WorldWideScience

Sample records for structural brain magnetic

  1. Structural Magnetic Resonance Imaging of the Adolescent Brain

    National Research Council Canada - National Science Library

    GIEDD, JAY N

    2004-01-01

    A bstract : Magnetic resonance imaging (MRI) provides accurate anatomical brain images without the use of ionizing radiation, allowing longitudinal studies of brain morphometry during adolescent development...

  2. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  3. Structural Abnormality on Brain Magnetic Resonance Imaging in Late-onset Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Hsiu-Fen Lin

    2005-09-01

    Full Text Available The purpose of this study was to examine the structural abnormalities of patients with late-onset major depressive disorder using brain magnetic resonance imaging (MRI and to assess clinical correlates of these structural abnormalities. Thirty-seven elderly patients with DSM-IV major depressive disorder that first occurred after the age of 50 years, and 18 control subjects without depression were recruited. All participants underwent comprehensive psychiatric assessment and cerebral MRI. Brain ventricular and sulcal sizes and white matter hyperintensities were assessed visually. Relative to control subjects, patients with late-life major depressive disorder showed more severe brain atrophy (p = 0.043 and white matter hyperintensities (p = 0.024, especially in the periventricular area (p = 0.012. Over 60% of the patient group had significant brain MRI hyperintensities. White matter hyperintensity was correlated with later onset of depressive illness (r = 0.49, p = 0.002 among patients. Brain atrophy and white matter hyperintensities are prevalent in patients with late-onset major depressive disorders. These two abnormalities may represent different pathophysiologic processes of depressive disorders. White matter hyperintensities may be predisposing factors for late-onset major depressive disorder.

  4. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  5. Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition.

    Science.gov (United States)

    Shy, Michael; Fung, Steve; Boone, Timothy B; Karmonik, Christof; Fletcher, Sophie G; Khavari, Rose

    2014-10-01

    Normal voiding in neurologically intact patients is triggered by the release of tonic inhibition from suprapontine centers, allowing the pontine micturition center to trigger the voiding reflex. Supraspinal mechanisms of voluntary voiding in humans are just beginning to be described via functional neuroimaging. We further elucidated brain activity processes during voiding using functional magnetic resonance imaging in normal females to gain better understanding of normal voiding as well as changes that may occur in voiding dysfunction. We screened 13 healthy premenopausal female volunteers using baseline clinic urodynamics to document normal voiding parameters. We then recorded brain activity via functional magnetic resonance imaging and simultaneous urodynamics, including the pressure flow voiding phase. After motion correction of functional magnetic resonance images we performed activation and connectivity analyses in 10 subjects. Group analysis revealed consistent activation areas, including regions for motor control (cerebellum, thalamus, caudate, lentiform nucleus, red nucleus, supplementary motor area and post-central gyrus), emotion (anterior/posterior cingulate gyrus and insula), executive function (left superior frontal gyrus) and a focal region in the pons. Connectivity analysis demonstrated strong interconnectivity of the pontine micturition center with many short-range and long-range cortical clusters. Our study is one of the first reports of brain activation centers associated with micturition initiation in normal healthy females. Results show activation of a brain network consisting of regions for motor control, executive function and emotion processing. Further studies are planned to create and validate a model of brain activity during normal voiding in women. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Brain structure in prenatal stroke: quantitative magnetic resonance imaging (MRI) analysis.

    Science.gov (United States)

    Bava, Sunita; Archibald, Sarah L; Trauner, Doris A

    2007-07-01

    Neonatal stroke outcome studies demonstrate variable findings of either relatively spared intellectual function or persistent impairments. Volumetric measurement of the brain can provide more precise data on lesion-cognition outcomes. We studied 7 children with unilateral focal lesions from prenatal stroke. Whole-brain magnetic resonance imaging scans were analyzed to produce volumes of cortical gray matter, total white matter, cerebrospinal fluid, lesion, and lesion constricted fluid, and we ascertained the relationship of morphometric variables to intellectual and clinical outcome. Children with cystic encephalomalacia plus atrophy had poorer outcomes than children with atrophy or gliosis alone. These children also demonstrated the largest lesion size, smallest gray matter volume, and greatest proportion of hyperintense white matter in the affected hemisphere. Findings suggest that the type and size of the lesion, in addition to the integrity of white matter and residual cortex, may be better predictors of intellectual functioning than either of these indices alone.

  7. Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images.

    Science.gov (United States)

    Yousefi, Siamak; Kehtarnavaz, Nasser; Gholipour, Ali

    2012-07-01

    Precise labeling of subcortical structures plays a key role in functional neurosurgical applications. Labels from an atlas image are propagated to a patient image using atlas-based segmentation. Atlas-based segmentation is highly dependent on the registration framework used to guide the atlas label propagation. This paper focuses on atlas-based segmentation of subcortical brain structures and the effect of different registration methods on the generated subcortical labels. A single-step and three two-step registration methods appearing in the literature based on affine and deformable registration algorithms in the ANTS and FSL algorithms are considered. Experiments are carried out with two atlas databases of IBSR and LPBA40. Six segmentation metrics consisting of Dice overlap, relative volume error, false positive, false negative, surface distance, and spatial extent are used for evaluation. Segmentation results are reported individually and as averages for nine subcortical brain structures. Based on two statistical tests, the results are ranked. In general, among four different registration strategies investigated in this paper, a two-step registration consisting of an initial affine registration followed by a deformable registration applied to subcortical structures provides superior segmentation outcomes. This method can be used to provide an improved labeling of the subcortical brain structures in MRIs for different applications.

  8. Malnutrition and Risk of Structural Brain Changes Seen on Magnetic Resonance Imaging in Older Adults.

    Science.gov (United States)

    de van der Schueren, Marian A E; Lonterman-Monasch, Sabine; van der Flier, Wiesje M; Kramer, Mark H; Maier, Andrea B; Muller, Majon

    2016-12-01

    To study the associations between protein energy malnutrition, micronutrient malnutrition, brain atrophy, and cerebrovascular lesions. Cross-sectional. Geriatric outpatient clinic. Older adults (N = 475; mean age 80 ± 7). Nutritional status was assessed using the Mini Nutritional Assessment (MNA) and according to serum micronutrient levels (vitamins B1, B6, B12, D; folic acid). White matter hyperintensities (WMHs), global cortical brain atrophy, and medial temporal lobe atrophy on magnetic resonance imaging (MRI) were rated using visual rating scales. Logistic regression analyses were performed to assess associations between the three MNA categories (nutritional status. Results remained significant after further adjustments for cognitive function, depressive symptoms, cardiovascular risk factors, history of cardiovascular disease, smoking and alcohol use, and micronutrient levels. Lower vitamin B1 (OR = 1.51, 95% CI = 1.11-2.08) and B12 (OR = 1.45, 95% CI = 1.02-2.04) levels were also related to greater risk of severe WMHs, independent of age and sex. Results remained significant after additional adjustments. MNA and vitamin levels were not associated with measures of brain atrophy. Malnutrition and lower vitamin B1 and B12 levels were independently associated with greater risk of WMHs. Underlying mechanisms need to be further clarified, and whether nutritional interventions can modify these findings also needs to be studied. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  9. Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach.

    Science.gov (United States)

    Chen, Ye; Storrs, Judd; Tan, Lirong; Mazlack, Lawrence J; Lee, Jing-Huei; Lu, Long J

    2014-01-15

    Detecting brain structural changes from magnetic resonance (MR) images can facilitate early diagnosis and treatment of neurological and psychiatric diseases. Many existing methods require an accurate deformation registration, which is difficult to achieve and therefore prevents them from obtaining high accuracy. We develop a novel local feature based support vector machine (SVM) approach to detect brain structural changes as potential biomarkers. This approach does not require deformation registration and thus is less influenced by artifacts such as image distortion. We represent the anatomical structures based on scale invariant feature transform (SIFT). Likelihood scores calculated using feature-based morphometry is used as the criterion to categorize image features into three classes (healthy, patient and noise). Regional SVMs are trained to classify the three types of image features in different brain regions. Only healthy and patient features are used to predict the disease status of new brain images. An ensemble classifier is built from the regional SVMs to obtain better prediction accuracy. We apply this approach to 3D MR images of Alzheimer's disease, Parkinson's disease and bipolar disorder. The classification accuracy ranges between 70% and 87%. The highly predictive disease-related regions, which represent significant anatomical differences between the healthy and diseased, are shown in heat maps. The common and disease-specific brain regions are identified by comparing the highly predictive regions in each disease. All of the top-ranked regions are supported by literature. Thus, this approach will be a promising tool for assisting automatic diagnosis and advancing mechanism studies of neurological and psychiatric diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging.

    Science.gov (United States)

    Goldstein, Jill M; Seidman, Larry J; O'Brien, Liam M; Horton, Nicholas J; Kennedy, David N; Makris, Nikos; Caviness, Verne S; Faraone, Stephen V; Tsuang, Ming T

    2002-02-01

    Previous studies suggest that the impact of early insults predisposing to schizophrenia may have differential consequences by sex. We hypothesized that brain regions found to be structurally different in normal men and women (sexual dimorphisms) and abnormal in schizophrenia would show significant sex differences in brain abnormalities, particularly in the cortex, in schizophrenia. Forty outpatients diagnosed as having schizophrenia by DSM-III-R were systematically sampled to be comparable within sex with 48 normal comparison subjects on the basis of age, ethnicity, parental socioeconomic status, and handedness. A comprehensive assessment of the entire brain was based on T1-weighted 3-dimensional images acquired from a 1.5-T magnet. Multivariate general linear models for correlated data were used to test for sex-specific effects regarding 22 hypothesized cortical, subcortical, and cerebrospinal fluid brain volumes, adjusted for age and total cerebrum size. Sex x group interactions were also tested on asymmetries of the planum temporale, Heschl's gyrus, and superior temporal gyrus, additionally controlled for handedness. Normal patterns of sexual dimorphisms were disrupted in schizophrenia. Sex-specific effects were primarily evident in the cortex, particularly in the frontomedial cortex, basal forebrain, cingulate and paracingulate gyri, posterior supramarginal gyrus, and planum temporale. Normal asymmetry of the planum was also disrupted differentially in men and women with schizophrenia. There were no significant differential sex effects in subcortical gray matter regions or cerebrospinal fluid. Factors that produce normal sexual dimorphisms may be associated with modulating insults producing schizophrenia, particularly in the cortex.

  11. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    Science.gov (United States)

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  12. Brain structure in sagittal craniosynostosis

    Science.gov (United States)

    Paniagua, Beatriz; Kim, Sunghyung; Moustapha, Mahmoud; Styner, Martin; Cody-Hazlett, Heather; Gimple-Smith, Rachel; Rumple, Ashley; Piven, Joseph; Gilmore, John; Skolnick, Gary; Patel, Kamlesh

    2017-03-01

    Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.

  13. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What It ...

  14. Does pediatric post-traumatic stress disorder alter the brain? Systematic review and meta-analysis of structural and functional magnetic resonance imaging studies.

    Science.gov (United States)

    Milani, Ana Carolina C; Hoffmann, Elis V; Fossaluza, Victor; Jackowski, Andrea P; Mello, Marcelo F

    2017-03-01

    Several studies have recently demonstrated that the volumes of specific brain regions are reduced in children and adolescents with post-traumatic stress disorder (PTSD) compared with those of healthy controls. Our study investigated the potential association between early traumatic experiences and altered brain regions and functions. We conducted a systematic review of the scientific literature regarding functional magnetic resonance imaging and a meta-analysis of structural magnetic resonance imaging studies that investigated cerebral region volumes in pediatric patients with PTSD. We searched for articles from 2000 to 2014 in the PsycINFO, PubMed, Medline, Lilacs, and ISI (Web of Knowledge) databases. All data regarding the amygdala, hippocampus, corpus callosum, brain, and intracranial volumes that fit the inclusion criteria were extracted and combined in a meta-analysis that assessed differences between groups. The meta-analysis found reduced total corpus callosum areas and reduced total cerebral and intracranial volumes in the patients with PTSD. The total hippocampus (left and right hippocampus) and gray matter volumes of the amygdala and frontal lobe were also reduced, but these differences were not significant. The functional studies revealed differences in brain region activation in response to stimuli in the post-traumatic stress symptoms/PTSD group. Our results confirmed that the pediatric patients with PTSD exhibited structural and functional brain abnormalities and that some of the abnormalities occurred in different brain regions than those observed in adults. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  15. Segmentation and Visualisation of Human Brain Structures

    OpenAIRE

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomograpy (SPECT)). When working with anatomical images, the structures segmented are visible as d...

  16. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  17. Brain magnetic resonance imaging findings in adult patients with congenital adrenal hyperplasia: Increased frequency of white matter impairment and temporal lobe structures dysgenesis

    Directory of Open Access Journals (Sweden)

    Mouna Feki Mnif

    2013-01-01

    Full Text Available Background: Congenital adrenal hyperplasia (CAH is an inherited recessive disorder of adrenal steroidogenesis. The enzymes most commonly affected are 21-hydroxylase. Past reports suggested brain magnetic resonance imaging (MRI abnormalities in CAH patients, affecting white matter signal, temporal lobe and amygdala structure and function. Aims: In the present study, we aimed to investigate the frequency of white matter changes and temporal lobes structures dysgenesis in a population of patients having CAH due to 21-hydroxylase deficiency. Materials and Methods: Neurological examination and brain MRI were performed in 26 patients. Results: Neurological examination revealed mental retardation in three patients, tremor in two patients, tendon reflexes asymmetry in one patient, and cerebellar syndrome in one patient. Eleven patients (42.3% showed MRI abnormalities: Eight of them had white matter hyperintensities, one patient had moderate atrophy in the right temporal, and hippocampal dysgenesis was found in the remaining two patients. Conclusions: Brain MRI abnormalities in CAH patients include white matter hyperintensities and temporal lobe structures dysgenesis. The mechanisms involved seem related to hormonal imbalances during brain development and exposure to excess exogenous glucocorticoids. Clinical implications of such lesions remain unclear. More extensive studies are required to define better the relationships between brain involvement and different CAH phenotypes and treatment regimens.

  18. Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid toxicosis.

    Science.gov (United States)

    Montie, Eric W; Wheeler, Elizabeth; Pussini, Nicola; Battey, Thomas W K; Barakos, Jerome; Dennison, Sophie; Colegrove, Kathleen; Gulland, Frances

    2010-09-17

    Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.

  19. Brain Structure and Function Associated with a History of Sport Concussion: A Multi-Modal Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Churchill, Nathan; Hutchison, Michael; Richards, Doug; Leung, General; Graham, Simon; Schweizer, Tom A

    2017-02-15

    There is growing concern about the potential long-term consequences of sport concussion for young, currently active athletes. However, there remains limited information about brain abnormalities associated with a history of concussion and how they relate to clinical factors. In this study, advanced MRI was used to comprehensively describe abnormalities in brain structure and function associated with a history of sport concussion. Forty-three athletes (21 male, 22 female) were recruited from interuniversity teams at the beginning of the season, including 21 with a history of concussion and 22 without prior concussion; both groups also contained a balanced sample of contact and noncontact sports. Multi-modal MRI was used to evaluate abnormalities in brain structure and function. Athletes with a history of concussion showed frontal decreases in brain volume and blood flow. However, they also demonstrated increased posterior cortical volume and elevated markers of white matter microstructure. A greater number of prior concussions was associated with more extensive decreases in cerebral blood flow and insular volume, whereas recovery time from most recent concussion was correlated with reduced frontotemporal volume. White matter showed limited correlations with clinical factors, predominantly in the anterior corona radiata. This study provides the first evidence of the long-term effects of concussion on gray matter volume, blood flow, and white matter microstructure within a single athlete cohort. This was examined for a mixture of male and female athletes in both contact and noncontact sports, demonstrating the relevance of these findings for the overall sporting community.

  20. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy.

    Science.gov (United States)

    Fiori, Simona; Cioni, Giovanni; Klingels, Katrjin; Ortibus, Els; Van Gestel, Leen; Rose, Stephen; Boyd, Roslyn N; Feys, Hilde; Guzzetta, Andrea

    2014-09-01

    To describe the development of a novel rating scale for classification of brain structural magnetic resonance imaging (MRI) in children with cerebral palsy (CP) and to assess its interrater and intrarater reliability. The scale consists of three sections. Section 1 contains descriptive information about the patient and MRI. Section 2 contains the graphical template of brain hemispheres onto which the lesion is transposed. Section 3 contains the scoring system for the quantitative analysis of the lesion characteristics, grouped into different global scores and subscores that assess separately side, regions, and depth. A larger interrater and intrarater reliability study was performed in 34 children with CP (22 males, 12 females; mean age at scan of 9 y 5 mo [SD 3 y 3 mo], range 4 y-16 y 11 mo; Gross Motor Function Classification System level I, [n=22], II [n=10], and level III [n=2]). Very high interrater and intrarater reliability of the total score was found with indices above 0.87. Reliability coefficients of the lobar and hemispheric subscores ranged between 0.53 and 0.95. Global scores for hemispheres, basal ganglia, brain stem, and corpus callosum showed reliability coefficients above 0.65. This study presents the first visual, semi-quantitative scale for classification of brain structural MRI in children with CP. The high degree of reliability of the scale supports its potential application for investigating the relationship between brain structure and function and examining treatment response according to brain lesion severity in children with CP. © 2014 Mac Keith Press.

  1. Magnetic Structure of Erbium

    DEFF Research Database (Denmark)

    Gibbs, D.; Bohr, Jakob; Axe, J. D.

    1986-01-01

    , and at positions split symmetrically about the fundamental. As the temperature is lowered below 52 K the charge and magnetic scattering display a sequence of lock-in transitions to rational wave vectors. A spin-slip description of the magnetic structure is presented which explains the wave vectors...

  2. Magnetic Structure of Sunspots

    Directory of Open Access Journals (Sweden)

    Juan M. Borrero

    2011-09-01

    Full Text Available In this review we give an overview about the current state-of-knowledge of the magnetic field in sunspots from an observational point of view. We start by offering a brief description of tools that are most commonly employed to infer the magnetic field in the solar atmosphere with emphasis in the photosphere of sunspots. We then address separately the global and local magnetic structure of sunspots, focusing on the implications of the current observations for the different sunspots models, energy transport mechanisms, extrapolations of the magnetic field towards the Corona, and other issues.

  3. What You See Is What You Get: Lead Location Within Deep Brain Structures Is Accurately Depicted by Stereotactic Magnetic Resonance Imaging.

    Science.gov (United States)

    Hyam, Jonathan A; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Hariz, Marwan; Zrinzo, Ludvic

    2015-09-01

    Magnetic resonance imaging (MRI)-verified deep brain stimulation relies on the correct interpretation of stereotactic imaging documenting lead location in relation to visible anatomic target. However, it has been suggested that local signal distortion from the lead itself renders its depiction on MRI unreliable. To compare lead location on stereotactic MRI with subsequent location of its brain track after removal. Patients underwent deep brain stimulation with the use of MRI-guided and MRI-verified Leksell frame approach. Infection or suboptimal efficacy required lead removal and subsequent reimplantation by using the same technique. Postimplantation stereotactic MR images were analyzed. Lateral (x) and anteroposterior (y) distances from midcommissural point to center of the lead hypointensity were recorded at the anterior commissure-posterior commissure plane (pallidal electrode) or z = -4 (subthalamic electrode). Stereotactic MRI before the second procedure, x and y distances from the center of the visible lead track hypointensity to midcommissural point were independently recorded. Vectorial distance from center of the lead hypointensity to the center of its track was calculated. Sixteen electrode tracks were studied in 10 patients. Mean differences between lead artifact location and lead track location were: x coordinate 0.4 mm ± 0.2; y coordinate 0.6 mm ± 0.3. Mean vectorial distance was 0.7 mm ± 0.2. Stereotactic distance between lead location and subsequent brain track location on MRI was small. The mean discrepancy was approximately half the deep brain stimulation lead width. This suggests that lead hypointensity seen on postimplantation MRI is indeed an accurate representation of its real location within deep brain structures.

  4. Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain.

    Directory of Open Access Journals (Sweden)

    Lucas D Eggert

    Full Text Available Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the brain, particularly when large sample sizes are investigated. However, although detection of small structural brain differences may fundamentally depend on the method used, both accuracy and reliability of different automated segmentation algorithms have rarely been compared. Here, performance of the segmentation algorithms provided by SPM8, VBM8, FSL and FreeSurfer was quantified on simulated and real magnetic resonance imaging data. First, accuracy was assessed by comparing segmentations of twenty simulated and 18 real T1 images with corresponding ground truth images. Second, reliability was determined in ten T1 images from the same subject and in ten T1 images of different subjects scanned twice. Third, the impact of preprocessing steps on segmentation accuracy was investigated. VBM8 showed a very high accuracy and a very high reliability. FSL achieved the highest accuracy but demonstrated poor reliability and FreeSurfer showed the lowest accuracy, but high reliability. An universally valid recommendation on how to implement morphometric analyses is not warranted due to the vast number of scanning and analysis parameters. However, our analysis suggests that researchers can optimize their individual processing procedures with respect to final segmentation quality and exemplifies adequate performance criteria.

  5. Magnetic resonance spectroscopy of the human brain

    Science.gov (United States)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  6. Obesity and Structural Brain Integrity in Older Women: The Women’s Health Initiative Magnetic Resonance Imaging Study

    Science.gov (United States)

    Gaussoin, Sarah A.; Wassertheil-Smoller, Sylvia; Limacher, Marian; Casanova, Ramon; Yaffe, Kristine; Resnick, Susan M.; Espeland, Mark A.

    2016-01-01

    Background: Midlife obesity has been linked to age-related brain atrophy and risk of dementia, but the relationships are less clear for older individuals. These associations may be explained by changes in appetite or metabolism in the dementia prodrome; thus, prospective studies with adequate follow-up are needed. We examined the associations that obesity (body mass index, BMI) and change in BMI over an average of 6.6 (1.0–9.1) years have with global and regional brain and white matter lesion volumes in a sample of 1,366 women aged 65–80. Methods: Least square means for regional brain volumes and white matter lesion loads for women grouped by BMI and changes in BMI were generated from multivariable linear models with and without adjustment for demographic and health covariates. Results: Both global obesity and increase in BMI were associated with lower cerebrospinal fluid and higher specific brain volumes (ps < .05), after controlling for diabetes and other cerebrovascular disease risk factors. Obesity, but not change in BMI, predicted lower lesion loads for the total, parietal, and occipital white matter (ps < .05). Conclusions: Obesity in this cohort is associated with less brain atrophy and lower ischemic lesion loads. The findings are consistent with our previous report of worse cognitive performance in association with weight loss (probably not due to frailty) in this cohort and in line with the idea of the “obesity paradox” as differences in dementia risk vary across time, whereby midlife obesity seems to be a predictor of dementia, whereas weight loss seems to be a better predictor at older ages. PMID:26961581

  7. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  8. Bioavailability of magnetic nanoparticles to the brain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.-R. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, P.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan (China); Huang, C.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Tony [Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, J.-P. [Department of Chemical and Material Engineering, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)], E-mail: jpchen@mail.cgu.edu.tw; Wei, K.-C. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China)], E-mail: kuochenwei@adm.cgmh.org.tw

    2009-05-15

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  9. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  10. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  11. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus

    We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... is not available.We will illustrate the results for magnet design problems from different areas, such as electric motors/generators (as the example in the picture), beam focusing for particle accelerators and magnetic refrigeration devices....... magnets[1][2]. However, the powerful rare-earth magnets are generally expensive, so both the scientific and industrial communities have devoted a lot of effort into developing suitable design methods. Even so, many magnet optimization algorithms either are based on heuristic approaches[3...

  12. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  13. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  14. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  15. Magnetic microscopy of layered structures

    CERN Document Server

    Kuch, Wolfgang; Fischer, Peter; Hillebrecht, Franz Ulrich

    2015-01-01

    This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.

  16. Musical Training Shapes Structural Brain Development

    OpenAIRE

    Krista L. Hyde; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C.; Schlaug, Gottfried

    2009-01-01

    The human brain has the remarkable capacity to alter in response to environmental demands. Training-induced structural brain changes have been demonstrated in the healthy adult human brain. However, no study has yet directly related structural brain changes to behavioral changes in the developing brain, addressing the question of whether structural brain differences seen in adults (comparing experts with matched controls) are a product of “nature” (via biological brain predispositions) or “nu...

  17. Heritability of Regional and Global Brain Structure at the Onset of Puberty: A Magnetic Resonance Imaging Study in 9-Year-Old Twin Pairs

    OpenAIRE

    Peper, J.S.; Schnack, H.G.; Brouwer, R.M.; van Baal, G.C.M.; Pjetri, E.; Székely, E.; van Leeuwen, M.; van den Berg, S.M.; Collins, D.L.; Evans, A.C.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2009-01-01

    Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and 19 years of age. However, at the onset of puberty, the extent to which variation in brain structures is influenced by genetic factors (heritability) is not known. Moreover, whether a direct link bet...

  18. Using Functional Magnetic Resonance Imaging to Detect Preserved Function in a Preterm Infant with Brain Injury.

    Science.gov (United States)

    Herzmann, Charlotte; Zubiaurre-Elorza, Leire; Wild, Conor J; Linke, Annika C; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2017-10-01

    We studied developmental plasticity using functional magnetic resonance imaging (fMRI) in a preterm infant with brain injury on structural MRI. fMRI showed preserved brain function and subsequent neurodevelopment was within the normal range. Multimodal neuroimaging including fMRI can improve understanding of neural plasticity after preterm birth and brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Magnetic cellulose-derivative structures

    Science.gov (United States)

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  20. Human brain somatic representation: a functional magnetic resonance mapping

    Science.gov (United States)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  1. Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs.

    Science.gov (United States)

    Peper, Jiska S; Schnack, Hugo G; Brouwer, Rachel M; Van Baal, G Caroline M; Pjetri, Eneda; Székely, Eszter; van Leeuwen, Marieke; van den Berg, Stéphanie M; Collins, D Louis; Evans, Alan C; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2009-07-01

    Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and 19 years of age. However, at the onset of puberty, the extent to which variation in brain structures is influenced by genetic factors (heritability) is not known. Moreover, whether a direct link between human pubertal development and brain structure exists has not been studied. Here, we studied the heritability of brain structures at 9 years of age in 107 monozygotic and dizygotic twin pairs (N = 210 individuals) using volumetric MRI and voxel-based morphometry. Children showing the first signs of secondary sexual characteristics (N = 47 individuals) were compared with children without these signs, based on Tanner-stages. High heritabilities of intracranial, total brain, cerebellum, and gray and white matter volumes (up to 91%) were found. Regionally, the posterior fronto-occipital, corpus callosum, and superior longitudinal fascicles (up to 93%), and the amygdala, superior frontal and middle temporal cortices (up to 83%) were significantly heritable. The onset of secondary sexual characteristics of puberty was associated with decreased frontal and parietal gray matter densities. Thus, in 9-year-old children, global brain volumes, white matter density in fronto-occipital and superior longitudinal fascicles, and gray matter density of (pre-)frontal and temporal areas are highly heritable. Pubertal development may be directly involved in the decreases in gray matter areas that accompany the transition of our brains from childhood into adulthood. Copyright 2009 Wiley-Liss, Inc

  2. Structural brain plasticity in adult learning and development.

    Science.gov (United States)

    Lövdén, Martin; Wenger, Elisabeth; Mårtensson, Johan; Lindenberger, Ulman; Bäckman, Lars

    2013-11-01

    Recent research using magnetic resonance imaging has documented changes in the adult human brain's grey matter structure induced by alterations in experiential demands. We review this research and relate it to models of brain plasticity from related strands of research, such as work on animal models. This allows us to generate recommendations and predictions for future research that may advance the understanding of the function, sequential progression, and microstructural nature of experience-dependent changes in regional brain volumes. Informed by recent evidence on adult age differences in structural brain plasticity, we show how understanding learning-related changes in human brain structure can expand our knowledge about adult development and aging. We hope that this review will promote research on the mechanisms regulating experience-dependent structural plasticity of the adult human brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  4. Photospheric magnetic vortex structures

    Directory of Open Access Journals (Sweden)

    S. Shelyag

    2011-05-01

    Full Text Available Using direct numerical magneto-hydrodynamic (MHD simulations, we demonstrate the evidence of two physically different types of vortex motions in the solar photosphere. Baroclinic motions of plasma in non-magnetic granules are the primary source of vorticity in granular regions of the solar photosphere, however, there is a significantly more efficient mechanism of vorticity production in strongly magnetised intergranular lanes. These swirly motions of plasma in intergranular magnetic field concentrations could be responsible for the generation of different types of MHD wave modes, for example, kink, sausage and torsional Alfvén waves. These waves could transport a relevant amount of energy from the lower solar atmosphere and contribute to coronal plasma heating.

  5. Feasibility of studying brain morphology in major depressive disorder with structural magnetic resonance imaging and clinical data from the electronic medical record: A pilot study

    Science.gov (United States)

    Hoogenboom, Wouter S.; Perlis, Roy H.; Smoller, Jordan W.; Zeng-Treitler, Qing; Gainer, Vivian S.; Murphy, Shawn N.; Churchill, Susanne E.; Kohane, Isaac S.; Shenton, Martha E.; Iosifescu, Dan V.

    2012-01-01

    For certain research questions related to long-term outcomes or to rare disorders, designing prospective studies is impractical or prohibitively expensive. Such studies could instead utilize clinical and magnetic resonance imaging data (MRI) collected as part of routine clinical care, stored in the electronic medical record (EMR). Using major depressive disorder (MDD) as a disease model, we examined the feasibility of studying brain morphology and associations with remission using clinical and MRI data exclusively drawn from the EMR. Advanced automated tools were used to select MDD patients and controls from the EMR who had brain MRI data, but no diagnosed brain pathology. MDD patients were further assessed for remission status by review of clinical charts. Twenty MDD patients (eight full-remitters, six partial-remitters, and six non-remitters), and fifteen healthy control subjects met all study criteria for advanced morphometric analyses. Compared to controls, MDD patients had significantly smaller right rostral-anterior cingulate volume, and level of non-remission was associated with smaller left hippocampus and left rostral-middle frontal gyrus volume. The use of EMR data for psychiatric research may provide a timely and cost-effective approach with the potential to generate large study samples reflective of the real population with the illness studied. PMID:23149041

  6. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  7. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain......, they emerge from the same underlying brain organization, and functional communication is presumably mediated by structural connections. In this paper, we assess the structure-function relationship by evaluating how well functional connectivity can be predicted from structural graphs. Using high......-resolution whole brain networks generated with varying density, we contrast the performance of several non-parametric link predictors that measure structural communication flow. While functional connectivity is not well predicted directly by structural connections, we show that superior predictions can be achieved...

  8. [Structural Brain Development in Healthy Children and Adolescents].

    Science.gov (United States)

    Matsudaira, Izumi; Kawashima, Ryuta; Taki, Yasuyuki

    2017-05-01

    Brain maturation progresses throughout childhood into adolescence. Investigating the mechanism of brain development during these periods in healthy people is necessary for some clinical purposes. For example, these mechanisms are needed to investigate the mechanism of impaired brain maturation in neurodevelopmental disorders-such as autism spectrum disorders or attention-deficit hyper disorder-and improve early prevention of psychiatric or neurodegenerative diseases like depression or Alzheimer's disease. Voxel-based morphometry (VBM) is an effective way to analyze brain magnetic resonance images (MRI) of children and adolescents, as the brain structures of children and adolescents vary widely depending on their age, sex, and several other factors. In this article, information from studies using VBM about the relationship between structural brain development in healthy children and adolescents and age, life style, parenting, and genetic variations is discussed.

  9. Brain structure in pediatric Tourette syndrome.

    Science.gov (United States)

    Greene, D J; Williams Iii, A C; Koller, J M; Schlaggar, B L; Black, K J

    2017-07-01

    Previous studies of brain structure in Tourette syndrome (TS) have produced mixed results, and most had modest sample sizes. In the present multicenter study, we used structural magnetic resonance imaging (MRI) to compare 103 children and adolescents with TS to a well-matched group of 103 children without tics. We applied voxel-based morphometry methods to test gray matter (GM) and white matter (WM) volume differences between diagnostic groups, accounting for MRI scanner and sequence, age, sex and total GM+WM volume. The TS group demonstrated lower WM volume bilaterally in orbital and medial prefrontal cortex, and greater GM volume in posterior thalamus, hypothalamus and midbrain. These results demonstrate evidence for abnormal brain structure in children and youth with TS, consistent with and extending previous findings, and they point to new target regions and avenues of study in TS. For example, as orbital cortex is reciprocally connected with hypothalamus, structural abnormalities in these regions may relate to abnormal decision making, reinforcement learning or somatic processing in TS.

  10. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.

    Science.gov (United States)

    Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas

    2012-08-01

    In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with

  11. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  12. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  13. Brain Atrophy Estimated from Structural Magnetic Resonance Imaging as a Marker of Large-Scale Network-Based Neurodegeneration in Aging and Stroke

    OpenAIRE

    Michele Veldsman

    2017-01-01

    Brain atrophy is a normal part of healthy aging, and stroke appears to have neurodegenerative effects, accelerating this atrophy to pathological levels. The distributed pattern of atrophy in healthy aging suggests that large-scale brain networks may be involved. At the same time, the network wide effects of stroke are beginning to be appreciated. There is now widespread use of network methods to understand the brain in terms of coordinated brain activity or white matter connectivity. Examinin...

  14. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration....

  15. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Science.gov (United States)

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING Kyle

  16. THE DEVELOPMENT OF BRAIN STRUCTURE AND CONNECTIVITY

    NARCIS (Netherlands)

    Wierenga, LM

    2016-01-01

    The human brain undergoes profound structural changes with development. It does not mature by simply growing, rather the transition to adulthood is a dynamic process with regionally specific patterns. However, there is no consensus on the timing and shape of growth trajectories of brain structures.

  17. Structural brain changes in aging: courses, causes and cognitive consequences.

    Science.gov (United States)

    Fjell, Anders M; Walhovd, Kristine B

    2010-01-01

    The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.

  18. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  19. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector......, with respect to a linear objective functional. We illustrate the approach with results for magnet design problems from different areas, such as a permanent magnet electric motor, a beam focusing quadrupole magnet for particle accelerators and a rotary device for magnetic refrigeration....

  20. Individual brain structure and modelling predict seizure propagation.

    Science.gov (United States)

    Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K

    2017-03-01

    See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Magnetic structures and properties of vanadium diiodide.

    NARCIS (Netherlands)

    Kuindersma, S. R.; Haas, C.; Sanchez, J. P.; Al, R.

    1979-01-01

    Single-crystal measurements of the magnetic susceptibilities of VI2 show an anomaly at a crit. temp. of ∼14 K. This anomaly can be ascribed to a magnetic phase transition from a 120° structure to a collinear arrangement of the spins with a magnetic unit cell amagn = a√3, bmagn = 2 a and cmagn = 2 c.

  2. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.

    Science.gov (United States)

    Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen

    2008-02-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.

  3. Heritability of Regional and Global Brain Structure at the Onset of Puberty: A Magnetic Resonance Imaging Study in 9-Year-Old Twin Pairs

    NARCIS (Netherlands)

    Peper, J.S.; Schnack, H.G.; Brouwer, R.M.; van Baal, G.C.M.; Pjetri, E.; Székely, E.; van Leeuwen, M.; van den Berg, S.M.; Collins, D.L.; Evans, A.C.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2009-01-01

    Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and

  4. Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Ryman, Sephira G.; Gasparovic, Chuck; Bedrick, Edward J.; Flores, Ranee A.; Marshall, Alison N.; Jung, Rex E.

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domai...

  5. Developments in deep brain stimulation using time dependent magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  6. Magnetic Deposits of Iron Oxides in the Human Brain

    Directory of Open Access Journals (Sweden)

    Makohusová Miroslava

    2014-06-01

    Full Text Available Deposits of iron oxides in the human brain (globus pallidus are visible under electron microscopy as object of regular and or/irregular shape but giving sharp diffraction patterns in the transmission mode. The SQUID magnetometry reveals that the magnetization curves decline form an ideal Langevin function due to the dominating diamagnetism of organic tissue. The fitting procedure yields the quantitative characteristics of the overall magnetization curves that were further processed by statistical multivariate methods

  7. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  8. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...

  9. Issues and Problems in Brain Magnetic Resonance Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Novanto Yudistira

    2008-04-01

    Full Text Available There are many issues and problems in the brain magnetic resonance imaging (MRI area that haven’t solved or reached satisfying result yet. This paper presents an overview of the various issues and problems of the segmentation, correction, optimization, description and their application in MRI. The overview is started by describing the segmentation properties that are the most important and challenging in MRI brain manipulation. Then correction for reconstructing the brain MRI cortex, classification is utilized to classify the segmented brain image, and also review the uses of description is the great prospecting issue while some neurologist need the information resulted from brain imaging process including their potential problems from application applied by each technique. In each case, it is provided some general background information.

  10. Magnetic Resonance, Functional (fMRI) -- Brain

    Science.gov (United States)

    ... parts of the body and determine the presence of certain diseases. The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a CD or uploaded to a digital cloud server. Functional magnetic resonance imaging (fMRI) is ...

  11. Brain magnetic resonance imaging in adults with asthma.

    Science.gov (United States)

    Parker, J; Wolansky, L J; Khatry, D; Geba, G P; Molfino, N A

    2011-01-01

    In individuals with asthma, potential central nervous system changes can occur as a consequence of their asthma or therapy. Clinical trials of anti-asthmatic therapies might benefit from using magnetic resonance imaging (MRI) to assess potential brain abnormalities. As part of the clinical safety evaluation of a monoclonal antibody directed against interleukin-9 for the treatment of asthma, we assessed whether brain MRI is an appropriate screening tool to evaluate potential neurotoxicity. Brain MRIs were conducted as part of a prespecified safety evaluation in adults aged 19 to 47 years with mild to moderate asthma treated with either the investigational monoclonal antibody or placebo. An independent neuroradiologist performed a blinded review of brain MRI scans obtained at baseline before dosing and day 28 after dosing from two separate clinical studies. Fifteen brain MRI abnormalities were noted in 13 of 21 subjects with asthma (62%). Nonspecific deep white matter hyperintensities (24%), perivascular space (24%), and abnormal anatomic findings (14%) were noted either at baseline or follow-up. Only 8 of 21 subjects (38%) with asthma had normal brain MRI results. The high rate of incidental brain MRI findings suggests that these abnormalities are relatively common in patients with asthma. Thus, brain MRI may not be an appropriate screening tool to evaluate potential neurotoxicity in subjects during routine clinical studies without a baseline examination. Due to artifacts simulating lesions, an experienced radiologist should interpret all brain MRI results. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. SMARTer for magnetic structure studies

    Indian Academy of Sciences (India)

    pole shoes of an external electromagnet with the magnetic field perpendicular to the incident unpolarized neutron direction. The magnetic field was varied from 0 to 1 T (0 to 10 kOe). The SANS scattering intensity data from all samples were corrected for scattering background, dark current and electronic noise. 3. Result and ...

  13. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  14. Brain Basics

    Medline Plus

    Full Text Available ... such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ... imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  15. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...... is not clear. Structural changes are not related to cognitive decline, but a link to an increased risk of stroke, especially in patients with aura, cannot be ruled out. SUMMARY: Migraine may be a risk factor for structural changes in the brain. It is not yet clear how factors such as migraine sub-type, attack...

  16. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    Science.gov (United States)

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  17. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Zhan-chi Zhang

    2015-01-01

    Full Text Available In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers, to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  18. Rock magnetism linked to human brain magnetite

    Science.gov (United States)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  19. Coordinate-based versus structural approaches to brain image analysis.

    Science.gov (United States)

    Mangin, J-F; Rivière, D; Coulon, O; Poupon, C; Cachia, A; Cointepas, Y; Poline, J-B; Le Bihan, D; Régis, J; Papadopoulos-Orfanos, D

    2004-02-01

    A basic issue in neurosciences is to look for possible relationships between brain architecture and cognitive models. The lack of architectural information in magnetic resonance images, however, has led the neuroimaging community to develop brain mapping strategies based on various coordinate systems without accurate architectural content. Therefore, the relationships between architectural and functional brain organizations are difficult to study when analyzing neuroimaging experiments. This paper advocates that the design of new brain image analysis methods inspired by the structural strategies often used in computer vision may provide better ways to address these relationships. The key point underlying this new framework is the conversion of the raw images into structural representations before analysis. These representations are made up of data-driven elementary features like activated clusters, cortical folds or fiber bundles. Two classes of methods are introduced. Inference of structural models via matching across a set of individuals is described first. This inference problem is illustrated by the group analysis of functional statistical parametric maps (SPMs). Then, the matching of new individual data with a priori known structural models is described, using the recognition of the cortical sulci as a prototypical example.

  20. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  1. Magnetism and Structure in Functional Materials

    CERN Document Server

    Planes, Antoni; Saxena, Avadh

    2005-01-01

    Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related magnanites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.

  2. Structural brain abnormalities in 12 persons with aniridia

    Science.gov (United States)

    Grant, Madison K.; Bobilev, Anastasia M.; Pierce, Jordan E.; DeWitte, Jon; Lauderdale, James D.

    2017-01-01

    Background: Aniridia is a disorder predominately caused by heterozygous loss-of-function mutations of the PAX6 gene, which is a transcriptional regulator necessary for normal eye and brain development.  The ocular abnormalities of aniridia have been well characterized, but mounting evidence has implicated brain-related phenotypes as a prominent feature of this disorder as well.  Investigations using neuroimaging in aniridia patients have shown reductions in discrete brain structures and changes in global grey and white matter.  However, limited sample sizes and substantive heterogeneity of structural phenotypes in the brain remain a challenge.  Methods: Here, we examined brain structure in a new population sample in an effort to add to the collective understanding of anatomical abnormalities in aniridia.  The current study used 3T magnetic resonance imaging to acquire high-resolution structural data in 12 persons with aniridia and 12 healthy demographically matched comparison subjects.  Results: We examined five major structures: the anterior commissure, the posterior commissure, the pineal gland, the corpus callosum, and the optic chiasm.  The most consistent reductions were found in the anterior commissure and the pineal gland; however, abnormalities in all of the other structures examined were present in at least one individual.  Conclusions: Our results indicate that the anatomical abnormalities in aniridia are variable and largely individual-specific.  These findings suggest that future studies investigate this heterogeneity further, and that normal population variation should be considered when evaluating structural abnormalities. PMID:29034075

  3. Structure and dynamics of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Clausen, K.N.; Bødker, F.; Hansen, M.F.

    2000-01-01

    In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagnetic...

  4. Over-hydration detection in brain by magnetic induction spectroscopy

    Science.gov (United States)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  5. Neurolinguistics: structural plasticity in the bilingual brain.

    Science.gov (United States)

    Mechelli, Andrea; Crinion, Jenny T; Noppeney, Uta; O'Doherty, John; Ashburner, John; Frackowiak, Richard S; Price, Cathy J

    2004-10-14

    Humans have a unique ability to learn more than one language--a skill that is thought to be mediated by functional (rather than structural) plastic changes in the brain. Here we show that learning a second language increases the density of grey matter in the left inferior parietal cortex and that the degree of structural reorganization in this region is modulated by the proficiency attained and the age at acquisition. This relation between grey-matter density and performance may represent a general principle of brain organization.

  6. The spin structure of magnetic nanoparticles and in magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Disch, Sabrina

    2011-09-26

    The present thesis provides an extensive and original contribution to the investigation of magnetic nanoparticles regarding synthesis and structural characterization using advanced scattering methods in all length scales between the atomic and mesoscopic size range. Particular emphasis is on determination of the magnetic structure of single nanoparticles as well as preparation and characterization of higher dimensional assemblies thereof. The unique physical properties arising from the finite size of magnetic nanoparticles are pronounced for very small particle sizes. With the aim of preparing magnetic nanoparticles suitable for investigation of such properties, a micellar synthesis route for very small cobalt nanoparticles is explored. Cobalt nanoparticles with diameters of less than 3 nm are prepared and characterized, and routes for variation of the particle size are developed. The needs and limitations of primary characterization and handling of such small and oxidation-sensitive nanoparticles are highlighted and discussed in detail. Comprehensive structural and magnetic characterization is performed on iron oxide nanoparticles of {proportional_to} 10 nm in diameter. Particle size and narrow size distribution are determined with high precision. Investigation of the long range and local atomic structure reveals a particle size dependent magnetite - maghemite structure type with lattice distortions induced at the particle surface. The spatial magnetization distribution within these nanoparticles is determined to be constant in the particle core with a decrease towards the particle surface, thus indicating a magnetic dead layer or spin canting close to the surface. Magnetically induced arrangements of such nanoparticles into higher dimensional assemblies are investigated in solution and by deposition of long range ordered mesocrystals. Both cases reveal a strong dependence of the found structures on the nanoparticle shape (spheres, cubes, and heavily truncated

  7. Lupus anticoagulant: correlation with magnetic resonance imaging of brain lesions.

    Science.gov (United States)

    Molad, Y; Sidi, Y; Gornish, M; Lerner, M; Pinkhas, J; Weinberger, A

    1992-04-01

    Brain magnetic resonance imaging (MRI) was performed in 21 patients with systemic lupus erythematosus (SLE) with and without lupus anticoagulant (LAC), one lupus-like patient and 5 patients with primary antiphospholipid antibody syndrome. Thirteen patients had white matter focal brain lesions on MRI, 10 of whom had LAC (p = 0.03). We found no correlation between these lesions and neurologic manifestations, nor any clinical or serologic indices of activity of SLE. Our MRI lesions were similar to those described in multiple sclerosis and may indicate a similar pathologic process.

  8. Ultrathin magnetic structures III fundamentals of nanomagnetism

    CERN Document Server

    Bland, JAC

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be ...

  9. Ultrathin magnetic structures IV applications of nanomagnetism

    CERN Document Server

    Heinrich, Bretislav

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is de...

  10. Brain magnetic resonance imaging examination in a patient with non-magnetic resonance conditional pacemaker

    Directory of Open Access Journals (Sweden)

    Toshiko Nakai, MD

    2017-10-01

    Full Text Available Clinical dilemmas arise when patients with a non-magnetic resonance (MR conditional pacemaker are required to undergo magnetic resonance imaging (MRI. We encountered a pacemaker patient with debilitating non-motor symptoms of Parkinson׳s disease, who required an MRI prior to deep brain stimulation (DBS surgery. MRI was performed safely without adverse events despite the presence of a conventional pacemaker.

  11. Brain magnetic resonance imaging and magnetic resonance spectroscopy findings of children with kernicterus

    OpenAIRE

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    Summary Background The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of 1H magnetic resonance spectrosc...

  12. Electronic structure and magnetism of complex materials

    CERN Document Server

    Papaconstantopoulos, D A

    2003-01-01

    Recent developments in electronic structure theory have led to a new understanding of magnetic materials at the microscopic level. This enables a truly first-principles approach to investigations of technologically important magnetic materials. Among these advances have been practical schemes for handling non-collinear magnetic systems, including relativity, understanding of the origins and role of orbital magnetism within band structure formalisms, density functional approaches for magnons and low-lying spin excitations, understanding of the interplay of orbital, spin and lattice orderings in complex oxides, transport theories for layered systems, and the theory of magnetic interactions in doped semiconductors. The book covers these recent developments with review articles by some of the main originators of these advances.

  13. Brain injury after moderate drowning: subtle alterations detected by functional magnetic resonance imaging.

    Science.gov (United States)

    Nucci, Mariana P; Lukasova, Katerina; Sato, João R; Amaro, Edson

    2017-10-01

    To describe cerebral (structural and functional MRI) and neuropsychological long term changes in moderate drowning victim's compared to healthy volunteers in working memory and motor domains. We studied 15 adult drowning victim's in chronic stage (DV - out of 157 eligible cases of sea water rescues with moderate drowning classification) paired to 18 healthy controls (HC). All participants were investigated using intelligence, memory, and attention neuropsychological standard tests and underwent functional (motor and working memory tasks) and structural magnetic resonance imaging (MRI) in a 3 T system. All images were preprocessed for head movement correction and quantitative analysis was performed using FSL and freesurfer software packages. We found no between group differences in neuropsychological assessments. No MRI brain lesion was observed in patients, neither difference on morphometric parameters in any cortical or subcortical brain structure. In constrast, functional MRI revealed that patients showed increased brain response in the motor (left putamen and insula) and memory (left cuneus and lingual gyrus - not the classical memory network) tasks. Functional brain changes in motor and visual brain regions in victims of moderate drowning may indicate reduced brain reserve, despite the lack of structural and behavior alterations. More attention should be given to investigate ageing effects in this nonfatal drowning group.

  14. Sexual selection predicts brain structure in dragon lizards.

    Science.gov (United States)

    Hoops, D; Ullmann, J F P; Janke, A L; Vidal-Garcia, M; Stait-Gardner, T; Dwihapsari, Y; Merkling, T; Price, W S; Endler, J A; Whiting, M J; Keogh, J S

    2017-02-01

    Phenotypic traits such as ornaments and armaments are generally shaped by sexual selection, which often favours larger and more elaborate males compared to females. But can sexual selection also influence the brain? Previous studies in vertebrates report contradictory results with no consistent pattern between variation in brain structure and the strength of sexual selection. We hypothesize that sexual selection will act in a consistent way on two vertebrate brain regions that directly regulate sexual behaviour: the medial preoptic nucleus (MPON) and the ventromedial hypothalamic nucleus (VMN). The MPON regulates male reproductive behaviour whereas the VMN regulates female reproductive behaviour and is also involved in male aggression. To test our hypothesis, we used high-resolution magnetic resonance imaging combined with traditional histology of brains in 14 dragon lizard species of the genus Ctenophorus that vary in the strength of precopulatory sexual selection. Males belonging to species that experience greater sexual selection had a larger MPON and a smaller VMN. Conversely, females did not show any patterns of variation in these brain regions. As the volumes of both these regions also correlated with brain volume (BV) in our models, we tested whether they show the same pattern of evolution in response to changes in BV and found that the do. Therefore, we show that the primary brain nuclei underlying reproductive behaviour in vertebrates can evolve in a mosaic fashion, differently between males and females, likely in response to sexual selection, and that these same regions are simultaneously evolving in concert in relation to overall brain size. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  15. Migraine and structural changes in the brain

    DEFF Research Database (Denmark)

    Bashir, Asma; Lipton, Richard B; Ashina, Sait

    2013-01-01

    To evaluate the association between migraine without aura (MO) and migraine with aura (MA) and 3 types of structural brain abnormalities detected by MRI: white matter abnormalities (WMAs), infarct-like lesions (ILLs), and volumetric changes in gray and white matter (GM, WM) regions....

  16. The internal structure of magnetic nanoparticles determines the magnetic response

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Kubíčková, Simona; Salas, G.; Mantlíková, Alice; Marciello, M.; Morales, M.P.; Nižňanský, D.; Vejpravová, Jana

    2017-01-01

    Roč. 9, č. 16 (2017), s. 5129-5140 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : nanoparticles * single-domain * internal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.367, year: 2016

  17. Reading skill and structural brain development.

    Science.gov (United States)

    Houston, Suzanne M; Lebel, Catherine; Katzir, Tami; Manis, Franklin R; Kan, Eric; Rodriguez, Genevieve G; Sowell, Elizabeth R

    2014-03-26

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, eight boys, mean age of sample=10.06 ± 3.29) received two MRI scans (mean interscan interval=2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency, and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience, and brain maturation trajectories may help with the development and evaluation of targeted interventions.

  18. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  19. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  20. BRAIN MAGNETIC RESONANCE EVALUATION AND PUBERTAL DEVELOPMENT VARIATIONS AMONG FEMALE ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Paula Fonseca

    2017-04-01

    Conclusion: To our knowledge, this is the first work to address the relation of pubertal maturation timing and central nervous system development using brain magnetic resonance imaging. The observed tendency for an increased volume of the subcortical structures may be related to a possible delayed development of the nucleus accumbens in early-maturers, and may explain the increased vulnerability of this group to risk behaviours.

  1. Brain magnetic resonance imaging findings in relapsing neuromyelitis optica.

    Science.gov (United States)

    Cabrera-Gómez, José A; Quevedo-Sotolongo, L; González-Quevedo, A; Lima, S; Real-González, Y; Cristófol-Corominas, M; Romero-García, K; Ugarte-Sánchez, C; Jordán-González, J; de la Nuez, J E González; Lahera, J García; Tellez, R; Pedroso-Ibañez, I; Roca, R Rodríguez; Cabrera-Núñez, A Y

    2007-03-01

    Some studies showed abnormalities in brain magnetic resonance imaging (MRI) of relapsing neuromyelitis optica (R-NMO) from 12 to 46%. These abnormalities are described as compatible/non-compatible with multiple sclerosis (MS). To describe the abnormal brain MRI lesions in R-NMO with imaging studies conducted with more sensitive white matter change techniques. Thirty patients with R-NMO were selected. All MRI brain studies were performed with a 1.5-T Siemens MRI system according to the Standardized MR Imaging Protocol for Multiple Sclerosis from the Consortium of MS Centers Consensus Guidelines. Brain MRI images were evaluated in 29 R-NMO cases because in one case the MRI images were not appropriate for the study. Of these 29 brain MRI studies, 19 cases (65.5%) had at least one or more lesions (1-57) and 10 were negative (34.4%). Brain MRI findings in 19 cases were characterized in T2/fluid-attenuated inversion-recovery (FLAIR) by the presence of subcortical/deep white matter lesions in 16 (84.2%) cases (1-50), most of them 3 mm, were observed in 4 (21.05%) cases without cerebellar involvement. T1 studies demonstrated absence of hypointense regions. Optic nerve enhancement was observed in 6/19 patients (31.5%). None of the brain MRI abnormalities observed were compatible with Barkhof et al. criteria of MS. This study, based on a Cuban patient population, with long duration of disease, good sample size and detailed characterization by MRI, demonstrated the brain MRI pattern of R-NMO patients, which is different from MS.

  2. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  3. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  4. Brain Basics

    Medline Plus

    Full Text Available ... brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as they grow there are differences in ...

  5. Quantitative Magnetization Transfer Imaging as a Biomarker for Effects of Systemic Inflammation on the Brain.

    Science.gov (United States)

    Harrison, Neil A; Cooper, Ella; Dowell, Nicholas G; Keramida, Georgia; Voon, Valerie; Critchley, Hugo D; Cercignani, Mara

    2015-07-01

    Systemic inflammation impairs brain function and is increasingly implicated in the etiology of common mental illnesses, particularly depression and Alzheimer's disease. Immunotherapies selectively targeting proinflammatory cytokines demonstrate efficacy in a subset of patients with depression. However, efforts to identify patients most vulnerable to the central effects of inflammation are hindered by insensitivity of conventional structural magnetic resonance imaging. We used quantitative magnetization transfer (qMT) imaging, a magnetic resonance imaging technique that enables quantification of changes in brain macromolecular density, together with experimentally induced inflammation to investigate effects of systemic inflammatory challenge on human brain microstructure. Imaging with qMT was performed in 20 healthy participants after typhoid vaccination and saline control injection. An additional 20 participants underwent fluorodeoxyglucose positron emission tomography following the same inflammatory challenge. The qMT data demonstrated that inflammation induced a rapid change in brain microstructure, reflected in increased magnetization exchange from free (water) to macromolecular-bound protons, within a discrete region of insular cortex implicated in representing internal physiologic states including inflammation. The functional significance of this change in insular microstructure was demonstrated by correlation with inflammation-induced fatigue and fluorodeoxyglucose positron emission tomography imaging, which revealed increased resting glucose metabolism within this region following the same inflammatory challenge. Together these observations highlight a novel structural biomarker of the central physiologic and behavioral effects of mild systemic inflammation. The widespread clinical availability of magnetic resonance imaging supports the viability of qMT imaging as a clinical biomarker in trials of immunotherapeutics, both to identify patients vulnerable to

  6. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...... between 4.5 K and approximately 50 K, where it tends to increase. The intensities of the magnetic satellites originating from higher-order harmonics of the c-axis-moment component observed at 4.5 K decrease slowly with increasing temperature, but persist up to approximately 60 K....

  7. Studies on magnetism and bioelectromagnetics for 45 years: from magnetic analog memory to human brain stimulation and imaging.

    Science.gov (United States)

    Ueno, Shoogo

    2012-01-01

    Forty-five years of studies on magnetism and bioelectromagnetics, in our laboratory, are presented. This article is prepared for the d'Arsonval Award Lecture. After a short introduction of our early work on magnetic analog memory, we review and discuss the following topics: (1) Magnetic nerve stimulation and localized transcranial magnetic stimulation (TMS) of the human brain by figure-eight coils; (2) Measurements of weak magnetic fields generated from the brain by superconducting quantum interference device (SQUID) systems, called magnetoencephalography (MEG), and its application in functional brain studies; (3) New methods of magnetic resonance imaging (MRI) for the imaging of impedance of the brain, called impedance MRI, and the imaging of neuronal current activities in the brain, called current MRI; (4) Cancer therapy and other medical treatments by pulsed magnetic fields; (5) Effects of static magnetic fields and magnetic control of cell orientation and cell growth; and (6) Effects of radio frequency magnetic fields and control of iron ion release and uptake from and into ferritins, iron cage proteins. These bioelectromagnetic studies have opened new horizons in magnetism and medicine, in particular for brain research and treatment of ailments such as depression, Parkinson's, and Alzheimer's diseases. Copyright © 2011 Wiley Periodicals, Inc.

  8. Structure and function of complex brain networks

    Science.gov (United States)

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  9. Brain structural and functional correlates of resilience to Bipolar Disorder.

    Science.gov (United States)

    Frangou, Sophia

    2011-12-06

    Resilient adaptation can be construed in different ways, but as used here it refers to adaptive brain responses associated with avoidance of psychopathology despite expressed genetic predisposition to Bipolar Disorder (BD). Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives remain free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive responses that pre-empt disease expression. Data presented here are derived from the Vulnerability to Bipolar Disorders Study (VIBES) which includes BD patients, asymptomatic relatives and controls. Participants underwent extensive investigations including brain structural (sMRI) and functional magnetic resonance imaging (fMRI). We present results from sMRI voxel-based-morphometry and from conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT), a task of cognitive control during conflict resolution. All analyses were implemented using Statistical Parametric Mapping software version 5 (SPM5). Resilience in relatives was operationalized as the lifetime absence of clinical-range symptoms. Resilient relatives of BD patients expressed structural, functional, and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity. Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex during the SCWT. Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a bipolar genotype.

  10. Brain structural and functional correlates of resilience to Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Sophia eFrangou

    2012-01-01

    Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular

  11. Brain structural changes and neuropsychological impairments in male polydipsic schizophrenia

    Directory of Open Access Journals (Sweden)

    Nagashima Tomohisa

    2012-11-01

    Full Text Available Abstract Background Polydipsia frequently occurs in schizophrenia patients. The excessive water loading in polydipsia occasionally induces a hyponatremic state and leads to water intoxication. Whether polydipsia in schizophrenic patients correlates with neuropsychological impairments or structural brain changes is not clear and remains controversial. Methods Eight polydipsic schizophrenia patients, eight nonpolydipsic schizophrenia patients, and eight healthy controls were recruited. All subjects underwent magnetic resonance imaging (MRI and neuropsychological testing. Structural abnormalities were analyzed using a voxel-based morphometry (VBM approach, and patients’ neuropsychological function was assessed using the Brief Assessment of Cognition in Schizophrenia, Japanese version (BACS-J. Results No significant differences were found between the two patient groups with respect to the clinical characteristics. Compared with healthy controls, polydipsic patients showed widespread brain volume reduction and neuropsychological impairment. Furthermore, the left insula was significantly reduced in polydipsic patients compared with nonpolydipsic patients. These nonpolydipsic patients performed intermediate to the other two groups in the neuropsychological function test. Conclusions It is possible that polydipsia or the secondary hyponatremia might induce left insula volume reduction. Furthermore, this structural brain change may indirectly induce more severe neuropsychological impairments in polydipsic patients. Thus, we suggest that insula abnormalities might contribute to the pathophysiology of polydipsic patients.

  12. Structural brain plasticity in Parkinson's disease induced by balance training.

    Science.gov (United States)

    Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Weise, David; Classen, Joseph; Dukart, Juergen; Draganski, Bogdan; Villringer, Arno; Ragert, Patrick

    2014-01-01

    We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME × GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Brain structural correlates of complex sentence comprehension in children.

    Science.gov (United States)

    Fengler, Anja; Meyer, Lars; Friederici, Angela D

    2015-10-01

    Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP) in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults' complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Brain structural correlates of complex sentence comprehension in children

    Directory of Open Access Journals (Sweden)

    Anja Fengler

    2015-10-01

    Full Text Available Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults’ complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension.

  15. Core-Shell Structured Magnetic Ternary Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  16. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. © 2013 Elsevier B.V. All rights reserved.

  17. Structural brain correlates of adolescent resilience.

    Science.gov (United States)

    Burt, Keith B; Whelan, Robert; Conrod, Patricia J; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Fauth-Bühler, Mira; Flor, Herta; Galinowski, André; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomas; Pausova, Zdenka; Poustka, Luise; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Garavan, Hugh

    2016-11-01

    Despite calls for integration of neurobiological methods into research on youth resilience (high competence despite high adversity), we know little about structural brain correlates of resilient functioning. The aim of the current study was to test for brain regions uniquely associated with positive functioning in the context of adversity, using detailed phenotypic classification. 1,870 European adolescents (Mage  = 14.56 years, SDage  = 0.44 years, 51.5% female) underwent MRI scanning and completed behavioral and psychological measures of stressful life events, academic competence, social competence, rule-abiding conduct, personality, and alcohol use. The interaction of competence and adversity identified two regions centered on the right middle and superior frontal gyri; grey matter volumes in these regions were larger in adolescents experiencing adversity who showed positive adaptation. Differences in these regions among competence/adversity subgroups were maintained after controlling for several covariates and were robust to alternative operationalization decisions for key constructs. We demonstrate structural brain correlates of adolescent resilience, and suggest that right prefrontal structures are implicated in adaptive functioning for youth who have experienced adversity. © 2016 Association for Child and Adolescent Mental Health.

  18. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show that the s......We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  19. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  20. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old

    OpenAIRE

    Bourisly, Ali K; El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-01-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215...

  1. Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge

    Directory of Open Access Journals (Sweden)

    Maria Antònia Busquets

    2015-12-01

    Full Text Available The blood-brain barrier is a physical and physiological barrier that protects the brain from toxic substances within the bloodstream and helps maintain brain homeostasis. It also represents the main obstacle in the treatment of many diseases of the central nervous system. Among the different approaches employed to overcome this barrier, the use of nanoparticles as a tool to enhance delivery of therapeutic molecules to the brain is particularly promising. There is special interest in the use of magnetic nanoparticles, as their physical characteristics endow them with additional potentially useful properties. Following systemic administration, a magnetic field applied externally can mediate the capacity of magnetic nanoparticles to permeate the blood-brain barrier. Meanwhile, thermal energy released by magnetic nanoparticles under the influence of radiofrequency radiation can modulate blood-brain barrier integrity, increasing its permeability. In this review, we present the strategies that use magnetic nanoparticles, specifically iron oxide nanoparticles, to enhance drug delivery to the brain.

  2. Gadolinium-enhanced magnetic resonance angiography in brain death

    Science.gov (United States)

    Luchtmann, M.; Beuing, O.; Skalej, M.; Kohl, J.; Serowy, S.; Bernarding, J.; Firsching, R.

    2014-01-01

    Confirmatory tests for the diagnosis of brain death in addition to clinical findings may shorten observation time required in some countries and may add certainty to the diagnosis under specific circumstances. The practicability of Gadolinium-enhanced magnetic resonance angiography to confirm cerebral circulatory arrest was assessed after the diagnosis of brain death in 15 patients using a 1.5 Tesla MRI scanner. In all 15 patients extracranial blood flow distal to the external carotid arteries was undisturbed. In 14 patients no contrast medium was noted within intracerebral vessels above the proximal level of the intracerebral arteries. In one patient more distal segments of the anterior and middle cerebral arteries (A3 and M3) were filled with contrast medium. Gadolinium-enhanced MRA may be considered conclusive evidence of cerebral circulatory arrest, when major intracranial vessels fail to fill with contrast medium while extracranial vessels show normal blood flow.

  3. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Ryman, Sephira G; Gasparovic, Chuck; Bedrick, Edward J; Flores, Ranee A; Marshall, Alison N; Jung, Rex E

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  4. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Sephira G Ryman

    Full Text Available To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1H-MRS. Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females. Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI. We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho, Creatine (Cre, and N-acetylaspartate (NAA in regions both within (i.e., posterior cingulate cortex and white matter underlying (i.e., precuneus the Default Mode Network (DMN. These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  5. Electricity and Magnetism: Insights into the brain from multimodal imaging.

    Science.gov (United States)

    Cohen, M S

    2009-11-01

    The windows into brain function given us by the instruments of neuroimaging each are murky and their view is limited. Simultaneous collection of data from multiple modalities offers the potential to overcome the weaknesses of any tool alone. We argue that the combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) offers observations - and hypothesis testing - not possible using either single instrument. Because of their safety profiles and their non-invasive natures, EEG fMRI are among the best available devices for the study of human brain. These methods are complementary. EEG is fast, operating in a time domain comparable to single unit activity, but its localizing power is poor and the field of view is limited. While fMRI has the highest spatial resolution of any noninvasive imaging method and can reveal multiple centers of brain activity implicated in cognitive tasks, it is very slow compared to mental activity and is a poor choice for studying rapidly evolving processes. Here, we address theoretical models of the coupling between EEG and fMRI signals based on cellular physiology and energetics and argue that both tools observe principally synaptic activity. We discuss the technical problems of mutual interference then present several models of brain rhythms for which the joint EEG and fMRI observations provide significant evidence.

  6. Fetal magnetic resonance imaging (MRI) of ischemic brain injury.

    Science.gov (United States)

    de Laveaucoupet, J; Audibert, F; Guis, F; Rambaud, C; Suarez, B; Boithias-Guérot, C; Musset, D

    2001-09-01

    The aim of the present study was to demonstrate the usefulness of fetal magnetic resonance imaging (MRI) in ischemic brain injury. We report seven cases of fetal brain ischemia prenatally suspected on ultrasound (US) and confirmed by fetal MRI. Sonographic abnormalities included ventricular dilatation (n=3), microcephaly (n=1), twin pregnancy with in utero death of a twin and suspected cerebral lesion in the surviving co-twin (n=3). MRI was performed with a 1.0 T unit using half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences between 28 and 35 weeks of gestation. US and MRI images were compared with pathologic findings or postnatal imaging. MRI diagnosed hydranencephaly (n=1), porencephaly (n=2), multicystic encephalomalacia (n=2), unilateral capsular ischemia (n=1), corpus callosum and cerebral atrophy (n=1). In comparison with US, visualization of fetal brain anomalies was superior with MRI. The present cases demonstrate that MRI is a valuable complementary means of investigation when a brain pathology is discovered or suspected during prenatal US. Copyright 2001 John Wiley & Sons, Ltd.

  7. Anatomical Characterization of Human Fetal Brain Development with Diffusion Tensor Magnetic Resonance Imaging

    Science.gov (United States)

    Huang, Hao; Xue, Rong; Zhang, Jiangyang; Ren, Tianbo; Richards, Linda J.; Yarowsky, Paul; Miller, Michael I.; Mori, Susumu

    2009-01-01

    The human brain is extraordinarily complex, and yet its origin is a simple tubular structure. Characterizing its anatomy at different stages of human fetal brain development not only aids in understanding this highly ordered process but also provides clues to detecting abnormalities caused by genetic or environmental factors. During the second trimester of human fetal development, neural structures in the brain undergo significant morphological changes. Diffusion tensor imaging (DTI), a novel method of magnetic resonance imaging, is capable of delineating anatomical components with high contrast and revealing structures at the microscopic level. In this study, high-resolution and high-signal-to-noise-ratio DTI data of fixed tissues of second-trimester human fetal brains were acquired and analyzed. DTI color maps and tractography revealed that important white matter tracts, such as the corpus callosum and uncinate and inferior longitudinal fasciculi, become apparent during this period. Three-dimensional reconstruction shows that major brain fissures appear while most of the cerebral surface remains smooth until the end of the second trimester. A dominant radial organization was identified at 15 gestational weeks, followed by both laminar and radial architectures in the cerebral wall throughout the remainder of the second trimester. Volumetric measurements of different structures indicate that the volumes of basal ganglia and ganglionic eminence increase along with that of the whole brain, while the ventricle size decreases in the later second trimester. The developing fetal brain DTI database presented can be used for education, as an anatomical research reference, and for data registration. PMID:19339620

  8. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging

    NARCIS (Netherlands)

    Anbeek, Petronella; Vincken, Koen L.; Groenendaal, Floris; Koeman, Annemieke; Van Osch, Matthias J. P.; Van der Grond, Jeroen

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and

  9. Structure and Evolution of Magnetic Cataclysmic Variables

    Science.gov (United States)

    Andronov, I. L.

    2007-06-01

    Theoretical models and observational results are reviewed. The general picture of the structure and evolution of cataclysmic variables (CV) is presented, together with a brief discussion of additional mechanisms of intrinsic variability of the components and magnetic activity of secondaries. Special attention is paid to the accretion structures - flow, disk, column - which are affected by the magnetic field of the white dwarf. The mass and angular momentum transfer in asynchronous MCVs leads to a "propeller" stage of rapid synchronization, after which the "idlings" of the white dwarf are altered to "swingings" with a characteristic time of century(ies). The disk- magnetic field interaction leads to precession of the white dwarf, which causes quasi-periodic changes of the equilibrium rotational period. "Shot noise" in cataclysmic variables is discussed based on one-bandpass and multi-color observations.

  10. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  11. Brain Structure Linking Delay Discounting and Academic Performance.

    Science.gov (United States)

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Structural and magnetic properties of the layered

    Indian Academy of Sciences (India)

    The brownmillerite-type layered compound Ca2.375La0.125Sr0.5GaMn2O8 has been synthesized. The crystal and magnetic structures have been refined by the Rietveld analysis of the neutron powder diffraction patterns at 300 and 20 K. This compound crystallizes in the orthorhombic symmetry under the space group ...

  13. Structural brain correlates of human sleep oscillations.

    Science.gov (United States)

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Structure related phylogenetic variations in brain gangliosides of vertebrates.

    Science.gov (United States)

    Hilbig, R

    1984-01-01

    The concentration and composition of brain gangliosides from five brain structures of vertebrate species belonging to the classes of Chondrichthyes, Osteichthyes, Reptilia, Aves and Mammalia were investigated. The complexity of brain ganglioside composition is strikingly reduced over phyletic lines. In lower vertebrates there is only little variation in the ganglioside pattern between the different brain structures, whereas in higher vertebrates differences distinctly occurred. A similarity over phyletic lines of ganglioside pattern was only noted in phylogenetically old brain structures as for instance in the medulla oblongata and the brain stem.

  15. Neutron scattering studies of modulated magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Soerensen, Steen

    1999-08-01

    This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization

  16. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  17. Magnetic resonance electric property imaging of brain tissues.

    Science.gov (United States)

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2009-01-01

    The electric properties (EPs) of brain tissues, i.e., the electric conductivity and permittivity, can provide important information for diagnosis of various brain disorders. A high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on EPs of the biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we have developed a dual-excitation algorithm, which uses two sets of measured B1 data, to noninvasively reconstruct the biological tissue's electric properties. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3-D head model within a birdcage coil and a transverse electromagnetic coil. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results indicate good reconstruction of electric properties of brain tissues from noninvasive MRI B1 mapping.

  18. Effects of hormone therapy on brain structure

    OpenAIRE

    Kantarci, Kejal; Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42?56 years, within 5?36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 ?g/d transdermal 17?-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active ...

  19. Statistical analysis of minimum cost path based structural brain connectivity

    NARCIS (Netherlands)

    De Boer, R.; Schaap, M.; Van der Lijn, F.; Vrooman, H.A.; De Groot, M.; Van der Lugt, A.; Ikram, M.A.; Vernooij, M.W.; Breteler, M.M.B.; Niessen, W.J.

    2010-01-01

    Diffusion MRI can be used to study the structural connectivity within the brain. Brain connectivity is often represented by a binary network whose topology can be studied using graph theory. We present a framework for the construction of weighted structural brain networks, containing information

  20. Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

    Science.gov (United States)

    Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan

    2016-03-01

    Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning

    Directory of Open Access Journals (Sweden)

    Maysam Z. Pedram

    2015-09-01

    Full Text Available Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs. The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease.

  2. Gender Differences in Postresuscitative Brain Structural Changes

    Directory of Open Access Journals (Sweden)

    I. V. Ostrova

    2009-01-01

    Full Text Available Objective: to reveal gender differences in brain structural changes after clinical death and to assess the neuroprotective properties of the hormonal agent Gynodian Depot. Materials and methods. The brain neuronal populations were morphometrical-ly studied in adult albino rats of both sexes which had sustained 10-minute cardiac arrest. At minute 30 after resuscitation, oil solution of estradiol with dehydroepiandrosterone was intramuscularly injected into the study group animals in doses of 0.1 and 5 mg/100 g. The comparison group of animals received the equivalent volumes of saline. Gender- and age-matched intact rats served as a control. An image analysis system of cresyl violet-stained paraffin brain sections was used to determine the density and composition of highly ischemia-perfusion-sensitive populations of pyramidal neurons of Layer V of the sensomo-tor cortex, the CA1 and CA4 hippocampal sectors, and Purkinje cells in the lateral cerebellum. Results. It has been established that there are gender differences in brain morphology in health, which are detectable in the postresuscitative period. The site of lesions has been found to be different in resuscitated rats of different gender. At the same time, male brain lesions are more extensive, i.e. these involve to this or that extent all the examined regions: the cerebellum and CA4 hippocamplal sector exhibit neuronal death; the cortex and CA1 hippocampal sector show dystrophic changes in the nerve cells. In the females, neuronal shedding processes were observed in the CA1 hippocampal sector only. Estradiol + dehydroepiandrosterone treatment has been ascertained to prevent nerve cell death only in the males and to fail to affect the density and composition of the neuronal populations under study in the females. Conclusion. The findings suggest that it is important to identify the structural bases of sexual dimorphism in the body’s reaction to ischemic exposure and that it is necessary to

  3. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    Science.gov (United States)

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  4. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  5. Effects of hormone therapy on brain structure

    Science.gov (United States)

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  6. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...

  7. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  8. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  9. Magnetic resonance imaging anatomy of the rabbit brain at 3 T.

    Science.gov (United States)

    Müllhaupt, Désirée; Augsburger, Heinz; Schwarz, Andrea; Fischer, Gregor; Kircher, Patrick; Hatt, Jean-Michel; Ohlerth, Stefanie

    2015-08-28

    Rabbits are widely accepted as an animal model in neuroscience research. They also represent very popular pet animals, and, in selected clinical cases with neurological signs, magnetic resonance imaging (MRI) may be indicated for imaging the rabbit brain. Literature on the normal MRI anatomy of the rabbit brain and associated structures as well as related reference values is sparse. Therefore, it was the purpose of this study to generate an MRI atlas of the normal rabbit brain including the pituitary gland, the cranial nerves and major vessels by the use of a 3 T magnet. Based on transverse, dorsal and sagittal T2-weighted (T2w) and pre- and post-contrast 3D T1-weighted (T1w) sequences, 60 intracranial structures were identified and labeled. Typical features of a lissencephalic brain type were described. In the 5 investigated rabbits, on T1w images a crescent-shaped hyperintense area caudodorsally in the pituitary gland most likely corresponded to a part of the neurohypophysis. The optic, trigeminal, and in part, the facial, vestibulocochlear and trochlear nerves were identified. Mild contrast enhancement of the trigeminal nerve was present in all rabbits. Absolute and relative size of the pituitary gland, midline area of the cranial and caudal cranial fossa and height of the tel- and diencephalon, 3rd and 4th ventricles were also determined. These data established normal MRI appearance and measurements of the rabbit brain. Results provide reference for research studies in rabbits and, in rare instances, clinical cases in veterinary medicine.

  10. Arterial stiffness and progression of structural brain changes The SMART-MR study

    NARCIS (Netherlands)

    Jochemsen, Hadassa M.; Muller, Majon; Bots, Michiel L.; Scheltens, Philip; Vincken, Koen; Mali, Willem P. T. M.; van der Graaf, Yolanda; Geerlings, Mirjam I.

    2015-01-01

    Objective:To examine the cross-sectional and prospective associations between arterial stiffness and structural brain changes within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study, a prospective cohort study among patients with manifest arterial

  11. Arterial stiffness and progression of structural brain changes The SMART-MR study

    NARCIS (Netherlands)

    Jochemsen, H.M.; Muller, M.; Bots, M.L.; Scheltens, P.; Vincken, K.L.; Mali, W.P.T.M.; van der Graaf, Y.; Geerlings, M.I.

    2015-01-01

    Objective: To examine the cross-sectional and prospective associations between arterial stiffness and structural brain changes within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study, a prospective cohort study among patients with manifest arterial disease. Methods:

  12. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  13. A discrete structure of the brain waves.

    Science.gov (United States)

    Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team

    A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.

  14. Improving the magnetic field homogeneity by varying magnetic field structure in a geophone

    Science.gov (United States)

    Hong, Li; Wang, Wentao; Yao, Zhenjing; Gao, Qiang; Han, Zhiming

    2018-01-01

    The magnetic field structure is a key factor that affects performance of the magneto-electric geophone. In order to enhance the magnetic field homogeneity and magnetic induction intensity of the magnetic field structure, this paper proposes a new magnetic field structure. It consists of two cylindrical permanent magnets: an H-type magnetic boot and an external magnetic yoke. The proposed magnetic field structure can broaden the range of a uniform magnetic field and increase the magnetic field intensity of working air-gap. To confirm the validity of the design, the finite element analysis and real measurement experiments were conducted. The finite element simulations using the ANASYS Electromagnetics Suite 17.2.0 showed that the air-gap magnetic induction intensity is increased and the work space with a uniform magnetic field is broadened. Meanwhile, the output voltage of the coil is increased, and the harmonic distortion rate of output voltage is reduced. According to the real measurement experimental results, compared with the traditional magnetic field structure, the uniform range of the magnetic field is improved 23% in the entire air-gap path, and the magnetic induction intensity enhances 24% over the proposed new magnetic field structure.

  15. Topology-preserving tissue classification of magnetic resonance brain images.

    Science.gov (United States)

    Bazin, Pierre-Louis; Pham, Dzung L

    2007-04-01

    This paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given by a template. The technique, known as topology-preserving, anatomy-driven segmentation (TOADS), combines advantages of statistical tissue classification, topology-preserving fast marching methods, and image registration to enforce object-level relationships with little constraint over the geometry. When applied to the problem of brain segmentation, it directly provides a cortical surface with spherical topology while segmenting the main cerebral structures. Validation on simulated and real images characterises the performance of the algorithm with regard to noise, inhomogeneities, and anatomical variations.

  16. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  17. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Directory of Open Access Journals (Sweden)

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  18. Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume

    Science.gov (United States)

    Smitherman, Emily; Hernandez, Ana; Stavinoha, Peter L.; Huang, Rong; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2016-01-01

    Abstract Brain lesions after traumatic brain injury (TBI) are heterogeneous, rendering outcome prognostication difficult. The aim of this study is to investigate whether early magnetic resonance imaging (MRI) of lesion location and lesion volume within discrete brain anatomical zones can accurately predict long-term neurological outcome in children post-TBI. Fluid-attenuated inversion recovery (FLAIR) MRI hyperintense lesions in 63 children obtained 6.2±5.6 days postinjury were correlated with the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score at 13.5±8.6 months. FLAIR lesion volume was expressed as hyperintensity lesion volume index (HLVI)=(hyperintensity lesion volume / whole brain volume)×100 measured within three brain zones: zone A (cortical structures); zone B (basal ganglia, corpus callosum, internal capsule, and thalamus); and zone C (brainstem). HLVI-total and HLVI-zone C predicted good and poor outcome groups (pCompared to patients with lesions in zone A alone or in zones A and B, patients with lesions in all three zones had a significantly higher odds ratio (4.38; 95% confidence interval, 1.19–16.0) for developing an unfavorable outcome. PMID:25808802

  19. Conventional Computed Tomography and Magnetic Resonance in Brain Concussion.

    Science.gov (United States)

    Useche, Juan Nicolas; Bermudez, Sonia

    2018-02-01

    Conventional neuroimaging is still the mainstay in the assessment of the acute, follow-up, and chronic settings of concussion and mild traumatic brain injury (mTBI). Computed tomography (CT) is preferred for the initial assessment of acute mTBI, repeat evaluation in acute mTBI with neurologic deterioration, and cautious use in children with mTBI. Clinical rules have been developed to identify pediatric and adult patients with mTBI who can safely forego CT. Magnetic resonance (MR) imaging is mostly used in patients with acute mTBI when initial or follow-up CT is normal and there are persistent neurologic findings and in subacute or chronic mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    Science.gov (United States)

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  1. Characterization of eddy current distortion effects on magnetic resonance axonography of human brain

    Science.gov (United States)

    Elshafiey, Ibrahim; Narayana, Ponnada A.

    2002-05-01

    Axonography of human brain, based on diffusion tensor magnetic resonance imaging (DT-MRI), has recently gained popularity because of its potential in providing crucial information about intercommunication between different regions of brain. This technique exploits the sensitivity of MRI to random water diffusion in tissues in the presence of diffusion gradient pulses incorporated into the imaging sequence. Large diffusion weighting that is necessary for the generation of axonography with high SNR is achieved by increasing the magnitude of diffusion pulses. However large diffusion gradients induce strong eddy currents in the metallic structure of the cryostat that houses the superconducting coil of the scanner magnet, resulting in distortion of magnetic resonance images. The purpose of this study was to characterize the effect of eddy currents on images obtained using the DT-MRI of human brain. Characterization of eddy current effects is essential for optimizing the scanning parameters and improving image quality. All MRI studies were performed on 1.5-T GE scanner, using single shot diffusion weighed echo planar imaging sequence. All acquisitions were cardiac gated for minimizing the pulsation effect of cerebrospinal fluid (CSF) on the images. Diffusion gradient- or b-space was explored using a set of 62 directions along the two poles, and 60 other directions. Total scan time was less than three minutes. The exploration of the b-space helps quantify the relationship between the orientation of diffusion gradients and eddy current levels. Experimental results demonstrate that certain directions are more prone to eddy current-induced image distortions. Determining the optimum gradient directions should present a powerful technique for reducing eddy current distortion, and thus enhance the use of MRI axonography for a noninvasive assessment of human brain.

  2. Body mass index and magnetic resonance markers of brain integrity in adults.

    Science.gov (United States)

    Gazdzinski, Stefan; Kornak, John; Weiner, Michael W; Meyerhoff, Dieter J

    2008-05-01

    Obesity and being overweight during adulthood have been consistently linked to increased risk for development of dementia later in life, especially Alzheimer's disease. They have also been associated with cognitive dysfunction and brain structural alterations in otherwise healthy adults. Although proton magnetic resonance spectroscopy may distinguish between neuronal and glial components of the brain and may point to neurobiological mechanisms underlying brain atrophy and cognitive changes, no spectroscopic studies have yet assessed the relationships between adiposity and brain metabolites. We have utilized magnetic resonance imaging and proton magnetic resonance spectroscopic imaging data from 50 healthy middle-aged participants (mean age, 41.7 +/- 8.5 years; 17 women), who were scanned as control subjects for another study. After adjustment for age and sex, greater body mass indices (BMIs) correlated with: (1) lower concentrations of N-acetylaspartate (spectroscopic marker of neuronal viability) in frontal (p = 0.001), parietal (p = 0.006), and temporal (p = 0.008) white matter; (2) lower N-acetylaspartate in frontal gray matter (p = 0.01); and (3) lower concentrations of choline-containing metabolites (associated with membrane metabolism) in frontal white matter (p = 0.05). These results suggest that increased BMI at midlife is associated with neuronal and/or myelin abnormalities, primarily in the frontal lobe. Because white matter in the frontal lobes is more prone to the effects of aging than in other lobes, our results may reflect accelerated aging in individuals with high levels of adiposity. Thus, greater BMI may increase the odds of developing an age-related disease, such as Alzheimer's disease.

  3. Features of magnetic resonance imaging brain in eclampsia: clinicoradiologic correlation

    Directory of Open Access Journals (Sweden)

    Mubarak F

    2012-08-01

    Full Text Available Fatima Mubarak, Muhammad Idris, Quratulain HadiDepartment of Radiology, Aga Khan University Hospital, Karachi, PakistanObjective: Eclampsia is a gestational hypertensive condition that typically occurs after 20 weeks of pregnancy and is characterized by hypertension, peripheral edema, proteinuria, and seizures. Magnetic resonance imaging (MRI plays a vital role in the diagnosis and management of these patients, so it is essential to describe features of the brain MRI in these cases.Methods: MRI was performed on eleven consecutive patients with eclampsia. All patients underwent follow-up neurologic examinations until all symptoms resolved. Nine of those eleven patients underwent follow-up MRI. The clinical signs and symptoms were correlated with findings on initial and follow-up MRI.Results: MRI typically demonstrated bilateral hyperintense lesions on T2-weighted images and hypointense lesions on T1-weighted images without diffusion restriction. MRI abnormalities are most commonly located in the distribution of the posterior cerebral circulation mainly in occipital and parietal lobes, and are associated with visual disturbances and dizziness. Almost all lesions seen at MRI in patients with eclampsia were reversible in our series of patients.Conclusion: Involvement of the parietal and occipital lobes is common in patients with eclampsia, and the signal abnormalities on MRI are reversible if recognized and treated early.Keywords: pregnancy, seizures, hypertension, brain, MRI findings, reversible

  4. Brain of rats intoxicated with acrylamide: observation with 4.7 tesla magnetic resonance.

    Science.gov (United States)

    Kinoshita, Y; Matsumura, H; Igisu, H; Yokota, A

    2000-10-01

    When rats were injected intraperitoneally with acrylamide (50 mg/kg per day) for 8 days, all animals developed ataxia and weakness in the hindlimbs. On examining their brain with an ultrahigh-field (4.7 T) magnetic resonance (MR) spectrometer, the lateral ventricles on both sides and the third ventricle were dilated. The aqueduct and cisterns were also enlarged. The size of the cerebral cortex was quantified in three MR image slices covering the cerebrum. Compared with the images of the brain of body weight-matched controls, the cerebral cortex of rats intoxicated with acrylamide was found to be smaller in the primary motor area in all slices, and in the primary or secondary sensory area in two slices. Taken together with previous enzymatic analyses, rats intoxicated with acrylamide (50 mg/kg per day for 8 days) seem to represent an animal model of acrylamide encephalopathy not only biochemically but also structurally.

  5. The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies

    Science.gov (United States)

    Burnett, Stephanie; Sebastian, Catherine; Kadosh, Kathrin Cohen; Blakemore, Sarah-Jayne

    2015-01-01

    Social cognition is the collection of cognitive processes required to understand and interact with others. The term ‘social brain’ refers to the network of brain regions that underlies these processes. Recent evidence suggests that a number of social cognitive functions continue to develop during adolescence, resulting in age differences in tasks that assess cognitive domains including face processing, mental state inference and responding to peer influence and social evaluation. Concurrently, functional and structural magnetic resonance imaging (MRI) studies show differences between adolescent and adult groups within parts of the social brain. Understanding the relationship between these neural and behavioural observations is a challenge. This review discusses current research findings on adolescent social cognitive development and its functional MRI correlates, then integrates and interprets these findings in the context of hypothesised developmental neurocognitive and neurophysiological mechanisms. PMID:21036192

  6. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  7. Does 3T Fetal MRI Improve Image Resolution of Normal Brain Structures between 20 and 24 Weeks' Gestational Age?

    Science.gov (United States)

    Priego, G; Barrowman, N J; Hurteau-Miller, J; Miller, E

    2017-08-01

    Stronger magnetic fields have the potential to improve fetal image resolution. Our objective was to detect whether there was better anatomic resolution of brain structures in fetuses imaged with a 3T magnet compared with a 1.5T magnet. Multiple cerebral and facial anatomic structures were retrospectively assessed in 28 fetal MR imaging scans with normal findings (12 at 3T and 16 at 1.5T) with a 0-3 grading score. Fetuses were assessed during the second trimesters (gestational age, 20-24 weeks). The association between the quality ratings and magnetic field strengths (1.5T versus 3T) was evaluated by a linear mixed-effects model. A quantitative assessment of the signal intensity was also performed in the different layers of the developing brain. Comparative log-ratios were calculated across the different layers of the fetal brain. There was a statistically significant interaction between location and magnetic field strength (P magnet. Similarly, statistical significance was also obtained on the quantitative assessment of the multilayer appearance of the brain; the 3T magnet had a median factor of 8.38 higher than the 1.5T magnet (95% CI, 4.73-14.82). Other anatomic structures assessed in the supratentorial compartment of the brain showed higher values on the 3T magnet with no statistical significance. Both magnets depict cerebral and facial normal anatomic structures; however, our data indicates better anatomic detail on the 3T than on the 1.5T magnet. © 2017 by American Journal of Neuroradiology.

  8. Asymmetry of the structural brain connectome in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Leonardo eBonilha

    2014-01-01

    Full Text Available Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome. This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks.Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults.Methods: We obtained high-resolution structural magnetic resonance images (MRI from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs. White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean=0 through one sample t-tests.Results: Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal and dorsolateral frontal connections.Conclusions: We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in senior individuals.

  9. BRAIN STRUCTURAL AND FUNCTIONAL CHANGES IN ADOLESCENTS WITH PSYCHIATRIC DISORDERS

    Science.gov (United States)

    Miguel-Hidalgo, José Javier

    2013-01-01

    During adolescence hormonal and neurodevelopmental changes geared to ensure reproduction and achieve independence are very likely mediated by growth of neural processes, remodeling of synaptic connections, increased myelination in prefrontal areas, and maturation of connecting subcortical regions. These processes, greatly accelerated in adolescence, follow an asynchronous pattern in different brain areas. Neuroimaging research using functional and structural magnetic resonance imaging has produced most of the insights regarding brain structural and functional neuropathology in adolescent psychiatric disorders. In schizophrenia, first episodes during adolescence are linked to greater-than-normal losses in gray matter density and white matter integrity, and show a divergence of maturational trajectories from normative neural development, in a progression similar to that of adult-onset schizophrenia. Anxiety and mood disorders in adolescence have been linked to abnormally increased activity in the amygdala and ventral prefrontal cortical areas, although some data suggest that neural abnormalities in the amygdala and anxiety maybe particularly more frequent in adolescents than in adults. Alcohol misuse in adolescence results in reduced integrity in the white matter and reduced gray matter density that, given the high intensity of adolescent synaptic and myelin remodeling, may result in persistent and profound changes in circuits supporting memory, emotional and appetitive control. Interaction of persistent changes due to prenatal exposure with contemporaneous expression of genetic factors and disturbing environmental exposure may be an important factor in the appearance of psychiatric disorders in adolescence. Further progress in understanding adolescent psychopathology will require postmortem research of molecular and cellular determinants in the adolescent brain. PMID:23828425

  10. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  11. Body mass index, but not FTO genotype or major depressive disorder, influences brain structure.

    Science.gov (United States)

    Cole, J H; Boyle, C P; Simmons, A; Cohen-Woods, S; Rivera, M; McGuffin, P; Thompson, P M; Fu, C H Y

    2013-11-12

    Obesity and major depressive disorder (MDD) are highly prevalent and often comorbid health conditions. Both are associated with differences in brain structure and are genetically influenced. Yet, little is known about how obesity, MDD, and known risk genotypes might interact in the brain. Subjects were 81 patients with MDD (mean age 48.6 years) and 69 matched healthy controls (mean age 51.2 years). Subjects underwent 1.5T magnetic resonance imaging, genotyping for the fat mass and obesity associated (FTO) gene rs3751812 polymorphism, and measurements for body mass index (BMI). We conducted a whole brain voxelwise analysis using tensor-based morphometry (TBM) to examine the main and interaction effects of diagnosis, BMI and FTO genotype. Significant effects of BMI were observed across widespread brain regions, indicating reductions in predominantly subcortical and white matter areas associated with increased BMI, but there was no influence of MDD or FTO rs3751812 genotype. There were no significant interaction effects. Within MDD patients, there was no effect of current depressive symptoms; however the use of antidepressant medication was associated with reductions in brain volume in the frontal lobe and cerebellum. Obesity affects brain structure in both healthy participants and MDD patients; this influence may account for some of the brain changes previously associated with MDD. BMI and the use of medication should ideally be measured and controlled for when conducting structural brain imaging research in MDD. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Structural magnetic resonance imaging in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Deblaere, Karel [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium); Ghent University Hospital, MR Department - 1K12, Ghent (Belgium); Achten, Eric [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium)

    2008-01-15

    Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy. (orig.)

  13. Local appearance features for robust MRI brain structure segmentation across scanning protocols

    DEFF Research Database (Denmark)

    Achterberg, H.C.; Poot, Dirk H. J.; van der Lijn, Fedde

    2013-01-01

    Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require...... a representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution...... and that brain tissue classification can be performed robustly for images obtained with different protocols, we propose to derive appearance features from brain-tissue density maps instead of directly from the MR images. We evaluated this approach on hippocampus segmentation in two sets of images acquired...

  14. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  15. Soap bubble appearance in brain magnetic resonance imaging: cryptococcal meningoencephalitis.

    Science.gov (United States)

    Vieira, Marcelo Adriano da Cunha e Silva; Costa, Carlos Henrique Nery; Ribeiro, José Carlos Castelo Branco; Nunes-Filho, Lucídio Portella; Rabelo, Marcos Glebson Gomes; Almeida-Neto, Walfrido Salmito de

    2013-01-01

    Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.

  16. Soap bubble appearance in brain magnetic resonance imaging: cryptococcal meningoencephalitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha e Silva Vieira

    2013-09-01

    Full Text Available Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.

  17. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  18. Imaging structural and functional connectivity: towards a unified definition of human brain organization?

    Science.gov (United States)

    Guye, Maxime; Bartolomei, Fabrice; Ranjeva, Jean-Philippe

    2008-08-01

    Diffusion tractography and functional/effective connectivity MRI provide a better understanding of the structural and functional human brain connectivity. This review will underline the major recent methodological developments and their exceptional respective contributions to physiological and pathophysiological studies in vivo. We will also emphasize the benefits provided by computational models of complex networks such as graph theory. Imaging structural and functional brain connectivity has revealed the complex brain organization into large-scale networks. Such an organization not only permits the complex information segregation and integration during high cognitive processes but also determines the clinical consequences of alterations encountered in development, ageing, or neurological diseases. Recently, it has also been demonstrated that human brain networks shared topological properties with the so-called 'small-world' mathematical model, allowing a maximal efficiency with a minimal energy and wiring cost. Separately, magnetic resonance tractography and functional MRI connectivity have both brought new insights into brain organization and the impact of injuries. The small-world topology of structural and functional human brain networks offers a common framework to merge structural and functional imaging as well as dynamical data from electrophysiology that might allow a comprehensive definition of the brain organization and plasticity.

  19. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  20. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Maysam Z. Pedram

    2016-06-01

    Full Text Available This paper scrutinizes the magnetic field effect to deliver the superparamagnetic nanoparticles (SPMNs through the Blood Brain Barrier (BBB. Herein we study the interaction between the nanoparticle (NP and BBB membrane using Molecular Dynamic (MD techniques. The MD model is used to enhance our understanding of the dynamic behavior of SPMNs crossing the endothelial cells in the presence of a gradient magnetic field. Actuation of NPs under weak magnetic field offers the great advantage of a non-invasive drug delivery without the risk of causing injury to the brain. Furthermore, a weak magnetic portable stimulator can be developed using low complexity prototyping techniques. Based on MD simulation results in this paper, SPMNs can cross the cell membrane while experiencing very weak mechanical forces in the range of pN. This study also derives guidelines for the design of the SPMNs dedicated to crossing the BBB using external magnetic fields.

  1. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adrenomyeloneuropathy, a dynamic progressive disorder: brain magnetic resonance imaging of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yuan-Heng; Chen, Ya-Fang; Liu, Hon-Man [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei (Taiwan)

    2004-04-01

    Adrenomyeloneuropathy (AMN) is a phenotype variant of X-linked adrenoleukodystrophy. We present two patients with adult-onset AMN who were initially suspected to have demyelinating disorders radiologically and finally diagnosed on the basis of laboratory data. The brain magnetic resonance images showed abnormal signal intensity at pyramidal tracts and cerebellar hemisphere bilaterally with abnormal enhancement after contrast medium administration. Review of the literature shows that the brain magnetic resonance findings of adrenomyeloneuropathy may include normal brain, tract demyelination, white matter demyelination, or brain atrophy. Disease progression was demonstrated by follow-up imaging. (orig.)

  3. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  4. Brain Structure-function Couplings (FY11)

    Science.gov (United States)

    2012-01-01

    technologies provide potentially useful, yet different, indices of brain activity. fNIR provides a measure of changes in blood oxygen concentrations and blood ...characteristics of complex brain-generated network activity (which we leave for future efforts). Third, the windowing to compute the WPLI smears the signal...periods of significance and on a trial-by-trial basis, the WPLI values of the channel data do not precisely coincide with the brain-related alpha

  5. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  6. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  7. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  8. Brain structure links loneliness to social perception.

    Science.gov (United States)

    Kanai, Ryota; Bahrami, Bahador; Duchaine, Brad; Janik, Agnieszka; Banissy, Michael J; Rees, Geraint

    2012-10-23

    Loneliness is the distressing feeling associated with the perceived absence of satisfying social relationships. Loneliness is increasingly prevalent in modern societies and has detrimental effects on health and happiness. Although situational threats to social relationships can transiently induce the emotion of loneliness, susceptibility to loneliness is a stable trait that varies across individuals [6-8] and is to some extent heritable. However, little is known about the neural processes associated with loneliness (but see [12-14]). Here, we hypothesized that individual differences in loneliness might be reflected in the structure of the brain regions associated with social processes. To test this hypothesis, we used voxel-based morphometry and showed that lonely individuals have less gray matter in the left posterior superior temporal sulcus (pSTS)--an area implicated in basic social perception. As this finding predicted, we further confirmed that loneliness was associated with difficulty in processing social cues. Although other sociopsychological factors such as social network size, anxiety, and empathy independently contributed to loneliness, only basic social perception skills mediated the association between the pSTS volume and loneliness. Taken together, our results suggest that basic social perceptual abilities play an important role in shaping an individual's loneliness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Strain-induced modification of magnetic structure and new magnetic ...

    Indian Academy of Sciences (India)

    the magnetic nanostructures, those involving rare-earth metals are of particular interest because of the modulated magnetic phases and the magnetostrictive prop- erties present in the bulk [2]. In bulk lanthanide elements, the combination of weak exchange and anomalous large crystal field and magnetostrictive interactions, ...

  10. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth.

    Science.gov (United States)

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20-40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20-35 PMW than during 35-40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural

  11. Poorer physical fitness is associated with reduced structural brain integrity in heart failure.

    Science.gov (United States)

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Griffith, Erica Y; Narkhede, Atul; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H; Colbert, Lisa H; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-05-15

    Physical fitness is an important correlate of structural and functional integrity of the brain in healthy adults. In heart failure (HF) patients, poor physical fitness may contribute to cognitive dysfunction and we examined the unique contribution of physical fitness to brain structural integrity among patients with HF. Sixty-nine HF patients performed the Modified Mini Mental State examination (3MS) and underwent brain magnetic resonance imaging. All participants completed the 2-minute step test (2MST), a brief measure of physical fitness. We examined the associations between cognitive performance, physical fitness, and three indices of global brain integrity: total cortical gray matter volume, total white matter volume, and whole brain cortical thickness. Regression analyses adjusting for demographic characteristics, medical variables (e.g., left ventricular ejection fraction), and intracranial volume revealed reduced performance on the 2MST were associated with decreased gray matter volume and thinner cortex (passociated with poorer 3MS scores (pphysical fitness is common in HF and associated with reduced structural brain integrity. Prospective studies are needed to elucidate underlying mechanisms for the influence of physical fitness on brain health in HF. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    Science.gov (United States)

    ... Therefore, Dr. Jentsch says, to answer this question, future studies should track primate brains through longer abstinence. “Methamphetamine ... Tracks Reward's Value and Steps to Obtain It Study shows e-cigarettes affect brain similarly to other nicotine sources ... PDF documents require the free Adobe Reader . Microsoft PowerPoint ...

  13. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes.

    Science.gov (United States)

    Lamkowsky, Marie-Christin; Geppert, Mark; Schmidt, Maike M; Dringen, Ralf

    2012-02-01

    Magnetic iron oxide nanoparticles (Fe-NPs) are considered for various biomedical and neurobiological applications that involve the presence of external magnetic fields. However, little is known on the effects of a magnetic field on the uptake of such particles by brain cells. Cultured brain astrocytes accumulated dimercaptosuccinate-coated Fe-NP in a time-, temperature-, and concentration-dependent manner. This accumulation was strongly enhanced by the presence of the magnetic field generated by a permanent neodymium iron boron magnet that had been positioned below the cells. The magnetic field-induced acceleration of the accumulation of Fe-NP increased almost proportional to the strength of the magnetic field applied, increasing the cellular-specific iron content from an initial 10 nmol/mg protein within 4 h of incubation at 37°C to up to 12,000 nmol/mg protein. However, presence of a magnetic field also increased the amounts of iron that attached to the cells during incubation with Fe-NP at 4°C. These results suggest that the presence of an external magnetic field promotes in cultured astrocytes both the binding of Fe-NP to the cell membrane and the internalization of Fe-NP. Copyright © 2011 Wiley Periodicals, Inc.

  14. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  15. Nonparametric Bayesian Clustering of Structural Whole Brain Connectivity in Full Image Resolution

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon; Dyrby, Tim B.

    2014-01-01

    Diffusion magnetic resonance imaging enables measuring the structural connectivity of the human brain at a high spatial resolution. Local noisy connectivity estimates can be derived using tractography approaches and statistical models are necessary to quantify the brain’s salient structural...... groups) that defines structural units at the resolution of statistical support. We apply the model to a network of structural brain connectivity in full image resolution with more than one hundred thousand regions (voxels in the gray-white matter boundary) and around one hundred million connections...... organization. However, statistically modeling these massive structural connectivity datasets is a computational challenging task. We develop a high-performance inference procedure for the infinite relational model (a prominent non-parametric Bayesian model for clustering networks into structurally similar...

  16. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    Science.gov (United States)

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  17. Investigating dynamical information transfer in the brain following a TMS pulse: Insights from structural architecture.

    Science.gov (United States)

    Amico, Enrico; Van Mierlo, Pieter; Marinazzo, Daniele; Laureys, Steven

    2015-01-01

    Transcranial magnetic stimulation (TMS) has been used for more than 20 years to investigate connectivity and plasticity in the human cortex. By combining TMS with high-density electroencephalography (hd-EEG), one can stimulate any cortical area and measure the effects produced by this perturbation in the rest of the cerebral cortex. The purpose of this paper is to investigate changes of information flow in the brain after TMS from a functional and structural perspective, using multimodal modeling of source reconstructed TMS/hd-EEG recordings and DTI tractography. We prove how brain dynamics induced by TMS is constrained and driven by its structure, at different spatial and temporal scales, especially when considering cross-frequency interactions. These results shed light on the function-structure organization of the brain network at the global level, and on the huge variety of information contained in it.

  18. Spectral properties of the temporal evolution of brain network structure

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  19. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.

    Directory of Open Access Journals (Sweden)

    Julian Maclaren

    Full Text Available Magnetic resonance imaging (MRI is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.

  20. Magnetic structures synthesized by controlled oxidative etching: Structural characterization and magnetic behavior

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available A facile strategy for the fabrication Fe3O4 nanostructures at room temperature and with well-defined morphology is proposed. In this methodology, the iron precursors were reduced by sodium borohydride. Subsequently an oxidative etching process promotes the formation of Fe2O3 nanostructures. Magnetic measurements revealed a well-defined superparamagnetic behavior for the material. The Zero-Field-Cooled (ZFC and Field-Cooled (FC magnetization curves reveals that critical and blocking temperature were 24 and 350 °C respectively. The Fe3O4 nanostructures were characterized using aberration-corrected (Cs scanning transmission electron microscopy (STEM and energy dispersive spectroscopy (EDS. Additionally, Raman spectra support the Fe3O4 presence and corroborate the efficiency of the synthesis process to obtain magnetite. Keywords: Chemical synthesis, Fe3O4 nanoparticles, Structural characterization, Magnetic properties

  1. Magnetic sensor for building structural vibrations.

    Science.gov (United States)

    García, Alfonso; Morón, Carlos; Tremps, Enrique

    2014-02-05

    This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building.

  2. Genetic susceptibility to multiple sclerosis: Brain structure and cognitive function in the general population.

    Science.gov (United States)

    Ikram, Mohammad Arfan; Vernooij, Meike W; Roshchupkin, Gennady V; Hofman, Albert; van Duijn, Cornelia M; Uitterlinden, André G; Niessen, Wiro J; Hintzen, Rogier Q; Adams, Hieab Hh

    2017-11-01

    Multiple sclerosis (MS) affects brain structure and cognitive function and has a heritable component. Over a 100 common genetic risk variants have been identified, but most carriers do not develop MS. For other neurodegenerative diseases, risk variants have effects outside patient populations, but this remains uninvestigated for MS. To study the effect of MS-associated genetic variants on brain structure and cognitive function in the general population. We studied middle-aged and elderly individuals (mean age = 65.7 years) from the population-based Rotterdam Study. We determined 107 MS variants and additionally created a risk score combining all variants. Magnetic resonance imaging ( N = 4710) was performed to obtain measures of brain macrostructure, white matter microstructure, and gray matter voxel-based morphometry. A cognitive test battery ( N = 7556) was used to test a variety of cognitive domains. The MS risk score was associated with smaller gray matter volume over the whole brain (βstandardized = -0.016; p = 0.044), but region-specific analyses did not survive multiple testing correction. Similarly, no significant associations with brain structure were observed for individual variants. For cognition, rs2283792 was significantly associated with poorer memory (β = -0.064; p = 3.4 × 10-5). Increased genetic susceptibility to MS may affect brain structure and cognition in persons without disease, pointing to a "hidden burden" of MS.

  3. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by

  4. Brain magnetic resonance imaging and magnetic resonance spectroscopy findings of children with kernicterus.

    Science.gov (United States)

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of (1)H magnetic resonance spectroscopy (MRS) in demonstrating these metabolic changes and to review conventional MRI findings of kernicterus. Forty-eight pediatric cases with kernicterus were included in this study. MRI and MRS examinations were performed on variable dates (10-29 days after birth). NAA, Cr, Cho, NAA/Cr, NAA/Cho, and Cho/Cr values were evaluated visually and by computer analysis. There was no statistically significant difference between the NAA and Cho levels in the acute kernicterus patients and the control group (healthy patients), whereas both were significantly elevated in the chronic kernicterus patients. Both the mean NAA/Cr and Cho/Cr ratio values were significantly higher in the acute and chronic cases compared to the control group. The NAA/Cho ratio value was statistically lower in the acute cases than in the control group while it was similar in the chronic cases. Conventional MR imaging and (1)H-MRS are important complementary tools in the diagnostics of neonatal bilirubin encephalopathy. This study provided important information for applying these MR modalities in the evaluation of neonates with bilirubin encephalopathy.

  5. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    Directory of Open Access Journals (Sweden)

    E. V. Shimchenko

    2014-01-01

    Full Text Available The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI for diagnostics of hypoxic-ischemic lesions in comparison with regular standard modes. In the event of no structural brain lesions of neonates, pronounced increase in signal characteristics revealed by DWI indicated considerable pathophysiological alterations. Subsequently, children developed structural alterations in the form of cystic encephalomalacia with expansion of cerebrospinal fluid spaces manifested with pronounced neurological deficit. DW MRI has been offered as a method of prognosticating further neurological development of children on early stages. 

  6. Structural and magnetic anomalies among the spin-chain ...

    Indian Academy of Sciences (India)

    Unknown

    the compound, Ca3CoIrO6, exhibits magnetic frustration effects around 30–50 K in the ac and dc M data, but without getting influenced by the application of magnetic fields as high as even 40 kOe, however without showing PDA structural features.14 A common feature between these two compounds is that the ac magnetic ...

  7. Effect of interlayer exchange coupling on magnetic chiral structures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C. [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  8. Design and construction of a periodic magnetic structure of SmCo{sub 5} magnets

    Energy Technology Data Exchange (ETDEWEB)

    Migliano, A.C.C.; Stopa, C.R.S. [Centro Tecnico Aerospacial, Sao Paulo (Brazil); Cardoso, J.R. [Escola Politecnica-USP, Sao Paulo (Brazil); Zgainski, F.X.; Coulomb, J.L. [ENSIEG, Saint Martin d`Heres (France). Lab. d`Electrotechnique de Grenoble

    1997-03-01

    A SmCo{sub 5} permanent magnet periodic structure was developed to generate a sinusoidal space-varying magnetic field. This device was designed to be utilized in the wiggler of a infra-red Free-Electron Laser (IR-FEL). To design the structure, finite-element computer codes that calculate magnetic fields in two and three dimensions were utilized. The results obtained from the computer simulations and the mechanical design of the built structure are presented.

  9. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians.

    Science.gov (United States)

    Acer, Niyazi; Bastepe-Gray, Serap; Sagiroglu, Ayse; Gumus, Kazim Z; Degirmencioglu, Levent; Zararsiz, Gokmen; Ozic, Muhammet Usame

    2018-03-01

    Professional musicians represent an ideal model to study the training-induced brain plasticity. The current study aimed to investigate the brain volume and diffusion characteristics of musicians using structural magnetic resonance and diffusion tensor imaging (DTI). The combined use of volumetric and diffusion methods in studying musician brain has not been done in literature. Our study group consisted of seven male musicians playing an instrument and seven age- and gender-matched non-musicians. We evaluated the volumes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) and calculated total intracranial volume (TIV) and measured the fractional anisotropy (FA) of pre-selected WM bundles: corpus callosum (CC), corticospinal tract (CST), superior longitudinal fasciculus (SLF), forceps major (ForMaj), forceps minor (ForMin), and arcuate fasciculus (AF). The mean WM/TIV volume in musicians was higher compared to non-musicians. The mean FA was lower in CC, SLF, ForMaj, ForMin, and right AF but higher in right CST in the musicians. The mean value of the total number of fibers was larger in the CST, SLF, left AF, and ForMaj in the musicians. The observed differences were not statistically significant between the groups (p>0.05). However, increased GM volume was found in the musicians compared to the non-musicians in the right and left cerebellum and supramarginal and angular gyrus, left superior and inferior parietal lobule and as well as left middle temporal gyrus. Our findings suggest differing brain structure in musicians and the confirmation of the results on a larger population. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Admission criteria to the Danish Brain Cancer Program are moderately associated with magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Hill, Thomas Winther; Nielsen, Mie Kiszka; Nepper-Rasmussen, Jørgen

    2013-01-01

    The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year...

  11. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  12. Structural aspects of superconducting fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M.; Lehner, J.; Powell, J.

    1977-01-01

    Some methods for studying various static, dynamic, elastic-plastic, and fracture mechanics problems of superconducting magnets are described. Sample solutions are given for the UWMAK-I magnet. Finite element calculations were used. (MOW)

  13. Structural phase transitions in isotropic magnetic elastomers

    Science.gov (United States)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2016-06-01

    Magnetic elastomers represent a new type of materials that are "soft" matrices with "hard" magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granules randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.

  14. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  15. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  16. Classification of brain disease in magnetic resonance images using two-stage local feature fusion

    Science.gov (United States)

    Li, Tao; Li, Wu; Yang, Yehui

    2017-01-01

    Background Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of anatomical structure. This paper proposes a two-stage local feature fusion method, in which deformable registration is not desired and anatomical information is represented from moderate scale. Methods Keypoints are firstly extracted from scale-space to represent anatomical structure. Then, two kinds of local features are calculated around the keypoints, one for correspondence and the other for representation. Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for all effective keypoints is used to determine which group the test subject belongs to. Results We apply this method to magnetic resonance images of Alzheimer's disease and Parkinson's disease. The advantage of local feature in correspondence and representation contributes to the final classification. With the help of local feature (Scale Invariant Feature Transform, SIFT) in correspondence, the performance becomes better. Local feature (Histogram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results compared with 4×4 and 8×8 cell block. Discussion This paper presents a method which combines the effect of SIFT descriptor in correspondence and the representation ability of HOG descriptor in anatomical structure. This method has the potential in distinguishing patients with brain disease from controls. PMID:28207873

  17. Brain Basics

    Medline Plus

    Full Text Available ... resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that ... fast-acting antidepressant medications. Currently available antidepressants usually take four to six weeks to reach their full ...

  18. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  19. Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

    Directory of Open Access Journals (Sweden)

    Colleen E Crangle

    Full Text Available This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA, which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

  20. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Hartwigsen, Gesa; Kassuba, Tanja

    2009-01-01

    Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse...

  1. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty...

  2. Empirical magnetic structure solution of frustrated spin systems.

    Science.gov (United States)

    Paddison, Joseph A M; Goodwin, Andrew L

    2012-01-06

    Frustrated magnetism plays a central role in the phenomenology of exotic quantum states. However, since the magnetic structures of frustrated systems are often aperiodic, there has been the problem that they cannot be determined by using traditional crystallographic techniques. Here we show that the magnetic component of powder neutron scattering data is actually sufficiently information-rich to drive magnetic structure solution for frustrated systems, including spin ices, spin liquids, and molecular magnets. Our methodology employs ab initio reverse Monte Carlo refinement, making informed use of an additional constraint that minimizes variance in local spin environments. The atomistic spin configurations obtained in this way not only reflect a magnetic structure "solution" but also reproduce the full three-dimensional magnetic scattering pattern.

  3. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible...

  4. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    OpenAIRE

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Fl?el, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study ...

  5. Magnetic thin film Fe ring structures and devices

    Science.gov (United States)

    Hou, Yufeng

    Magnetic thin film ring structures show distinct magnetic states and highly reproducible switching behavior, which makes them candidates for multiple magnetoelectronic and sensing devices. The magnetic states and switching behaviors of thin film ring structures are closely related to their physical properties such as the lateral size, thickness, width and the material anisotropy. In order to systematically study the magnetic properties of thin film ring structures, we use different techniques such as photolithography and electron-beam lithography to fabricate magnetic thin film Fe ring structures with different outer diameter (Dout), thickness (tFe) and inner-to-outer diameter ratio ( Din/Dout). The magnetization reversal processes of these Fe ring structures are studied using magneto-optical Kerr effect and magnetic force microscopy. To explain the magnetic behavior of the Fe ring structures observed in experiments, we use LLG micromagnetic simulation to model the domain configuration of the Fe ring during switching. The evolution of magnetic reversal behaviors in Fe ring structures is also explained by calculating the energy densities of vortex state, single-domain state and axial state with micromagnetic simulator. To control the magnetic switching behavior of the Fe ring structures, exchange bias interfacial coupling is introduced into the ring structure by growing a bilayer of IrMn/Fe in the ring structure. By studying the angular dependence of the hysteresis loop shift, we find that exchange bias induces a magnetic unidirectional anisotropy and a collinear magnetic uniaxial anisotropy in the ring structure. Exchange bias induced magnetic anisotropies cause anisotropic magnetic reversal modes in IrMn/Fe (10 nm) ring and a higher one-step to two-step transitional thickness in IrMn/Fe (x nm) ring structures. After study the magnetic properties of the Fe rings and exchange biased IrMn/Fe rings, we incorporate them into one ring shape magnetic tunneling junction

  6. Structural brain correlates of sensorimotor gating in antipsychotic-naive men with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Hammer, Trine B; Oranje, Bob; Skimminge, Arnold

    2013-01-01

    Background: Prepulse inhibition (PPI) of the startle reflex is modulated by a complex neural network. Prepulse inhibition impairments are found at all stages of schizophrenia. Previous magnetic resonance imaging (MRI) studies suggest that brain correlates of PPI differ between patients...... with schizophrenia and healthy controls; however, these studies included only patients with chronic illness and medicated patients. Our aim was to examine the structural brain correlates of PPI in antipsychotic-naive patients with first-episode schizophrenia. Methods: We performed acoustic PPI assessment...

  7. Magnetic structure of molecular magnet Fe [Fe (CN) 6]· 4H2O

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  8. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  9. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  10. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...

  11. Intelligence and Giftedness: Changes in the Structure of the Brain.

    Science.gov (United States)

    Sabatella, Maria Lucia Prado

    1999-01-01

    Explores research on the concepts of intelligences and giftedness. Considers the importance of the brain, its organization and functions, different theories about intelligence and the possibility of boosting it, and changes that occur in brain structure as a consequence of the interactions between genetic traits and experiences. (Author/CR)

  12. Brain structure correlates of component reading processes: implications for reading disability.

    Science.gov (United States)

    Phinney, Erin; Pennington, Bruce F; Olson, Richard; Filley, Christopher M; Filipek, Pauline A

    2007-08-01

    Brain structures implicated in developmental dyslexia (reading disability - RD) vary greatly across structural magnetic resonance imaging (MRI) studies due to methodological differences regarding the definition of RD and the exact measurements of a specific brain structure. The current study attempts to resolve some of those methodological concerns by examining brain volume as it relates to components of proposed RD subtypes. We performed individual regression analyses on total cerebral volume, neocortical volume, subcortical volume, 9 neo-cortical structures and 2 sub-cortical structures. These analyses used three dimensions of reading, phonemic ability (PA), orthographic ability, and rapid naming (RN) ability, while accounting for total cerebral volume, age, and performance IQ (PIQ). Primary analyses included membership to a group (poor reader vs. good reader) in the analysis. The result was a significant interaction between PA and reading ability as it predicts total cerebral volume. Analyses revealed that poor readers lacked a relationship between PA and brain size, but that good readers had a significant positive relationship. This pattern of interaction was not present for the other two reading component factors. These findings bring into question the general belief that individuals with RD are at the low end of a reading ability distribution and do not have a unique disorder. Additional analyses revealed only a few significant relationships between brain size and task performance, most notably a positive correlation between orthographic ability and the angular gyrus (AG), as well as a negative correlation between RN ability and the parietal operculum (PO).

  13. Adverse Associations between Visceral Adiposity, Brain Structure, and Cognitive Performance in Healthy Elderly

    OpenAIRE

    Isaac, Vivian; Sim, Sam; Zheng, Hui; Zagorodnov, Vitali; Tai, E. Shyong; Chee, Michael

    2011-01-01

    The link between central adiposity and cognition has been established by indirect measures such as body mass index (BMI) or waist–hip ratio. Magnetic resonance imaging (MRI) quantification of central abdominal fat has been linked to elevated risk of cardiovascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measu...

  14. Sleep duration and age-related changes in brain structure and cognitive performance.

    Science.gov (United States)

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  15. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  16. Structural growth trajectories and rates of change in the first 3 months of infant brain development.

    Science.gov (United States)

    Holland, Dominic; Chang, Linda; Ernst, Thomas M; Curran, Megan; Buchthal, Steven D; Alicata, Daniel; Skranes, Jon; Johansen, Heather; Hernandez, Antonette; Yamakawa, Robyn; Kuperman, Joshua M; Dale, Anders M

    2014-10-01

    The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders. To assess structural growth trajectories and rates of change in the whole brain and regions of interest in infants during the first 3 months after birth. Serial structural T1-weighted and/or T2-weighted magnetic resonance images were obtained for 211 time points from 87 healthy term-born or term-equivalent preterm-born infants, aged 2 to 90 days, between October 5, 2007, and June 12, 2013. We segmented whole-brain and multiple subcortical regions of interest using a novel application of Bayesian-based methods. We modeled growth and rate of growth trajectories nonparametrically and assessed left-right asymmetries and sexual dimorphisms. Whole-brain volume at birth was approximately one-third of healthy elderly brain volume, and did not differ significantly between male and female infants (347 388 mm3 and 335 509 mm3, respectively, P = .12). The growth rate was approximately 1%/d, slowing to 0.4%/d by the end of the first 3 months, when the brain reached just more than half of elderly adult brain volume. Overall growth in the first 90 days was 64%. There was a significant age-by-sex effect leading to widening separation in brain sizes with age between male and female infants (with male infants growing faster than females by 200.4 mm3/d, SE = 67.2, P = .003). Longer gestation was associated with larger brain size (2215 mm3/d, SE = 284, P = 4×10-13). The expected brain size of an infant born one week earlier than average was 5% smaller than average; at 90 days it will not have caught up, being 2% smaller than average. The cerebellum grew at the highest rate, more than doubling in 90 days, and the hippocampus grew at the slowest rate, increasing by 47% in 90 days. There was left

  17. Sensitivity to musical structure in the human brain

    Science.gov (United States)

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

  18. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  19. [The effect of several psychotropic substances on brain structure].

    Science.gov (United States)

    Popova, E N; Krivitskaia, G N

    1975-01-01

    The authors have shown similarities of structural changes in the neuron and interneuronal relations found in the brains of rats under indopan and LSD stimulation of the CNS with certain differences in the localization of the changes in the functionally different brain systems. A high sensitivity of the sensory-motor cortex and the subcortical formations of the brain, rich in dopamine and serotonin, to indopan has been marked. LSD central effects were conditioned by the influence of the drug not only on the synapsis, but on the cell body components of the different brain systems, especially in the visual. The observed changes were allocated to categories of functional disturbances.

  20. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  1. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  2. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  3. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  4. Structural and electronic properties of non-magnetic intermetallic ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in ... The calculated lattice parameters were in good agreement with experiment. Also, the structural and electronic properties of the non-magnetic half-Heusler YAuPb ...

  5. Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia.

    Science.gov (United States)

    Butler, Christopher; van Erp, Willemijn; Bhaduri, Amit; Hammers, Alexander; Heckemann, Rolf; Zeman, Adam

    2013-09-01

    Transient epileptic amnesia (TEA) is a recently described epilepsy syndrome characterized by recurrent episodes of isolated memory loss. It is associated with two unusual forms of interictal memory impairment: accelerated long-term forgetting (ALF) and autobiographical amnesia. We investigated the neural basis of TEA using manual volumetry and automated multi-atlas-based segmentation of whole-brain magnetic resonance imaging data from 40 patients with TEA and 20 healthy controls. Both methods confirmed the presence of subtle, bilateral hippocampal atrophy. Additional atrophy was revealed in perirhinal and orbitofrontal cortices. The volumes of these regions correlated with anterograde memory performance. No structural correlates were found for ALF or autobiographical amnesia. The results support the hypothesis that TEA is a focal medial temporal lobe epilepsy syndrome but reveal additional pathology in connected brain regions. The unusual interictal memory deficits of TEA remain unexplained by structural pathology and may reflect physiological disruption of memory networks by subclinical epileptiform activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Directory of Open Access Journals (Sweden)

    Karsten eMueller

    2015-07-01

    Full Text Available Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM and white matter (WM that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training three days per week over a period of three months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI, reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C, and alterations of serum brain-derived neurotrophic factor (BDNF concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.

  7. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity.

    Science.gov (United States)

    Mueller, Karsten; Möller, Harald E; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.

  8. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  9. Structural and Functional Plasticity in the Maternal Brain Circuitry

    Science.gov (United States)

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  10. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    Science.gov (United States)

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  11. Functional Magnetic Resonance Imaging of Cognitive Control following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Randall S. Scheibel

    2017-08-01

    Full Text Available Novel and non-routine tasks often require information processing and behavior to adapt from moment to moment depending on task requirements and current performance. This ability to adapt is an executive function that is referred to as cognitive control. Patients with moderate-to-severe traumatic brain injury (TBI have been reported to exhibit impairments in cognitive control and functional magnetic resonance imaging (fMRI has provided evidence for TBI-related alterations in brain activation using various fMRI cognitive control paradigms. There is some support for greater and more extensive cognitive control-related brain activation in patients with moderate-to-severe TBI, relative to comparison subjects without TBI. In addition, some studies have reported a correlation between these activation increases and measures of injury severity. Explanations that have been proposed for increased activation within structures that are thought to be directly involved in cognitive control, as well as the extension of this over-activation into other brain structures, have included compensatory mechanisms, increased demand upon normal processes required to maintain adequate performance, less efficient utilization of neural resources, and greater vulnerability to cognitive fatigue. Recent findings are also consistent with the possibility that activation increases within some structures, such as the posterior cingulate gyrus, may reflect a failure to deactivate components of the default mode network (DMN and that some cognitive control impairment may result from ineffective coordination between the DMN and components of the salience network. Functional neuroimaging studies examining cognitive control-related activation following mild TBI (mTBI have yielded more variable results, with reports of increases, decreases, and no significant change. These discrepancies may reflect differences among the various mTBI samples under study, recovery of function in some

  12. A Multimodal Approach for Determining Brain Networks by Jointly Modeling Functional and Structural Connectivity

    Directory of Open Access Journals (Sweden)

    Wenqiong eXue

    2015-02-01

    Full Text Available Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al.(2006a that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI data. Our structural connectivity (SC information is drawn from diffusion tensor imaging (DTI data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  13. A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity.

    Science.gov (United States)

    Xue, Wenqiong; Bowman, F DuBois; Pileggi, Anthony V; Mayer, Andrew R

    2015-01-01

    Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC) between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al. (2006a) that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI) data. Our structural connectivity (SC) information is drawn from diffusion tensor imaging (DTI) data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  14. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  15. Predicting brain metastases for non-small cell lung cancer based on magnetic resonance imaging.

    Science.gov (United States)

    Yin, Gang; Li, Churong; Chen, Heng; Luo, Yangkun; Orlandini, Lucia Clara; Wang, Pei; Lang, Jinyi

    2017-02-01

    In this study the relationship between brain structure and brain metastases (BM) occurrence was analyzed. A model for predicting the time of BM onset in patients with non-small cell lung cancer (NSCLC) was proposed. Twenty patients were used to develop the model, whereas the remaining 69 were used for independent validation and verification of the model. Magnetic resonance images were segmented into cerebrospinal fluid, gray matter (GM), and white matter using voxel-based morphometry. Automatic anatomic labeling template was used to extract 116 brain regions from the GM volume. The elapsed time between the MRI acquisitions and BM diagnosed was analyzed using the least absolute shrinkage and selection operator method. The model was validated using the leave-one-out cross validation (LOOCV) and permutation test. The GM volume of the extracted 11 regions of interest increased with the progression of BM from NSCLC. LOOCV test on the model indicated that the measured and predicted BM onset were highly correlated (r = 0.834, P = 0.0000). For the 69 independent validating patients, accuracy, sensitivity, and specificity of the model for predicting BM occurrence were 70, 75, and 66%, respectively, in 6 months and 74, 82, and 60%, respectively, in 1 year. The extracted brain GM volumes and interval times for BM occurrence were correlated. The established model based on MRI data may reliably predict BM in 6 months or 1 year. Further studies with larger sample size are needed to validate the findings in a clinical setting.

  16. Individual differences in personality traits reflect structural variance in specific brain regions.

    Science.gov (United States)

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  17. Taste Reward Circuitry Related Brain Structures Characterize Ill and Recovered Anorexia Nervosa and Bulimia Nervosa

    Science.gov (United States)

    Frank, Guido K.; Shott, Megan E.; Hagman, Jennifer O.; Mittal, Vijay A.

    2013-01-01

    Objective The pathophysiology of the eating disorder anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. Here we assessed taste pleasantness and reward sensitivity in relation to brain structure, which might be related to food avoidance commonly seen in eating disorders. Method We used structural magnetic resonance brain imaging to study gray and white matter volumes in individuals with restricting type currently ill (n = 19) or recovered-anorexia nervosa (n = 24), bulimia nervosa (n= 19) and healthy control women (n=24). Results All eating disorder groups showed increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manually tracing confirmed larger gyrus rectus volume, and predicted taste pleasantness across all groups. The analyses also indicated other morphological differences between diagnostic categories: Ill and recovered-anorexia nervosa had increased right, while bulimia nervosa had increased left antero-ventral insula gray matter volumes compared to controls. Furthermore, dorsal striatum volumes were reduced in recovered-anorexia and bulimia nervosa, and predicted sensitivity to reward in the eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas when compared to healthy controls. Notably, the results held when controlling for a range of covariates (e.g., age, depression, anxiety, medications). Conclusion Brain structure in medial orbitofrontal cortex, insula and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. PMID:23680873

  18. Magnetic stimulation for non-homogeneous biological structures

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-09-01

    Full Text Available Abstract Background Magnetic stimulation has gained relatively wide application in studying nervous system structures. This technology has the advantage of reduced excitation of sensory nerve endings, and hence results in quasi-painless action. It has become clinically accepted modality for brain stimulation. However, theoretical and practical solutions for assessment of induced current distribution need more detailed and accurate consideration. Some possible analyses are proposed for distribution of the current induced from excitation current contours of different shape and disposition. Relatively non-difficult solutions are shown, applicable for two- and three-dimensional analysis. Methods The boundary conditions for field analysis by the internal Dirichlet problem are introduced, based on the vector potential field excited by external current coils. The feedback from the induced eddy currents is neglected. Finite element modeling is applied for obtaining the electromagnetic fields distribution in a non-homogeneous domain. Results The distributions were obtained in a non-homogeneous structure comprised of homogeneous layers. A tendency was found of the induced currents to follow paths in lower resistivity layers, deviating from the expected theoretical course for a homogeneous domain. Current density concentrations occur at the boundary between layers, suggesting the possibility for focusing on, or predicting of, a zone of stimulation. Conclusion The theoretical basis and simplified approach for generation of 3D FEM networks for magnetic stimulation analysis are presented, applicable in non-homogeneous and non-linear media. The inconveniences of introducing external excitation currents are avoided. Thus, the possibilities are improved for analysis of distributions induced by time-varying currents from contours of various geometry and position with respect to the medium.

  19. Magnetic structure of volcanic neck; Kazangankei no jiki kozo

    Energy Technology Data Exchange (ETDEWEB)

    Makino, M.; Okuma, S.; Morijiri, R.; Nakatsuka, T. [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    This paper describes the summary and result of magnetic exploration on the Kabutoyama volcano in the city of Nishinomiya, Hyogo Prefecture, Japan. It also states the interpretation and discussion on magnetic anomaly in the volcanic conduit of the mountain by using a three-dimensional magnetic structure model. Terrain surface magnetic exploration for the Kabutoyama volcano was performed by using six traverse lines each in different azimuths with the triangulation point at the summit as the basic point and by using a proton magnetometer. The exploration results of the six traverse lines around the Kabutoyama volcano may be generalized as follows: magnetic anomaly in the vicinity of the summit is moderate with little change, but it increases to 500 nT to 2,500 nT in the vicinity of the distances of 150 m to 200 m; a peak is formed with a width of a few tens of meters; and the magnetic anomaly showed a trend of rapidly decreasing at outer sides of the peak. The results of the magnetic exploration and the magnetization intensity measurement leads to a belief that such a magnetic anomalous band of an annular form would exist corresponding to the boundary or its vicinity of andesite and granite, and the Rokko granite having magnetization intensity as small as can be neglected would be distributed at outer sides of the boundary. The result of the three-dimensional magnetic structure model calculation, which assumes the internal structure of the magnetic structure to be non-uniformly magnetized, reproduced the magnetic anomaly patterns well as compared with the observation results. 1 ref., 5 figs.

  20. The Physical Brain: New Approaches to Brain Structure, Activity, and Function

    Science.gov (United States)

    Robinson, P. A.

    By viewing the brain as a multiscale physical system it is possible to circumvent the shortcomings of abstract signal-based and statistical approaches to analysis of brain structure, activity, and function. Eigenmode approaches enable the key elements of brain structure to be isolated systematically, along with their effects on brain activity and functional measures. Physiologically-based neural field theory permits tractable analysis from sub-mm scales to the whole brain, demonstrating the near-critical state of normal brain operation, relationships between structure and function, nonlinear dynamics, and phase transitions. Results in normal and abnormal states include experimentally verified predictions of electrical and hemodynamic signals, and the successful inversion of functional correlation measures to infer underlying brain structure, including connectivities that cannot be measured directly. These results illustrate the power of physically based modeling to predict, explain, and unify multiple observations across scales. Furthermore, they open up ways to expand the field of biological physics and apply it to a host of new phenomena. Australian Research Council, Grants FL1401000225 and CE140100007.

  1. Adolescent brain development : A longitudinal twin study into structural brain development and its relation to hormone levels and intelligence

    NARCIS (Netherlands)

    Koenis, M.M.G.

    2017-01-01

    Puberty is a period characterized by major changes in hormone levels, physical appearance, cognition, brain structure and function. The teenage brain undergoes considerable reorganization on a structural and functional level. These changes may be associated with cognitive and social development.

  2. Quantitative estimation of regional brain iron with magnetic resonance imaging.

    Science.gov (United States)

    Martin, W R Wayne

    2009-12-01

    Biochemical studies have reported increased iron content in the substantia nigra pars compacta (SNc) in Parkinson disease (PD), with changes most marked in severe disease, suggesting that measurement of regional iron content in the nigra may provide an indication of the pathologic severity of the disease. Although basal ganglia structures, including the substantia nigra, are readily visualized with MRI, in part because of their high iron content, conventional imaging techniques have failed to show definitive abnormalities in individuals with PD. We have developed MRI-based methodology to estimate regional iron content utilizing a 1.5 tesla system and have shown a correlation between age and striatal iron, as well as a significant increase in putaminal and pallidal iron in PD that correlated with the severity of clinical symptomatology. Several investigators have utilized novel MR techniques implemented on 3 tesla magnets and have suggested the presence of increased nigral iron content in treated patients with PD, in addition to a correlation between nigral iron and simple reaction time. We have applied a modification of our original method to determine whether SNc changes evident at 3 tesla corresponded anatomically to the distribution of neuropathologic changes reported previously. Our results indicate the presence of lateral SNc abnormalities in untreated patients with early PD, consistent with increased iron content and corresponding to the known distribution of neuronal loss occurring in this disorder. We suggest that this may ultimately provide an imaging marker for disease progression in PD, although longitudinal studies are required.

  3. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  4. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  5. Physical fitness and shapes of subcortical brain structures in children.

    Science.gov (United States)

    Ortega, Francisco B; Campos, Daniel; Cadenas-Sanchez, Cristina; Altmäe, Signe; Martínez-Zaldívar, Cristina; Martín-Matillas, Miguel; Catena, Andrés; Campoy, Cristina

    2017-03-27

    A few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.

  6. Structural and magnetic properties of Mg substituted Co nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti, E-mail: jyotijoshi.phy2008@gmail.com; Parashar, Jyoti; Jadoun, Priya; Saxena, V. K.; Bhatnagar, D. [Department of Physics, University of Rajasthan, Jaipur 302004 (India); Sharma, Neha [Department of Physics, VEC Lakhanpur, Sarguja University, Ambikapur (C.G.) India (India); Yadav, Premlata [School of Physical Sciences, Jawahar Lal Nehru University, New Delhi (India); Sharma, K. B. [Department of Physics, S. S. Jain Subodh P. G. College, Jaipur, 302004 (India)

    2016-05-23

    The structural and magnetic properties of magnesium substituted cobalt nano ferrites Co{sub x}Mg{sub 1-x}Fe{sub 2}O{sub 4} (x= 0.2, 0.4 and 1.0) have been investigated. The structural characterization has been done by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). The magnetic studies indicate that the samples show ferromagnetic behaviour at room temperature as well as at low temperature. The magnetization decreases with Mg content in both the cases due to the less magnetic nature of Mg ions than that of the Co ions.

  7. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  8. An example of complexity in magnetism: Complex magnetic structures in Rare-Earth intermetallics

    Directory of Open Access Journals (Sweden)

    J. C. Gómez Sal

    2008-06-01

    Full Text Available  We present and compare the magnetic structures of limit compounds, between the ferromagnetism and antiferromagnetism in the pseudobinary compounds of type RNi/Pt/Cu, where R = Tb, Gd, Nd or Ce, appearing when we substitute the transition metal. All of them are examples of complex magnetic structures as the result of different magnetic interactions, inhomogeneities and disorder. This overview provides us a fruitful field of discussion considering the competition of magnetic interactions in a context of disorder. We discuss the similarities and differences between the structures and we conclude about the importance of the disorder in the existence of several phenomena in magnetism, which could lead to new insights in the stability of magnetic phases, as clusters glass or short range interactions in the mesoscopic scale.

  9. Human Brain Stem Structures Respond Differentially to Noxious Heat

    Directory of Open Access Journals (Sweden)

    Alexander eRitter

    2013-09-01

    Full Text Available Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH with noxious heat led to activation in different columns of the midbrain periaqueductal grey (PAG. The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by fMRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM. In a second experiment we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e. the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.

  10. Brain networks that track musical structure.

    Science.gov (United States)

    Janata, Petr

    2005-12-01

    As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.

  11. Sialylation regulates brain structure and function.

    Science.gov (United States)

    Yoo, Seung-Wan; Motari, Mary G; Susuki, Keiichiro; Prendergast, Jillian; Mountney, Andrea; Hurtado, Andres; Schnaar, Ronald L

    2015-07-01

    Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders. © FASEB.

  12. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    Directory of Open Access Journals (Sweden)

    Ji Xia

    2016-04-01

    Full Text Available Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  13. Self-Organized Structures in Magnetic Liquids

    DEFF Research Database (Denmark)

    Oddershede, Lene; Bohr, Jakob

    1996-01-01

    Amazing patterns occur when a droplet of an oily suspension of finely divided magnetic particles, a magnetic liquid is confined within a Hele-Shaw cell and is subject to a magnetic field perpendicular to the surface of the cell. The pattern is macroscopic and the typical linear dimension of the p......Amazing patterns occur when a droplet of an oily suspension of finely divided magnetic particles, a magnetic liquid is confined within a Hele-Shaw cell and is subject to a magnetic field perpendicular to the surface of the cell. The pattern is macroscopic and the typical linear dimension......, but the bigger ones grow on the expense of the smaller. From the center of mass of the columns a 2D-Veronoi pattern is constructed in the plane of the cell, and the edge statistics are found as a function of the fraction of magnetic liquid in the Hele-Shaw cell. The average number of edges in the Veronoi cells...

  14. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    OpenAIRE

    Boer, Renske

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human observers. Moreover, analysis by human observers can hamper the reproducibility by both inter- and intra-observer variability. These studies do, therefore, require accurate and reproducible quantitati...

  15. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Science.gov (United States)

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  16. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration.

    Science.gov (United States)

    Fonville, L; Giampietro, V; Williams, S C R; Simmons, A; Tchanturia, K

    2014-07-01

    Brain structure alterations have been reported in anorexia nervosa, but findings have been inconsistent. This may be due to inadequate sample size, sample heterogeneity or differences in methodology. High resolution magnetic resonance images were acquired of 33 adult participants with anorexia nervosa and 33 healthy participants, the largest study sample to date, in order to assess whole-brain volume, ventricular cerebrospinal fluid, white matter and grey matter volume. Voxel-based morphometry was conducted to assess regional grey matter volume. Levels of depression, anxiety, obsessionality and eating disorder-related symptoms were measured and used to explore correlations with brain structure. Participants with anorexia nervosa had smaller brain volumes as well as a global decrease in grey matter volume with ventricular enlargement. Voxel-based morphometry revealed a decrease in grey matter volume spanning across the cerebellum, temporal, frontal and occipital lobes. A correlation was found between grey matter volume loss and duration of illness in the cerebellum and mesencephalon. No correlations were found with clinical measures. Findings are in accordance with several previous studies on brain structure and match functional studies that have assessed the symptomatology of anorexia nervosa, such as body image distortion and cognitive bias to food. The correlation with duration of illness supports the implication of cerebellar atrophy in the maintenance of low weight and disrupted eating behaviour and illustrates its role in the chronic phase of anorexia nervosa. The lack of other correlations suggests that these findings are not related to the presence of co-morbid disorders.

  17. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8.

    Science.gov (United States)

    Parnell, Scott E; O'Leary-Moore, Shonagh K; Godin, Elizabeth A; Dehart, Deborah B; Johnson, Brice W; Allan Johnson, G; Styner, Martin A; Sulik, Kathleen K

    2009-06-01

    Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 x 512 x 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 microm (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb

  18. New helical-shape magnetic pole design for Magnetic Lead Screw enabling structure simplification

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Xia, Yongming; Wu, Weimin

    2015-01-01

    Magnetic lead screw (MLS) is a new type of high performance linear actuator that is attractive for many potential applications. The main difficulty of the MLS technology lies in the manufacturing of its complicated helical-shape magnetic poles. Structure simplification is, therefore, quite essent......-shape magnetic poles. The performance of the new structure is compared with a MLS with ideal helical-shape magnetic poles using 3-D finite-element analysis. Halbach and flux concentration designs using the new approach are introduced....

  19. Dynamic brain structural changes after left hemisphere subcortical stroke.

    Science.gov (United States)

    Fan, Fengmei; Zhu, Chaozhe; Chen, Hai; Qin, Wen; Ji, Xunming; Wang, Liang; Zhang, Yujin; Zhu, Litao; Yu, Chunshui

    2013-08-01

    This study aimed to quantify dynamic structural changes in the brain after subcortical stroke and identify brain areas that contribute to motor recovery of affected limbs. High-resolution structural MRI and neurological examinations were conducted at five consecutive time points during the year following stroke in 10 patients with left hemisphere subcortical infarctions involving motor pathways. Gray matter volume (GMV) was calculated using an optimized voxel-based morphometry technique, and dynamic changes in GMV were evaluated using a mixed-effects model. After stroke, GMV was decreased bilaterally in brain areas that directly or indirectly connected with lesions, which suggests the presence of regional damage in these "healthy" brain tissues in stroke patients. Moreover, the GMVs of these brain areas were not correlated with the Motricity Index (MI) scores when controlling for time intervals after stroke, which indicates that these structural changes may reflect an independent process (such as axonal degeneration) but cannot affect the improvement of motor function. In contrast, the GMV was increased in several brain areas associated with motor and cognitive functions after stroke. When controlling for time intervals after stroke, only the GMVs in the cognitive-related brain areas (hippocampus and precuneus) were positively correlated with MI scores, which suggests that the structural reorganization in cognitive-related brain areas may facilitate the recovery of motor function. However, considering the small sample size of this study, further studies are needed to clarify the exact relationships between structural changes and recovery of motor function in stroke patients. Copyright © 2012 Wiley Periodicals, Inc.

  20. Magnetic structure at copper{endash}permalloy interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, A.B. [University of Tennessee, Knoxville, Tennessee 37830 (United States); Nicholson, D.M.; Zhang, X.; Butler, W.H.; Shelton, W.A.; Stocks, G.M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (United States); Wang, Y. [Pittsburgh Supercomputing Center, Pittsburgh, Pennsylvania 15213 (United States)

    1999-04-01

    First principles local spin density calculations of the magnetic structure of interdiffused Cu/Py multilayers were performed. It was possible to solve the Kohn{endash}Sham [Phys. Rev. {bold 140}, A1133 (1965)] equations for both canted and collinear magnetic arrangements to a high level of convergence. We found multiple, metastable, noncollinear magnetic structures that showed a reduced contribution to the saturation magnetization consistent with roughly one {open_quotes}magnetic dead{close_quotes} layer per interface. These canted interface layers were stable with respect to collinear interfaces by about 2 mRy per atom at the interface. The calculated noncollinear total spin magnetic moments as a function of the number of Py layers were in good agreement with the experiment. {copyright} {ital 1999 American Institute of Physics.} thinsp

  1. Proton magnetic resonance spectroscopy of the brain in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Scarabino, Tommaso; Popolizio, Teresa; Bertolino, Alessandro; Salvolini, Ugo

    1999-05-01

    H1-MRS is a non-invasive technique which provides different levels of information on brain tissue: the N-acetyl aspartate (NAA) is an indicator of neuronal development, the choline containing compound peak (Cho) provides information on myelination and on cell membrane turnover and gliosis, inositol (Ins) is considered a marker of neuronal degeneration. Lactate may be detected in presence of defective energy metabolism. In the perineonatal period, the brain is apt to be insulted by a variety of events including asphyxia, hypoxemia, hemorrhage, which may subsequently cause delay in development. It is clinically important to assess the degree of brain damage and to obtain the prognostic information in the neonatal and early infantile period. MRS has become available for clinical examinations of the brain during development and these techniques can be used to document improvement or the progression towards irreversible damage.

  2. Structural and functional rich club organization of the brain in children and adults.

    Directory of Open Access Journals (Sweden)

    David S Grayson

    Full Text Available Recent studies using Magnetic Resonance Imaging (MRI have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  3. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder, delusi...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis.......BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...

  4. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    Science.gov (United States)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  5. Childhood adversity impacts on brain subcortical structures relevant to depression

    NARCIS (Netherlands)

    Frodl, Thomas; Janowitz, Deborah; Schmaal, Lianne; Tozzi, Leonardo; Dobrowolny, Henrik; Stein, Dan J.; Veltman, Dick. J.; Wittfeld, Katharina; van Erp, Theo G. M.; Jahanshad, Neda; Block, Andrea; Hegenscheid, Katrin; Voelzke, Henry; Lagopoulos, Jim; Hatton, Sean N.; Hickie, Ian B.; Frey, Eva Maria; Carballedo, Angela; Brooks, Samantha J; Vuletic, Daniella; Uhlmann, Anne; Veer, Ilya M.; Walter, Henrik; Schnell, Knut; Grotegerd, Dominik; Arolt, Volker; Kugel, Harald; Schramm, Elisabeth; Konrad, Carsten; Zurowski, Bartosz; Baune, Bernhard T; van der Wee, Nic J. A.; van Tol, Marie-Jose; Penninx, Brenda W. J. H.; Thompson, Paul M.; Hibar, Derrek P.; Dannlowski, Udo; Grabe, Hans J.

    Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of

  6. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    Directory of Open Access Journals (Sweden)

    Irina Alexandra Paun

    2018-02-01

    Full Text Available We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  7. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.

    Science.gov (United States)

    Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo

    2018-02-07

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20-40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  8. Magnetic and structural phase transitions of MnBi under high magnetic fields

    Directory of Open Access Journals (Sweden)

    Keiichi Koyama, Yoshifuru Mitsui and Kazuo Watanabe

    2008-01-01

    Full Text Available High-field x-ray diffraction and magnetization measurements and differential thermal analysis (DTA were carried out for polycrystalline MnBi with an NiAs-type hexagonal structure to investigate its magnetic and structural phase transitions. The lattice parameter a rapidly decreases below the spin reorientation temperature TSR(=90 K in a zero magnetic field. The parameter c decreases gradually with decreasing temperature and exhibits an anomaly in the vicinity of TSR. By applying a magnetic field of 5 T, the parameter a increases by ~0.05% when Tmagnetic phase transition temperature from the ferromagnetic state to the paramagnetic state increases linearly at a rate of 2 KT−1 with increasing magnetic field up to 14 T.

  9. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; A. L. ALLEGRA MASCARO; Lotti, J.; Sacconi, L.; Pavone, F.S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  10. ECT: its brain enabling effects: a review of electroconvulsive therapy-induced structural brain plasticity.

    Science.gov (United States)

    Bouckaert, Filip; Sienaert, Pascal; Obbels, Jasmien; Dols, Annemieke; Vandenbulcke, Mathieu; Stek, Max; Bolwig, Tom

    2014-06-01

    Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. By reviewing the available animal and human literature, we examined the theory that seizure-induced structural changes are crucial for the therapeutic efficacy of ECT. Both animal and human studies suggest electroconvulsive stimulation/electroconvulsive therapy (ECT)-related neuroplasticity (neurogenesis, synaptogenesis, angiogenesis, or gliogenesis). It remains unclear whether structural changes might explain the therapeutic efficacy and/or be related to the (transient) learning and memory impairment after ECT. Methods to assess in vivo brain plasticity of patients treated with ECT will be of particular importance for future longitudinal studies to give support to the currently available correlational data.

  11. Tuberculoma of the brain - A diagnostic dilemma: Magnetic resonance spectroscopy a new ray of hope

    Directory of Open Access Journals (Sweden)

    Subhasis Mukherjee

    2015-01-01

    Full Text Available Tuberculoma of the brain is an important clinical entity. The main challenge in the management of brain tuberculoma is its diagnosis. Appearance in computed tomography (CT scan of brain is common and consists of solitary or multiple ring-enhancing lesions with moderate perilesional edema, but these are not specific for tuberculoma as neurocysticercosis (NCC, coccidiomycosis, toxoplasmosis, metastasis and few other diseases may also have similar appearance on CT scan brain. Cerebrospinal fluid examination is often normal and biopsy and tissue culture from the lesion though the diagnosis of choice is technically too demanding and not feasible in most of the times. All these put the clinicians in a great dilemma as regard to a confidant diagnosis of tuberculoma of the brain. With advancement of imaging techniques, magnetic resonance imaging (MRI of brain with magnetic resonance spectroscopy (MRS has shown a great hope in this context as MRS shows a specific lipid peak in cases of tuberculoma which is not seen in any other differential diagnoses of tuberculoma. This review article is written to have an overview regarding the current diagnostic approach for brain tuberculoma with special emphasis on the role of MRS. Extensive literature review of the articles published in English was conducted using Google search, Google Scholar, PubMed and Medline using the keywords such as ring-enhancing lesions, etiology, tuberculoma, NCC, CT scan brain, MRI, MRS, images.

  12. First order magneto-structural transition in functional magnetic ...

    Indian Academy of Sciences (India)

    First order magneto-structural transition plays an important role in the functionality of various magnetic materials of current interest like manganese oxide systems showing colossal magnetoresistance, Gd5(Ge, Si)4 alloys showing giant magnetocaloric effects and magnetic shape memory alloys. The key features of this ...

  13. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  14. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces...

  15. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    OpenAIRE

    Giedd Jay N; Raznahan Armin; Mills Kathryn L; Lenroot Rhoshel K

    2012-01-01

    Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI) literature of male/female brain differences with emphasi...

  16. Incidental extracerebral findings on brain nonenhanced magnetic resonance imaging: frequency, nondetection rate, and clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)

    2017-03-15

    This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)

  17. Surface displacement based shape analysis of central brain structures in preterm-born children

    Science.gov (United States)

    Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal

    2016-03-01

    Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p MRI data and reveal shape changes that may be due to preterm birth.

  18. Problematic internet use is associated with structural alterations in the brain reward system in females.

    Science.gov (United States)

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  19. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Magnetic fields and brain tumour risks in UK electricity supply workers.

    Science.gov (United States)

    Sorahan, T

    2014-04-01

    To investigate whether brain tumour risks are related to occupational exposure to low-frequency magnetic fields. Brain tumour risks experienced by 73 051 employees of the former Central Electricity Generating Board of England and Wales were investigated for the period 1973-2010. All employees were hired in the period 1952-82 and were employed for at least 6 months with some employment in the period 1973-82. Detailed calculations had been performed by others to enable an assessment to be made of exposures to magnetic fields. Poisson regression was used to calculate relative risks (rate ratios) of developing a brain tumour (or glioma or meningioma) for categories of lifetime, distant (lagged) and recent (lugged) exposure. Findings for glioma and for the generality of all brain tumours were unexceptional; risks were close to (or below) unity for all exposure categories and there was no suggestion of risks increasing with cumulative (or recent or distant) magnetic field exposures. There were no statistically significant dose-response effects shown for meningioma, but there was some evidence of elevated risks in the three highest exposure categories for exposures received >10 years ago. This study found no evidence to support the hypothesis that exposure to magnetic fields is a risk factor for gliomas, and the findings are consistent with the hypotheses that both distant and recent magnetic field exposures are not causally related to gliomas. The limited positive findings for meningioma may be chance findings; national comparisons argue against a causal interpretation.

  1. Structural brain abnormalities in 12 persons with aniridia [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Madison K. Grant

    2017-09-01

    Full Text Available Background: Aniridia is a disorder predominately caused by heterozygous loss-of-function mutations of the PAX6 gene, which is a transcriptional regulator necessary for normal eye and brain development.  The ocular abnormalities of aniridia have been well characterized, but mounting evidence has implicated brain-related phenotypes as a prominent feature of this disorder as well.  Investigations using neuroimaging in aniridia patients have shown reductions in discrete brain structures and changes in global grey and white matter.  However, limited sample sizes and substantive heterogeneity of structural phenotypes in the brain remain a challenge.  Methods: Here, we examined brain structure in a new population sample in an effort to add to the collective understanding of anatomical abnormalities in aniridia.  The current study used 3T magnetic resonance imaging to acquire high-resolution structural data in 12 persons with aniridia and 12 healthy demographically matched comparison subjects.  Results: We examined five major structures: the anterior commissure, the posterior commissure, the pineal gland, the corpus callosum, and the optic chiasm.  The most consistent reductions were found in the anterior commissure and the pineal gland; however, abnormalities in all of the other structures examined were present in at least one individual.  Conclusions: Our results indicate that the anatomical abnormalities in aniridia are variable and largely individual-specific.  These findings suggest that future studies investigate this heterogeneity further, and that normal population variation should be considered when evaluating structural abnormalities.

  2. Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available In order to compare the performance difference of the permanent magnet synchronous motors (PMSM with different rotor structure, two kinds of rotor magnetic circuit structure with surface-mounted radial excitation and tangential excitation are designed respectively. By comparing and analyzing the results, the difference of the motor performance was determined. Firstly, based on the finite element method (FEM, the motor electromagnetic field performance was studied, and the magnetic field distribution of the different magnetic circuit structure was obtained. The influence mechanism of the different magnetic circuit structure on the air gap flux density was obtained by using the Fourier theory. Secondly, the cogging torque, output torque and overload capacity of the PMSM with different rotor structure were studied. The effect mechanism of the different rotor structure on the motor output property difference was obtained. The motor prototype with two kinds of rotor structure was manufactured, and the experimental study was carried out. By comparing the experimental data and simulation data, the correctness of the research is verified. This paper lays a foundation for the research on the performance of the PMSM with different magnetic circuit structure.

  3. Accretion and magnetic field structure in AM Herculis systems

    Science.gov (United States)

    Wickramasinghe, D. T.; Ferrario, Lilia

    2000-04-01

    Detailed spectroscopic studies of the magnetic white dwarfs in the AM Herculis type systems have shown that in most systems the magnetic white dwarf has two dominant poles with field strengths that differ by a factor ˜1.5-2 indicating non dipolar field structures. In all but the highest field system AR UMa, phase locking appears to be maintained through magneto-static interactions between the magnetic field of the white dwarf and the dynamo generated magnetic field of the secondary star.

  4. Exploration of the structural features and magnetic behaviour in a ...

    Indian Academy of Sciences (India)

    /fulltext/jcsc/127/02/0257-0264. Keywords. Mixed ligand system; Co(II)-based 3D framework; interpenetrated structure; sql/Shubnikov tetragonal plane net topology; non-covalent interactions; magnetic studies.

  5. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Investigations on structural, optical and magnetic properties of solution-combustion-synthesized nanocrystalline iron molybdate. KRITHIKADEVI RAMACHANDRAN SIVA CHIDAMBARAM BALRAJ BASKARAN ARULMOZHI MUTHUKUMARASAMY JOHN ...

  6. Synergistic structures from magnetic freeze casting with surface magnetized alumina particles and platelets.

    Science.gov (United States)

    Frank, Michael B; Hei Siu, Sze; Karandikar, Keyur; Liu, Chin-Hung; Naleway, Steven E; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-12-01

    Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT. Slurries with varying ratios of magnetized particles to platelets (0:1, 1:3, 1:1, 3:1, 7:1, 1:0) produced porous scaffolds with different structural features and degrees of lamellar wall alignment. The greatest mechanical enhancement in the magnetic field direction was identified in the synergistic condition with the highest particle to platelet ratio (7:1). Magnetic freeze casting with varying ratios of magnetized anisotropic and isotropic alumina provided insights about how heterogeneous morphologies aggregate within lamellar walls that impact mechanical properties. Fabrication of strengthened scaffolds with multi-axis aligned porosity was achieved without introducing different solid materials, freezing agents or additives. Resemblance of 7:1 particle to platelet scaffold microstructure to wood light-frame house construction is framed in the context of assembly inspiration being derived from both natural and synthetic sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  8. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  9. Structural materials for large superconducting magnets for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly.

  10. An unusual finding of brain magnetic resonance imaging in a hypertensive patient

    Directory of Open Access Journals (Sweden)

    Harris A. Ngow

    2009-05-01

    Full Text Available Brain edema in patients with hypertensive encephalopathy frequently affects the parieto-occipital white matter. Hypertensive encephalopathy is thus included as a differential diagnosis in reversible posterior leukoencephalopathy syndrome. Diffuse white matter involvement rarely occurs. We report a 41-year old woman with hypertensive encephalopathy with diffuse and non-enhancing white matter hyper-intensities throughout the whole brain on magnetic resonance imaging (MRI. These hyperintensities spared the grey matter on T2-weighted and FLAIR sequence. These unusual finding on brain MRI was attributed to severe vasogenic cerebral edema resulting from accelerated hypertension.

  11. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  12. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Energy Technology Data Exchange (ETDEWEB)

    Perna, P., E-mail: paolo.perna@imdea.org; Guerrero, R.; Niño, M. A. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); Ajejas, F.; Maccariello, D.; Cuñado, J. L. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Muñoz, M. [IMM-CSIC, Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid (Spain); ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Prieto, J. L. [ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Miranda, R.; Camarero, J. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2016-05-15

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  13. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Directory of Open Access Journals (Sweden)

    P. Perna

    2016-05-01

    Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  14. MEMS magnetic field sensor based on silicon bridge structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Guangtao; Chen Xiangdong; Lin Qibin; Li Hui; Guo Huihui, E-mail: xdchen@home.swjtu.edu.c [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-10-15

    A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested. The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge, and a ferromagnetic magnet adhered to the sensitivity diaphragm. When the sensor is subjected to an external magnetic field, the magnetic force bends the silicon sensitivity diaphragm, producing stress and resistors change of the Wheatstone bridge and the output voltage of the sensor. Good agreement is observed between the theory and measurement behavior of the magnetic field sensor. Experimental results demonstrate that the maximum sensitivity and minimum resolution are 48 m V/T and 160 {mu}T, respectively, making this device suitable for strong magnetic field measurement. Research results indicate that the sensor repeatability and dynamic response time are about 0.66% and 150 ms, respectively. (semiconductor devices)

  15. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  16. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  17. Psychosis and autism: magnetic resonance imaging study of brain anatomy

    NARCIS (Netherlands)

    Toal, Fiona; Bloemen, Oswald J. N.; Deeley, Quinton; Tunstall, Nigel; Daly, Eileen M.; Page, Lisa; Brammer, Michael J.; Murphy, Kieran C.; Murphy, Declan G. M.

    2009-01-01

    BACKGROUND: Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood. AIMS: To investigate the brain

  18. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy (13C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.

    2014-02-14

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  20. Structural brain alterations associated with dyslexia predate reading onset.

    Science.gov (United States)

    Raschle, Nora Maria; Chang, Maria; Gaab, Nadine

    2011-08-01

    Functional magnetic resonance imaging studies have reported reduced activation in parietotemporal and occipitotemporal areas in adults and children with developmental dyslexia compared to controls during reading and reading related tasks. These patterns of regionally reduced activation have been linked to behavioral impairments of reading-related processes (e.g., phonological skills and rapid automatized naming). The observed functional and behavioral differences in individuals with developmental dyslexia have been complemented by reports of reduced gray matter in left parietotemporal, occipitotemporal areas, fusiform and lingual gyrus and the cerebellum. An important question for education is whether these neural differences are present before reading is taught. Developmental dyslexia can only be diagnosed after formal reading education starts. However, here we investigate whether the previously detected gray matter alterations in adults and children with developmental dyslexia can already be observed in a small group of pre-reading children with a family-history of developmental dyslexia compared to age and IQ-matched children without a family-history (N = 20/mean age: 5:9 years; age range 5:1-6:5 years). Voxel-based morphometry revealed significantly reduced gray matter volume indices for pre-reading children with, compared to children without, a family-history of developmental dyslexia in left occipitotemporal, bilateral parietotemporal regions, left fusiform gyrus and right lingual gyrus. Gray matter volume indices in left hemispheric occipitotemporal and parietotemporal regions of interest also correlated positively with rapid automatized naming. No differences between the two groups were observed in frontal and cerebellar regions. This discovery in a small group of children suggests that previously described functional and structural alterations in developmental dyslexia may not be due to experience-dependent brain changes but may be present at birth or

  1. The micro-magnetic structures of Mn sup + ion-implanted GaSb

    CERN Document Server

    Zhang Fu Qiang; Liu Zhi Kai

    2003-01-01

    The micro-magnetic structures of Mn sup + ion-implanted GaSb are studied using a magnetic force microscope (MFM). MFM images reveal that there are many magnetic domains with different magnetization directions in our samples. The magnetic domain structures and the magnetization direction of typical MFM patterns are analyzed by numeric simulation. (author)

  2. Hierarchical alteration of brain structural and functional networks in female migraine sufferers.

    Directory of Open Access Journals (Sweden)

    Jixin Liu

    Full Text Available BACKGROUND: Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine. METHODOLOGY/PRINCIPAL FINDINGS: Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM and 43 gender-matched healthy controls (HC by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks. CONCLUSIONS: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.

  3. Sleep habits, academic performance, and the adolescent brain structure.

    Science.gov (United States)

    Urrila, Anna S; Artiges, Eric; Massicotte, Jessica; Miranda, Ruben; Vulser, Hélène; Bézivin-Frere, Pauline; Lapidaire, Winok; Lemaître, Hervé; Penttilä, Jani; Conrod, Patricia J; Garavan, Hugh; Paillère Martinot, Marie-Laure; Martinot, Jean-Luc

    2017-02-09

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal - anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.

  4. Local mechanical properties of white matter structures in the human brain

    Science.gov (United States)

    Johnson, Curtis L; McGarry, Matthew DJ; Gharibans, Armen A; Weaver, John B; Paulsen, Keith D; Wang, Huan; Olivero, William C; Sutton, Bradley P; Georgiadis, John G

    2013-01-01

    The noninvasive measurement of the mechanical properties of brain tissue using magnetic resonance elastography (MRE) has emerged as a promising method for investigating neurological disorders. To date, brain MRE investigations have been limited to reporting global mechanical properties, though quantification of the stiffness of specific structures in the white matter architecture may be valuable in assessing the localized effects of disease. This paper reports the mechanical properties of the corpus callosum and corona radiata measured in healthy volunteers using MRE and atlas-based segmentation. Both structures were found to be significantly stiffer than overall white matter, with the corpus callosum exhibiting greater stiffness and less viscous damping than the corona radiata. Reliability of both local and global measures was assessed through repeated experiments, and the coefficient of variation for each measure was less than 10%. Mechanical properties within the corpus callosum and corona radiata demonstrated correlations with measures from diffusion tensor imaging pertaining to axonal microstructure. PMID:23644001

  5. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  6. Propulsion of flexible polymer structures in a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Garstecki, Piotr [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw (Poland); Tierno, Pietro; Sagues, Francesc [Department de Quimica Fisica, Universitat de Barcelona, MartIi Franques 1 Barcelona, 08028 (Spain); Weibel, Douglas B [Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (United States); Whitesides, George M [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 (United States)], E-mail: garst@ichf.edu.pl

    2009-05-20

    We demonstrate a new concept for the propulsions of abiological structures at low Reynolds numbers. The approach is based on the design of flexible, planar polymer structures with a permanent magnetic moment. In the presence of an external, uniform, rotating magnetic field these structures deform into three-dimensional shapes that have helical symmetry and translate linearly through fluids at Re between 10{sup -1} and 10. The mechanism for the motility of these structures involves reversible deformation that breaks their planar symmetry and generates propulsion. These elastic propellers resemble microorganisms that use rotational mechanisms based on flagella and cilia for their motility in fluids at low Re.

  7. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  8. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    Science.gov (United States)

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Associations of Newborn Brain Magnetic Resonance Imaging with Long-Term Neurodevelopmental Impairments in Very Preterm Children.

    Science.gov (United States)

    Anderson, Peter J; Treyvaud, Karli; Neil, Jeffrey J; Cheong, Jeanie L Y; Hunt, Rodney W; Thompson, Deanne K; Lee, Katherine J; Doyle, Lex W; Inder, Terrie E

    2017-08-01

    To determine the relationship between brain abnormalities on newborn magnetic resonance imaging (MRI) and neurodevelopmental impairment at 7 years of age in very preterm children. A total of 223 very preterm infants (brain MRI scan at term equivalent age. Scans were scored using a standardized system that assessed structural abnormality of cerebral white matter, cortical gray matter, deep gray matter, and cerebellum. Children were assessed at 7 years on measures of general intelligence, motor functioning, academic achievement, and behavior. One hundred eighty-six very preterm children (83%) had both an MRI at term equivalent age and a 7-year follow-up assessment. Higher global brain, cerebral white matter, and deep gray matter abnormality scores were related to poorer intelligence quotient (IQ) (Ps MRI abnormality scores and outcomes. Moderate-severe global abnormality on newborn MRI was associated with a reduction in IQ (-6.9 points), math computation (-7.1 points), and motor (-1.9 points) scores independent of the other potential confounders. Structured evaluation of brain MRI at term equivalent is predictive of outcome at 7 years of age, independent of clinical and social factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Relevance of structural brain connectivity to learning and recovery from stroke

    Directory of Open Access Journals (Sweden)

    Heidi Johansen-berg

    2010-11-01

    Full Text Available The physical structure of white matter fibre bundles constrains their function. Any behaviour that relies on transmission of signals along a particular pathway will therefore be influenced by the structural condition of that pathway. Diffusion-weighted magnetic resonance imaging provides localised measures that are sensitive to white matter microstructure. In this review, we discuss imaging evidence on the relevance of white matter microstructure to behaviour. We focus in particular on motor behaviour and learning in healthy individuals and in individuals who have suffered a stroke. We provide examples of ways in which imaging measures of structural brain connectivity can inform our study of motor behaviour and effects of motor training in three different domains: (1 to assess network degeneration with healthy ageing and following stroke, (2 to identify a structural basis for individual differences in behavioural responses and (3 to test for dynamic changes in structural connectivity with learning or recovery.

  11. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  12. Advanced magnetic resonance imaging of the brain : MRI of the brain

    African Journals Online (AJOL)

    while deoxyhaemoglobin is paramagnetic; these different magnetic properties give rise to contrast in magnetic resonance images. Coupling of the haemodynamic changes to neuronal activation is still poorly understood due to an incomplete appreciation for the mechanisms responsible for regulation of local cerebral blood ...

  13. Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status.

    Science.gov (United States)

    Lake, Jordan E; Popov, Mikhail; Post, Wendy S; Palella, Frank J; Sacktor, Ned; Miller, Eric N; Brown, Todd T; Becker, James T

    2017-06-01

    The combined effects of human immunodeficiency virus (HIV), obesity, and elevated visceral adipose tissue (VAT) on brain structure are unknown. In a cross-sectional analysis of Multicenter AIDS Cohort Study (MACS) participants, we determined associations between HIV serostatus, adiposity, and brain structure. Men (133 HIV+, 84 HIV-) in the MACS Cardiovascular 2 and magnetic resonance imaging (MRI) sub-studies with CT-quantified VAT and whole brain MRI measured within 1 year were assessed. Voxel-based morphometry analyzed brain volumes. Men were stratified by elevated (eVAT, ≥100cm2) or "normal" (nVAT, VAT. Forward stepwise modeling determined associations between clinical and demographic variables and regional brain volumes. eVAT was present in 67% of men. Groups were similar in age and education, but eVAT men were more likely to be HIV+ and have hypertension, diabetes mellitus, body mass index >25 kg/m2, smaller gray and white matter volumes, and larger cerebrospinal fluid volume than nVAT men. In multivariate analysis, hypertension, higher adiponectin, higher interleukin-6, age, diabetes mellitus, higher body mass index, and eVAT were associated with brain atrophy (p VAT was associated with smaller bilateral posterior hippocampus and left mesial temporal lobe and temporal stem white matter volume. Traditional risk factors are more strongly associated with brain atrophy than HIV serostatus, with VAT having the strongest association. However, HIV+ MACS men had disproportionately greater VAT, suggesting the risk for central nervous system effects may be amplified in this population.

  14. Band structure peculiarities of magnetic photonic crystals

    Science.gov (United States)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  15. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2014-09-01

    26:349–354. Nagamoto-Combs K, McNeal DW, Morecraft RJ, Combs CK. 2007. Pro- longed microgliosis in the rhesus monkey central nervous system after...of whole brain networks, they reported reduced overall strength in connectivity and increased “small- worldness ” of TBI pa- tients at 3 months after...syringe (two smallest air bubbles were excluded from this study, owing to the limitation in volume estimation of small objects; details are provided in

  16. Proton magnetic resonance spectroscopy: clinical applications in patients with brain lesions

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Ramin

    Full Text Available CONTEXT: Proton spectroscopy has been recognized as a safe and noninvasive diagnostic method that, coupled with magnetic resonance imaging techniques, allows for the correlation of anatomical and physiological changes in the metabolic and biochemical processes occurring within previously-determined volumes in the brain. There are two methods of proton magnetic resonance spectroscopy: single voxel and chemical shift imaging OBJECTIVE: The present work focused on the clinical applications of proton magnetic resonance spectroscopy in patients with brain lesions. CONCLUSIONS: In vivo proton spectroscopy allows the detection of certain metabolites in brain tissue, such as N-acetyl aspartate, creatine, choline, myoinositol, amino acids and lipids, among others. N-acetyl aspartate is a neuronal marker and, as such, its concentration will decrease in the presence of aggression to the brain. Choline increase is the main indicator of neoplastic diseases. Myoinositol is raised in patients with Alzheimer's disease. Amino acids are encountered in brain abscesses. The presence of lipids is related to necrotic processes.

  17. Taking tests in the magnet: Brain mapping standardized tests.

    Science.gov (United States)

    Rubin, David C; Li, Dawei; Hall, Shana A; Kragel, Philip A; Berntsen, Dorthe

    2017-11-01

    Standardized psychometric tests are sophisticated, well-developed, and consequential instruments; test outcomes are taken as facts about people that impact their lives in important ways. As part of an initial demonstration that human brain mapping techniques can add converging neural-level evidence to understanding standardized tests, our participants completed items from standardized tests during an fMRI scan. We compared tests for diagnosing posttraumatic stress disorder (PTSD) and the correlated measures of Neuroticism, Attachment, and Centrality of Event to a general-knowledge baseline test. Twenty-three trauma-exposed participants answered 20 items for each of our five tests in each of the three runs for a total of 60 items per test. The tests engaged different neural processes; which test a participant was taking was accurately predicted from other participants' brain activity. The novelty of the application precluded specific anatomical predictions; however, the interpretation of activated regions using meta-analyses produced encouraging results. For instance, items on the Attachment test engaged regions shown to be more active for tasks involving judgments of others than judgments of the self. The results are an initial demonstration of a theoretically and practically important test-taking neuroimaging paradigm and suggest specific neural processes in answering PTSD-related tests. Hum Brain Mapp 38:5706-5725, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Prospective analysis on brain magnetic resonance imaging in children.

    Science.gov (United States)

    Biebl, Ariane; Frechinger, Bettina; Fellner, Christine Maria; Ehrenmüller, Margit; Povysil, Brigitte; Fellner, Franz; Schmitt, Klaus; Furthner, Dieter

    2015-05-01

    Previous studies have addressed the prevalence of incidental findings in adult populations. There are few studies following paediatric patients, most of data were retrieved retrospectively. We conducted a prospective study to determine the prevalence of incidental, pathologic and normal findings in a symptomatic paediatric population. The subjects of this prospective single centre study are 436 children aged 0-18 years with clinical symptoms and subsequent first brain MRI. Normal, incidental as well as pathologic MRI findings are documented in association with age, gender, neurological examination and previous investigations (CCT, EEG). Secondary outcome parameters are defined as MRI results and their implications. Two board-certified radiologists prospectively analysed MR images without knowing the result from each other. The 436 patients with brain MRI were categorized into three groups as follows: 155 (35.5%) patients had normal findings, 163 (37.4%) had incidental findings and 118 (27.1%) had pathological findings in brain MRI. When adding patients with pathologic and incidental findings we report even more (47.9%). We analysed the correlation between neurologic examination and MRI result and it was significant (p-value 0.0008). The p-value for concordance of both radiology reports was MRI in symptomatic children. Incidental findings are common in paediatric patients but we report the highest prevalence. Our data may help guiding management decision in a consistent and clinically appropriate manner. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  20. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  1. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  2. Magnetic resonance imaging of the brain in congenital cytomegalovirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, C.; Issakainen, J.; Kewitz, G.; Kikinis, R.; Martin, E.; Boltshauser, E.

    1989-01-01

    The children (age 2 months to 8 years) with a congenital cytomegalovirus (CMV) infection were studied by magnetic resonance imaging (MRI) using a 2.35 Tesla magnet. CMV infection was confirmed by serological investigations and virus culture in the neonatal period. Nine children had severe mental retardation and cerebral palsy, 1 patient suffered from microcephaly, ataxia and deafness. The cranial MRI examination showed the following abnormalities (N): Dilated lateral ventricles (10) and subarachnoid space (8), oligo/pacgyria (8), delayed/pathological myelination (7), paraventricular cysts (6), intra-cerebral calcification (1). This lack of sensitivity for calcification is explainable by the basic principles of MRI. The paraventricular cystic lesions were adjacent ot the occipital horns of the lateral ventricles and separated only by a thin membrane. This finding might represent a 'new sign' for congenital CMV infection in MRI examinations, being characteristic but nevertheless nonspecific, like calcification in CT.

  3. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.

    2010-01-01

    detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87......MG human brain cancer. Dynamic magnetic resonance imaging (MRI) with the low-molecular-weight contrast agent, gadolinium diethylenetriaminepentaacetic acid (GdDTPA), was used to evaluate tumor vascular parameters. Carbon-13-labeled TMZ ([C-13]TMZ, 99%) was intraperitoneally administered at a dose...... experiments demonstrated slower recovery of MRI signal following an intravenous bolus injection of GdDTPA, higher vascular flow and volume obtained by T-2*-weighted MRI, as well as enhanced uptake of the contrast agent in the brain tumor compared with normal brain detected by T-1-weighted MRI. These data...

  4. Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields.

    Science.gov (United States)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  5. Revisiting a historic human brain with magnetic resonance imaging – the first description of a divided central sulcus

    Directory of Open Access Journals (Sweden)

    Renate eSchweizer

    2014-05-01

    Full Text Available In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation – bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI. On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the postcentral sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the postcentral sulcus, represents the very common case of a segmented postcentral sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

  6. Revisiting a historic human brain with magnetic resonance imaging - the first description of a divided central sulcus.

    Science.gov (United States)

    Schweizer, Renate; Helms, Gunther; Frahm, Jens

    2014-01-01

    In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation - bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

  7. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight.

    Directory of Open Access Journals (Sweden)

    Laura Moreno-López

    Full Text Available INTRODUCTION: Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. METHODS: Fifty-two adolescents (16 with normal weight and 36 with excess weight were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ, the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM was used to assess possible between-group differences in regional gray matter (GM and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices and motivation/impulse control (hippocampus, prefrontal cortex. RESULTS: Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. CONCLUSION: Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.

  8. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  9. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    Science.gov (United States)

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.

  10. Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis.

    Science.gov (United States)

    Wen, Miaoyun; Lian, Zhesi; Huang, Linqiang; Zhu, Senzhi; Hu, Bei; Han, Yongli; Deng, Yiyu; Zeng, Hongke

    2017-11-01

    The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (-0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.

  11. Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

    Science.gov (United States)

    Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926

  12. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    Directory of Open Access Journals (Sweden)

    Birgit Renske Plantinga

    2014-11-01

    Full Text Available Deep brain stimulation is a treatment for Parkinson’s disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim. This shows that the visibility, identification and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson’s disease and related disorders.

  13. Co-analysis of brain structure and function using fMRI and diffusion-weighted imaging.

    Science.gov (United States)

    Phillips, Jeffrey S; Greenberg, Adam S; Pyles, John A; Pathak, Sudhir K; Behrmann, Marlene; Schneider, Walter; Tarr, Michael J

    2012-11-08

    The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)(1, 2) protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis

  14. Magnetization processes in core/shell exchange-spring structures.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-spring elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.

  15. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma

    2017-10-23

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.

  16. On longevity and the aging process : a magnetic resonance imaging study of the brain

    NARCIS (Netherlands)

    Altmann-Schneider, Irmhild

    2015-01-01

    The aim of this thesis was to investigate the radiological phenotype of the human brain in familial longevity with regard to brain structure. This study was performed as part of the Leiden Longevity Study – a study population consisting of offspring of long-lived Dutch people who are genetically

  17. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    Science.gov (United States)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  18. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2013-07-01

    of imaging may provide a means for monitor- ing longitudinal changes in iron content in dementia, multiple sclerosis , traumatic brain injury, and...criteria: Patients aged 18 or older with an initial Glasgow Coma Scale (GCS) score of 3 13-15 in ED with any period of loss of consciousness less than 30...n=18), 61% 8 were men and 39% women, and the average patient age was 34.83±14.30 years. There 9 was no age difference between patient and controls

  19. Structural and magnetic studies in Ni/Ti multilayers

    Science.gov (United States)

    Porte, M.; Lassri, H.; Krishnan, R.; Kâabouchi, M.; Mâaza, M.; Sella, C.

    1993-03-01

    Structural and magnetic studies have been carried out on Ni/Ti multilayers prepared by DC triode sputtering. Both metal layers are crystalline with a (111) fibre structure when they are thicker than 20 Å. But for thinner layers one observes a solid solution with an amorphous-like structure. The magnetization decreases with t(Ni) and the analysis of the results at 5 K indicates the presence of a dead Ni layer about 12 Å thick. The t(Ni) dependence of the effective anisotropy shows the absence of surface anisotropy contribution.

  20. Electron vortex magnetic holes: a nonlinear coherent plasma structure

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn

    2014-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...

  1. Structural and magnetic transitions in cubic Mn3Ga.

    Science.gov (United States)

    Kharel, P; Huh, Y; Al-Aqtash, N; Shah, V R; Sabirianov, R F; Skomski, R; Sellmyer, D J

    2014-03-26

    The structural, magnetic and electron-transport properties of cubic Mn3Ga have been investigated. The alloys prepared by arc melting and melt-spinning show an antiferromagnetic spin order at room temperature but undergo coupled structural and magnetic phase transitions at 600 and 800 K. First-principles calculations show that the observed magnetic properties are consistent with that of a cubic Mn3Ga crystallizing in the disordered Cu3Au-type structure. The samples exhibit metallic electron transport with a resistance minimum near 30 K, followed by a logarithmic upturn below the minimum. The observed anomaly in the low-temperature resistivity has been discussed as a consequence of electron scattering at the low-lying excitations of the structurally disordered Mn3Ga lattice.

  2. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    Science.gov (United States)

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  3. Structure of magnetic fields in non-convective stars

    Science.gov (United States)

    Lyutikov, Maxim

    2010-02-01

    We develop a theoretical framework to construct axisymmetric magnetic equilibria in stars, consisting of both poloidal and toroidal magnetic field components. In a stationary axisymmetric configuration, the poloidal current is a function of the poloidal magnetic flux only, and thus should vanish on field lines extending outside of the star. Non-zero poloidal current (and the corresponding non-zero toroidal magnetic field) is limited to a set of toroid-shape flux surfaces fully enclosed inside the star. If we demand that there are no current sheets then on the separatrix delineating the regions of zero and finite toroidal magnetic field both the poloidal flux function (related to the toroidal component of the magnetic field) and its derivative (related to the poloidal component) should match. Thus, for a given magnetic field in the bulk of the star, the elliptical Grad-Shafranov equation that describes magnetic field structure inside the toroid is an ill-posed problem, with both Dirichlet and Newman boundary conditions and a priori unknown distribution of toroidal and poloidal electric currents. We discuss a procedure which allows to solve this ill-posed problem by adjusting the unknown current functions. We illustrate the method by constructing a number of semi-analytical equilibria connecting to outside dipole and having various poloidal current distribution on the flux surfaces closing inside the star. In particular, we find a poloidal current-carrying solution that leaves the shape of the flux function and, correspondingly, the toroidal component of the electric current, the same as in the case of no poloidal current. The equilibria discussed in this paper may have arbitrary large toroidal magnetic field, and may include a set of stable equilibria. The method developed here can also be applied to magnetic structure of differentially rotating stars, as well as to calculate velocity field in incompressible isolated fluid vortex with a swirl.

  4. Association of Social Engagement with Brain Volumes Assessed by Structural MRI

    Directory of Open Access Journals (Sweden)

    Bryan D. James

    2012-01-01

    Full Text Available We tested the hypothesis that social engagement is associated with larger brain volumes in a cohort study of 348 older male former lead manufacturing workers (=305 and population-based controls (=43, age 48 to 82. Social engagement was measured using a summary scale derived from confirmatory factor analysis. The volumes of 20 regions of interest (ROIs, including total brain, total gray matter (GM, total white matter (WM, each of the four lobar GM and WM, and 9 smaller structures were derived from T1-weighted structural magnetic resonance images. Linear regression models adjusted for age, education, race/ethnicity, intracranial volume, hypertension, diabetes, and control (versus lead worker status. Higher social engagement was associated with larger total brain and GM volumes, specifically temporal and occipital GM, but was not associated with WM volumes except for corpus callosum. A voxel-wise analysis supported an association in temporal lobe GM. Using longitudinal data to discern temporal relations, change in ROI volumes over five years showed null associations with current social engagement. Findings are consistent with the hypothesis that social engagement preserves brain tissue, and not consistent with the alternate hypothesis that persons with smaller or shrinking volumes become less socially engaged, though this scenario cannot be ruled out.

  5. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  6. Correlation between voxel based morphometry and manual volumetry in magnetic resonance images of the human brain

    Directory of Open Access Journals (Sweden)

    Ricardo R. Uchida

    2008-03-01

    Full Text Available This is a comparative study between manual volumetry (MV and voxel based morphometry (VBM as methods of evaluating the volume of brain structures in magnetic resonance images. The volumes of the hippocampus and the amygdala of 16 panic disorder patients and 16 healthy controls measured through MV were correlated with the volumes of gray matter estimated by optimized modulated VBM. The chosen structures are composed almost exclusively of gray matter. Using a 4 mm Gaussian filter, statistically significant clusters were found bilaterally in the hippocampus and in the right amygdala in the statistical parametric map correlating with the respective manual volume. With the conventional 12 mm filter,a significant correlation was found only for the right hippocampus. Therefore,narrowfilters increase the sensitivity of the correlation procedure, especially when small brain structures are analyzed. The two techniques seem to consistently measure structural volume.Trata-se de estudo comparativo entre a volumetria manual(VM e a morfometria baseada no vóxel (MBV, como métodos de avaliação do volume de estruturas cerebrais. Os volumes do hipocampo e da amídala de 16 pacientes de pânico e 16 controles sadios medidos através da VM foram correlacionados com os volumes de matéria cinzenta estimados pela MBV.As estruturas escolhidas são constituídas quase exclusivamente de matéria cinzenta. Utilizando um filtro Gaussiano de 4 mm, encontram-se, bilateralmente, aglomerados significativos de correlação nas duas estruturas no mapa estatístico paramétrico, correspondendo ao respectivo volume manual. Com o filtro convencional de 12 mm, apenas uma correlação significativa foi encontrada no hipocampo direito. Portanto, filtros estreitos aumentam a sensibilidade do procedimento de correlação,especialmente quando estruturas pequenas são analisadas. Ambas as técnicas parecem medir consistentemente o volume estrutural.

  7. Structural MRI changes of the brain in depression.

    Science.gov (United States)

    Kanner, Andres M

    2004-01-01

    For many years, investigators have been trying to identify the neuroanatomical structures responsible for the development of neuropsychiatric disorders, specifically depression and schizophreniform disorders. The available data were based on observations made in neurological patients who developed a psychiatric comorbid disorder following the neurologic insult. With the advances in high-resolution magnetic resonance imaging and functional neuroimaging studies, we have witnessed in the last decade a wealth of new data that identify structural neuroimaging changes in mesial temporal structures, prefrontal cortex and basal ganglia in major depressive disorders. The purpose of this article is to briefly review the published data on neuroanatomical structural changes associated with major depressive and bipolar disorders.

  8. The effect of internal magnetic structure on the fishbone instability

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.W.; Powell, E. [Lawrence Livermore National Lab., CA (United States); Kaita, R.; Bell, R.; Chance, M.; Hatcher, R.; Holland, A.; Kaye, S.; Kessel, C.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Paul, S.; Pomphrey, N.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; White, R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Levinton, F. [Fusion Physics and Technologies, Torrance, CA (United States); Asakura, N. [Tokyo Univ. (Japan); Duperrex, P. [Ecole Polytechnique Federale, Lausanne (Switzerland); Gammel, G. [Grumman Corp., Bethpage, NY (United States)

    1992-01-01

    Plasmas exhibiting the ``fishbone`` instability studied on the PBX-M tokamak show a distinct relationship between the plasma shape, the internal magnetic structure, and the presence or absence of fast ion losses associated with the fishbone mode. We have, for the first time, carried out measurements of the magnetic safety factor profile in fishbone-unstable plasmas, and used the knowledge of the associated experimental equilibria to compare the stability and fast ion loss properties of these plasmas with experimental observations.

  9. Magnetic and Structural Properties of Co5 Ge3 Nanoparticles

    Science.gov (United States)

    Salehi-Fashami, Mohammad; Deepchand, Vimal; Skomski, Ralph; Sellmyer, David J.; Hadjipanayis, George C.

    Magnetic semiconductor alloy nanostructures play a crucial role in advanced technologies due to their tunable band gaps and electronic properties. Among these magnetic semiconductor alloys, Co-Ge is important both scientifically and technologically. In this work, we studied the magnetic and transport properties of Co5Ge3 nanoparticles(NPs) fabricated by cluster-beam deposition. The NPs were characterized by X-ray powder diffraction and the results demonstrated that they had the same hexagonal structure P63/mm-type as in bulk.Transmission-electron-microscope observations revealed that the particles have a single crystalline structure with an average size of 8nm. Selected-area electron diffraction(SAED) confirmed the XRD data, showing clearly that the particles have the hexagonal structure mentioned above. High-resolution electron microscopy images show lattice fringes with spacing of 1.99A and 2.02A which correspond to the (102) and (110) superlattice reflections of the hexagonal ordered Co5Ge3 structure. Magnetic properties showed that these nanoparticles are ferromagnetic at room temperature as-compared to bulk samples that are paramagnetic at all temperatures. This magnetic behavior in Co-Ge nanoparticles indicates new size-controlled spin structures in confined nanosize systems. Work supported by DOE DE-FG02-04ERU4612 and DE-FG02-04ER46152.

  10. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    Science.gov (United States)

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  11. Demyelinating and ischemic brain diseases: detection algorithm through regular magnetic resonance images

    Science.gov (United States)

    Castillo, D.; Samaniego, René; Jiménez, Y.; Cuenca, L.; Vivanco, O.; Rodríguez-Álvarez, M. J.

    2017-09-01

    This work presents the advance to development of an algorithm for automatic detection of demyelinating lesions and cerebral ischemia through magnetic resonance images, which have contributed in paramount importance in the diagnosis of brain diseases. The sequences of images to be used are T1, T2, and FLAIR. Brain demyelination lesions occur due to damage of the myelin layer of nerve fibers; and therefore this deterioration is the cause of serious pathologies such as multiple sclerosis (MS), leukodystrophy, disseminated acute encephalomyelitis. Cerebral or cerebrovascular ischemia is the interruption of the blood supply to the brain, thus interrupting; the flow of oxygen and nutrients needed to maintain the functioning of brain cells. The algorithm allows the differentiation between these lesions.

  12. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Image Dept.], e-mail: jrl.ferraz@terra.com.br; Rocha-Filho, Jose Alves; Mauad, Fernando [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Radiology Dept.; Sanches, Rafael Angelo [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Imaging Dept.

    2009-06-15

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  13. Magnetic structure of molecular magnet Fe[Fe(CN)6]·4H2O

    Indian Academy of Sciences (India)

    perature disordered (paramagnetic) to an ordered magnetic phase transition at 22.6 K. Rietveld analysis of neutron diffraction pattern at 60 K (in its paramagnetic phase) re- vealed a face centred cubic structure with space group Fm3m. The structure contains three-dimensional network of straight Fe3+–C≡N–Fe3+ chains ...

  14. Picture free recall performance linked to the brain's structural connectome.

    Science.gov (United States)

    Coynel, David; Gschwind, Leo; Fastenrath, Matthias; Freytag, Virginie; Milnik, Annette; Spalek, Klara; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2017-07-01

    Memory functions are highly variable between healthy humans. The neural correlates of this variability remain largely unknown. Here, we investigated how differences in free recall performance are associated with DTI-based properties of the brain's structural connectome and with grey matter volumes in 664 healthy young individuals tested in the same MR scanner. Global structural connectivity, but not overall or regional grey matter volumes, positively correlated with recall performance. Moreover, a set of 22 inter-regional connections, including some with no previously reported relation to human memory, such as the connection between the temporal pole and the nucleus accumbens, explained 7.8% of phenotypic variance. In conclusion, this large-scale study indicates that individual memory performance is associated with the level of structural brain connectivity.

  15. Mapping Language Networks Using the Structural and Dynamic Brain Connectomes.

    Science.gov (United States)

    Del Gaizo, John; Fridriksson, Julius; Yourganov, Grigori; Hillis, Argye E; Hickok, Gregory; Misic, Bratislav; Rorden, Chris; Bonilha, Leonardo

    2017-01-01

    Lesion-symptom mapping is often employed to define brain structures that are crucial for human behavior. Even though poststroke deficits result from gray matter damage as well as secondary white matter loss, the impact of structural disconnection is overlooked by conventional lesion-symptom mapping because it does not measure loss of connectivity beyond the stroke lesion. This study describes how traditional lesion mapping can be combined with structural connectome lesion symptom mapping (CLSM) and connectome dynamics lesion symptom mapping (CDLSM) to relate residual white matter networks to behavior. Using data from a large cohort of stroke survivors with aphasia, we observed improved prediction of aphasia severity when traditional lesion symptom mapping was combined with CLSM and CDLSM. Moreover, only CLSM and CDLSM disclosed the importance of temporal-parietal junction connections in aphasia severity. In summary, connectome measures can uniquely reveal brain networks that are necessary for function, improving the traditional lesion symptom mapping approach.

  16. Decoding post-stroke motor function from structural brain imaging

    Directory of Open Access Journals (Sweden)

    Jane M. Rondina

    2016-01-01

    Full Text Available Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged. However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature. In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes

  17. Interface structure and magnetism of magnetic tunnel junctions with a Co2 MnSi electrode

    Science.gov (United States)

    Schmalhorst, J.; Kämmerer, S.; Sacher, M.; Reiss, G.; Hütten, A.; Scholl, A.

    2004-07-01

    Magnetic tunnel junctions with a magnetically soft Heusler-alloy electrode ( Co2 MnSi/Al+oxidation+in situ annealing/ Co7 Fe3 / Mn83 Ir17 ) and a maximal tunnel magnetoresistance effect of 86% at 10 K/10 mV are investigated with respect to their structural and magnetic properties at the lower barrier interface by electron and x-ray absorption spectroscopy. A plasma-oxidation-induced Mn/Si segregation and oxide formation at the barrier interface is found, which results in a strongly increased area-resistance product of the junctions, because of an enlarged barrier thickness. For Co2 MnSi thickness equal to 8 nm or larger, ferromagnetic order of Mn and Co spins at the interface is induced by annealing; simultaneously, atomic ordering at the interface is observed. The influence of the structural and magnetic interface properties on the temperature-dependent transport properties of the junctions is discussed.

  18. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structures and Interactions of Proteins in the Brain

    DEFF Research Database (Denmark)

    Nielsen, Lau Dalby

    coding for Arc protein has been domesticated from the same branch of genes that has given rise to retroviruses. We show that even despite the large evolutional distance between Arc and retroviruses. Despite large evolutionary distance Arc still self-assemble into higher order structures that resembles......The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite...... the primary nucleation is increased. The data furthermore indicates that there is an interaction with Aβ oligomer state and possible also the fibrils. Another brain protein is the neuronal protein Activity-regulated cytoskeletonassociated protein (Arc) which is important for learning and memory. The gene...

  20. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  1. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  2. Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Salehi, Seyed Sadegh Mohseni; Erdogmus, Deniz; Gholipour, Ali

    2017-06-28

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and robustness of brain extraction, therefore, is crucial for the accuracy of the entire brain analysis process. State-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry; therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent and registration-free brain extraction tool in this study, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3D image information without the need for computationally expensive 3D convolutions, and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark datasets, namely LPBA40 and OASIS, in which we obtained Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily-oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI

  3. The neuroanatomy of active hand movement in patients with severe traumatic brain injury: Analysis of functional magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    T. S. Mukhina

    2017-01-01

    Full Text Available Objective: to analyze the characteristics of the functional neuroanatomy of movements in severe traumatic brain injury (STBI patients with varying severity of motor defect versus that in healthy individuals for the study of brain neuroplasticity as a basis of compensation.Patients and methods. Functional magnetic resonance imaging (fMRI, 3T was used to analyze cerebral hemodynamic changes in 28 patients with STBI during an active right-hand finger tapping task. A control group consisted of 17 healthy individuals. The percentage of representation of individual brain structures involved in movements and volume activation (Vox was determined in fMRI responses.Results. The patient group showed a tendency for an increased fMRI response diffusion with the emergence of activation zones (the left frontal and parietal regions, as well as the occiptal and temporal regions of the cerebral hemispheres that are atypical for healthy individuals during motor exercises. This trend is more evident in patients with right-sided hemiparesis.Conclusion. The results of the study clarify the existing ideas about the neurophysiological mechanisms of motor impairment and compensation in traumatic brain injury, which is important for the development and improvement of neurorehabilitation techniques. There is evidence for the hypothesis that the extrapyramidal system may be actively involved in the compensation for post-traumatic musculoskeletal defect, which was earlier proposed by E.V. Sharova et al. (2014.

  4. Functional magnetic resonance imaging of brain activity during chewing and occlusion by natural teeth and occlusal splints.

    Science.gov (United States)

    Kordass, Bernd; Lucas, Christian; Huetzen, Daniel; Zimmermann, Christian; Gedrange, Tomas; Langner, Soenke; Domin, Martin; Hosten, Norbert

    2007-01-01

    Brain imaging based on functional magnetic resonance (fMRI) is a useful tool for examination of neuronal networks and cerebral structures subserving visiospatial function. The purpose of this study was to compare the brain activity during chewing and occlusal function in centric occlusion on natural teeth or on occlusal splints. Four tasks were performed by 13 healthy, fully dentate subjects (21-32 years old, 6 female and 7 male): occlusal tap-tap movements in centric occlusion by natural teeth, after application of a maxillary occlusal splint and chewing movements on left and right sided rubberdam strips. In order to reveal which areas of the brain were more strongly activated, conjunction analyses between the different tasks were performed for each subject and for the average values of brain signal activity of all subjects. Whilst several known foci of activity were subtracted, differences of significant activity rested in areas of the sensorimotor cortex. Mainly ipsitaterality of hemispheres concerned the left and right sided chewing, whereas the conjunction between tap-tap movements on natural teeth and splint occlusion indicated only one weak, but significant activation foci. The study confirms fMRT as one of the most useful developing methods to clear up neuro-cortical effectiveness of occlusion and occlusal therapy.

  5. Surface magnetism Correlation of structural, electronic and chemical properties with magnetic behavior

    CERN Document Server

    Getzlaff, Mathias

    2010-01-01

    This volume reviews on selected aspects related to surface magnetism, a field of extraordinary interest during the last decade. The special emphasis is set to the correlation of structural, electronic and magnetic properties in rare earth metal systems and ferromagnetic transition metals. This is made possible by the combination of electron emission techniques (spin polarized photoelectron spectroscopy, magnetic dichroism in photoemission and spin polarized metastable deexcitation spectroscopy) and local probes with high lateral resolution down to the atomic scale (spin polarized scanning tunneling microscopy / spectroscopy).

  6. Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Ludwig, Frank; Kazakova, Olga; Barquin, Luis Fernandez

    2014-01-01

    We have measured and analyzed three different commercial magnetic nanoparticle systems, both multi-core and single-core in nature, with the particle (core) size ranging from 20 to 100 nm. Complementary analysis methods and same characterization techniques were carried out in different labs...... and the results are compared with each other. The presented results primarily focus on determining the particle size—both the hydrodynamic size and the individual magnetic core size—as well as magnetic and structural properties. The used analysis methods include transmission electron microscopy, static...

  7. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. N. Jakovlev

    2017-01-01

    Full Text Available Purpose. To study glutamate metabolism characteristics in phylogenetically different parts of the mammalian brain in experimentally induced hemorrhagic shock (HS in cats.Material and methods. Experiments were performed on 76 cats. HS was induced by intermittent bloodletting from femoral artery at a rate of 10ml/kg•10 minutes, with the average volume of 24±0.8 ml/kg. The bloodletting was discontinued after arterial pressure (BP drop to 60.0±1.5 mmHg. We studied ammonia, glutamate (Gt, and α-ketoglutarate (α-KG levels and glutaminase (GS and glutamate dehydrogenase (GDG activity in specimens harvested from phylogenetically different parts of the brain (cortex, limbic system, diencephalon, and medulla oblongata.Results. In intact animals, the peak GDG activity was found in the medulla oblongata (phylogenetically the oldest part of the brain and the peak GS activity was registered in the sensorimotor cortex (phylogenetically the youngest part of the brain; the glutaminase activity did not depend on the phylogenetic age of brain structures.In the case of HS, Gt metabolism changes began in the sensorimotor cortex manifested by decreased GS activity, which progresses by the 70th minute of the post%hemorrhagic period (PHP accompanied by delayed increase in the GDG and glutaminase activity, as well as Gt accumulation. In the limbic system and diencephalon the Gt metabolism was changing (impaired glutamine synthesis, stimuled Gt synthesis with glutamine desamidization and α%KG amination when developed by the 70th minute of the PHP. Similarly to sensorimotor cortex, changes were associated with Gt accumulation. During the agony, α%KG deficiency developed in all parts of the brain as a result of its increased contribution to Gt synthesis. At the same period of time, in the sensorimotor cortex, limbic system and diencephalon the Gt synthesis from glutamine was stimulated, however, the Gt contribution tothe formation of glutamine was decreased. The

  8. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  10. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  11. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  12. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    Science.gov (United States)

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  13. Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties.

    Science.gov (United States)

    Scheifers, Jan P; Zhang, Yuemei; Fokwa, Boniface P T

    2017-09-19

    Boron's unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB66 (used as monochromator for synchrotron radiation) up to the most metal-rich Nd2Fe14B (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B4 units, planar B6 rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., Nb6Fe1-xIr6+xB8). The study of boride compounds containing chains (Fe-chains in antiferromagnetic Sc2FeRu5B2), ladders (Fe-ladders in ferromagnetic Ti9Fe2Rh18B8), and chains of triangles (Cr3 chains in ferrimagnetic and frustrated TiCrIr2B2) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of Ti2FeRh5B2 can be successively increased up to 24-times by gradually substituting Ru for Rh, a result that was

  14. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    Science.gov (United States)

    Rae, Caroline D; Williams, Stephen R

    2017-07-15

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    Science.gov (United States)

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  16. Self-organizing Knotted Magnetic Structures in Plasma

    CERN Document Server

    Smiet, C B; Thompson, A; Swearngin, J; Dalhuizen, J W; Bouwmeester, D

    2015-01-01

    We perform full-MHD simulations on various initially helical configurations and show that they reconfigure into a state where the magnetic field lines span nested toroidal surfaces. This relaxed configuration is not a Taylor state, as is often assumed for relaxing plasma, but a state where the Lorentz force is balanced by the hydrostatic pressure, which is lowest on the central ring of the nested tori. Furthermore, the structure is characterized by a spatially slowly varying rotational transform, which leads to the formation of a few magnetic islands at rational surfaces. We then obtain analytic expressions that approximate the global structure of the quasi-stable linked and knotted plasma configurations that emerge, using maps from $S^3$ to $S^2$ of which the Hopf fibration is a special case. The knotted plasma configurations have a highly localized magnetic energy density and retain their structure on time scales much longer than the Alfvenic time scale.

  17. Brain connectivity dynamics during social interaction reflect social network structure.

    Science.gov (United States)

    Schmälzle, Ralf; Brook O'Donnell, Matthew; Garcia, Javier O; Cascio, Christopher N; Bayer, Joseph; Bassett, Danielle S; Vettel, Jean M; Falk, Emily B

    2017-05-16

    Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants' friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics.

  18. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    Science.gov (United States)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  19. Brain changes detected by functional magnetic resonance imaging and spectroscopy in patients with Crohn's disease.

    Science.gov (United States)

    Lv, Kun; Fan, Yi-Hong; Xu, Li; Xu, Mao-Sheng

    2017-05-28

    Crohn's disease (CD) is a chronic, non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease (IBD). CD is prone to relapse, and its incidence displays a persistent increase in developing countries. However, the pathogenesis of CD is poorly understood, with some studies emphasizing the link between CD and the intestinal microbiota. Specifically, studies point to the brain-gut-enteric microbiota axis as a key player in the occurrence and development of CD. Furthermore, investigations have shown white-matter lesions and neurologic deficits in patients with IBD. Based on these findings, brain activity changes in CD patients have been detected by blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). BOLD-fMRI functions by detecting a local increase in relative blood oxygenation that results from neurotransmitter activity and thus reflects local neuronal firing rates. Therefore, biochemical concentrations of neurotransmitters or metabolites may change in corresponding brain regions of CD patients. To further study this phenomenon, brain changes of CD patients can be detected non-invasively, effectively and accurately by BOLD-fMRI combined with magnetic resonance spectroscopy (MRS). This approach can further shed light on the mechanisms of the occurrence and development of neurological CD. Overall, this paper reviews the current status and prospects on fMRI and MRS for evaluation of patients with CD based on the brain-gut-enteric microbiota axis.

  20. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  1. Brain white matter lesions detected by magnetic resonance [correction of resosnance] imaging are associated with balance and gait speed.

    Science.gov (United States)

    Starr, J M; Leaper, S A; Murray, A D; Lemmon, H A; Staff, R T; Deary, I J; Whalley, L J

    2003-01-01

    To investigate the relations between premorbid and current mental ability, mood, and white matter signal abnormalities detected by T2 weighted brain magnetic resonance imaging (MRI) and impairment of balance and mobility in older adults. 97 subjects from the Aberdeen 1921 birth cohort underwent brain MRI, evaluation of balance, and measurement of gait speed. White matter hyperintensities detected on T2 weighted MRI scans were rated by three independent raters on three variables: white matter lesions; periventricular lesions; and brain stem lesions. Decreased gait speed was correlated with impaired visual acuity (p = 0.020), shorter stature (p = 0.008), a lower childhood IQ (p = 0.030), a lower current Raven's progressive matrices score (Raven score) (p balance was correlated with Raven score (p = 0.042), brain stem lesions (p = 0.003), white matter lesions (p = 0.003), and periventricular lesions (p = 0.038). Binary logistic regression identified brain stem lesions (odds ratio (OR) 0.22; 95% confidence interval 0.09 to 0.54) and HADS depression score (OR 0.75; 0.58 to 0.97) as the only significant associations with balance. Structural equation modelling detected an association between two latent traits representing white matter disease and an integrating function, respectively. In this cohort, white matter lesions, periventricular lesions, and brain stem lesions were associated with impaired balance. Current mental ability was strongly related to gait speed. There appears to be a concordance between motor skills and intellect in old age, which is degraded by white matter disease.

  2. Disadvantage of Social Sensitivity: Interaction of Oxytocin Receptor Genotype and Child Maltreatment on Brain Structure.

    Science.gov (United States)

    Dannlowski, Udo; Kugel, Harald; Grotegerd, Dominik; Redlich, Ronny; Opel, Nils; Dohm, Katharina; Zaremba, Dario; Grögler, Anne; Schwieren, Juliane; Suslow, Thomas; Ohrmann, Patricia; Bauer, Jochen; Krug, Axel; Kircher, Tilo; Jansen, Andreas; Domschke, Katharina; Hohoff, Christa; Zwitserlood, Pienie; Heinrichs, Markus; Arolt, Volker; Heindel, Walter; Baune, Bernhard T

    2016-09-01

    Oxytocin has received much attention as a prosocial and anxiolytic neuropeptide. In human studies, the G-allele of a common variant (rs53576) in the oxytocin receptor gene (OXTR) has been associated with protective properties such as reduced stress response and higher receptiveness for social support. In contrast, recent studies suggest a detrimental role of the rs53576 G-allele in the context of childhood maltreatment. To further elucidate the role of OXTR, gene by maltreatment interactions on brain structure and function were investigated. Three hundred nine healthy participants genotyped for OXTR rs53576 underwent structural as well as functional magnetic resonance imaging during a common emotional face-matching task. Childhood maltreatment was assessed with the Childhood Trauma Questionnaire (CTQ). Gray matter volumes were investigated by means of voxel-based morphometry across the entire brain. Structural magnetic resonance imaging data revealed a strong interaction of rs53576 genotype and CTQ scores, mapping specifically to the bilateral ventral striatum. GG homozygotes but not A-allele carriers showed strong gray matter reduction with increasing CTQ scores. In turn, lower ventral striatum gray matter volumes were associated with lower reward dependence, a prosocial trait. Furthermore, the G-allele was associated with increased amygdala responsiveness to emotional facial expressions. The findings suggest that the G-allele constitutes a vulnerability factor for specific alterations of limbic brain structure in individuals with adverse childhood experiences, complemented by increased limbic responsiveness to emotional interpersonal stimuli. While oxytocinergic signaling facilitates attachment and bonding in supportive social environments, this attunement for social cues may turn disadvantageous under early adverse conditions. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  4. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    Directory of Open Access Journals (Sweden)

    Becky Wong

    2016-01-01

    Full Text Available Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1 whether the language neural network is different for first (dominant versus second (nondominant language processing; (2 the effects of bilinguals’ executive functioning on the structure and function of the “universal” language neural network; (3 the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4 the effects of age of acquisition and proficiency of the user’s second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  5. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  6. Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.

    Science.gov (United States)

    Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza

    2017-04-01

    Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions.

    Directory of Open Access Journals (Sweden)

    Marta Subirà

    Full Text Available Obsessive-compulsive disorder (OCD is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30 and reactive (n = 65 sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally, while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD.

  8. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    AFRL-AFOSR-JP-TR-2017-0053 Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures Takeshi Seki TOHOKU UNIVERSITY Final Report 06/27...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      27-06-2017 2. REPORT TYPE Final...3. DATES COVERED (From - To) 12 Jun 2015 to 12 Dec 2016 4. TITLE AND SUBTITLE Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

  9. Magnetic domain structure in thin CoPt perpendicular magnetic anisotropy films

    Directory of Open Access Journals (Sweden)

    Komine T.

    2013-01-01

    Full Text Available The relation between thickness and domain structure of Co80Pt20 perpendicular magnetic anisotropy films was investigated through experiments and micromagnetic simulation. The films with thickness over 10 nm exhibited clear maze domain structure, while for the films thinner than 10 nm the domain structure abruptly changed from maze domain to irregular and large domain as the thickness became thinner. The irregular domain had narrower domain wall width than maze domain.

  10. Long-term intensive training induced brain structural changes in world class gymnasts.

    Science.gov (United States)

    Huang, Ruiwang; Lu, Min; Song, Zheng; Wang, Jun

    2015-03-01

    Many previous studies suggested that both short-term and long-term motor training can modulate brain structures. However, little evidence exists for such brain anatomical changes in top-level gymnasts. Using diffusion-weighted and structural magnetic resonance images of the human brain, we applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) as well as FA-VBA (voxel-based analysis of fractional anisotropy, a VBM-style analysis) methods to quantitatively compare the brain structural differences between the world class gymnasts (WCG) and the non-athlete groups. In order to reduce the rate of false positive findings, we first determined that the clusters defined at a threshold of t > 2.3 and a cluster significance of p brain regions that showed significant differences in a between-group comparison. We then constructed several between-group comparisons based on the repeated diffusion or structural MRI data and created the intersecting regions from multiple between-group comparisons. Thus, we found significantly decreased fractional anisotropy (FA) not only in the white matter of the WCG in areas that included the bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, and inferior occipito-frontal fascicle, but also in the gray matter of the WCG in areas that included the bilateral middle cingulum, bilateral postcentral gyri, and bilateral motor regions. We also identified significantly increased gray matter density in the WCG, especially in the left inferior frontal gyrus, bilateral inferior and superior parietal lobule, bilateral superior lateral occipital cortex, left cuneus, left angular gyrus, and right postcentral gyrus. We speculate that the brain changes of the WCG may reflect the gymnasts' extraordinary ability to estimate the direction of their movements, their speed of execution, and their identification of their own and surrounding objects' locations. Our findings suggest that our method of constructing

  11. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain.

    Science.gov (United States)

    Valable, Samuel; Corroyer-Dulmont, Aurélien; Chakhoyan, Ararat; Durand, Lucile; Toutain, Jérôme; Divoux, Didier; Barré, Louisa; MacKenzie, Eric T; Petit, Edwige; Bernaudin, Myriam; Touzani, Omar; Barbier, Emmanuel L

    2017-07-01

    The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (S t O 2 -MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[ 18 F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([ 18 F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of S t O 2 -MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, S t O 2 -MRI and [ 18 F]-FMISO PET were performed sequentially. Under hypoxemia conditions, S t O 2 -MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [ 18 F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, S t O 2 -MRI was able to detect hypoxia in the hypoxic models, mimicking [ 18 F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, S t O 2 -MRI could be a robust and specific imaging biomarker to assess hypoxia.

  12. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek [Poznan University of Medical Sciences, Department of Pediatric Oncology, Hematology and Transplantology, Poznan (Poland); Pawlak, Mikolaj A. [Poznan University of Medical Sciences, Department of Neurology and Cerebrovascular Disorders, Poznan (Poland); Karmelita-Katulska, Katarzyna [Poznan University of Medical Sciences, Department of Neuroradiology, Poznan (Poland)

    2017-02-15

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  13. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy.

    Science.gov (United States)

    Zając-Spychała, Olga; Pawlak, Mikołaj A; Karmelita-Katulska, Katarzyna; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek

    2017-02-01

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy.

  14. Electromagnetic waves reflection, transmission and absorption by graphene - magnetic semiconductor - graphene sandwich-structure in magnetic field: Faraday geometry

    OpenAIRE

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.

    2014-01-01

    Electrodynamic properties of the graphene - magnetic semiconductor - graphene sandwich-structure have been investigated theoretically with taking into account the dissipation processes. Influence of graphene layers on electromagnetic waves propagation in graphene - semi-infinte magnetic semiconductor and graphene - magnetic semiconductor - graphene sandwich-structure has been analyzed. Frequency and field dependences of the reflectance, transmittance and absorbtance of electromagnetic waves b...

  15. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    Science.gov (United States)

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10-3 mm2 /s; P IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  16. Structural and magnetic study of Mo-doped FINEMET

    Energy Technology Data Exchange (ETDEWEB)

    Silveyra, J.M., E-mail: jsilveyra@fi.uba.a [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Miembro de la Carrera del Investigador del CONICET (Argentina); Janickovic, D.; Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)

    2011-02-15

    In this paper, a study of the structural and the magnetic correlation of the crystalline and amorphous phases in the nanocrystalline system Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3-x}Mo{sub x}Cu{sub 1} (x=0, 1.5, 2, 3) was made. By means of Moessbauer spectroscopy, simple mass balance considerations and density measurements, both phases fractions and chemical compositions were calculated (in at%, wt% and vol%). Then, quasistatic magnetic measurements and ab initio calculations were used in a magnetic balance model in order to estimate the magnetic contribution of the remaining amorphous phase, which was compared to that of as-quenched amorphous samples of the same composition. The difference in both magnitudes showed the influence of penetrating fields and that these became more important for higher crystalline fractions.

  17. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  18. Layered manganites : magnetic structure at extreme doping levels.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J. F.

    1998-09-11

    We report powder neutron diffraction results on the crystal and magnetic structures of the bilayer Ruddlesden-Popper phase Sr{sub 3}Mn{sub 2}O{sub 7{minus}{delta}} ({delta} = 0.0, 0.45) and correlate these structures with their magnetic and transport properties. The {delta} = 0.45 compound contains a large number of oxygen vacancies that are disordered in the MnO{sub 2} planes. As a result of this disordered vacancy structure, Sr{sub 3}Mn{sub 2}O{sub 6.55} is a nonmagnetic insulator. Sr{sub 3}Mn{sub 2}O{sub 7.0} ({delta} = 0) is an antiferromagnetic insulator whose magnetic structure is related to that of the SrMnO{sub 3} perovskite. Comparison of this end-member compound to its doped congeners in the La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} series highlights the extreme sensitivity of magnetic structure to dopant concentration in these layered materials.

  19. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. •Primary brain tumors: Proton magnetic resonance spectroscopic analysis and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Abdurrahim Dusak

    2014-06-01

    Full Text Available Objective: Recent advances in treatment of primary brain tumors have increased the interest in radiological imaging in respect to both the diagnosis of tumor and the evaluation of the efficiency of therapy. Conventional Magnetic Resonance (MR imaging is commonly used for diagnosis and follows up of the primary brain tumors, but it fails in grading of the tumors. MR spectroscopy permits in-vivo biochemical evaluation of brain lesions. Methods: Twenty three patients with histopathologic diagnosis of primary brain tumor and control group consisting of 23 healthy volunteers were investigated. In addition to conventional MR imaging of all patients were underwent point resolved spectroscopy (PRESS sequence via single voxel MR spectroscopy. Using MR spectroscopy, metabolites [N-acetyl aspartate (NAA, choline (Cho, myo-inositol (mI, lipid, lactate and alanine] and their ratio to creatine (Cr were measured quantitatively. Results: MR spectroscopic imaging of neuroglial primary brain tumors revealed that the NAA/Cr and mI/Cr ratios were decreased. In extra axial primary brain tumors, which consist of meningioma, NAA wasn’t detected, Cho/Cr ratio was remarkably increased, mI/Cr, lipid/Cr and lactate/Cr ratios were mildly increased. Alanine peak was detected only in meningioma. In high grade neuroglial tumors in proportion to low grade ones NAA/Cr and mI/Cr ratios were decreased, Cho/Cr, lipid/Cr and lactate/Cr ratios were remarkably increased. Conclusion: MR spectroscopy provides extra information in classification of primary brain tumors as intra-axial and extra-axial, and in grading of neuroglial primary brain tumors as high grade or low grade. It was concluded that using conventional MR imaging in cooperation with MR spectroscopy is beneficial in differential diagnosis and in grading of primary brain tumors. J Clin Exp Invest 2014; 5 (2: 233-241

  1. Structure and magnetic properties of colossal magnetoresistance ...

    Indian Academy of Sciences (India)

    of tolerance factor t for the perovskite structure explained in terms of the average ionic size (rR) at La site. Due to La site substitution, a decrease in (rR) reduces the transition temperature Tc. Within the framework of DE interactions, the effective eg electron transfer between Co3+ and Co4+ ions is given by t0 cos(θ/2) where ...

  2. First in vivo traumatic brain injury imaging via magnetic particle imaging

    Science.gov (United States)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  3. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    Science.gov (United States)

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  4. Network-level structural covariance in the developing brain.

    Science.gov (United States)

    Zielinski, Brandon A; Gennatas, Efstathios D; Zhou, Juan; Seeley, William W

    2010-10-19

    Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural covariance MRI techniques to 300 children in four age categories (early childhood, 5-8 y; late childhood, 8.5-11 y; early adolescence, 12-14 y; late adolescence, 16-18 y) to characterize gray matter structural relationships between cortical nodes that make up large-scale functional networks. Network nodes identified from eight widely replicated functional intrinsic connectivity networks served as seed regions to map whole-brain structural covariance patterns in each age group. In general, structural covariance in the youngest age group was limited to seed and contralateral homologous regions. Networks derived using primary sensory and motor cortex seeds were already well-developed in early childhood but expanded in early adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network patterns. In contrast, language, social-emotional, and other cognitive networks were relatively undeveloped in younger age groups and showed increasingly distributed topology in older children. The so-called default-mode network provided a notable exception, following a developmental trajectory more similar to the primary sensorimotor systems. Relationships between functional maturation and structural covariance networks topology warrant future exploration.

  5. Structural brain changes linked to delayed first language acquisition in congenitally deaf individuals.

    Science.gov (United States)

    Pénicaud, Sidonie; Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Witcher, Pamela; Hyde, Krista; Mayberry, Rachel I

    2013-02-01

    Early language experience is essential for the development of a high level of linguistic proficiency in adulthood and in a recent functional Magnetic Resonance Imaging (fMRI) experiment, we showed that a delayed acquisition of a first language results in changes in the functional organization of the adult brain (Mayberry et al., 2011). The present study extends the question to explore if delayed acquisition of a first language also modulates the structural development of the brain. To this end, we carried out anatomical MRI in the same group of congenitally deaf individuals who varied in the age of acquisition of a first language, American Sign Language -ASL (Mayberry et al., 2011) and used a neuroanatomical technique, Voxel-Based Morphometry (VBM), to explore changes in gray and white matter concentrations across the brain related to the age of first language acquisition. The results show that delayed acquisition of a first language is associated with changes in tissue concentration in the occipital cortex close to the area that has been found to show functional recruitment during language processing in these deaf individuals with a late age of acquisition. These findings suggest that a lack of early language experience affects not only the functional but also the anatomical organization of the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Ultrasonography and magnetic resonance imaging of the brain in hypoxic full-term newborns

    OpenAIRE

    Kudrevičienė, Aušrelė; Lukoševičius, Saulius; Laurynaitienė, Jūratė; Marmienė, Vitalija; Tamelienė, Rasa; Basevičius, Algidas

    2013-01-01

    The aim of this article was to review the studies on diagnostic and prognostic value of radiological investigations (cranial sonography, Doppler ultrasonography, and magnetic resonance imaging) in the detection of hypoxic-ischemic brain injuries in full-term newborns. Materials and Methods. A systematic search of studies on the diagnostic and prognostic possibilities of radiological investigations for the detection of hypoxic-ischemic injuries in full-term newborns was performed. Results. A t...

  7. Asymptomatic Brain Lesions on Cranial Magnetic Resonance Imaging in Inflammatory Bowel Disease

    OpenAIRE

    Dolapcioglu, Can; Guleryuzlu, Yuksel; Uygur-Bayramicli, Oya; Ahishali, Emel; Dabak, Resat

    2013-01-01

    Background/Aims This study aimed to examine the frequency and type of asymptomatic neurological involvement in inflammatory bowel disease (IBD) using cranial magnetic resonance imaging (MRI). Methods Fifty-one IBD patients with no known neurological diseases or symptoms and 30 controls with unspecified headaches without neurological origins were included. Patients and controls underwent cranial MRI assessments for white matter lesions, sinusitis, otitis-mastoiditis, and other brain parenchyma...

  8. Magnetic Resonance Imaging of the brain myelination; Mielinizacja mozgu w obrazie rezonansu magnetycznego

    Energy Technology Data Exchange (ETDEWEB)

    Goraj, B. [Dzial Diagnostyki Obrazowej, Centrum Zdrowia Matki Polki, Lodz (Poland)

    1994-12-31

    The variability of magnetic resonance image (MRI) of the brain during early childhood depends in great part on the progression of myelination. The sequence of human white matter myelination was discussed in the paper and MRI visualization of this process was presented and illustrated. The short characteristics of myelin sheath and factors modifying white matter signal intensity in MRI were also discussed. (author) 12 refs, 6 figs, 1 tab

  9. Pulsating jet-like structures in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)

    2016-08-15

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  10. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    Science.gov (United States)

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  11. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    Science.gov (United States)

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  12. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram.

    Science.gov (United States)

    Noh, Nor Azila

    2016-07-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.

  13. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  14. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Kang, Huiying; Peng, Yun [Beijing Children' s Hospital, Capital Medical University, Imaging Center, Department of Radiology, Beijing (China); Zhao, Xuna [Philips Healthcare, Beijing (China); Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan [Johns Hopkins University, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2016-10-15

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R{sup 2} = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  15. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  16. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  17. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  18. Adverse associations between visceral adiposity, brain structure and cognitive performance in healthy elderly

    Directory of Open Access Journals (Sweden)

    Vivian eIsaac

    2011-09-01

    Full Text Available The link between central adiposity and cognition has been established by indirect measures such as BMI or waist-hip ratio. Magnetic resonance imaging (MRI quantification of central abdominal fat has been linked to elevated risk of cardio-vascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measures of abdominal adiposity, brain morphometry and cognition, in healthy elderly. Methods: A total of 184 healthy community dwelling elderly subjects without cognitive impairment participated in this study. Anthropometric and biochemical markers of cardio-vascular risk, neuropsychological measurements as well as MRI of the brain and abdomen fat were obtained. Abdominal images were segmented into subcutaneous (SAT and visceral (VAT adipose tissue compartments. Brain MRI measures were analyzed quantitatively to determine total brain volume, hippocampal volume, ventricular volume and cortical thickness. Results: VAT showed negative association with verbal memory (r=0.21, p=0.005 and attention (r=0.18, p=0.01. Higher VAT was associated with lower hippocampal volume (F=5.39, p=0.02 and larger ventricular volume (F=6.07, p=0.02. The participants in the upper quartile of VAT had the lowest hippocampal volume even after adjusting for age, gender, hypertension and BMI (b=-0.28, p=0.005. There was a significant age by VAT interaction for cortical thickness in the left prefrontal region. Conclusions: In healthy older adults, elevated VAT is associated with negative effects on cognition, and brain morphometry.

  19. Adverse Associations between Visceral Adiposity, Brain Structure, and Cognitive Performance in Healthy Elderly.

    Science.gov (United States)

    Isaac, Vivian; Sim, Sam; Zheng, Hui; Zagorodnov, Vitali; Tai, E Shyong; Chee, Michael

    2011-01-01

    The link between central adiposity and cognition has been established by indirect measures such as body mass index (BMI) or waist-hip ratio. Magnetic resonance imaging (MRI) quantification of central abdominal fat has been linked to elevated risk of cardiovascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measures of abdominal adiposity, brain morphometry, and cognition, in healthy elderly. A total of 184 healthy community dwelling elderly subjects without cognitive impairment participated in this study. Anthropometric and biochemical markers of cardiovascular risk, neuropsychological measurements as well as MRI of the brain and abdomen fat were obtained. Abdominal images were segmented into subcutaneous adipose tissue and visceral adipose tissue (VAT) adipose tissue compartments. Brain MRI measures were analyzed quantitatively to determine total brain volume, hippocampal volume, ventricular volume, and cortical thickness. VAT showed negative association with verbal memory (r = 0.21, p = 0.005) and attention (r = 0.18, p = 0.01). Higher VAT was associated with lower hippocampal volume (F = 5.39, p = 0.02) and larger ventricular volume (F = 6.07, p = 0.02). The participants in the upper quartile of VAT had the lowest hippocampal volume even after adjusting for age, gender, hypertension, and BMI (b = -0.28, p = 0.005). There was a significant age by VAT interaction for cortical thickness in the left prefrontal region. In healthy older adults, elevated VAT is associated with negative effects on cognition, and brain morphometry.

  20. Alterations in brain structure and functional connectivity in prescription opioid-dependent patients

    Science.gov (United States)

    Upadhyay, Jaymin; Maleki, Nasim; Potter, Jennifer; Elman, Igor; Rudrauf, David; Knudsen, Jaime; Wallin, Diana; Pendse, Gautam; McDonald, Leah; Griffin, Margaret; Anderson, Julie; Nutile, Lauren; Renshaw, Perry; Weiss, Roger; Becerra, Lino

    2010-01-01

    A dramatic increase in the use and dependence of prescription opioids has occurred within the last 10 years. The consequences of long-term prescription opioid use and dependence on the brain are largely unknown, and any speculation is inferred from heroin and methadone studies. Thus, no data have directly demonstrated the effects of prescription opioid use on brain structure and function in humans. To pursue this issue, we used structural magnetic resonance imaging, diffusion tensor imaging and resting-state functional magnetic resonance imaging in a highly enriched group of prescription opioid-dependent patients [(n =  10); from a larger study on prescription opioid dependent patients (n =  133)] and matched healthy individuals (n =  10) to characterize possible brain alterations that may be caused by long-term prescription opioid use. Criteria for patient selection included: (i) no dependence on alcohol or other drugs; (ii) no comorbid psychiatric or neurological disease; and (iii) no medical conditions, including pain. In comparison to control subjects, individuals with opioid dependence displayed bilateral volumetric loss in the amygdala. Prescription opioid-dependent subjects had significantly decreased anisotropy in axonal pathways specific to the amygdala (i.e. stria terminalis, ventral amygdalofugal pathway and uncinate fasciculus) as well as the internal and external capsules. In the patient group, significant decreases in functional connectivity were observed for seed regions that included the anterior insula, nucleus accumbens and amygdala subdivisions. Correlation analyses revealed that longer duration of prescription opioid exposure was associated with greater changes in functional connectivity. Finally, changes in amygdala functional connectivity were observed to have a significant dependence on amygdala volume and white matter anisotropy of efferent and afferent pathways of the amygdala. These findings suggest that prescription

  1. Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akira [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: yakira@kuhp.kyoto-u.ac.jp; Miki, Yukio [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: mikiy@kuhp.kyoto-u.ac.jp; Adachi, Souichi [Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: sadachi@kuhp.kyoto-u.ac.jp (and others)

    2006-03-15

    Background and purpose: The purpose of this prospective study was to evaluate the hypothesis that magnetization transfer ratio (MTR) histogram analysis of the whole brain could detect early and subtle brain changes nonapparent on conventional magnetic resonance imaging (MRI) in children with acute lymphoblastic leukemia (ALL) receiving methotrexate (MTX) therapy. Materials and methods: Subjects in this prospective study comprised 10 children with ALL (mean age, 6 years; range, 0-16 years). In addition to conventional MRI, magnetization transfer images were obtained before and after intrathecal and intravenous MTX therapy. MTR values were calculated and plotted as a histogram, and peak height and location were calculated. Differences in peak height and location between pre- and post-MTX therapy scans were statistically analyzed. Conventional MRI was evaluated for abnormal signal area in white matter. Results: MTR peak height was significantly lower on post-MTX therapy scans than on pre-MTX therapy scans (p = 0.002). No significant differences in peak location were identified between pre- and post-chemotherapy imaging. No abnormal signals were noted in white matter on either pre- or post-MTX therapy conventional MRI. Conclusions: This study demonstrates that MTR histogram analysis allows better detection of early and subtle brain changes in ALL patients who receive MTX therapy than conventional MRI.

  2. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  3. Effect of anatomical variability in brain on transcranial magnetic stimulation treatment

    Science.gov (United States)

    Syeda, F.; Magsood, H.; Lee, E. G.; El-Gendy, A. A.; Jiles, D. C.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.

  4. Correlation between magnetic resonance perfusion weighted imaging of radiation brain injury and pathology.

    Science.gov (United States)

    Liu, X J; Duan, C F; Fu, W W; Niu, L; Li, Y; Sui, Q L; Xu, W J

    2015-12-08

    We used magnetic resonance perfusion weighted imaging and pathological evaluation to examine different stages of radiation-induced brain injury and to investigate the correlation between the relative cerebral blood volume (rCBV) ratio and vascular endothelial growth factor (VEGF). Thirty adult rats were randomly divided into 2 groups: control and radiation group. The control group was not subjected to irradiation. The irradiation group rats were examined by magnetic resonance imaging and magnetic resonance perfusion weighted imaging at 1, 3, 6, 9, and 12 months after radiation treatment. We measured the rCBV, mean transit time, and time to peak. Hematoxylin and eosin staining, immunohistochemical staining, and electron microscopy were performed. VEGF absorbance was evaluated by immunohistochemical staining. Compared with the control group, the differences in rCBV, mean transit time, time to peak, and VEGF absorbance after 3 months were statistically significant (P brain tissue after irradiation. Decreased expression of VEGF plays a critical role in the pathogenesis of radiation-induced brain injury.

  5. Magnetization transfer ratio measurements of the brain in children with tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Zikou, Anastasia; Ioannidou, Maria-Christina; Astrakas, Loukas; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Tzoufi, Meropi [University of Ioannina, Child Health Department, Medical School, Ioannina (Greece)

    2005-11-01

    Magnetization transfer contrast and magnetization transfer ratio (MTR) in brain are mainly related to the presence of myelin. Neuropathological studies of brain lesions in tuberous sclerosis complex (TSC) have demonstrated disordered myelin sheaths. To evaluate the MTR of the brain in children with TSC and to compare with that in controls. Four patients (aged 0.41-8.4 years, mean 2.5 years) with TSC and four age- and sex-matched controls were evaluated with classic MR sequences and with a three-dimensional gradient-echo sequence without and with magnetization transfer pre-pulse. The MTR was calculated as: (SI{sub 0}-SI{sub m})/SI{sub 0} x 100%, where SI{sub m} refers to signal intensity from an image acquired with a magnetization transfer pre-pulse and SI{sub 0} the signal intensity from the image acquired without a magnetization transfer pre-pulse. The MTR values of cortical tubers (44.1{+-}4.1), of subependymal nodules (51.6{+-}4.8) and of white matter lesions (52.4{+-}1.8) were significantly lower than those of cortex (58.7{+-}3.53), of basal ganglia (caudate nucleus 58.2{+-}2.8, putamen 59.6{+-}2.5, thalamus 61.3{+-}2.4) and of white matter (64.2{+-}2.5) in controls (P<0.001). The MTR of normal-appearing white matter (61.2{+-}3.0) in patients was lower than that of white matter in controls (P<0.01). The MTR of cortex and basal ganglia in patients was not significantly different from that in controls. MTR measurements not only provide semiquantitative information for TSC lesions but also reveal more extensive disease. (orig.)

  6. Brain pathology in first-episode psychosis: magnetization transfer imaging provides additional information to MRI measurements of volume loss.

    Science.gov (United States)

    Price, Gary; Cercignani, Mara; Chu, Elvina M; Barnes, Thomas R E; Barker, Gareth J; Joyce, Eileen M; Ron, Maria A

    2010-01-01

    Loss of brain volume in first-episode psychosis can be detected using conventional magnetic resonance imaging (MRI), but subtle changes--not leading to reduction in volume--that may contribute to clinical and cognitive abnormalities, may go undetected. Magnetization transfer imaging (MTI), a technique more sensitive to subtle neuropathological changes than conventional MRI, could yield important information on the extent and nature of structural abnormalities. Forty-eight patients (33 males) from a population-based sample with first-episode psychosis (41 with schizophrenia and 7 with schizoaffective psychosis) and 47 healthy volunteers (27 males) were studied. Differences in magnetization transfer ratio (MTR) and white and grey matter volumes between groups were investigated. In patients, MTR was reduced in right entorhinal cortex, fusiform, dentate and superior frontal gyri and in left superior frontal and inferior/rostral cingulate gyri. Grey matter volume was reduced in right insula, frontal operculum and middle and superior temporal gyri and in left middle temporal gyrus. Grey matter volume increases were seen in patients in the superior frontal gyrus. White matter volume loss was found adjacent to grey matter loss. In patients MTR was lower in all areas of volumetric differences between groups suggesting that both changes may be related. Similar findings were observed when patients with schizoaffective psychosis were removed from the analysis. The correlations between clinical and MRI parameters did not survive correction for multiple comparisons. MTI frontal and temporal abnormalities suggesting neuroaxonal and myelin changes were more extensive in our patients than those detected with conventional MRI. Our findings also suggest that there is regional variation in the severity of structural brain abnormalities.

  7. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  8. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    NARCIS (Netherlands)

    C.T. Haynes; D. Burgess; E. Camporeale (Enrico); T. Sundberg

    2015-01-01

    htmlabstractWe report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron

  9. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  10. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    A new 1D polymeric copper(II) complex [{Cu(L)(CF3COO)}2]n has been synthesized using a potentially tetradentate Schiff base ... 1D copper(II) polymer; Schiff base; crystal structure; electrochemistry; EPR; magnetic properties. 1. Introduction ... number of copper(II) poly-clusters/assemblies may be mentioned in this regard ...

  11. Effect of alloying on the electronic structure and magnetic properties ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We use the self-consistent, augmented space recursion technique to study the electronic structure and magnetic properties of alloys of the transition metals, Fe, Co and Ni with the noble metals, Ag and Au. We analyse the effect of local environment and the hybridization between the constituent bands on the elec-.

  12. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  13. Influence of temperature on structural and magnetic properties of ...

    Indian Academy of Sciences (India)

    Administrator

    step sol–gel auto-combustion method in which the metal nitrate (MN)-to-citric acid (CA) ratio was adjusted to 0⋅5: 1 and pH to 7, respectively. The structural and magnetic properties of as-burnt and annealed samples were studied as a function of ...

  14. Effect of heat treatment on structure and magnetic properties of ...

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  15. Magnetic structures of holmium-lutetium alloys and superlattices

    DEFF Research Database (Denmark)

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vect...

  16. Structure and magnetic properties of Zr–Mn substituted strontium ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  17. Structural, magnetic and photocatalytic characterization of Bi1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Structural, magnetic and photocatalytic characterization of Bi 1 − x La x FeO 3 nanoparticles synthesized by thermal decomposition method. S M MASOUDPANAH S M MIRKAZEMI R BAGHERIYEH F JABBARI F BAYAT. Volume 40 Issue 1 February 2017 pp ...

  18. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 6. Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA.

  19. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  20. Structural plasticity of the brain to psychostimulant use.

    Science.gov (United States)

    Nyberg, Fred

    2014-12-01

    Over the past years it has become evident that repeated exposure to a variety of psychoactive stimulants, like amphetamine, cocaine, MDMA (3,4-methylenedioxy-N-methylamphetamine), methylphenidate and nicotine may produce profound behavioral changes as well as structural and neurochemical alterations in the brain that may persist long after drug administration has ceased. These stimulants have been shown to produce long-lasting enhanced embranchments of dendrites and increasing spine density in brain regions linked to behavioral sensitization and compulsive patterns characteristic of drug seeking and drug addiction. In this regard, addiction to stimulant drugs represents a compulsory behavior that includes drug seeking, drug use and drug craving, but is also characterized as a cognitive disorder. In this article, recent findings regarding the impact of central stimulants on plasticity in brain regions of relevance for addictive behavior will be highlighted. A particular focus will be given to changes in neuroplasticity that occur in areas related to memory and cognition. Possible routes for the reversal of altered brain plasticity will also be discussed. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  2. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments....... of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...

  3. Brain structural alterations in obese children with and without Prader-Willi Syndrome.

    Science.gov (United States)

    Xu, Mingze; Zhang, Yi; von Deneen, Karen M; Zhu, Huaiqiu; Gao, Jia-Hong

    2017-08-01

    Prader-Willi syndrome (PWS) is a genetic imprinting disorder that is mainly characterized by hyperphagia and childhood obesity. Previous neuroimaging studies revealed that there is a significant difference in brain activation patterns between obese children with and without PWS. However, whether there are differences in the brain structure of obese children with and without PWS remains elusive. In the current study, we used T1-weighted and diffusion tensor magnetic resonance imaging to investigate alterations in the brain structure, such as the cortical volume and white matter integrity, in relation to this eating disorder in 12 children with PWS, 18 obese children without PWS (OB) and 18 healthy controls. Compared with the controls, both the PWS and OB groups exhibited alterations in cortical volume, with similar deficit patterns in 10 co-varying brain regions in the bilateral dorsolateral and medial prefrontal cortices, right anterior cingulate cortex, and bilateral temporal lobe. The white matter integrities of the above regions were then examined with an analysis method based on probabilistic tractography. The PWS group exhibited distinct changes in the reduced fractional anisotropy of white matter fibers connected to the co-varying regions, whereas the OB group did not. Our findings indicated that PWS and OB share similar gray matter alterations that are responsible for the development of eating disorders. Additionally, the distinct white matter alterations might explain the symptoms associated with food intake in PWS, including excessive hyperphagia and constant hunger. Hum Brain Mapp 38:4228-4238, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Locomotion without a brain: physical reservoir computing in tensegrity structures.

    Science.gov (United States)

    Caluwaerts, K; D'Haene, M; Verstraeten, D; Schrauwen, B

    2013-01-01

    Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.

  5. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  6. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  7. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Science.gov (United States)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  8. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  9. Differential Diagnosis Tool for Parkinsonian Syndrome Using Multiple Structural Brain Measures

    Directory of Open Access Journals (Sweden)

    Miho Ota

    2013-01-01

    Full Text Available Clinical differentiation of parkinsonian syndromes such as the Parkinson variant of multiple system atrophy (MSA-P and cerebellar subtype (MSA-C from Parkinson's disease is difficult in the early stage of the disease. To identify the correlative pattern of brain changes for differentiating parkinsonian syndromes, we applied discriminant analysis techniques by magnetic resonance imaging (MRI. T1-weighted volume data and diffusion tensor images were obtained by MRI in eighteen patients with MSA-C, 12 patients with MSA-P, 21 patients with Parkinson’s disease, and 21 healthy controls. They were evaluated using voxel-based morphometry and tract-based spatial statistics, respectively. Discriminant functions derived by step wise methods resulted in correct classification rates of 0.89. When differentiating these diseases with the use of three independent variables together, the correct classification rate was the same as that obtained with step wise methods. These findings support the view that each parkinsonian syndrome has structural deviations in multiple brain areas and that a combination of structural brain measures can help to distinguish parkinsonian syndromes.

  10. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  11. Brain Basics

    Medline Plus

    Full Text Available ... technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's ... resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's ...

  12. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

    Science.gov (United States)

    Bird, Mark D.; Frydman, Lucio; Long, Joanna R.; Mareci, Thomas H.; Rooney, William D.; Rosen, Bruce; Schenck, John F.; Schepkin, Victor D.; Sherry, A. Dean; Sodickson, Daniel K.; Springer, Charles S.; Thulborn, Keith R.; Uğurbil, Kamil; Wald, Lawrence L.

    2017-01-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond. PMID:27194154

  13. Functional and Structural Brain Changes Associated with Methamphetamine Abuse

    Directory of Open Access Journals (Sweden)

    Bruce R. Russell

    2012-10-01

    Full Text Available Methamphetamine (MA is a potent psychostimulant drug whose abuse has become a global epidemic in recent years. Firstly, this review article briefly discusses the epidemiology and clinical pharmacology of methamphetamine dependence. Secondly, the article reviews relevant animal literature modeling methamphetamine dependence and discusses possible mechanisms of methamphetamine-induced neurotoxicity. Thirdly, it provides a critical review of functional and structural neuroimaging studies in human MA abusers; including positron emission tomography (PET and functional and structural magnetic resonance imaging (MRI. The effect of abstinence from methamphetamine, both short- and long-term within the context of these studies is also reviewed.

  14. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  15. Chalcopyrite Magnetic Semiconductors: An Ab-Initio Study of Their Structural, Electronic and Magnetic Properties

    Science.gov (United States)

    2001-04-01

    STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES S. PICOZZIt, A. CONTINENZAf, W. T. GENG§, Y. J. ZHAO5 and A. J. FREEMANW t INFM - Dip. Fisica , Univ...U.S.A.) ABSTRACT Stimulated by recent experimental observations of room temperature ferromagnetism of MnCdi_-GeP 2, we investigate the structural...alignment is the most stable ordering for all the systems studied, at variance with that experimentally reported. Moreover, we find that there is a

  16. Patient-specific 3D printed model in delineating brain glioma and surrounding structures in a pediatric patient

    Directory of Open Access Journals (Sweden)

    Ivan Lau

    2017-01-01

    Full Text Available Background and Objectives: Three-dimensional (3D printing has been increasingly used in medicine with applications in the diagnostic assessment of disease extent, medical education and training, preoperative planning, and surgical simulation. The use of 3D printing in brain tumors is very limited. In this study, we presented our preliminary experience of creating patient-specific 3D printed model of a brain tumor in a pediatric patient and demonstrated the feasibility of using 3D printing in delineating brain anatomy and tumor. Materials and Methods: A life-size 3D printed brain model of a 6-year-old girl, who was diagnosed with pilocytic astrocytoma, was generated. The model was created using high-resolution magnetic resonance images which were postprocessed and segmented to demonstrate normal anatomical structures and the tumor. The tumor was confirmed to be Grade I pilocytic astrocytoma after neurosurgery. Results: 3D printed model was found to provide realistic visualization of brain anatomical structures and tumor, and enhance understanding of pathology in relation to the surrounding structures. The mean difference in diameter measurements of the brain tumor was 0.53 mm (0.98% between the 3D printed model and computerized model. Conclusions: This study shows it is feasible to generate a 3D printed model of brain tumor with encouraging results achieved to replicate brain anatomy and tumor. 3D printed model of brain tumor could serve as an excellent tool for preoperative planning and simulation of surgical procedures, which deserve to be investigated in further studies.

  17. Magnetic

    National Research Council Canada - National Science Library

    Essam Aboud; Nabil El-Masry; Atef Qaddah; Faisal Alqahtani; Mohammed R.H. Moufti

    2015-01-01

    .... A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth...

  18. A mixed domain structure in magnetic films with large anisotropy

    Science.gov (United States)

    Akimov, M. L.; Polyakov, P. A.; Rusakova, N. E.

    2018-01-01

    Influence of anisotropy on a bending of a magnetic stripe domain wall due to a magnetostatic stray field of a cylindrical magnetic domain (CMD) that is located within the stripe one is under investigation. It is revealed that for a specific set of physical parameters of the domain structure, energy of domain wall bending anisotropy can suppress the bending. An analytical expression for the bending shape is obtained on account of a change of both magnetostatic energy of the configuration and energy of anisotropy of the domain wall.

  19. Hydrothermal synthesized bismuth ferrites particles: thermodynamic, structural, and magnetic properties.

    Science.gov (United States)

    Du, Yi; Cheng, Zhenxiang; Yu, Zhenwei; Dou, Shi Xue; Wang, Xiaolin; Liu, L Q

    2012-02-01

    A family of bismuth ferrites (BFO), including Bi2Fe4O9, BiFeO3, and Bi25FeO39 with different morphologies, has been prepared by the hydrothermal method assisted by different alkaline mineralizers. X-ray diffraction refinement calculations are carried out to study the crystal structures of bismuth ferrites. A thermodynamic calculation based on the dissolution-precipitation model was carried out to analyze the hydrothermal synthesis of BFO powders. Magnetic measurements of the obtained bismuth ferrites show different magnetic properties from 5 K to 350 K.

  20. Mossbauer analysis of the atomic and magnetic structure of alloys

    CERN Document Server

    Ovchinnikov, VV

    2007-01-01

    The monograph indicates the key problems that have to be solved for the further development of the Mössbauer methods for analysis of the nuclear and magnetic structure of alloys, and offer solution variants for some of these problems based on the generalised results of a wide range of theoretical and experimental investigations,including original work by the author of the book and his colleagues. Contents 1. Description of the nature of the Mössbauer effect 2. Interpretation of the ossbauer spectra of alloys 3.Electrical and magnetics hyperfine interactions of resonant nuclei in metals and

  1. Nonlinear transformation of magnetic noise in a magnetoelectric structure

    Science.gov (United States)

    Burdin, D. A.; Fetisov, Y. K.; Chashin, D. V.; Ekonomov, N. A.

    2017-09-01

    The phenomenon of transformation of the spectrum of magnetic noise in a Metglas/PZT/Metglas magnetoelectric (ME) planar composite structure has been experimentally discovered and investigated. It is established that a narrowband noise with central frequency f N leads to the linear generation of electric noise voltage at the noise frequency and the nonlinear generation of noise voltage in the vicinity of zero frequency and in the region of 2 f N. The experiment is well explained by the theory of magnetic-field mixing in ME composites with nonlinear field dependence of the ferromagnetic-layer magnetostriction.

  2. The inner topological structure and defect control of