since it does not require any additional determination of fatigue parameters (those would need to be separately determined for fatigue crack propagation phase, and low cyclic fatigue parameters are used instead. Accurate determination of fatigue crack closure has been a complex task for years. The influence of this phenomenon can be considered by means of experimental and numerical methods. Both of these models are considered. Finite element analysis (FEA has been shown to be a powerful and useful tool1,6 to analyze crack growth and crack closure effects. Computation results are compared with available experimental results. [Projekat Ministarstva nauke Republike Srbije, br. OI 174001

  2. Method of forming a ceramic to ceramic joint

    Science.gov (United States)

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  3. Principal Component Analysis Based Measure of Structural Holes

    Science.gov (United States)

    Deng, Shiguo; Zhang, Wenqing; Yang, Huijie

    2013-02-01

    Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.

  4. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  5. Optimization of PZT ceramic IDT sensors for health monitoring of structures.

    Science.gov (United States)

    Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed

    2017-08-01

    Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  7. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  8. Magnons in one-dimensional k-component Fibonacci structures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  9. Simulation approaches to probabilistic structural design at the component level

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    In this paper, structural failure of large nuclear components is viewed as a random process with a low probability of occurrence. Therefore, a statistical interpretation of probability does not apply and statistical inferences cannot be made due to the sparcity of actual structural failure data. In such cases, analytical estimates of the failure probabilities may be obtained from stress-strength interference theory. Since the majority of real design applications are complex, numerical methods are required to obtain solutions. Monte Carlo simulation appears to be the best general numerical approach. However, meaningful applications of simulation methods suggest research activities in three categories: methods development, failure mode models development, and statistical data models development. (Auth.)

  10. Multigroup Moderation Test in Generalized Structured Component Analysis

    Directory of Open Access Journals (Sweden)

    Angga Dwi Mulyanto

    2016-05-01

    Full Text Available Generalized Structured Component Analysis (GSCA is an alternative method in structural modeling using alternating least squares. GSCA can be used for the complex analysis including multigroup. GSCA can be run with a free software called GeSCA, but in GeSCA there is no multigroup moderation test to compare the effect between groups. In this research we propose to use the T test in PLS for testing moderation Multigroup on GSCA. T test only requires sample size, estimate path coefficient, and standard error of each group that are already available on the output of GeSCA and the formula is simple so the user does not need a long time for analysis.

  11. On the structural integrity evaluation about aged components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    About one third of the nuclear power plants in Japan have been operated more than 30 years and flaws due to age-related degradation mechanisms have been detected in some components such as piping systems or core shrouds these years. Moreover, several severe earthquakes such as the Tohoku District - off the Pacific Ocean Earthquake or the Niigata-ken Chuetsu-oki Earthquake have struck some nuclear power plants in Japan recent years. Therefore, the structural integrity evaluation about nuclear installations and components considering seismic loads and aging mechanisms has become more and more important. In this study, several evaluation methods were proposed to assess the crack growth rate under the seismic loading conditions, to assess the failure conditions or the realistic failure capacities of the aged piping systems considering seismic or general loading conditions. Furthermore, analysis codes were developed considering aging mechanisms to carry out the integrity evaluation, or the failure probability evaluation which is useful in the seismic PSA evaluation. All of these assessment methods and analysis codes are being used and will be used more and more in the cross-check analyses or the safety reviews about nuclear installations and components. (author)

  12. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  13. Statistical techniques for the identification of reactor component structural vibrations

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1975-01-01

    The identification, on-line and in near real-time, of the vibration frequencies, modes and amplitudes of selected key reactor structural components and the visual monitoring of these phenomena by nuclear power plant operating staff will serve to further the safety and control philosophy of nuclear systems and lead to design optimisation. The School of Nuclear Engineering has developed a data acquisition system for vibration detection and identification. The system is interfaced with the HIFAR research reactor of the Australian Atomic Energy Commission. The reactor serves to simulate noise and vibrational phenomena which might be pertinent in power reactor situations. The data acquisition system consists of a small computer interfaced with a digital correlator and a Fourier transform unit. An incremental tape recorder is utilised as a backing store and as a means of communication with other computers. A small analogue computer and an analogue statistical analyzer can be used in the pre and post computational analysis of signals which are received from neutron and gamma detectors, thermocouples, accelerometers, hydrophones and strain gauges. Investigations carried out to date include a study of the role of local and global pressure fields due to turbulence in coolant flow and pump impeller induced perturbations on (a) control absorbers, (B) fuel element and (c) coolant external circuit and core tank structure component vibrations. (Auth.)

  14. Structural Components of Synaptic Plasticity and Memory Consolidation

    Science.gov (United States)

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  15. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Curzio, Edgar [ORNL; Radovic, Miladin [Texas A& M University; Luttrell, Claire R [ORNL

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  16. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  17. Structure, mechanical and thermal behaviour of mixtures of polyester resin and dental ceramic waste

    Science.gov (United States)

    Peña Rodríguez, G.; Martínez Maldonado, L.; Dulce Moreno, H. J.

    2016-02-01

    The tensile strength and bending strength, structure and thermal behaviour of mixtures of polyester resin (P-2000) and powders (ASTM sieve 200, dental ceramic wastes (dentals impressions, alginate and gypsum) was reported. The samples consisted of mixtures with percentage weights of 50-50%, 60-40%, 70-30%, 80-20%, 90-10%, where the resin was the majority phase, the Mekc (4% wt) was used as catalyst. The structure was studied using SEM and XRD, the thermal behaviour using DSC, TGA and DMA, while the mechanical strength was tested using standards ASTM D790 and D638. Irregular morphology and presence of small agglomerations was observed, with particle sizes between 29.63 and 38.67μm, the presence of different phases of calcium sulphate was found, and that to the increasing the concentration of the powder, the materials becomes more crystalline, increasing its density. An average service temperature of 69.15±4.60°C was found. Vickers hardness values are reported in ranges from 18.65 to 27.96. Considering the elastic modules was established that the materials become more rigid by having more powder concentration.

  18. Small recuperated ceramic microturbine demonstrator concept

    International Nuclear Information System (INIS)

    McDonald, Colin F.; Rodgers, Colin

    2008-01-01

    It has been about a decade since microturbines first entered service in the distributed generation market, and the efficiencies of these turbogenerators rated in the 30-100 kW power range have remained essentially on the order of 30%. In this time frame the cost of fuel (natural gas and oil) has increased substantially, and efforts are now underway to increase the efficiency of microturbines to 40% or higher. Various near-term means of achieving this are underway by utilizing established gas turbine technology, but now based on more complex thermodynamic cycles. A longer-term approach of improving efficiency is proposed in this paper based on the retention of the basic recuperated Brayton cycle, but now operating at significantly higher levels of turbine inlet temperature. However, in small low pressure ratio recuperated microturbines embodying radial flow turbomachinery this necessitates the use of ceramic components, including the turbine, recuperator and combustor. A development approach is proposed to design, fabricate and test a 7.5 kW ceramic microturbine demonstrator concept, which for the first time would involve the coupling of a ceramic radial flow turbine, a ceramic combustor, and a compact ceramic fixed-boundary high effectiveness recuperator. In a period of some three years, the major objectives of the proposed small ceramic microturbine R and D effort would be to establish a technology base involving thermal and stress analysis, design methodology, ceramic component fabrication techniques, and component development, these culminating in the assembly and testing to demonstrate engine structural integrity, and to verify performance. This would provide a benchmark for more confidently advancing to increased size ceramic-based turbogenerators with the potential for efficiencies of over 40%. In addition, the power size of the tested prototype could possibly emerge as a viable product, namely as a natural gas-fired turbogenerator with the capability of

  19. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing

    Science.gov (United States)

    Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.

    2017-12-01

    Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.

  20. Structural synthesis of electrical engineering complex’ control system of a plant for plastic shaping of the ceramic mixture

    Directory of Open Access Journals (Sweden)

    Galitskov Stanislav

    2017-01-01

    Full Text Available Production of ceramic bricks with the required strength imposes significant restrictions on the process control of plastic shaping of the ceramic mixture in the auger extruder. It is due to several factors. Firstly, the certain nonstationarity of rheological properties of the source raw materials necessitates the automatic task-oriented changes in combinations of such values as shear rate, ceramic mixture moisture and vacuum pressure in the vacuum chamber of the extruder. To solve this problem it is necessary to maintain a coordinated control of the relevant automatic control systems of the electrical engineering complex. The second problem is the lack of technical tools to measure the values of shear rate in the pressure head of the extruder. And finally, the third factor is a necessity for monitoring and modeling of operating steps in brick production – from shaping to finished product output, that is a necessity to assess the impact of drying and firing processes on the possibility to make bricks of specified strength. The paper considers structural synthesis of the electrical engineering complex’ control system for plastic shaping of the ceramic mixture, including the problem of coordinated control: of the vacuum pump’ electrical drive, of the solenoid valve for water dosing, of the belt feeder’ electrical drives, of the mixer and the auger, as well as the use of digital observers of technological controlled coordinates and models in further phases of brick production.

  1. Extended defects in insulating MgAl2O4 ceramic materials studied by PALS methods

    International Nuclear Information System (INIS)

    Klym, H; Ingram, A; Shpotyuk, O; Filipecki, J; Hadzaman, I

    2010-01-01

    Extended positron-trapping defects in technological modified insulating nanoporous MgAl 2 O 4 ceramics are characterized by positron annihilation lifetime spectroscopy. The results are achieved using three-component fitting procedure with arbitrary lifetimes applied to treatment of measured spectra. Within this approach, the first component in the lifetime spectra reflects microstructure specificity of the spinel structure, the second component responsible to extended defects near intergranual boundaries and the third component correspond to ortho-positronium 'pick-off' decaying in nanopores of ceramics. It is shown that in ceramics of different technological modifications the same type of positron traps prevails.

  2. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  3. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    International Nuclear Information System (INIS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5. (paper)

  4. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  5. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  6. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  7. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  8. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  9. Conceptual Design of Structural Components of a Dual Cooled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee; Kim, Jae-Yong; Yoon, Kyung-Ho

    2008-01-15

    A dual cooled fuel, featured by an internal as well as an external coolant flow passage of a fuel rod, was suggested to enable a large-scaled power-uprate of PWR plant and launched as one of the National Nuclear R and D Projects in 2007. It is necessary to make the dual cooled fuel be compatible with an OPR-1000 system to maximize the economy. Also, the structural components of the dual cooled fuel should be designed to realize their features. To this end, a conceptual design of a spacer grid, outer and center guide tubes, and top and bottom end pieces has been carried out in the project 'Development of Design Technology for Dual Cooled Fuel Structure'. For the spacer grids, it is suggested that springs and dimples are located at or near the cross points of the straps due to a considerably narrowed rod-to-rod gap. Candidate shapes of the grids were also developed and applied for domestic patents. For the outer and center guide tubes, a dual tube like a fuel rod was suggested to make the subchannel areas around the guide tubes be similar to those around the fuel rods of enlarged diameter. It was applied for the domestic patent as well. For the top and bottom end pieces, the shape and pattern have been changed from the conventional ones reflecting the fuel rods' changes. Technical issues and method of resolution for each components were listed up for a basic design works in the following years.

  10. 3D printed components with ultrasonically arranged microscale structure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  11. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Moretti, F.; Vedda, A.; Nikl, Martin; Nitsch, Karel

    2009-01-01

    Roč. 21, č. 15 (2009), 155103/1-155103/7 ISSN 0953-8984 R&D Projects: GA AV ČR IAA200100626 Institutional research plan: CEZ:AV0Z10100521 Keywords : Na-Gd metaphosphate glass * glass -ceramics * NaGd(PO 3 ) 4 * optical properties * structural properties * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  12. Classification of structural component and degradation mechanisms for containment systems

    International Nuclear Information System (INIS)

    Judge, R.C.B.

    1994-01-01

    UK licence requirements for operation of nuclear power plants is dependent, inter alia, upon the licensee making and implementing adequate arrangements for the regular and systematic examination, inspection, maintenance and testing of all plant which may affect safety (Licence Condition 28). Similarly, the US NRC's Maintenance Rule (published in 10CFR50.65) specifies that a maintenance programme should be developed for plant systems, structures and components determined to be sensitive to ageing which will be used for the balance of the current (and, if relevant, extended) operating licence period. Against this background, the plant operators are seeking to minimise operating and maintenance costs and to enhance plant availability. This leads to a need to optimise the plant inspection and monitoring regimes whilst meeting regulatory requirements. In this paper, a conceptual framework for classifying civil structures and significant ageing mechanisms is described. This provides a systematic approach to making quantitative assessments of the likelihood and of potential degradation mechanisms and forms a consistent framework and a logical basis for prioritising inspection and maintenance schedules. The proposed method is analogous to a fault tree assessment, in which the likelihood of degradation due to a specific mechanism is considered as an event. The structures are considered in terms of their subcomponents. For each subcomponent, the value assigned to the likelihood of degradation is progressively reduced by a sequence of factors which make allowance for the structural and safety significance of any degradation and for the potential for timely detection of any degradation. Illustrative values for these factors are quoted in the text; it is recommended that these values are reviewed following a trial application of the method. (author)

  13. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  14. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  15. Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Vidhi [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Ghosh, S.K., E-mail: saritghosh@gmail.com [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Hussain, Ali [School of Advanced Materials Engineering, Changwon National University, Gyeong-Nam, 641-773 (Korea, Republic of); Rout, S.K., E-mail: skrout@bitmesra.ac.in [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India)

    2016-07-25

    Lead free niobium modified piezoelectric ceramics Bi{sub 0.5}Na{sub 0.25}K{sub 0.25}Nb{sub x}Ti{sub 1-x}O{sub 3} (BNKT) (x = 0.0, 0.015 and 0.025) compositions along with their structural and opto-electrical properties are investigated. At room temperature Rietveld refinement analysis on x-ray diffraction data revealed the evidence of tetragonal (P4mm) + cubic (Pm3m) mixed phases at 0.015Nb-BNKT composition and at higher niobium concentration it moves towards cubic phase. Presence of local disorder controls the Raman active vibrational modes along with excitation and emission spectra in these materials. The temperature dependence dielectric constant is investigated in the frequency range of 1 kHz–100 kHz. The broadening of dielectric peak and frequency dependence behavior indicated a relaxor property in these materials. Induced A-site vacancies and coexistence of tetragonal-pseudocubic phases lower the depolarization temperature (T{sub d}) with niobium concentration. The structural mix phases have been correlated with the piezoelectric coefficients and the composition x = 0.015 depicts the better piezoelectric properties amongst the studied compositions which is endorsed to the mixed symmetry of tetragonal and cubic phases. - Highlights: • Coexistence of polar and non-polar phases in Nb doped BNKT materials. • Structural instability and lattice disorder controls the opto-electrical properties. • Broadening and shifting of dielectric peaks highlighted the relaxor behavior. • High value of ferroelectric and piezoelectric coefficients at x = 0.015 composition.

  16. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    Science.gov (United States)

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  17. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  18. Recognizing genes and other components of genomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Burks, C. (Los Alamos National Lab., NM (USA)); Myers, E. (Arizona Univ., Tucson, AZ (USA). Dept. of Computer Science); Stormo, G.D. (Colorado Univ., Boulder, CO (USA). Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  19. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  20. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  1. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  2. Study of the influence of volume fraction of ceramic inclusions in NiCr-TiC composite with columnar structure on its mechanical behavior

    Science.gov (United States)

    Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.

    2017-12-01

    Metal-ceramic materials are characterized by high mechanical and tribological properties. The surface treatment of the composite by an electron beam in inert gas plasma leads to a qualitative and quantitative change in its microstructure as well as to a change in mechanical properties of the components: a columnar structure forms in the modified layer. Different treatment regimes result in different concentrations of inclusions in the surface layer. In this paper, the effect of the volume concentration of inclusions on the integral mechanical properties of a dispersion-strengthened NiCr-TiC composite is studied on the basis of 3D numerical simulation. The results of computer simulation show that the change in concentration significantly affects the integral mechanical characteristics of the composite material as well as the nature of the nucleation and development of damages in it.

  3. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  4. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C. S. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Hung, C.-M.; Anthoninappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Ting, Y.; Peng, Y.-T. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2013-09-28

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.90}Ca{sub 0.10})FeO{sub 2.95} (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  5. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, A., E-mail: arvinda@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ambashta, R.D., E-mail: aritu@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ajithkumar, T. [Applied Catalysis Unit, National Chemical Laboratory, Pune 411008 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Wattal, P.K. [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and ({sup 31}P and {sup 23}Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, {sup 31}P NMR does not detect any major modifications in the network structure. However, the {sup 23}Na NMR spectra indicate migration of Na{sup +} ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  6. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  7. Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2016-05-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  8. Use of residues proceeding from marbles and granites finishing and manufacturing processes as raw material for structural ceramic

    International Nuclear Information System (INIS)

    Mello, Roberta Monteiro de

    2006-01-01

    In order to decrease environmental impact, caused by mud discarding and clay extraction in the ceramic industry, it was used residual mud from marble and granite companies for structural ceramic. Samples were collected in twelve different marble companies located at the metropolitan region of Sao Paulo. However, only four samples were selected, based on its different characteristics. Clay stone was the raw material chosen to prepare the structural ceramic, considering its high use in this segment. Samples and clay stone were both analysed by the following procedures: granulometric analysis, x-rays fluorescent chemical analysis and x-rays diffraction mineralogical analysis, besides, tests in the samples were conducted following NBR 10004 standards. Once raw materials were characterized, the plasticity test was conducted. Test specimen were molded with different levels of mud, then burned and submitted to technological tests, such as: mechanical resistance, water absorption, porosity, specific gravity and retraction, material dilation before burning process and scanning electron microscopy. The final results have shown the viability of using this kind of mud, and pointed some advantages on its usage, but taking in consideration some previous conditions to be adopted. (author)

  9. Role of valence state of vanadium ions on structural and spectroscopic properties of sodium lead bismuth silicate glass ceramics

    Science.gov (United States)

    Rao, M. V. Sambasiva; Tirupataiah, Ch.; Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, D. Krishna

    2018-04-01

    Glass ceramics with composition 10Na2O- 30PbO-10Bi2O3-(50-x)SiO2: xV2O5 (0 ≤ x ≤ 5) were synthesized by melt quenching and heat treatment method. XRD and SEM studies have indicated that the samples contain well defined and randomly distributed grains of different crystalline phases. Optical absorption spectra of these samples exhibited two absorption bands at 629 and 835 nm which are the characteristics of V4+ ions. The EPR spectra of these samples have exhibited well resolved hyperfine structure consisting of sixteen-eight parallel and eight perpendicular lines with a raise in their intensity with an increase in the content of V2O5 up to 3 mol% indicates the increase of redox ratio V4+/V5+ in the glass ceramic matrix.

  10. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  11. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Tropp, R.

    1993-01-01

    In both nuclear and non-nuclear areas of power plants, sections of structures, parts of systems and components are attached to walls and floors by means of anchor plates with bolts, anchor sleeves and bolts and through bolts arranged either in groups or individually. In order to simplify the determination of the transfered vibrations induced by external events (e.g. earthquake, aircraft crash), it is normally assumed that the nodal point between component and concrete possesses rigid body characteristics and the building structure (walls, floors) is also inflexible in the anchorage area. In the course of the parametric studies performed, the nonlinear effects on the anchorage area of a component (in this case an anchor plate and concrete slab) were calculated and the effect of these on the actual vibration behavior and the local structural responses of the building structure at the place of installation of heavy components were investigated. The investigations performed reveal that by taking into account the local behaviour in the anchoring point, it is possible to reduce the dynamic response considerably. More detailed examination of the influence of additional parameters (especially of the geometry of the anchor plates and anchor bolts and their material characteristics) will require further investigations aimed at establishing the characteristics of typical anchor plates. (orig.)

  12. Structural and dielectric properties of four - layer Aurivillius - type Ba0.25Sr0.75Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Goyal, Parveen K.; Khokhar, Anita; Sreenivas, K.

    2013-01-01

    In the present study, a barium strontium bismuth titanate (Ba 0.25 Sr 0.75 Bi 4 Ti 4 O 15 , BSBT) ceramic composition has been prepared by conventional solid-state reaction. In order to study the structure of as synthesized BSBT ceramics, the X-ray powder diffraction (XRD), Raman and FTIR studies have been carried out on the powdered sample. X-ray diffraction analysis confirms the formation of a single phase four-layer Aurivillius-type ceramics that crystallizes in an orthorhombic structure with A2 1 am space group. The dielectric properties of the ceramics have been studied in the temperature range 30 - 600℃ temperature range at various frequencies (100 Hz to 1 MHz). A sharp dielectric anomaly was observed at ∼ 485℃ at all the frequencies corresponding to the ferroelectric to paraelectric phase transition. The ferroelectric behavior is confirmed from the Curie-Weiss law fitting of the dielectric data. (author)

  13. Advanced ceramic composite for high energy resistors : Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new, new, conductive, bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor

  14. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  15. Influence of preparation technique of ceramic superconductors on structure, mechanical and electrical properties

    International Nuclear Information System (INIS)

    Tomandl, G.; Kohl, R.

    1991-01-01

    Sol-Gel-like preparation techniques using citrate-, citrate/ethylenglycol- as well as ethylhexanoate precursors and the addition of fluorine were tested with regard to homogeneity and properties of HTSC-ceramics. A few single- and polycrystalline materials were coated with YBaCuOxide- and Bi Sr Ca Cu Oxide-films using ethylhexanoate-precursors. Interdiffusion reactions were investigated affecting the electrical properties. The best results in YBaCuOxide system were obtained using polycrystalline magnesia and silver as substrate materials. Bulk ceramics with a high degree of orientation were fabricated by reaction sintering and simultaneous external pressure. (orig.) With 44 refs., 6 tabs., 81 figs [de

  16. Studies and mechanical properties of a new type of 'hybrid' ceramic block for buildings in structural masonry

    International Nuclear Information System (INIS)

    Camara, Cassio Freire; Gomes, Uilame Umbelino

    2012-01-01

    This paper presents the development of a hybrid ceramic block to the use of resides in the buildings executed with structural masonry. This work seeking new materials and / or products with the purpose of increasing the compressive strength of the ceramic blocks, without neglecting other properties (water absorption and linear shrinkage). After the obtained material (clay powder and crushed), the packaging (in percentages ranging from 0%, 5%, 10% and 15% substitution of crushed clay powder), the identification and measuring (weights and lengths) of the bodies of the test piece, was performed on the approach characterized by fluorescence, mineralogy and SEM of these materials as well as the characterization (SEM) of ceramic blocks after the sintering (temperature of the 900 deg C, 1000 deg C, and 1100 deg C rate with heating tax of 5 o C/minute and soak for 1 hour). Then the samples were subjected to the tests (compressive strength and water absorption) and the respective calculated linear shrinkage. After conducting the analysis of the results of these tests (according to the criteria and parameters required by the ABNT NBR 15270) was found that the 'hybrid' block with the addition of 10% crushed powder obtained the best results, increasing the compressive strength at 16 % without compromising the other parameters required by the Standard. (author)

  17. Synthesis, structural characterization of nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent

    Directory of Open Access Journals (Sweden)

    R.S. Raveendra

    2014-12-01

    Full Text Available Nanocrystalline meta-zinc titanate (ZnTiO3 ceramic was prepared using a self-propagating solution combustion synthesis (SCS for the first time using urea as fuel. The product was calcined at 800 °C for 2 h to improve the crystallinity. Powder X-ray diffraction (PXRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDAX, high resolution transmission electron microscopy (HR-TEM and UV–vis absorption spectroscopy were used to characterize the final product. PXRD results show that the ilmenite type rhombohedral structure was formed when the sample was calcined at 800 °C for 2 h. Adsorption experiments were performed with cationic malachite green (MG dye. ∼96% dye was adsorbed onto nanocrystalline ZnTiO3 ceramic at pH 9 for 30 min of the contact time. The optimum adsorbent dose was found to be 0.45 g/L of dye. Langmuir–Hinshelwood model was used to study adsorption kinetics and first order kinetic model best describes the MG adsorption on ZnTiO3. Antibacterial activity was investigated against gram negative Klebsiella aerogenes, Pseudomonas desmolyticum, Escherichia coli, and gram positive Staphylococcus aureus bacteria by agar well diffusion method. Nanocrystalline ZnTiO3 ceramic showed significant effect on all the four bacterial strains at the concentration of 1000 and 1500 μg per well.

  18. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  19. Study of potentiality of raw material of Crato/CE for use in structural ceramics - part I - technological characterization; Estudo da potencialidade da materia-prima do Crato/CE para utilizacao em ceramica estrutural - parte I - caracterizacao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.C.S.; Santos, G.M.; Saldanha, K.M.; Sales Junior, J.C.C.; Nascimento, R.M.; Paskocimas, C.A., E-mail: jean@ufrnet.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal RN (Brazil)

    2011-07-01

    The limitation of information on chemical, mineralogical and thermal characteristics of raw material used in process of manufacture of ceramic products in the region of Cariri, specifically the city of Crato, state of Ceara, motivated the development of this work, since this region ceramics exist that in a general context they appear as important productive chains in the state. The characteristics were evaluated by tests of limit of liquidity, limit of plasticity, index of plasticity, but also by chemical analysis for fluorescence of rays X, analysis of phases for diffraction of rays X, and thermal analysis (thermogratimetric analysis). The results showed that the raw material has excellent size distribution and characteristics acceptable to the processing of structural components of dark color the red, requiring a mixture of clay with coarse less plastic which granulation, that functions as reducer of plasticity. (author)

  20. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  1. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  2. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  3. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  4. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  5. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, Kulathuiyer; van de Velde, G.M.H.; de Vries, K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow

  6. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  7. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  8. Extended defects in insulating MgAl{sub 2}O{sub 4} ceramic materials studied by PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Ingram, A; Shpotyuk, O; Filipecki, J; Hadzaman, I, E-mail: klymha@yahoo.com, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Extended positron-trapping defects in technological modified insulating nanoporous MgAl{sub 2}O{sub 4} ceramics are characterized by positron annihilation lifetime spectroscopy. The results are achieved using three-component fitting procedure with arbitrary lifetimes applied to treatment of measured spectra. Within this approach, the first component in the lifetime spectra reflects microstructure specificity of the spinel structure, the second component responsible to extended defects near intergranual boundaries and the third component correspond to ortho-positronium 'pick-off' decaying in nanopores of ceramics. It is shown that in ceramics of different technological modifications the same type of positron traps prevails.

  9. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  10. Preparation, Structure, and Dielectric and Magnetic Properties of SrFe2/3W1/3O3 Ceramics

    Science.gov (United States)

    Pavlenko, A. V.; Turik, A. V.; Shilkina, L. A.; Kubrin, S. P.; Rusalev, Yu. V.; Reznichenko, L. A.; Andryushina, I. N.

    2018-03-01

    Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150-210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.

  11. Economic security and its components in agro business structures

    OpenAIRE

    MUZYKA T.P.

    2011-01-01

    The place and role of economic security of new organization agro business in the national security system, proposed to form the system of economic security agro businesses, which would include public and private components.

  12. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  13. ON THE HISTORY AND RECENT APPLICATIONS OF HYPERFREE ENERGY DESCRIBING THERMODYNAMICS OF MOBILE COMPONENTS IN PARTLY OPEN CERAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    David Sedmidubsky

    2017-07-01

    Full Text Available Nonstoichiometric oxides form a new chapter in tailored materials. Founding and construction of thermodynamic functions related to solid (geologic materials is traced showing interactions between Czech Professor F. Wald and Russians R.S. Kurnakov and D.S. Korzhinskiy in the early definition of phases and characterization of partly open systems. Development of thermodynamic concepts regarding solid-state description is reviewed. For the associated definition of a mobile component the hyperfree energy was invented and recently applied on several systems. A novel term plutability is put forward as a measure of material susceptibility towards free component uptake as a result of varying predictors such as temperature, pressure and activity. Ehrenfest-like equations involving the changes of plutabilities were derived.

  14. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    Science.gov (United States)

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  15. Hydrothermal degradation of tetragonal ZrO{sub 2} ceramic components used in dental applications; Efeito da degradacao em meio aquoso de componentes ceramicos a base de ZrO{sub 2} tetragonal para uso odontologico

    Energy Technology Data Exchange (ETDEWEB)

    Mukaeda, L.E.; Robin, A.; Taguchi, S.P. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais; Santos, C. [ProtMat Materiais Avancados, Guaratingueta, SP (Brazil)

    2009-07-01

    With the evolution of the dental restoration techniques, a considerable growth in the demand of ceramic products occurred. These materials present good strength associated to reliability. In this work, micrometric and nanometric scale tetragonal ZrO{sub 2} blocks were sintered at 1500 deg C-2h and 1350 deg C-2h, respectively, ground and polished. Ceramics with relative density higher than 98% were obtained. The specimens were immersed in hot water (150 deg C), for times ranging from 10h to 30h. The mass variation of the samples was measured and the crystalline phases present before and after the degradation tests were identified by X-ray diffractometry, in order to evaluate the capacity of these ceramics in resisting to aqueous medium exposure. Materials with nanometric structure present higher resistance to degradation than those with micrometric scale, and this interferes in structural stability after the test, and reduces the martensitic transformation. (author)

  16. The structure and piezoelectric properties of (Ca1-xSrx)Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Zheng Liaoying; Li Guorong; Zhang Wangzhong; Chen, Daren; Yin Qinrui

    2003-01-01

    In this paper, the structure and piezoelectric properties of (Ca 1-x Sr x )Bi 4 Ti 4 O 15 ceramics (x=0-1.0) are investigated. The formation of single orthorhombic phase is verified by XRD. The dependence of dielectric and piezoelectric properties on x is also determined. The results show that the excellent properties could be found in the composition of x=0.4. In that composition, d 33 =14.9, T C =677 deg. C and the DC resistivity is decuplely higher than that of BST (SrBi 4 Ti 4 O 15 ) and CBT (CaBi 4 Ti 4 O 15 )

  17. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Tropp, R.

    1989-01-01

    In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated

  18. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  19. The component structure of conformal supergravity invariants in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm (Germany); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-24

    In the recent paper https://arxiv.org/abs/1606.02921, the two invariant actions for 6D N=(1,0) conformal supergravity were constructed in superspace, corresponding to the supersymmetrization of C{sup 3} and C◻C. In this paper, we provide the translation from superspace to the component formulation of superconformal tensor calculus, and we give the full component actions of these two invariants. As a second application, we build the component form for the supersymmetric F◻F action coupled to conformal supergravity. Exploiting the fact that the N=(2,0) Weyl multiplet has a consistent truncation to N=(1,0), we then verify that there is indeed only a single N=(2,0) conformal supergravity invariant and reconstruct most of its bosonic terms by uplifting a certain linear combination of N=(1,0) invariants.

  20. Structural integrity testing of glass-ceramic/molybdenum vacuum tube frames

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    In this study, vacuum tube subassemblies made of glass-ceramic insulators sealed to inner and outer molybdenum frames were loaded in compression to failure with a tensile test machine. Several factors were varied in processing these subassemblies. These factors included etching and nonetching of molybdenum piece parts, annealing and nonannealing of subassemblies, and vapor and non-vapor honing of insulators after sealing. After failure, the subassemblies were examined for fracture patterns. In most cases, fracture started at points near the lower portion of the inner sleeve-insulator interface. More load was carried by subassemblies having molybdenum piece parts that were acid etched. No difference appeared between the strength of subassemblies having annealed and nonannealed glass-ceramic insulators. Parts with vapor-honed insulators failed at substantially lower loads

  1. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  2. Diamond machining of micro-optical components and structures

    Science.gov (United States)

    Gläbe, Ralf; Riemer, Oltmann

    2010-05-01

    Diamond machining originates from the 1950s to 1970s in the USA. This technology was originally designed for machining of metal optics at macroscopic dimensions with so far unreached tolerances. During the following decades the machine tools, the monocrystalline diamond cutting tools, the workpiece materials and the machining processes advanced to even higher precision and flexibility. For this reason also the fabrication of small functional components like micro optics at a large spectrum of geometries became technologically and economically feasible. Today, several kinds of fast tool machining and multi axis machining operations can be applied for diamond machining of micro optical components as well as diffractive optical elements. These parts can either be machined directly as single or individual component or as mold insert for mass production by plastic replication. Examples are multi lens arrays, micro mirror arrays and fiber coupling lenses. This paper will give an overview about the potentials and limits of the current diamond machining technology with respect to micro optical components.

  3. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    Science.gov (United States)

    2012-05-01

    metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large

  4. Structural Contribution to the Ferroelectric Fatigue in Lead Zirconate Titanate (PZT) Ceramics

    OpenAIRE

    Hinterstein , Manuel; Rouquette , Jerome; Haines , J; Papet , Ph; Glaum , Julia; Knapp , Michael; Eckert , J; Hoffman , M

    2014-01-01

    International audience; Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less i...

  5. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2012-09-15

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li{sub 2}CO{sub 3} was added in excess to (Na{sub 0.49}K{sub 0.45}Li{sub 0.06})NbO{sub 3}, and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li{sub 2}CO{sub 3} were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li{sub 2}CO{sub 3}, and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li{sub 2}CO{sub 3}, the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  6. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung

    2012-01-01

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li 2 CO 3 was added in excess to (Na 0.49 K 0.45 Li 0.06 )NbO 3 , and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li 2 CO 3 were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li 2 CO 3 , and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li 2 CO 3 , the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  7. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Alexandre H., E-mail: alehp1@yahoo.com.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Souza, Flavio L., E-mail: fleandro.ufabc@gmail.com [Centro de Ciencias Naturais e Humanas, UFABC - Universidade Federal do ABC, Santo Andre 09210-170, SP (Brazil); Longo, Elson, E-mail: elson@iq.unesp.br [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP - Sao Paulo State University, Rua Francisco Degni, CP 355, Araraquara 14801-907, SP (Brazil); Leite, Edson R., E-mail: derl@power.ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Camargo, Emerson R., E-mail: camargo@ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil)

    2011-10-17

    Highlights: {yields} Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. {yields} Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. {yields} SEM images showed powders partially sintered with particles of approximately 54 nm. {yields} Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb{sub 0.80}Pr{sub 0.20}TiO{sub 3}) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  8. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    International Nuclear Information System (INIS)

    Pinto, Alexandre H.; Souza, Flavio L.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2011-01-01

    Highlights: → Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. → Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. → SEM images showed powders partially sintered with particles of approximately 54 nm. → Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb 0.80 Pr 0.20 TiO 3 ) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  9. Oxygen stoichiometry, superconductivity and structure of the Bi-2212 ceramics after thermal treatment in the inert atmosphere

    International Nuclear Information System (INIS)

    Bratukhin, P.V.; Aksenova, T.D.; Shavkin, S.V.; Komarov, A.O.; Voronkov, S.A.; Mozhaev, A.P.

    1993-01-01

    A complex study of the stoichiometry and superconducting properties has been performed as well as an X-ray structure analysis of Bi 1.6 Pb 0.4 Sr 2 Ca 1 Cu 2 O x ceramic samples after thermal treatment in the helium atmosphere. Annealing has been found to result in the reduction of the oxygen coefficient followed by the critical temperature rise and the decrease of the unit cell parameters which sharply distinguishes Bi2212 from Y123. Anisotropic widening of diffraction lines due to monoclinic distortions has been detected. Correlations between the monoclinic angle and the critical temperature have been disclosed. Structural changes in Bi2122 are 30-100 times smaller than in the Y123 structure under similar changes in T c

  10. Characterization and evaluation of ceramic properties of clay used in structural ceramics; Caracterizacao e propriedades ceramicas de argilas usadas em ceramica vermelha no estado do Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Savazzini-Reis, A., E-mail: alessandrar@ifes.edu.br [Instituto Federal do Espirito Santo (IFES), Colatina, ES (Brazil); Della-Sagrillo, V.P. [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil); Valenzuela-Diaz, F.R. [Universidade de Sao Paulo (PMT/EP/USP), SP (Brazil)

    2016-07-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  11. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts.

    Science.gov (United States)

    Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko

    2017-08-01

    Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.

  12. Ceramic technology for advanced heat engines project: Semiannual progress report, October 1986-March 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains four subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, and (4) Joining. Ceramic research conducted within the Monolithics subelement currently includes work activities on green state ceramic fabrication, characterization, and densification and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon carbide and oxide-based composites, which, in addition to the work activities cited for Monolithics, include fiber synthesis and characterization. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-base coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong stable joints between zirconia ceramics and iron-base alloys. A major objective of the research in the Materials and Processing project element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide US companies with new or improved ways for producing economical highly reliable ceramic components for advanced heat engines.

  13. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  14. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Science.gov (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  15. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  16. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    Science.gov (United States)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  17. Development of Structural Core Components for Breeder Reactors

    International Nuclear Information System (INIS)

    Saibaba, N.

    2013-01-01

    Core structural materials: • The desire is to have only fuel in the core, structural material form 25% of the total core: – To support and to retain the fuel in position; – Provide necessary ducts to make coolant flow through & transfer/remove heat. • For 500 MWe FBR with Oxide fuel (Peak Linear Power 450 W/cm), total fuel pins required in the core are of the order 39277 pins (both inner & outer core Fuel SA); • Considering 217 pins/Fuel SA there are 181 Fuel SA wrapper tubes • These structural materials see hostile core with max temperature and neutron flux

  18. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  19. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  20. Analytical static structure factor for a two-component system ...

    Indian Academy of Sciences (India)

    Marwan Al-Raeei

    2018-03-29

    Mar 29, 2018 ... be useful in studying biomolecular fluids and other soft matter fluids. Keywords. Ornstein–Zernike ... partial structure factor; isothermal compressibility; soft matter. PACS No. 05.20.Jj. 1. ..... computing. Users need to have ...

  1. Probabilistic structural analysis of aerospace components using NESSUS

    Science.gov (United States)

    Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.

    1988-01-01

    Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.

  2. Structure and microwave dielectric characteristics of (Sr1−xCax)Nd2Al2O7 ceramics

    International Nuclear Information System (INIS)

    Yi, Lei; Liu, Xiao Qiang; Li, Lei; Chen, Xiang Ming

    2014-01-01

    (Sr 1−x Ca x )Nd 2 Al 2 O 7 (x = 0, 0.1, 0.3, 0.5) ceramics were synthesized by a standard solid state reaction method. Their microwave dielectric properties were investigated together with the structural evolution. X-ray diffraction analysis indicated that Ruddlesden–Popper solid solutions with n = 2 were obtained for all the compositions investigated here. Ca-substitution significantly improved the densification behavior which was associated with the variation of ε r . More importantly, with increasing the content of Ca, τ f value was generally improved towards near-zero, and the significantly improved Qf value was obtained at x = 0.5. The stacking fault and distorted lattice fringe in the ceramics were confirmed by TEM observation, and these defects were deeply concerned with the microwave dielectric loss. The best combination of microwave dielectric characteristics was achieved for the composition of x = 0.5: ε r  = 21.1, Qf = 68,200 GHz and τ f  = −0.5 ppm/°C. - Highlights: • The formation of solid solutions with partial Ca substitution for Sr improved the sintering behavior of SrNd 2 Al 2 O 7 ceramics. • Stacking fault and distorted lattice fringe were confirmed by transmission electron microscopy. • The variation of Qf value was associated with the stacking fault and distorted lattice fringe

  3. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  4. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  5. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  6. Topographical characteristics and principal component structure of the hypnagogic EEG.

    Science.gov (United States)

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  7. Structure analysis of active components of traditional Chinese medicines

    DEFF Research Database (Denmark)

    Zhang, Wei; Sun, Qinglei; Liu, Jianhua

    2013-01-01

    Traditional Chinese Medicines (TCMs) have been widely used for healing of different health problems for thousands of years. They have been used as therapeutic, complementary and alternative medicines. TCMs usually consist of dozens to hundreds of various compounds, which are extracted from raw...... herbal sources by aqueous or alcoholic solvents. Therefore, it is difficult to correlate the pharmaceutical effect to a specific lead compound in the TCMs. A detailed analysis of various components in TCMs has been a great challenge for modern analytical techniques in recent decades. In this chapter...

  8. Structural materials for ITER in-vessel component design

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Gauster, W. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Matera, R. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Tavassoli, A.-A.F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Rowcliffe, A. [Oak Ridge National Lab., TN (United States); Fabritsiev, S. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kawamura, H. [JAERI, IMTR Project, Ibaraki (Japan). Blanket Irradiation Lab.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m{sup 2} in the basic performance phase (BPP)) within a temperature range from 20 to 300 C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350 C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. (orig.).

  9. Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Danilo Sergi

    2016-01-01

    Full Text Available This study uses the lattice Boltzmann method (LBM to simulate in 2D the capillary infiltration into porous structures obtained from the packing of particles. The experimental problem motivating the work is the densification of carbon preforms by reactive melt infiltration. The aim is to determine the optimization principles for the manufacturing of high-performance ceramics. Simulations are performed for packings with varying structural properties. The results suggest that the observed slow infiltrations can be ascribed to interface dynamics. Pinning represents the primary factor retarding fluid penetration. The mechanism responsible for this phenomenon is analyzed in detail. When surface growth is allowed, it is found that the phenomenon of pinning becomes stronger. Systems trying to reproduce typical experimental conditions are also investigated. It turns out that the standard for accurate simulations is challenging. The primary obstacle to overcome for enhanced accuracy seems to be the over-occurrence of pinning.

  10. Influence of beryllium ceramics nano-structuring by iron atoms on increase of their stability to ionizing radiations effect; Vliyanie nanostrukturirovaniya berillievykh keramik atomami zheleza na povyshenie ikh ustojchivosti k vozdejstviyu ioniziruyushchikh izluchenij

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Bitenbaev, M I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan)

    2007-07-01

    In the work a new results on beryllium ceramics nano-structuring effect by iron oxide atoms on radiation defects quantum yield value G in these materials and defects depth constants in ionizing radiation fields k are presented. Experimental data under dependence of G and k values from concentration of iron atoms in beryllium ceramic matrix are presented. It is shown, that structure modification of beryllium ceramics by feedings on the iron base leads to sharp decrease (almost in 30 times) of radiation defects quantum yield value, i.e. to increase of these ceramics stability enhancement to ionizing radiation effect.

  11. Structural analysis of ceramic blocks sealing or structural incorporated with the industrial laundry sludge; Anllise estrutural de blocos ceramicos de vedacao ou estruturais incorporados com lodo de lavanderia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.H.S.; Grippe, V.Y.Q.; Goulart, J.V., E-mail: phsoal@yahoo.com.br [Universidade Federal de Mato Grosso (UFMT), MT (Brazil)

    2016-07-01

    Industrial and commercial development of recent decades has led to an increase in waste generation. Thus, it is necessary to develop alternative and effective methods of treatment, replacing the simple disposal of these wastes in landfills. The objective of this work is to study the incorporation of textile industrial laundries sludge in ceramic blocks sealing or structural. Samples of ceramic blocks were produced using formulation with 20% sludge, the mass of ceramic clay. Structural analysis of the block was observed the tendency of most empty emergence (pores) during the firing of the blocks, as textile sludge was added in the ceramic paste composition. The mechanical testing of blocks compressive strength was above the minimum 3.0 MPa specified by the standard limit. The physical test water absorption of the blocks was within the range 8 to 22% specified by the standard. (author)

  12. Structural, electric and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics obtained by co-precipitation route

    Directory of Open Access Journals (Sweden)

    Mohamed Afqir

    2018-03-01

    Full Text Available This paper presents a study of the structure and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics prepared by co-precipitation route and sintered at 850 °C. The materials were examined using XRD and FTIR methods. XRD data indicated the formation of well crystallized structure of the pure and doped SrBi2Nb2O9, without the presence of undesirable phases. FTIR spectra do not bring a significant shift in the band positions. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined through the frequency range [50 kHz–1 MHz]. In particular, the dielectric constant (ε′ and dielectric losses (tan δ of the SrBi2Nb2O9 and SrBi1.6Eu0.4Nb2O9 ceramics were measured as a function of temperature at various frequencies.

  13. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    Science.gov (United States)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  14. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Feng Hongjun; Hou Jungang; Qu Yuanfang; Shan Dan; Yao Guohua

    2012-01-01

    Highlights: ► Rare-earth doped barium zirconate titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. ► Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. ► The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere. - Abstract: Rare-earth doped barium zirconium titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data and the lattice parameters were refined by the Rietveld method. It is found that, integrating with the lattice parameters and the distortion of crystal lattice, there is an alternation of substitution preference of cerium ions for the host cations in perovskite lattice. Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed. High values of dielectric tunability are obtained for cerium doped BZT. Especially, the experimental results on the effect of the contents of rare-earth addition on the resistivity of BZT ceramics were investigated, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere.

  15. Restorative Glass : Reversible, discreet restoration using structural glass components

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; van Hees, R.P.J.; Nijsse, R.; Veer, F.A.; Henk, Schellen; van Schijndel, Jos

    2016-01-01

    The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and

  16. The art of the technology: construction of structures by domed ceramic with industrial systems

    Directory of Open Access Journals (Sweden)

    J. Trias de Bes

    2016-12-01

    Full Text Available The reconciliation between traditional construction and new technologies encourage the development of a new catalonian vaulted through prefabrication technology of reinforced concrete in which it is incorporated in the construction process a ceramic fabric. The example of a prototype house with this system is shown. The article presents two fundamental considerations: a Expose the influence of the imagery of traditional techniques as motivation and activation of technological construction processes, and b confront System Vs. Skill as a constructive belonging to the Technical and Technology, respectively. In this sense, the article concludes by highlighting that humanism is involved between both as a determinant factor in the architectural design process.

  17. Investigations on Structural, Mechanical, and Dielectric Properties of PVDF/Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Anshuman Srivastava

    2015-01-01

    Full Text Available Polymer ceramic composites are widely used for embedded capacitor application. In the present work PVDF has been used as a matrix and CCTO and LaCCTO have been used as reinforcement. Extrusion process has been used for the synthesis of composites. X-ray diffraction (XRD patterns confirm the formation of single phase CCTO, and LaCCTO in its pure as well as composite state. It is found that La doping in CCTO considerably increases the dielectric constant and reduces the dielectric loss. A similar trend is observed in the composites with the increasing content of CCTO and LaCCTO.

  18. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  19. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  20. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeonghwan [Department of Environmental Engineering, INHA University, Nam-gu, Yonghyun-dong 253, Incheon 402-751 (Korea, Republic of); Van der Bruggen, Bart, E-mail: bart.vanderbruggen@cit.kuleuven.b [K.U. Leuven, Department of Chemical Engineering, Laboratory for Applied Physical Chemistry and Environmental Technology, W. de Croylaan 46, B-3001 Leuven (Belgium)

    2010-07-15

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  1. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2015-09-01

    Full Text Available Polycrystalline La-doped BaTiO3 (Ba(1-xLax\tTiO3 [x=0,0.0005,0.001,0.003] ceramics (denoted as BTO,BLT1,BLT2,BLT3 were synthesized by conventional solid-state reaction method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Raman spectroscopy. XRD and Raman spectra revealed single-phase tetragonal perovskite crystalline structure. Well-saturated polarization–electric field (P–E hysteresis loops were observed with the measurement frequency of 50 Hz at room temperature and confirmed ferroelectric nature of these ceramics and a high recoverable electrical energy storage density of 0.350 J/cm3 with energy efficiency (n∼9%, which is useful in energy storage capacitor applications. Dielectric studies revealed anomalies around 415–420 K and near the Curie temperature. The latter is attributed to the ferroelectric to paraelectric phase transition. Better dielectric performances were obtained for La-doped samples sintered at 1350°C for 4 h. Grain growth is inhibited with lanthanum (La incorporation into the BTO lattice. Room temperature semiconducting behavior with positive temperature coefficient of resistivity (PTCR behavior at TC is attributed to electron compensation mechanism.

  2. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    International Nuclear Information System (INIS)

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-01-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  3. Scaling strength distributions in quasi-brittle materials from micro-to macro-scales: A computational approach to modeling Nature-inspired structural ceramics

    International Nuclear Information System (INIS)

    Genet, Martin; Couegnat, Guillaume; Tomsia, Antoni P.; Ritchie, Robert O.

    2014-01-01

    This paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales. (authors)

  4. Identification of equilibrium and irradiation-induced defects in nuclear ceramics: electronic structure calculations of defect properties and positron annihilation characteristics

    International Nuclear Information System (INIS)

    Wiktor, Julia

    2015-01-01

    During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO 2 ). (author) [fr

  5. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  6. Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications

    Czech Academy of Sciences Publication Activity Database

    Ferraris, M.; Casalegno, V.; Rizzo, S.; Salvo, M.; Van Staveren, T.O.; Matějíček, Jiří

    2012-01-01

    Roč. 429, 1-3 (2012), s. 166-172 ISSN 0022-3115 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : glass-ceramic * joining * SiC composites * fusion materials Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.211, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022311512002668

  7. Full information estimations of a system of simultaneous equations with error component structure

    OpenAIRE

    Balestra, Pietro; Krishnakumar, Jaya

    1987-01-01

    In this paper we develop full information methods for estimating the parameters of a system of simultaneous equations with error component struc-ture and establish relationships between the various structural estimat

  8. Restorative glass: reversible, discreet restoration using structural glass components

    Directory of Open Access Journals (Sweden)

    Faidra Oikonomopoulou

    2017-12-01

    Full Text Available The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and aesthetical integrity. Concurrently, the material’s unique mechanical properties enable the structural consolidation of the monument. As a proof of concept, the restoration of Lichtenberg Castle is proposed. Solid cast glass units are suggested to complete the missing parts, in respect to the existing construction technique and aesthetics of the original masonry. Aiming for a reversible system, the glass units are interlocking, ensuring the overall stability without necessitating permanent, adhesive connections. This results in an elegant and reversible intervention.

  9. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  10. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  11. Modelling of nonlinear behaviour of metallic structure components

    OpenAIRE

    Mirkovic, J.

    2004-01-01

    Engineering has seen an increase in the use of computer simulations over experiments, in order to save time and reduce costs. The improvement of simulation tools continues with the objective of decreasing the difference between the results of numerical simulations and structural response in real mechanical processes. This study was focused on the improvement of simulation tools that will be used in aerospace crashworthiness, with the common type of problem defined as h...

  12. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  13. Electronic structure of Pr doped into superconducting Bi-Pb-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Egorov, A.I.; Karazhanova, G.I.; Smirnov, Yu.P.; Sovestnov, A.E.; Tyunis, A.V.; Shaburov, V.A.

    1992-07-01

    The shift of K α 1 and K β 1 X-ray lines of Pr in HTS-ceramic Bi 1.7 Pb 0.3 Sr 2-x Pr x Ca 2 Cu 3 O y (0,10≤x≤0,50, refer to PrF 3 ) are measured experimentally. The valence m(x), the charge q(x) and the 4f(x)-, 5d(x)-levels population of Pr are determined from experimental shifts. It is found that the Pr valence is near 3; the small valence increasing m≅3,04 at x=0,1 is observed. The small of Pr 5d-electron localization in ceramics in comparison with PrF 3 is revealed (∼0,1-0,2 5d-electron per Pr-atom). The probable cause of the superconductivity suppression in Y 1-x Pr xB a 2 Cu 3 O 7-δ system is discussed. 26 refs.; 6 figs.; 1 tab

  14. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  15. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    International Nuclear Information System (INIS)

    Samantaray, S.; Mishra, D.K.; Pradhan, S.K.; Mishra, P.; Sekhar, B.R.; Behera, Debdhyan; Rout, P.P.; Das, S.K.; Sahu, D.R.; Roul, B.K.

    2013-01-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO 3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO 3 . Room temperature dielectric constant (ε r ) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO 3 at room temperature as multifunctional materials. - Highlights: • Preparation of single-phasic polycrystalline GdMnO 3 sample by the solid state sintering route. • Observation of square type P–E hysteresis loop with higher saturation and remnant polarization. • Observation of antiferromagnetic behavior at 40 K in polycrystalline GdMnO 3 . • Possibility of room temperature application of GdMnO 3 as multifunctional material

  16. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel

    Science.gov (United States)

    Maghami, M.; Sadrameli, S. M.; Shamloo, M.

    2018-02-01

    Biodiesel is an environmental friendly alternative liquid transportation fuel that can be used in diesel engines without major modifications. The scope of this research work is to produce biodiesel from waste fish oil and its purification from the byproducts using a ceramic membrane. Transesterification of waste fish oil was applied for the biodiesel production using methanol in the presence of KOH as a catalyst. Effect of catalyst weight percent, temperature and methanol to oil molar ratio (MR) on the biodiesel yield have been studied and the results show that highest methyl ester yield of 79.2% has been obtained at 60 °C, MR: 6 and 1% KOH. The produced biodiesel purified by a ceramic membrane. Membrane flux and glycerin removal at different operating conditions such as temperature, trans-membrane pressures and cross flow velocities have been measured. Glycerin purity by membrane method is 99.97% by weight at the optimum condition. The highest membrane flux occurred at 50 °C temperature, 1 bar pressure and 3 m/s velocity.

  17. Correlation between structural, electrical and magnetic properties of GdMnO{sub 3} bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, S. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, D.K. [Department of Physics, Institute of Technical Education and Research, S ‘O’ A University, Bhubaneswar 751030, Odisha (India); Pradhan, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, P.; Sekhar, B.R. [Institue of Physics, Sachivalaya Marg, Bhubaneswar, Odisha (India); Behera, Debdhyan [Advanced Materials Technology Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha (India); Rout, P.P.; Das, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Sahu, D.R. [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Roul, B.K., E-mail: ims@iopb.res.in [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India)

    2013-08-15

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO{sub 3} (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO{sub 3}. Room temperature dielectric constant (ε{sub r}) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO{sub 3} at room temperature as multifunctional materials. - Highlights: • Preparation of single-phasic polycrystalline GdMnO{sub 3} sample by the solid state sintering route. • Observation of square type P–E hysteresis loop with higher saturation and remnant polarization. • Observation of antiferromagnetic behavior at 40 K in polycrystalline GdMnO{sub 3}. • Possibility of room temperature application of GdMnO{sub 3} as multifunctional material.

  18. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  19. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  20. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  1. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    Science.gov (United States)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  2. Liability and lifetime of metallic components and structures

    International Nuclear Information System (INIS)

    Tanguy, B.

    2009-12-01

    In this overview of his research activity, the author describes the ductile damage process in structures subjected to high rate loadings, notably for tank steels and gas pipeline high resistance steels. Then, he describes the cleavage fracture process in bainitic steels by means of a local fracture approach. He proposes a modelling of the Charpy v-notch impact test of the resilience-to-toughness transition during the ductile-brittle transition for bainitic steels, the developed method being used to interpret resilience and toughness tests performed on an irradiated material. He finally discusses these works, describes the current ones, and discusses research perspectives within his Nuclear Material Department

  3. A Novel, Demountable Structural Glass System Out of Dry-Assembly, Interlocking Cast Glass Components

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; Jacobs, Erwin; Frigo, G.; Veer, F.A.; Nijsse, R.; Louter, Christian; Bos, Freek; Belis, Jan; Veer, Fred; Nijsse, Rob

    Cast glass components are a promising solution for engineering pure glass structures of high transparency and load-carrying capacity due to their large cross-sectional area and monolithic nature. Currently, the few realized structures employing cast glass components rely either on a steel

  4. Laser synthesis of nanostructured ceramics from liquid precursors

    International Nuclear Information System (INIS)

    Wilden, Johannes; Fischer, Georg

    2007-01-01

    The free-form net shape laser synthesis of nanostructured ceramics from liquid precursors enables a residual stress-free production of high temperature resistant ceramic units and components for the use in microsystem engineering. Due to the use of molecular compounded liquid, ceramic precursors the resulting ceramic components show outstanding properties, for example high purity and a nanostructured material design. The use of pulsed lasers enables a defined input of energy required to pyrolyse the precursor material into a crystalline ceramic, so the active volume can be reduced significantly compared to other processes, for example pyrolysis by furnace. In this paper several methods for a further minimization of the active volume are presented. The investigations determined different factors affecting the process. Realizing selective experiments allows a determination of their influencing level and the definition of a working area to produce three-dimensional components with high aspect ratio. By several studies, e.g., scanning electron microscopy, transmission electron microscopy as well as X-ray diffraction analysis, the atomic structure and composition of the created components were analyzed and valued, so the different reaction processes can be described extensively

  5. Structural relaxation in the magnetically treated glass ceramic Bi1.8Pb0.2Sr2CaCu2Ox

    International Nuclear Information System (INIS)

    Alekseenko, V.I.; Volkova, G.K.; Konstanminova, T.E.; Nosolev, I.K.; Popova, I.B.

    1994-01-01

    Structure relaxation in Bi 1.8 Pb 0.2 Sr 2 CaCu 2 O x amorphous glass ceramics after the treatment using weak pulse magnetic field is studied using microindentation, X-ray structure analysis and inner friction techniques. Structure relaxation after substance treatment using pulse magnetic field is detected to occur at room temperature and to result in its strengthening (increase of microhardness-H v ) and in reduction of inner microstress level.9 refs., 4 figs

  6. Evaluation of solid waste and plastic clay mixtures for structural ceramic use; Avaliacao de misturas de residuo solido com argila plastica para aplicacao em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Neli Iloni Warpechowski da [Fundacao de Ciencia e Tecnologia (CIENTEC), Porto Alegre, RS (Brazil); Belo, Pedro [Ceramics Representacoes Comerciais Ltda, Porto Alegre, RS (Brazil)

    1996-07-01

    This work aims to verify the behaviour of the organic solid waste added by 10%, 15% and 20% in mixture in a plastic clay. It intends to emphasize the influence of the waste in the mixture. Technology tests have been carried out in the clay and mixtures to obtain possible uses in the structural ceramics. (author) 1 ref., 4 figs., 2 tabs.

  7. Electronic and structural properties of micro-and nanometre-sized crystalline copper monoxide ceramics investigated by positron annihilation

    International Nuclear Information System (INIS)

    Druzhkov, A.P.; Gizhevskii, B.A.; Arbuzov, V.L.; Shalnov, K.V.; Naumov, S.V.; Perminov, D.A.; Kozlov, E.A.

    2002-01-01

    Electronic and structural properties of copper monoxide (CuO) sintered as a common ceramic and nanoceramic are studied by positron annihilation spectroscopy. A CuO nanoceramic with crystallite size ranging from 15 to 90 nm was prepared from a common one by shock-wave loading. It is found that the momentum distribution of valence electrons in CuO is shifted, as compared with metallic copper, towards higher momentum values. This result is related to the effect of the Cu 3d-O 2p hybridization in the Cu-O ionic covalent bond formation. It is found that open volumes, identified mainly as small agglomerates of oxygen vacancies, appear at the nanoceramic crystallite interfaces. The degree of the Cu-O bond covalency decreases locally at the crystallite interfaces because of an oxygen deficit. The nanocrystalline state in CuO is shown to be thermally stable up to 700 K. (author)

  8. Structural characterization of advanced ceramics using the neutron diffractometer developed by Instituto de Pesquisas Energeticas e Nucleares (IPEN)

    International Nuclear Information System (INIS)

    Parente, C.B.R.; Mazzocchi, V.L.

    1999-01-01

    Application of neutron diffractometer at the Instituto de Pesquisas Energeticas Nucleares, Sao Paulo, Brazil, in the structural investigations of advanced ceramics was presented. Methodology of the analysis of neutron diffraction patterns was tested with BaLiF 3 single crystals and also doped with Ni 2+ or Pb 2+ ions. The same methodology was used to investigate the HTSC phases in the system Bi-Sr-Ca-Cu-O. The system Bi 1.7 Pb 0.3 Sr 2 Ca 2.2 Cu 3.5 O 10.6 was also investigated. Addition of Pb 2+ ions increased the fraction of high-T c phase 2223. Symmetry in neutron multiple diffraction patterns, obtained for aluminium single crystal, was elaborated. Crystal lattice parameter for aluminium single crystal was determined at different temperatures using neutron multiple diffraction. (author)

  9. Electronic and structural properties of micro-and nanometre-sized crystalline copper monoxide ceramics investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P. [Institute of Metal Physics, Ural Branch Russian Academy of Sciences, Ekaterinburg (Russian Federation)]. E-mail: druzhkov@imp.uran.ru; Gizhevskii, B.A.; Arbuzov, V.L.; Shalnov, K.V.; Naumov, S.V.; Perminov, D.A. [Institute of Metal Physics, Ural Branch Russian Academy of Sciences, Ekaterinburg (Russian Federation); Kozlov, E.A. [All-Russian R and D Institute of Technical Physics, Snezhinsk (Russian Federation)

    2002-09-02

    Electronic and structural properties of copper monoxide (CuO) sintered as a common ceramic and nanoceramic are studied by positron annihilation spectroscopy. A CuO nanoceramic with crystallite size ranging from 15 to 90 nm was prepared from a common one by shock-wave loading. It is found that the momentum distribution of valence electrons in CuO is shifted, as compared with metallic copper, towards higher momentum values. This result is related to the effect of the Cu 3d-O 2p hybridization in the Cu-O ionic covalent bond formation. It is found that open volumes, identified mainly as small agglomerates of oxygen vacancies, appear at the nanoceramic crystallite interfaces. The degree of the Cu-O bond covalency decreases locally at the crystallite interfaces because of an oxygen deficit. The nanocrystalline state in CuO is shown to be thermally stable up to 700 K. (author)

  10. Development on methods for evaluating structure reliability of piping components

    International Nuclear Information System (INIS)

    Schimpfke, T.; Grebner, H.; Peschke, J.; Sievers, J.

    2003-01-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour, GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The development is based on the experience achieved with applications of the public available US code PRAISE 3.10 (Piping Reliability Analysis Including Seismic Events), which was supplemented by additional features regarding the statistical evaluation and the crack orientation. PROST is designed to be more flexible to changes and supplementations. Up to now it can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents a parametric study on the influence by changing the method of stress intensity factor and limit load calculation and the statistical evaluation options on the leak probability of an exemplary pipe with postulated axial crack distribution. Furthermore the resulting leak probability of an exemplary pipe with postulated circumferential crack distribution is compared with the results of the modified PRAISE computer program. The intention of this investigation is to show trends. Therefore the resulting absolute values for probabilities should not be considered as realistic evaluations. (author)

  11. Vertical Distribution of Structural Components in Corn Stover

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2014-11-01

    Full Text Available In the United States, corn (Zea mays L. stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg−1, but with an alkalinity measure of 0.83 g MJ−1, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha−1, but it would be only 1000 L ha−1 if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  12. Vertical distribution of structural components in corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  13. Carbon glass-ceramics and their radiation resistance

    International Nuclear Information System (INIS)

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  14. Mechanical behavior analysis of small-scale modeling of ceramic block masonry structures: geometries effect

    Directory of Open Access Journals (Sweden)

    E. Rizzatti

    Full Text Available This paper presents the experimental results of a research program with ceramic block masonry under compression. Four different block geometries were investigated. Two of them had circular hollows with different net area. The third one had two rectangular hollow and the last block was with rectangular hollows and a double central webs. The prisms and walls were built with two mortar type 1:1:6 (I and 1:0,5:4 (II (proportions by volume of cement: lime: sand. One:three small scale blocks were used to test block, prisms and walls on compression. It was possible to conclude that the block with double central webs gave better results of compressive strength showing to be more efficient. The mortar didn't influenced the compressive strength of prisms and walls.

  15. DETERMINATION OF THE STRUCTURAL COMPONENTS OF LIFE COMPETENCE IN STUDENTS OF CLASSICAL UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Liudmyla Zubkova

    2016-11-01

    Full Text Available Nowadays, life competence of a person plays a very important role as it helps to solve effectively problems that every person can face in his/her life. Nevertheless, contemporary students show an unsatisfactory level of life competence, so it is very important for teachers in high education to pay attention to its formation. It was found that structural components of life competence have been researched by such scientists as M. Stepanenko, N. Nischeta, L. Scherbakova and others. However, in our opinion structural components of life competence should be generalized, so it is the purpose of our article. It is in studies revealing that there is no unified point of view of life competence structural components. In particular, scientists have distinguished such life competence structural components as 1 meta anthropologic, individual and personal, contextual, and social components (M. Stepanenko; 2 self-conception, axiological values, emotional and characterful components (V. Nischeta, 3 social, educative, communicative, and auto psychological components (L. Scherbakova. It should be noticed that the meta anthropologic component concentrates on the ability of a person to reflect individually main attributes of a human life; the individual and personal component focuses on self-identification and self-realization; the contextual component considers the ability of an individual to take real-life situations in good sense; the social component focuses on personal ability to solve real-life tasks regarding to social circumstances. The educative component of life competence includes knowledge of educational process essence and specific features of higher educational establishments. The communicative component represents knowledge about the role of communication in life success strategy. Taking into account scientists’ opinion and the author’s consideration it is concluded that the elucidation and generalization of life competence structural components

  16. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    International Nuclear Information System (INIS)

    Jones, R.H.; Lucas, G.E.

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material ''tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed

  17. Structure and transport properties of La1−x Srx MnO3 granular ceramics

    International Nuclear Information System (INIS)

    Jirák, Zdeněk; Hirschner, Jan; Kaman, Ondřej; Knížek, Karel; Levinský, Petr; Maryško, Miroslav; Hejtmánek, Jiří

    2017-01-01

    Two granular ceramics were prepared by spark plasma sintering (SPS) at 600–800 °C and classical ceramic sintering (CCS) at 900 °C using molten salt synthesized nanoparticles of the composition La 0.53 Sr 0.47 MnO 3 and  ≈40 nm size. Extensive study of the structural, magnetic, and electric transport properties showed that the SPS and CCS products essentially retain the two-phase magnetic structure of the starting nanoparticles, which consist of a ferromagnetic (FM) core and an A -type antiferromagnetic (AFM) shell. After the sintering, the AFM phase forms a 10–15 nm thick spacer between neighbouring FM granules, which represents a barrier for the transmission of spin-polarized e g carriers. This assembly retains reasonable conductivity down to the lowest temperatures, without marked localization, and it still gives rise to a large negative magnetoresistance, which is treated theoretically in terms of low- and high-field positive magnetoconductance. In a detailed analysis of these low-field magnetoconductance (LFMC) and high-field magnetoconductance (HFMC) effects, which are related to the field-induced alignment of the FM granules and spin canting in the AFM matrix, respectively, we conclude that the bulk conductivity is governed by resonant tunnelling, i.e. the second-order transmission via Mn 4+ sites in the intergranular space. The experimental data on the SPS product confirm the theoretically predicted scaling of the LFMC effect with squared reduced magnetization, and also provide also a quantitative comparison between the linear coefficient of the HFMC and the high-field paraprocess seen in the magnetization measurement. (paper)

  18. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  19. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  20. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  1. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  2. Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings

    International Nuclear Information System (INIS)

    Yao Zhongping; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2009-01-01

    The aim of this work is to investigate the effects of the cathode pulse under the low working frequency on the structure and the composition of the ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology, and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy, and energy distribution spectroscopy. The coating was mainly composed of a large amount of Al 2 TiO 5 and a little α-Al 2 O 3 and rutile TiO 2 . Increasing the cathode pulse, the amount of rutile TiO 2 was increased while the amount of Al 2 O 3 was decreased; and decreasing the cathode pulse, the amount of Al 2 O 3 was increased while the amount of rutile TiO 2 was decreased. The thickness of the coatings was increased and then decreased with the increase of the cathode pulse. The grain sizes of Al 2 TiO 5 were increased with the cathode current densities, but changed little with the cathode pulse width. The grain size of α-Al 2 O 3 was decreased with the decrease of the cathode pulse, while the grain size of TiO 2 was increased with the increase of the cathode pulse. The proper cathode pulse was helpful to reduce the roughness and to increase the density of the coatings.

  3. Determination of structural geometric parameters of industrial ceramic foams by gamma rays transmission and X-rays microtomography

    International Nuclear Information System (INIS)

    Rocha, Wilson Roberto Dejato da

    2005-01-01

    In this work, the gamma rays transmission and X-rays microtomography techniques are used for the evaluation of the porosity and the pore size distribution of SiC ceramic foams. It was also accomplished the three-dimensional images after the determination of samples geometric parameters. The geometric parameters were obtained by two-dimensional images analyses, generated by a Microfocus system, with a CCD camera, an images intensifier, a X-rays tube and an automatic system for rotation of the sample. The spatial resolution of the images was about 32 μm. In the gamma rays transmission methodology, a Nal(Tl) scintillation detector, an 241 Am (59.53 keV, 100 mCi) radioactive source and an automatic X-Z micrometric table was used. The analyzed samples had pores density of 30, 45, 60, 80 and 100 ppi (pores per inch). The gamma rays transmission technique was accurate to supply the porosity of the samples, which ranged about 90% and was in agreement with the values supplied by manufacturer of the foams. The 30 and 45 ppi samples analyzed by X-rays microtomography showed porosity results that agree with the average porosity supplied by the manufacturer. In other hand, the 60, 80 and 100 ppi samples systematically showed average porosity about 4%, lower than the average of the manufacturer. The pore size distributions found through the software IMAGO show the presence of smaller pores than those nominated by the manufacturer. The 30 ppi samples had voids inside the solid material of the ceramic foams structure. Gaussian truncated method, used in the three-dimensional reconstruction, was not able to take into the account the voids inside the solid matrix. (author)

  4. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  5. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases

    International Nuclear Information System (INIS)

    Li, Huidong; Wu, Lang; Xu, Dong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang

    2015-01-01

    In order to increase the solubility of actinides in the glass matrix, the effects of CaO, TiO 2 , and ZrSiO 4 addition (abbreviated as CTZ, in the mole ratio of 2:2:1) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass–ceramics were investigated. The results show that the samples possess both zirconolite-2M and titanite phase when the CTZ content is greater than or equal to 45 wt.%. For the glass–ceramics with 45 wt.% CTZ (CTZ-45), only zirconolite-2M phase is observed after annealing at 680–740 °C for 2 h. The CTZ-45 possess zirconolite-2M and titanite phases after annealing at 700 °C first, and then annealing at 900–1050 °C for 2 h. Furthermore, the zirconolite-2M and titanite grains show a strip and brick shape, respectively. The CTZ-45 annealing at 950 °C shows the lower normalized leaching rates of B, Na and Nd when compared to that of CTZ-0 and CTZ-55. - Highlights: • CaO, TiO 2 , ZrSiO 4 (CTZ) as nucleating agents were added to barium borosilicate glass. • The samples with 45–55 wt% CTZ possess CaZrTi 2 O 7 -2M and CaTiSiO 5 crystalline phases. • CTZ-45 (45wt% CTZ) possesses only CaZrTi 2 O 7 -2M phase after annealing at 680–740 °C. • CTZ-45 possesses CaZrTi 2 O 7 -2M and CaTiSiO 5 phases after annealing at 900–1050 °C. • CTZ-45 annealing at 950 °C shows the lower leaching rates of B, Na and Nd than CTZ-0 and CTZ-55.

  6. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  7. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  8. Dynamic interaction of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. To demonstrate the assembly technique, two examples are considered: (a) a steel structure sitting on a concrete stem and linked by a steel bridge to another concrete structure, and (b) an actual model of a nuclear power plant containment structure. (Auth.)

  9. Natural gas perspectives of diffusion on the brazilian structural ceramics industry; Perspectivas de difusao do gas natural na industria brasileira de ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, Marcelo Rousseau Valenca

    2007-03-15

    This study evaluates the perspectives of the natural gas (NG) used by the Brazilian structural ceramics industry (BSCI), according to technological, economic and environmental aspects. It identifies the advantages of using NG, as well as the barriers faced by this energy source. Considering the amount of NG required by the thermal demand of the BSCI processes and the average energy specific use of the furnaces in operation in Brazil, the total consumption of NG will be nearly 12.06 Mm{sup 3/}day. However, the existence of few technical and economical adequate conversion conditions for ceramics furnaces (4% of continuous furnaces) limits the previous potential to only 0.67 Mm{sup 3/}day. In addition, considering the geographic intersection of the ceramics production clusters with the natural gas distribution grid of the Brazilian states, the estimated potential is lowered to 0.28 Mm{sup 3/}day. Yet, the perspective of the NG diffusion in the BSCI in the medium to the long term is more positive, owning to the increasing implementation of large scale production furnaces and cogeneration systems. Also worthwhile to this positive perspective are: the improving demand for certified structural ceramic products, with more quality and value added, and the expanding investment in low income classes dwelling programs. (author)

  10. Novel Sr{sub 2}LuF{sub 7}–SiO{sub 2} nano-glass-ceramics: Structure and up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, A.C.; Castillo, J. del, E-mail: fjvargas@ull.edu.es; Luis, D.; Puentes, J.

    2016-02-15

    Novel transparent nano-glass-ceramics comprising RE-doped Sr{sub 2}LuF{sub 7} nanocrystals have been obtained by thermal treatment of precursor sol–gel glasses. The precipitated Sr{sub 2}LuF{sub 7} nanocrystals with sizes from 4.5 to 11.5 nm, confirmed by X-Ray Diffraction and Transmission Electron Microscopy images, show a cubic phase structure. The luminescent features of Eu{sup 3+} ions, used as structural probes, evidence the distribution of RE ions into the fluoride nanocrystals. Under 980 nm laser excitation, intense UV, vis and NIR up-conversion emissions were observed and studied in Yb{sup 3+}–Tm{sup 3+}, Yb{sup 3+}–Er{sup 3+} and Yb{sup 3+}–Ho{sup 3+} co-doped nano-glass-ceramics. These results suggest considering these nano-glass-ceramics for potential optical applications as high efficient UV up-conversion materials in UV solid state lasers, infrared tuneable phosphors and photonic integrated devices. - Highlights: • Novel sol-gel glass-ceramics with RE{sup 3+}-Sr{sub 2}LuF{sub 7} doped nanocrystals were obtained. • Eu{sup 3+} probe ion was used to distinguish between amorphous and crystalline environments. • The incorporation of an important fraction of RE ions into nanocrystals was confirmed. • Under 980 nm excitation, intense UV-vis-NIR up-conversion emissions were observed.

  11. Ceramic Technology Project, semiannual progress report for October 1993 through March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1994-09-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

  12. Studies on structural, electrical, thermal and magnetic properties of YFeO3 ceramic

    Science.gov (United States)

    Suthar, Lokesh; Jha, V. K.; Bhadala, Falguni; Roy, M.; Sahu, S.; Barbar, S. K.

    2017-10-01

    The polycrystalline ceramic sample of YFeO3 has been synthesized by high-temperature solid-state reaction method using high-purity oxides. The formation of the compound has been confirmed by the room temperature (RT) X-ray diffraction analysis. The refined lattice parameters obtained by Rietveld analysis are: a = 5.5907 Å, b = 7.6082 Å and c = 5.2849 Å with orthorhombic symmetry in space group Pnma. The average grain size obtained from the SEM micrograph is around 2 µm. The three-dimensional surface morphology has been investigated using atomic force microscopy (AFM), and the average roughness measured in the sampling area of 100.07 µm2 is around 142 nm. The frequency- and temperature-dependent dielectric constant has been measured. The material shows high dielectric constant value (750) at RT. The activation energy obtained from dc conductivity using Arrhenius relation σ = σ oexp(-Ea/kT) is 2.12 eV. Thermal analysis shows phase change around 625 K with minimum weight loss (i.e. 1.27% of initial weight) from RT to 1273 K. The magnetization measurement indicates soft magnetic behaviour.

  13. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Kim, H.S. [University of Newcastle, Callaghan, NSW (Australia). Faculty of Engineering & Built Environments

    2007-08-15

    Novel syntactic foams for potential building material applications were developed using starch as binder and ceramic hollow micro-spheres available as waste from coal-fired power stations. Foams of four different micro-sphere size groups were manufactured with either pre- or post-mould gelatinization process. They were of ternary system including voids with a foam density range of approximately 0.33-0.44 g/cc. Compressive failure behaviour and mechanical properties of the manufactured foams were evaluated. Not much difference in failure behaviour or in mechanical properties between the two different processes (pre- and post-mould gels) was found for a given binder content. Compressive failure of all syntactic foams was of shear on plane inclined 45 degrees to compressive loading direction. Failure surfaces of most syntactic foams were characterized by debonded micro-spheres. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified. Some formation of starch webs on failure surfaces was discussed.

  14. Studies on structural, electrical, thermal and magnetic properties of YFeO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Suthar, Lokesh; Jha, V.K.; Bhadala, Falguni; Roy, M. [M.L. Sukhadia University, Department of Physics, Udaipur, Rajasthan (India); Sahu, S. [B.N. University, Department of Physics, Udaipur, Rajasthan (India); Barbar, S.K. [J.N.V. University, Department of Physics, Jodhpur, Rajasthan (India)

    2017-10-15

    The polycrystalline ceramic sample of YFeO{sub 3} has been synthesized by high-temperature solid-state reaction method using high-purity oxides. The formation of the compound has been confirmed by the room temperature (RT) X-ray diffraction analysis. The refined lattice parameters obtained by Rietveld analysis are: a = 5.5907 Aa, b = 7.6082 Aa and c = 5.2849 Aa with orthorhombic symmetry in space group Pnma. The average grain size obtained from the SEM micrograph is around 2 μm. The three-dimensional surface morphology has been investigated using atomic force microscopy (AFM), and the average roughness measured in the sampling area of 100.07 μm{sup 2} is around 142 nm. The frequency- and temperature-dependent dielectric constant has been measured. The material shows high dielectric constant value (750) at RT. The activation energy obtained from dc conductivity using Arrhenius relation σ = σ {sub o}exp(-Ea/kT) is 2.12 eV. Thermal analysis shows phase change around 625 K with minimum weight loss (i.e. 1.27% of initial weight) from RT to 1273 K. The magnetization measurement indicates soft magnetic behaviour. (orig.)

  15. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-01-01

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 angstrom. The optical components studied range in size from approximately 50 mm x 100 mm to 400 mm x 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ''micro roughness'', ''mid-spatial scale'', and ''optical figure/curvature.'' Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically λ/100 to λ/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program

  16. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  17. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  18. Prevent recurrence of nuclear disaster (4). Future tasks in the field of structure and components

    International Nuclear Information System (INIS)

    Okamoto, Koji; Takagi, Toshiyuki; Ueda, Susumu

    2012-01-01

    Structure and components subcommittee under the special committee of seismic safety of nuclear power stations of the Atomic Energy Society of Japan discussed future activities related with technical problems of seismic design of structures, components and piping system and evaluation of seismic effects in collaboration with the Japan Society of Mechanical Engineers. These problems were arranged by 'logic of seismic safety' and tabulated just enough, and then their roadmap was prepared. This article described selected relevant problems and discussed safety margins of seismic design and their related problems, referring to state of countermeasures and evaluated results of nuclear power stations after Great East Japan Earthquake occurred in March 11, 2011. Main problems were related with seismic safety margins of structure and components, consideration of ground motion index, rationalization and upgrade of seismic design, application of new technology, integrity evaluation of structure and components after or at earthquake, and upgrade of seismic probabilistic risk assessment methodology. (T. Tanaka)

  19. A component-based open hypermedia approach to integreting structure services

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Nürnberg, Peter J.; Bucka-Lassen, Dirk

    1999-01-01

    In this paper, we consider the issue of integrating different structure services within a component-based open hypermedia system. We do so by considering the task of collaborative editing, which calls for a variety of different structures traditionally supplied by different structure services. We...... discuss the nature of collaborative editing and how it can be supported by a combination of spatial and navigational hypermedia services. We then present a component-based open hypermedia system architecture and describe various methods of integrating different structure services provided within...... such an architecture. We show the advantages of integration within a component-based framework over other means of integration, highlighting some of the main advantages of the component-based approach to open hypermedia system design and implementation....

  20. Age-Related Degradation of Nuclear Power Plant Structures and Components

    International Nuclear Information System (INIS)

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-01-01

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk

  1. Integrable couplings of the multi-component Dirac hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Li Zhu; Dong Huanhe

    2008-01-01

    Integrable couplings of the multi-component Dirac hierarchy is obtained by use of the vector loop algebra G ∼ M , then the Hamiltonian structure of the above system is given by the quadratic-form identity

  2. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  3. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  4. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  5. Residual stress improving method for reactor structural component and residual stress improving device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato

    1996-09-03

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  6. Residual stress improving method for reactor structural component and residual stress improving device therefor

    International Nuclear Information System (INIS)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato.

    1996-01-01

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  7. Rapid Manufacturing of Durable, Cost-Effective Ceramic Matrix Composites for High Temperature Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic vehicles require durable and cost-effective hot structures that do not impose weight penalties such as those associated with the use of non-structural...

  8. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  9. Structural, thermal, electrical and magnetic properties of pure and 50% La doped BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jangid, S.; Barbar, S.K.; Bala, Indu [Department of Physics, M.L. Sukhadia University, Durga Nursery Road, Udaipur, Rajasthan 313001 (India); Roy, M., E-mail: mroy1959@yahoo.co.in [Department of Physics, M.L. Sukhadia University, Durga Nursery Road, Udaipur, Rajasthan 313001 (India)

    2012-09-15

    Polycrystalline ceramic samples of pure and 50% La substituted BiFeO{sub 3} have been prepared by standard solid state reaction method using high purity oxides and carbonates. The formation of the single phase compound as well as its chemical analysis has been checked by X-ray diffraction and energy dispersive X-ray microanalysis (EDAX) techniques. A better agreement between observed and calculated X-ray powder diffraction patterns was obtained by performing the Rietveld refinement with a structural model using the non-centrosymmetric space group R3c. The lattice parameters in both the cases have been refined but the over-all structure remains the same. The microstructural studies have been carried out using scanning electron microscopy (SEM). Modulated differential scanning calorimetry (MDSC) has been used to detect the Neel/transition temperature in the compounds. The activation energies calculated from log {sigma} vs 1/T curve are 0.81 eV and 1.13 eV respectively. Vibrating sample magnetometer (VSM) has been used to study the magnetic behaviour of the compounds. It has been observed that by 50% La substitution the insulating behaviour of the material has been improved and showing the antiferromagnetic to weak ferromagnetic behaviour.

  10. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  11. Structural, dielectric and magnetic properties of Mn modified xBiFeO{sub 3}-(1−x)BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhonghua, E-mail: zhdai@mail.xjtu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Liu, Lu; Ying, Guobing; Yuan, Ming [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ren, Xiaobing [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2017-07-15

    Manganese doped xBiFeO{sub 3}-(1−x)BaTiO{sub 3}(x=0.67–0.82) ceramics were prepared by solid-state method. The structural, dielectric and magnetic properties were investigated after annealing in vacuum at 773 K. X-ray diffraction analysis indicated that all samples crystallized in pure perovskite structure. The ceramics displays a typical ferroelectric loop, with a max remnant polarization P{sub r} of 25.6 µC/cm{sup 2}. The piezoelectric coefficient d{sub 33} of Manganese doped 0.67BiFeO{sub 3}0.33BaTiO{sub 3} is 139 pC/N and its temperature dependence of dielectric constant exhibits a broad anomaly. The Manganese doped 0.75BiFeO{sub 3}0.25BaTiO{sub 3} ceramic shows ferrimagnetism at room temperature, with remnant magnetization M{sub r} of 0.31 emu/g and ferrimagnetic transition temperature T{sub N} of ~420 °C. - Highlights: • In this manuscript, a technique combined Mn doping which is able to fabricate point defects and annealing in vacuum which can stabilize the unstable ion was investigated. We studied the electrical properties of Mn doped BiFeO{sub 3}-BaTiO{sub 3} ceramics after vacuum annealing treatment at appropriate temperature. • Our result is that Mn modification and heat treatment are effective methods to solve the problem of high leakage of BiFeO{sub 3}-BaTiO{sub 3} system ceramic prepared by solid-state method. It exhibited a enhanced field-induced ferromagnetic ordering with promising potential in spintronics and recording media applications.

  12. Principal components analysis of protein structure ensembles calculated using NMR data

    International Nuclear Information System (INIS)

    Howe, Peter W.A.

    2001-01-01

    One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations

  13. Assessment of radiation fields from neutron irradiated structural components of the 40 MW research reactor CIRUS

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sharma, S.K.

    1993-01-01

    The paper summarizes the results of an assessment of the radiation fields from the long-lived neutron activation products (including the decay chain products) in the various structural components of the CIRUS reactor. Special attention is given for the analysis of neutron activation of impurity elements present in the materials of the structure. 16 refs, 4 figs, 4 tabs

  14. Effect of Ba addition on the structural, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Suchanicz J.

    2015-06-01

    Full Text Available Lead-free (Na0.5Bi0.51-xBaxTiO3 (x = 0, 0.04 and 0.06 ceramics were fabricated by conventional solid phase sintering process. X-ray diffraction analysis shows that obtained specimens possess the perovskite structure. The microstructure study shows a dense structure, in good agreement with the relative density determined by the Archimedes method (above 95 %. Electric permittivity anomaly is shifted to low temperature after Ba doping of NBT. The pyroelectric and hysteresis loops measurements show that polarization and coercive field increases and decreases, respectively, after Ba doping of NBT. The obtained results are discussed in terms of ions/lattice imperfections, which create local electromechanical fields. The investigated ceramics are considered to be promising candidates for lead-free electronic materials.

  15. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  16. Investigation of the structure and properties of (KxNa1-x)NbO3-based piezoelectric ceramics using both conventional and high-throughput experimentation (HTE) methods

    International Nuclear Information System (INIS)

    Mgbemere, Henry Ekene

    2012-01-01

    The structure and properties of (K x Na 1-x )NbO 3 lead-free piezoelectric ceramics was investigated in this work. Both the conventional mixed-oxide ceramics synthesis route and the high-throughput experimentation (HTE) approaches were employed for the synthesis. Structural characterization was carried out with synchrotron X-rays while the electrical properties were characterized with techniques (dielectric measurement, hysteresis measurements, impedance measurements etc). Both isovalent and aliovalent elements (Ta, Sb, Li) were used to dope (K x Na 1-x )NbO 3 ceramics in order to improve its piezoelectric properties and sinterability.

  17. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  18. Fabrication of ceramic components for fluidics with green machining and reaction binding of Al-containing precursor mixes - component design and testing. Final report; Fertigung von keramischen Bauteilen fuer die Fluidtechnik mit Gruenbearbeitung und Reaktionsbinden von Al-haltigen Precursormischungen - Bauteilgestaltung und Erprobung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Skirde, E.; Esders, H.; Ivantysyn, J.

    2003-03-05

    The Sauer-Danfoss project covered the testing of ceramic pistons and bushings in oil-hydraulic swash plate axial piston pumps. Both components move relative to each other while transmitting very high forces. This results in high component stresses and in high tribological loads of the contact surface. If the ceramic components can withstand both types of stress, the range of permissible operating parameters can be extended, especially the maximum speed as ceramics have a much lower specific mass than metals, which result in much lower inertial forces. In conventional systems of steel piston and metal bushing, high speed and high temperatures will result in poor lubrication and cause freezing of the piston. This is not the case with ceramics because of their great hardness, heat resistance, and chemical inertness. (orig.) [German] Das Teilprojekt von Sauer-Danfoss befasste sich mit der Erprobung keramischer Kolben und Buchsen in oelhydraulischen Schraegscheiben-Axialkolbenpumpen. Beide Bauteile (die sogenannten Leitteile) bewegen sich relativ zueinander und uebertragen dabei sehr hohe Betriebskraefte. Daraus resultieren nicht nur grosse Spannungen in den Teilen, sondern auch hohe tribologische Beanspruchungen in der Kontaktflaeche. Wenn die keramischen Bauteile beiden Beanspruchungsarten gewachsen sind, dann ist eine Ausdehnung des Bereichs erlaubter Betriebsparameter moeglich. Insbesondere ist hier die maximale Drehzahl zu nennen, da aus der im Vergleich zu metallischen Werkstoffen sehr geringen spezifischen Masse von Keramik weitaus geringere Traegheitskraefte resultieren. Bei der konventionellen Werkstoffpaarung (gehaerteter Stahlkolben-Messingbuchse) besteht ausserdem bei hohen Drehzahlen und Temperaturen wegen der damit verbundenen schlechten Schmierung die Gefahr des Festfressens. Diese ist bei keramischen Werkstoffen aufgrund der hohen Haerte, Waermebestaendigkeit und chemischen Inertheit nicht zu erwarten. (orig.)

  19. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  20. Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Balitska, V.; Brunner, M.; Hadzaman, I.; Klym, H.

    2015-01-01

    Thermally-induced electronic relaxation in structurally-modified Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics

  1. Fracture mechanics of ceramics. Vol. 7

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  2. Rotational accuracy of all-ceramic restorations on ceraone components = Liberdade rotacional de restaurações totalmente cerâmicas sobre componentes ceraone

    Directory of Open Access Journals (Sweden)

    Webster, Jacqueline

    2005-01-01

    Full Text Available Objetivo: Este estudo avaliou a desadaptação interna de sistemas cerâmicos em prótese sobre implantes em relação à liberdade rotacional das restaurações após várias cocções da porcelana. Materiais e métodos: Foram analisados três sistemas cerâmicos: Procera AllCeram, In-Ceram e CeraOne sobre análogo e intermediário CeraOne. A liberdade rotacional foi medida com um dispositivo acoplado a um relógio comparador em quatro tempos: fase de coifa, após aplicação do corpo da porcelana e glaze, e após duas queimas adicionais. Os dados foram analisados por testes de Friedman, de Kruskal-Wallis e de Wilcoxon, a = 0,01. Resultados: As médias de liberdade rotacional em graus foram: 0,08 para In-Ceram/Análogo; 1,64 para Procera/ Intermediário; 1,72 para CeraOne/Intermediário; 1,88 para CeraOne/Análogo e 1,97 para Procera/Análogo. O sistema In-Ceram sobre o análogo apresentou níveis de liberdade rotacional dez a vinte vezes menores que CeraOne e Procera. Não houve diferença entre as fases de confecção da restauração para In-Ceram. O comportamento de CeraOne e Procera foi similar, com aumento da liberdade rotacional sobre intermediário e análogo com a progressão da confecção da restauração. A liberdade rotacional sobre intermediário foi menor que sobre análogo. Conclusão: A liberdade rotacional variou em função da etapa do processo de fabricação dependendo do sistema totalmente cerâmico

  3. How simulation of failure risk can improve structural reliability - application to pressurized components and pipes

    OpenAIRE

    Cioclov, Dimitru Dragos

    2013-01-01

    Probabilistic methods for failure risk assessment are introduced, with reference to load carrying structures, such as pressure vessels (PV) and components of pipes systems. The definition of the failure risk associated with structural integrity is made in the context of the general approach to structural reliability. Sources of risk are summarily outlined with emphasis on variability and uncertainties (V&U) which might be encountered in the analysis. To highlight the problem, in its practical...

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Of the crystal chemistry of Ruddlesden-Porter type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, A.; Cormack, A.N.

    1990-01-01

    This paper reports on atomistic computer simulation employed to examine the energetics and crystal chemistry of some Ruddlesden-Popper type oxide superconductors. Similar structural patterns have been noticed in the superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is similar in many respects to that seen in the system Sr-Ti-O. However, there are some significant differences, for example, the rocksalt and perovskite blocks in the new superconducting compounds are not necessarily electrically neutral unlike in the Sr-Ti-O system and this may well lead to significant differences in their structural chemistry

  6. Progress in the characterisation of structural oxide/oxide ceramic matrix composites fabricated by electrophoretic deposition (EPD)

    Czech Academy of Sciences Publication Activity Database

    Stoll, E.; Mahr, P.; Kruger, H. G.; Kern, H.; Dlouhý, Ivo; Boccaccini, A. R.

    2006-01-01

    Roč. 8, č. 4 (2006), s. 282-285 ISSN 1438-1656 R&D Projects: GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : electorphoretic deposition * oxid/oxid ceramic matrix composites * flexural strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.402, year: 2006 http://www3.interscience.wiley.com/cgi-bin/jissue/112579545

  7. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  8. Structure and Interface Properties of Nanophase Ceramics: Multimillion Particle Molecular-Dynamics Simulations on Parallel Computer

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1997-01-01

    Large-scale molecular-dynamics (MD) simulations were performed to investigate: (1) sintering process, structural correlations, and mechanical behavior including dynamic fracture in microporous and nanophase Si3N4...

  9. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  10. Production and study of the behavior of ceramic sintering SR2ALWO5,5 to application on the oil industry

    International Nuclear Information System (INIS)

    Lima, M.M.; Ferreira, R.A. Sanguinetti; Yadava, Y.P.

    2011-01-01

    The complex perovskita ceramics based on tungsten are highly inert corrosive environments. For this reason, this type of ceramic is used in the manufacture of parts and components for the oil industry where the hostile environment is constant problem. We are working in manufacturing temperature sensors encased in ceramic to petroleum industry. Produce ceramic Sr 2 AlWO 5,5 thermo-mechanical process using a ball mill and subsequently heat treatment temperature of 1200°C for 24 hours. Studied the sintering behavior in the temperature range from 1200 to 1350 °C. In this process, the ceramic powder had a high homogeneity in terms of size and distribution of particles, which facilitates sintering at low temperature and shorter time. Structure and microstructure of calcined ceramic was analyzed by X-ray diffraction and scanning electron microscopy and presented at the congress. (author)

  11. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    Science.gov (United States)

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  12. Dynamic interactions of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. Although derivation of mass and stiffness matrices for the component-structure-soil system is a simple problem, the determination of the damping characteristics of such a system is more complex. This emphasis on the proper evaluation of system damping is warranted on the grounds that, when resonance conditions occur, the response amplitude is governed to a significant degree by the system damping. The damping information is usually available for each sub-structure separately with its based fixed or devoid of rigid-body modes of motion. The rigid-body motions are often free of damping resistance but sometimes, such as in the case of soil-structure interaction, or in the case of aerodynamic resistance, are uniquely defined. The composite damping matrix for the complete structure is hereby derived from the above-mentioned information. Thus, the damping matrix is first obtained for the free-free model of each sub-structure (the model containing the structural degrees of freedom together with rigid-body modes of motion), and then the submatrices for the free-free models are assembled to form the composite damping matrix in acccordance with an assembly technique relating the sub-structure coordinates to the global coordinates of the composite structure

  13. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1985-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design at the time of the conference will be summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, th vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  14. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1986-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design is summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, the vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  15. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  16. Growth of equilibrium structures built from a large number of distinct component types.

    Science.gov (United States)

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  17. State of the art seismic analysis for CANDU reactor structure components using condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S A; Ibraham, A M; Hodgson, S [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The reactor structure assembly seismic analysis is a relatively complex process because of the intricate geometry with many different discontinuities, and due to the hydraulic attached mass which follows the structure during its vibration. In order to simulate reasonably accurate behaviour of the reactor structure assembly, detailed finite element models are generated and used for both modal and stress analysis. Guyan reduction condensation method was used in the analysis. The attached mass, which includes the fluid mass contained in the components plus the added mass which accounts for the inertia of the surrounding fluid entrained by the accelerating structure immersed in the fluid, was calculated and attached to the vibrating structures. The masses of the attached components, supported partly or totally by the assembly which includes piping, reactivity control units, end fittings, etc. are also considered in the analysis. (author). 4 refs., 6 tabs., 4 figs.

  18. New approach to design of ceramic/polymer material compounds

    International Nuclear Information System (INIS)

    Todt, A; Nestler, D; Trautmann, M; Wagner, G

    2016-01-01

    The damage tolerance of carbon fibre-reinforced ceramic-matrix composite materials depends on their porosity and can be rather significant. Complex structures are difficult to produce. The integration of simple geometric structures of ceramic-matrix composite materials in complex polymer-based hybrid structures is a possible approach of realising those structures. These hybrid material compounds, produced in a cost-efficient way, combine the different advantages of the individual components in one hybrid material compound. In addition the individual parts can be designed to fit a specific application and the resulting forces. All these different advantages result in a significant reduction of not only the production costs and the production time, but also opens up new areas of application, such as the large-scale production of wear-resistant and chemically inert, energy dampening components for reactors or in areas of medicine. The low wettability of the ceramic component however is a disadvantage of this approach. During the course of this contribution, different C/C composite materials with a specific porosity were produced, while adjusting the resin/hardening agent-ratio, as well as the processing parameters. After the production, different penetration tests were conducted with a polymer component. The final part of the article is comprised of the microstructural analysis and the explanation of the mechanical relationships. (paper)

  19. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Scientific Computing, Memorial University of Newfoundland, St John' s, Newfoundland and Labrador A1C 5S7 (Canada); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)

    2016-03-15

    Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperature and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.

  20. Structural assessment of aerospace components using image processing algorithms and Finite Element models

    DEFF Research Database (Denmark)

    Stamatelos, Dimtrios; Kappatos, Vassilios

    2017-01-01

    Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...