PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Strongly Correlated Electron Systems: An Operatorial Perspective
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.
International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)
2018-05-01
The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)
Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.
2012-11-01
The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion
Non perturbative aspects of strongly correlated electron systems
International Nuclear Information System (INIS)
Controzzi, D.
2000-01-01
In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)
Superconductivity in strongly correlated electron systems: successes and open questions
International Nuclear Information System (INIS)
Shastry, B. Sriram
2000-01-01
Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems
The Electron-Phonon Interaction in Strongly Correlated Systems
International Nuclear Information System (INIS)
Castellani, C.; Grilli, M.
1995-01-01
We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)
Fast electronic structure methods for strongly correlated molecular systems
International Nuclear Information System (INIS)
Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung
2005-01-01
A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given
Quantum phase transitions of strongly correlated electron systems
International Nuclear Information System (INIS)
Imada, Masatoshi
1998-01-01
Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions
Excitonic condensation in systems of strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan
2015-01-01
Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015
Density functional application to strongly correlated electron systems
International Nuclear Information System (INIS)
Eschrig, H.; Koepernik, K.; Chaplygin, I.
2003-01-01
The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn
Energy Technology Data Exchange (ETDEWEB)
Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems
International Nuclear Information System (INIS)
Azakov, S.
1999-09-01
First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems
Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi
2016-03-01
A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.
Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom
Ducatman, Samuel Charles
The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are
PREFACE: International Conference on Strongly Correlated Electron Systems 2014 (SCES2014)
2015-03-01
The 2014 International Conference on Strongly Correlated Electron Systems (SCES) was held in Grenoble from the 7th to 11th of July on the campus of the University of Grenoble. It was a great privilege to have the conference in Grenoble after the series of meetings in Sendai (1992), San Diego (1993), Amsterdam (1994), Goa (1995), Zürich (1996), Paris (1998), Nagano (1999), Ann Arbor (2001), Krakow (2002), Karlsruhe (2004), Vienna (2005), Houston (2007), Buzios (2008), Santa Fe (2010), Cambridge (2011) and Tokyo (2013). Every three years, SCES joins the triennial conference on magnetism ICM. In 2015, ICM will take place in Barcelona. The meeting gathered an audience of 875 participants who actively interacted inside and outside of conference rooms. A large number of posters (530) was balanced with four parallel oral sessions which included 86 invited speakers and 141 short oral contributions. A useful arrangement was the possibility to put poster presentations on the website so participants could see them all through the conference week. Each morning two plenary sessions were held, ending on Friday with experimental and theoretical summaries delivered by Philipp Gegenwart (Augsburg) and Andrew Millis (Columbia). The plenary sessions were given by Gabriel Kotliar (Rutgers), Masashi Kawasaki (Tokyo), Jennifer Hoffman (Harvard), Mathias Vojta (Dresden), Ashvin Vishwanath (Berkeley), Andrea Cavalleri (Hamburg), Marc-Henri Julien (Grenoble), Neil Mathur (Cambridge), Giniyat Khaliullin (Stuttgart), and Toshiro Sakakibara (Tokyo). The parallel oral sessions were prepared by 40 symposium organizers selected by the chairman (Antoine Georges) and co-chairman (Kamran Behnia) of the Program Committee with the supplementary rule that speakers had not delivered an invited talk at the previous SCES conference held in 2013 in Tokyo. Special attention was given to help young researchers via grants to 40 overseas students. Perhaps due to the additional possibility of cheap
Phase separation in strongly correlated electron systems with two types of charge carriers
International Nuclear Information System (INIS)
Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.
2007-01-01
Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Quantum criticality around metal-insulator transitions of strongly correlated electron systems
Misawa, Takahiro; Imada, Masatoshi
2007-03-01
Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal
Photoemission in strongly correlated crystalline f-electron systems: A need for a new approach
International Nuclear Information System (INIS)
Arko, A.J.; Joyce, J.J.; Sarrao, J.
1998-01-01
The unusual properties of heavy fermion (or heavy electron) materials have sparked an avalanche of research over the last two decades in order to understand the basic phenomena responsible for these properties. Photoelectron spectroscopy (often referred to as PES in the following sections), the most direct measurement of the electronic structure of a material, should in principle be able to shed considerable light on this matter. In general the distinction between a localized and a band-like state is trivially observed in band dispersion. Much of the past work was performed on poly-crystalline samples, scraped in-situ to expose a clean surface for PES. There have since been considerable advances both in the quality of specimens as well as experimental resolution, which raise questions regarding these conclusions. Much of the past work on poly-crystalline samples has been reported in several review articles, most notably Allen et al., and it is not necessary here to review those efforts again, with the exception of subsequent work performed at high resolution. The primary focus of the present review will be on new measurements obtained on single crystals, cleaved or prepared in situ and measured at high resolution, which seem to suggest that agreement with the GS and NCA approximations is less than perfect, and that perhaps the starting models need to be modified, or that even an entirely new approach is called for. Of the promising new models the Periodic Anderson Model is most closely related to the SIM. Indeed, at high temperatures it reverts to the SIM. However, the charge polaron model of Liu (1997) as well as the two-electron band model of Sheng and Cooper (1995) cannot yet be ruled out. Inasmuch as the bulk of the single crystal work was performed by the Los Alamos group, this review will draw heavily on those results. Moreover, since the GS and NCA approximations represent the most comprehensive and widely accepted treatment of heavy fermion PES, it is only
Physics of heavy fermions heavy fermions and strongly correlated electrons systems
Onuki, Yoshichika
2018-01-01
A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...
Functional integral and effective Hamiltonian t-J-V model of strongly correlated electron system
International Nuclear Information System (INIS)
Belinicher, V.I.; Chertkov, M.V.
1990-09-01
The functional integral representation for the generating functional of t-J-V model is obtained. In the case close to half filling this functional integral representation reduces the conventional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2 at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors by different method. This Hamiltonian and its dynamical variables can be used for description of different magnetic phases of t-J-V model. (author). 16 refs
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Strongly correlated electrons on two coupled chains
International Nuclear Information System (INIS)
Weihong, Z.; Oitmaa, J.; Hamer, C.J.
2000-01-01
Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation
Universal behavior of strongly correlated Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)
2007-06-30
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Universal behavior of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G
2007-01-01
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Radaelli, P G; Dhesi, S S
2015-03-06
We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Aoki, H; Endo, M; Nakayama, M; Takei, H; Kimura, N; Kunii, S; Terashima, T; Uji, S; Matsumoto, T
2002-01-01
We report our recent developments of experimental systems for measuring the de Haas-van Alphen (dHvA) effect under hydrostatic and uniaxial pressures. The dHvA effect of CeB sub 6 has been studied under both hydrostatic and uniaxial pressures and the effects of the pressures on the electronic structure are discussed.
TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS
Directory of Open Access Journals (Sweden)
T.Domanski
2004-01-01
Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
International Nuclear Information System (INIS)
Bishop, Raymond F; Krueger, Sven E
2003-01-01
The coupled cluster method (CCM) of microscopic quantum many-body theory has become an ab initio method of first choice in quantum chemistry and many fields of nuclear, subnuclear and condensed matter physics, when results of high accuracy are required. In recent years it has begun to be applied with equal success to strongly correlated systems of electrons or quantum spins defined on a regular spatial lattice. One regularly finds that the CCM is able to describe accurately the various zero-temperature phases and the quantum phase transitions between them, even when frustration is present and other methods such as quantum Monte Carlo often fail. We illustrate the use and powerfulness of the method here by applying it to a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest neighbour bonds. The model exhibits the physically interesting phenomenon of competition between magnetic order and dimerization. Results obtained for the model with the CCM are compared with those found from spin-wave theory and from extrapolating the results of exact diagonalizations of small lattices. We show that the CCM is essentially unique among available methods in being able both to describe accurately all phases of this complex model and to provide accurate predictions of the various phase boundaries and the order of the corresponding transitions
Non-equilibrium magnetic interactions in strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)
2013-06-15
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.
Strongly correlated electron materials. I. Theory of the quasiparticle structure
International Nuclear Information System (INIS)
Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.
1993-01-01
In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity
Oscillating molecular dipoles require strongly correlated electronic and nuclear motion
International Nuclear Information System (INIS)
Chang, Bo Y; Shin, Seokmin; Palacios, Alicia; Martín, Fernando; Sola, Ignacio R
2015-01-01
To create an oscillating electric dipole in an homonuclear diatomic cation without an oscillating driver one needs (i) to break the symmetry of the system and (ii) to sustain highly correlated electronic and nuclear motion. Based on numerical simulations in H 2 + we present results for two schemes. In the first one (i) is achieved by creating a superposition of symmetric and antisymmetric electronic states freely evolving, while (ii) fails. In a second scheme, by preparing the system in a dressed state of a strong static field, both conditions hold. We then analyze the robustness of this scheme with respect to features of the nuclear wave function and its intrinsic sources of decoherence. (tutorial)
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Magnetic properties of metallic impurities with strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Janiš, Václav; Ringel, Matouš
2009-01-01
Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html
Transverse transport in coupled strongly correlated electronic chains
International Nuclear Information System (INIS)
Capponi, S.; Poilblanc, D.
1997-01-01
One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Towards a large deviation theory for strongly correlated systems
International Nuclear Information System (INIS)
Ruiz, Guiomar; Tsallis, Constantino
2012-01-01
A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.
Magnetic interactions in strongly correlated systems: Spin and orbital contributions
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2015-09-15
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.
Theory of L -edge spectroscopy of strongly correlated systems
Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.
2017-12-01
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*
Maple, M. Brian
1996-03-01
Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f
Some Applications of Holography to Study Strongly Correlated Systems
Directory of Open Access Journals (Sweden)
Bhatnagar Neha
2018-01-01
Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.
International Nuclear Information System (INIS)
Dorado, B.
2010-09-01
Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)
A perturbation method in strongly correlated fermion systems
International Nuclear Information System (INIS)
Keiter, H.; Oberbach, S.; Kilic, S.
1998-01-01
We present a new expression for the grand partition function of a many-body system which contains a generalized Feenberg energy formula. In addition a form of the momentum distribution function of the Luttinger model is derived and non Fermi liquid behaviour is demonstrated. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Aspects of Strongly Correlated Many-Body Fermi Systems
Porter, William J., III
A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method
Theoretical development and first-principles analysis of strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Liu, Chen [Iowa State Univ., Ames, IA (United States)
2016-12-17
A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.
Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering
International Nuclear Information System (INIS)
Rueff, J.P.
2007-06-01
Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)
Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures
Energy Technology Data Exchange (ETDEWEB)
Lang, Thomas C.
2010-12-16
In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases
Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach
International Nuclear Information System (INIS)
Kuleeva, N. A.; Kuchinskii, E. Z.
2013-01-01
The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears
Quantum physics of light and matter photons, atoms, and strongly correlated systems
Salasnich, Luca
2017-01-01
This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...
Energy Technology Data Exchange (ETDEWEB)
Bouis, F
1999-10-14
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
Atomic physics of strongly correlated systems: Progress report, 1 February 1988--15 January 1989
International Nuclear Information System (INIS)
Lin Chii-Dong.
1989-01-01
This report presents the progress made in our continuing study of strongly correlated atomic systems for the last contract period. In the area of hyperspherical coordinates for Coulombic three-body systems of arbitrary masses a general computing code has been developed. Calculation of the adiabatic potential curves have been accomplished for the e/sup /minus//e + e/sup /minus// system of arbitrary L, S and parity π. It was found that these curves behave very similar to the potential curves of H/sup /minus// except for a mass scaling. We have also examined the mass dependence of the ground state potential curves for systems of three charged particles, AAB, and showed that the curves become more attractive as the mass m/sub A/ becomes larger than m/sub B/. For ion-atom collisions we have examined the transfer-excitation (TE) processes to establish the importance of electron correlations in these two-electron transitions. We have also examined the orientation parameters for excited states formed in collisions with positive and negative charged particles to establish the relation between the sign of the charge of the incident particles to the sign of
The Role of screening in the strongly correlated 2D systems
Hwang, E H
2003-01-01
We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
-local fluctuations. It has been successfully used to study the whole range of weakly to strongly correlated lattice models, including the metal-insulator transition, since even in the relevant dimensions of d = 2 and d = 3 spatial fluctuations are often small. The extension of DMFT towards realistic system by the use of DFT has been termed LDA+DMFT and has since then allowed for a significant improvement of the understanding of strongly correlated materials. We dedicate this thesis to the LDA+DMFT method and the study of the recently discovered ironpnictide superconductors, which are known to show effects of strong electronic correlations. Thus, in many cases these materials cannot be adequately described by a pure DFT approach alone and provide and ideal case for an investigation of their electronic properties within LDA+DMFT. We will first review the DFT method and point out what kind of approximations have to be made in practical calculations and what deficits they entail. Then we will give an introduction into the Green's function formalism in the real and imaginary time representation and discuss the resulting consequences like analytic continuation to pave the way for the derivation of the DMFT equations. After that, we will discuss the combination of DFT and DMFT into the LDA+DMFT method and how to set up the effective lattice models for practical calculations. Then we will apply the LDA+DMFT method to the hole-doped iron-pnictide superconductor KFe 2 As 2 , which we find to be a rather strongly correlated material that can only be reasonably described when electronic correlations are treated on a proper level beyond the the standard DFT approach. Our results show that the LDA+DMFT method is able to significantly improve the agreement of the theoretical calculation with experimental observations. Then we expand our study towards the isovalent series of KFe 2 As 2 , RbFe 2 As 2 and CsFe 2 As 2 , which we propose to show even stronger effects of electronic correlations due
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
-local fluctuations. It has been successfully used to study the whole range of weakly to strongly correlated lattice models, including the metal-insulator transition, since even in the relevant dimensions of d = 2 and d = 3 spatial fluctuations are often small. The extension of DMFT towards realistic system by the use of DFT has been termed LDA+DMFT and has since then allowed for a significant improvement of the understanding of strongly correlated materials. We dedicate this thesis to the LDA+DMFT method and the study of the recently discovered ironpnictide superconductors, which are known to show effects of strong electronic correlations. Thus, in many cases these materials cannot be adequately described by a pure DFT approach alone and provide and ideal case for an investigation of their electronic properties within LDA+DMFT. We will first review the DFT method and point out what kind of approximations have to be made in practical calculations and what deficits they entail. Then we will give an introduction into the Green's function formalism in the real and imaginary time representation and discuss the resulting consequences like analytic continuation to pave the way for the derivation of the DMFT equations. After that, we will discuss the combination of DFT and DMFT into the LDA+DMFT method and how to set up the effective lattice models for practical calculations. Then we will apply the LDA+DMFT method to the hole-doped iron-pnictide superconductor KFe{sub 2}As{sub 2}, which we find to be a rather strongly correlated material that can only be reasonably described when electronic correlations are treated on a proper level beyond the the standard DFT approach. Our results show that the LDA+DMFT method is able to significantly improve the agreement of the theoretical calculation with experimental observations. Then we expand our study towards the isovalent series of KFe{sub 2}As{sub 2}, RbFe{sub 2}As{sub 2} and CsFe{sub 2}As{sub 2}, which we propose to show even stronger
Quantum group random walks in strongly correlated 2+1 D spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.
1994-06-01
We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.
Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Ryndyk, D.A.
1992-08-01
We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs
The ALPS project release 2.0: open source software for strongly correlated systems
International Nuclear Information System (INIS)
Bauer, B; Gamper, L; Gukelberger, J; Hehn, A; Isakov, S V; Ma, P N; Mates, P; Carr, L D; Evertz, H G; Feiguin, A; Freire, J; Koop, D; Fuchs, S; Gull, E; Guertler, S; Igarashi, R; Matsuo, H; Parcollet, O; Pawłowski, G; Picon, J D
2011-01-01
We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)
2009-06-15
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.
International Nuclear Information System (INIS)
Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.
2009-01-01
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .
MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W
We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.
2002-01-01
A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...
Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors
Directory of Open Access Journals (Sweden)
C. Gadermaier
2014-03-01
Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16 ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.
New developments in the theoretical treatment of low dimensional strongly correlated systems.
James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M
2017-10-09
We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
Modified perturbation theory for strongly correlated electron systems
International Nuclear Information System (INIS)
Takagi, Osamu; Saso, Tetsuro
1999-01-01
We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)
Ferromagnetic instabilities in disordered systems in the limit of strong correlations
International Nuclear Information System (INIS)
Magalhaes, A.N.; Troper, A.; Gomes, A.A.
1976-05-01
One derives the criterion for ferromagnetic instabilities in hybridized disordered systems, e.g. transition metal like systems and actinides, within the Coherent Potential Approximation (CPA), the electron-electron correlations being described by Hubbard' approximation. In the case of actinides, one treats approximately the motion of d electrons while the diagonal disorder within the f band is fully taken into account. In the case of a trnsition metal like system, except for Hubbard's approximation in dealing with d-d electron correlations, our procedure is exact within the spirit of CPA
Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials
International Nuclear Information System (INIS)
Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.
2001-01-01
We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.
Assessing the importance of frustration in a narrow-band strongly correlated electronic chain
International Nuclear Information System (INIS)
Lal, Siddhartha; Laad, Mukul S.
2007-08-01
We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)
Energy Technology Data Exchange (ETDEWEB)
Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)
2016-04-28
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.
Matrix-product states for strongly correlated systems and quantum information processing
International Nuclear Information System (INIS)
Saberi, Hamed
2008-01-01
This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give
Matrix-product states for strongly correlated systems and quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Saberi, Hamed
2008-12-12
This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any
Entropy excess in strongly correlated Fermi systems near a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)
2012-12-15
quasiparticle theory to strongly correlated Fermi systems. Black-Right-Pointing-Pointer Analysis of associated topological phase transitions at a quantum critical point. Black-Right-Pointing-Pointer Fermi surface rearrangement featuring hole pockets or emergence of flat bands. Black-Right-Pointing-Pointer Shedding of flat-band excess entropy via pairing transition at very low temperature.
International Nuclear Information System (INIS)
Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito
1996-01-01
We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing
Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors
International Nuclear Information System (INIS)
Classen, Laura
2016-01-01
In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.
Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Classen, Laura
2016-11-04
In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.
Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom
International Nuclear Information System (INIS)
Dorfner, Florian Guenter
2017-01-01
Recent experimental advances allow the observation of electronic relaxation processes in solid-state systems in real time. After an initial excitation with an optical pulse, the relaxation depends on the microscopic interactions present in the system. The interaction of electrons with lattice degrees of freedom - the phonons - is ubiquitous in solids and, thus, it represents one of the most important relaxation channels. An analytic description of relaxation dynamics is hard to come by and very few exact solutions exist even for the equilibrium situation. Numerical methods are, in principle, able to solve the problem in both, equilibrium and out-of-equilibrium situations. However, wavefunction-based methods like exact diagonalization or the density matrix renormalization group method scale unfavorably in the number of local basis states. For electron-phonon coupled systems, the situation is especially severe because the local basis dimension can get very large depending on model parameters or in far-from-equilibrium situations. For groundstate problems, two independent strategies exist for density matrix renormalization group methods: the strictly single-site density matrix renormalization group method that scales linearly in the local dimension and the use of a local basis optimization scheme which truncates the local basis to a subset of the eigenstates of the local reduced density matrix with the largest eigenvalues - the optimal mode basis. In this thesis, we combine these two strategies in an improved algorithm which reduces the scaling from linear in the local dimension of the phonon occupation number basis to linear in the dimension of a smaller optimal mode basis. We demonstrate the improved scaling of this method on the example of the Holstein polaron and the half-filled Hubbard-Holstein model. We further describe an algorithm that combines the time-evolving block decimation method with a local basis optimization to lower the scaling with the local
Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Dorfner, Florian Guenter
2017-02-23
Recent experimental advances allow the observation of electronic relaxation processes in solid-state systems in real time. After an initial excitation with an optical pulse, the relaxation depends on the microscopic interactions present in the system. The interaction of electrons with lattice degrees of freedom - the phonons - is ubiquitous in solids and, thus, it represents one of the most important relaxation channels. An analytic description of relaxation dynamics is hard to come by and very few exact solutions exist even for the equilibrium situation. Numerical methods are, in principle, able to solve the problem in both, equilibrium and out-of-equilibrium situations. However, wavefunction-based methods like exact diagonalization or the density matrix renormalization group method scale unfavorably in the number of local basis states. For electron-phonon coupled systems, the situation is especially severe because the local basis dimension can get very large depending on model parameters or in far-from-equilibrium situations. For groundstate problems, two independent strategies exist for density matrix renormalization group methods: the strictly single-site density matrix renormalization group method that scales linearly in the local dimension and the use of a local basis optimization scheme which truncates the local basis to a subset of the eigenstates of the local reduced density matrix with the largest eigenvalues - the optimal mode basis. In this thesis, we combine these two strategies in an improved algorithm which reduces the scaling from linear in the local dimension of the phonon occupation number basis to linear in the dimension of a smaller optimal mode basis. We demonstrate the improved scaling of this method on the example of the Holstein polaron and the half-filled Hubbard-Holstein model. We further describe an algorithm that combines the time-evolving block decimation method with a local basis optimization to lower the scaling with the local
Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A
2011-06-09
Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).
Magnetoconductance fluctuations in a strongly correlated disordered ring system at low temperatures
International Nuclear Information System (INIS)
Chen, H.; Ishihara, M.; Li, Z.; Kawazoe, Y.
1996-01-01
Using a recursive real-space Green close-quote s-function technique in the tight-binding model, we study the influence of the electron-electron Hubbard interaction on the magnetoconductance fluctuations in a disordered ring at low temperatures. Our numerical results improve the previous theoretical predictions for the magnetoconductance fluctuations as a function of magnetic flux compared with experiments. Meanwhile, we find several anomalous phenomena at low temperatures, which do not survive at high temperatures. For the Fermi level E f =0.1t (t is the hopping integral) the envelope of magnetoconductance fluctuations drops to a lower value at some magnetic flux, while the Hubbard interaction causes the drop to occur at larger flux. The magnetoconductance fluctuations vary with the Hubbard interaction for magnetic flux around 20Φ 0 (Φ 0 =hc/e) mainly in the range of small U. The Hubbard interaction narrows the widths of the main peaks in the Fourier spectrum, but it does not change their positions. copyright 1996 The American Physical Society
Spin-orbit coupling and transport in strongly correlated two-dimensional systems
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2017-05-01
Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Self-consistent random phase approximation - application to systems of strongly correlated fermions
International Nuclear Information System (INIS)
Jemai, M.
2004-07-01
In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)
Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems
Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A
2015-01-01
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Energy Technology Data Exchange (ETDEWEB)
Rueff, J.P
2007-06-15
Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)
Transport phenomena in strongly correlated Fermi liquids
International Nuclear Information System (INIS)
Kontani, Hiroshi
2013-01-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
International Nuclear Information System (INIS)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T
2009-01-01
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
DEFF Research Database (Denmark)
Petit, Leon; Tyer, R.; Szotek, Z.
2010-01-01
calculated to within ~1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications....... and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant versus localized, and high......-throughput computing made possible by the increasing available computational power. Our findings, including the predicted 'intermediate valent' compounds SmO and TmSe, are in excellent overall agreement with the available experimental data. The accuracy of the approach, proven e.g. through the lattice parameters...
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Felix
2016-07-05
The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the
Theoretical studies of strongly correlated fermions
Energy Technology Data Exchange (ETDEWEB)
Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Directory of Open Access Journals (Sweden)
Edoardo Baldini
2016-11-01
Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.
International Nuclear Information System (INIS)
Freericks, J. K.; Turkowski, V.
2009-01-01
Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.
Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.
2016-11-01
We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.
Directory of Open Access Journals (Sweden)
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
Sajna, A. S.; Polak, T. P.
2018-06-01
Gauge potentials with different configurations have been recently realized in the optical lattice experiments. It is remarkable that one of the simplest gauge potential can generate particle energy spectrum with the self-similar structure known as a Hofstadter butterfly. We investigate theoretically the impact of strong on-site interaction on such a spectrum in the bosonic Mott insulator within Bose-Hubbard model. In particular, it is shown that the fractal structure is encoded in the quasi-particle and hole bosonic branches for different lattice backgrounds. For example a square lattice and other structures (brick-wall and staggered magnetic flux lattice) which contain Dirac points in energy dispersions are considered. This shows that single-particle physics is still present even in the strong interaction limit for whole Hofstadter spectrum. Additionally we observe, that although in brick-wall and staggered flux lattices the quasi-particle densities of states look qualitatively similar, the corresponding Hofstadter butterfly assumes different forms. In particular, we use a superposition of two different synthetic gauge fields which appears to be a generator of non-trivial phenomena in the optical lattice systems. We also discuss the consequences of these phenomena on the phase diagrams between bosonic Mott insulator and superfluid phase. The analysis is carried out within the strong coupling expansion method on the finite size lattices and also at finite temperatures which are relevant for the currently made experiments.
Small, David W; Head-Gordon, Martin
2017-07-14
The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.
Reply to ``Comment on `Cluster methods for strongly correlated electron systems' ''
Biroli, G.; Kotliar, G.
2005-01-01
We reply to the Comment by Aryanpour, Maier, and Jarrell [Phys. Rev. B 71, 037101 (2005)] on our paper [Phys. Rev. B 65, 155112 (2002)]. We demonstrate, using general arguments and explicit examples, that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size Lc within cellular dynamical mean field theory. This is a faster rate of convergence than the 1/ L2c behavior of the dynamical cluster approximation, thus refuting the central assertion of their Comment.
Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K
2013-08-16
We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Augustinský, Pavel
2014-01-01
Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Noise Spectroscopy in Strongly Correlated Oxides
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Falkowski, M.; Krychowski, D.; Strydom, A. M.
2016-11-01
An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.
James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M
2018-02-26
We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1 + 1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.
James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.
2018-04-01
We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1 + 1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.
International Nuclear Information System (INIS)
Pati, J.; Shafi, Q.; Yu Lu
1993-01-01
This is a collection of five lectures on quantum field theory and its applications, two lectures on aspects of particle and nuclear physics (unification in the superstring context; and topics in P and CP violation in nuclear and particle physics), and ten lectures mainly on the physics of strong correlations, all but one of which are within the INIS scope. Refs, figs and tabs
Energy Technology Data Exchange (ETDEWEB)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu
2009-09-15
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Towards TDDFT for Strongly Correlated Materials
Directory of Open Access Journals (Sweden)
Shree Ram Acharya
2016-09-01
Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.
Strongly correlating liquids and their isomorphs
Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.
2010-01-01
This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...
Strong correlation effects on surfaces of topological insulators via holography
Seo, Yunseok; Song, Geunho; Sin, Sang-Jin
2017-07-01
We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.
Machine Learning Phases of Strongly Correlated Fermions
Directory of Open Access Journals (Sweden)
Kelvin Ch’ng
2017-08-01
Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
Energy Technology Data Exchange (ETDEWEB)
Jemai, M
2004-07-01
In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)
Energy Technology Data Exchange (ETDEWEB)
Rech, J
2006-06-15
It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
High-field magnetostriction in CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1) strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Moral, A. del, E-mail: delmoral@unizar.e [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain); Fuente, C. de la [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain)
2010-05-15
Magnetization (down to 1.8 K and up to 9 T) and magnetostriction (down to 4.2 K and up to 30 T) measurements have been performed in the series of polycrystalline intermetallics CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1), which show a crossover from Kondo-lattice to fluctuating valence behaviors with x increase. Magnetostriction observed can be denominated as 'colossal' for a paramagnet (up to 0.68% at 150 K and 30 T), with no sign of saturation. Field, H, induced metamagnetic transitions associated to a change in Ce valence are observed. Three kinds of analysis of magnetostriction have been performed to ascertain the magnetostriction origin. At relatively low field and low temperatures these systems follow well the standard theory of magnetostriction (STM), revealing single-ion crystal field and exchange origins, and a determination of the alpha-symmetry microscopic magnetoelastic parameters have been performed. The valence transition is well explained in terms of the interconfigurational model, which needs an extension up to power H{sup 4}. Application of the scaling (thermodynamics corresponding low states) allows the obtainment of the Grueneisen constant, which increases with x. Needed elastic constants measurements are also reported.
Optical spectral weight anomalies and strong correlation
International Nuclear Information System (INIS)
Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.
2007-01-01
The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value
International Nuclear Information System (INIS)
Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke
2015-01-01
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Phase transition transistors based on strongly-correlated materials
Nakano, Masaki
2013-03-01
The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
Electronics and electronic systems
Olsen, George H
1987-01-01
Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p
Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons
International Nuclear Information System (INIS)
Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.
1989-01-01
Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs
Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.
2017-02-01
Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.
Strongly correlated quantum transport out-of-equilibrium
Dutt, Prasenjit
The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally
Disorder effects in strongly correlated uranium compounds
International Nuclear Information System (INIS)
Suellow, S.; Maple, M.B.; Tomuta, D.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.; Chau, R.
2001-01-01
Moderate levels of crystallographic disorder can dramatically affect the ground-state properties of heavy fermion compounds. In particular, the role of disorder close to a quantum critical point has been investigated in detail. However, crystallographic disorder is equally effective in altering the properties of magnetically ordered heavy fermion compounds like URh 2 Ge 2 , where disorder-induced spin-glass behavior has been observed. In this system, moreover, the magnetic ground state can be tuned from a spin-glass to a long-range ordered antiferromagnetic one by means of an annealing treatment. The transformation of the magnetic state is accompanied by a transition in the transport properties from 'quasi-insulating' (dρ/dT 2 Ge 2 will be discussed. Of particular interest is the resistivity of as-grown URh 2 Ge 2 , which resembles the Non-Fermi-liquid system UCu 4 Pd, suggesting that a common mechanism - the crystallographic disorder - controls the transport properties of these materials
Interplay between strong correlation and adsorption distances: Co on Cu(001)
Bahlke, Marc Philipp; Karolak, Michael; Herrmann, Carmen
2018-01-01
Adsorbed transition metal atoms can have partially filled d or f shells due to strong on-site Coulomb interaction. Capturing all effects originating from electron correlation in such strongly correlated systems is a challenge for electronic structure methods. It requires a sufficiently accurate description of the atomistic structure (in particular bond distances and angles), which is usually obtained from first-principles Kohn-Sham density functional theory (DFT), which due to the approximate nature of the exchange-correlation functional may provide an unreliable description of strongly correlated systems. To elucidate the consequences of this popular procedure, we apply a combination of DFT with the Anderson impurity model (AIM), as well as DFT + U for a calculation of the potential energy surface along the Co/Cu(001) adsorption coordinate, and compare the results with those obtained from DFT. The adsorption minimum is shifted towards larger distances by applying DFT+AIM, or the much cheaper DFT +U method, compared to the corresponding spin-polarized DFT results, by a magnitude comparable to variations between different approximate exchange-correlation functionals (0.08 to 0.12 Å). This shift originates from an increasing correlation energy at larger adsorption distances, which can be traced back to the Co 3 dx y and 3 dz2 orbitals being more correlated as the adsorption distance is increased. We can show that such considerations are important, as they may strongly affect electronic properties such as the Kondo temperature.
Doubly excited helium. From strong correlation to chaos
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yuhai
2006-03-15
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Doubly excited helium. From strong correlation to chaos
International Nuclear Information System (INIS)
Jiang, Yuhai
2006-03-01
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Prayogi, A.; Majidi, M. A.
2017-07-01
In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.
Strongly-correlated ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Dao, Tung-Lam
2008-01-01
This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi
Proceedings, strongly correlated electronic materials: The Los Alamos symposium 1993
International Nuclear Information System (INIS)
Bedell, K.S.
1994-01-01
The subject included such topics as high temperature superconductors, heavy-fermion insulators and superconductors, the metal-insulator transition, the superconductor-insulator transition and unusual (non-Fermi liquid) normal metallic states. The symposium was structured around 13 invited review talks; with each talk, there were several (about 30) related short presentations and discussion sections (90 pages). The review talks and short papers were processed separately for the data base
[Realistic theories of heavy electron and other strongly correlated materials
International Nuclear Information System (INIS)
1993-01-01
Research on the following topics is summarized: non-perturbative treatments of multi-channel Kondo models, non-perturbative treatments of multi-band models for the quadrupolar fluctuation model of the cuprates, extension of the two-channel Kondo model to other materials and treatment of the infinite-dimensional Hubbard model within the Non-crossing approximation. Data on the specific heat of Y 0.8 U 0.2 Pd 3 and the c-axis susceptibility and specific heat of U in ThRu 2 Si are shown. 5 figs., 84 refs
Strong correlation effects in theoretical STM studies of magnetic adatoms
Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir
2016-03-01
We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.
Lee, Tsung-Han
Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we
Stabilizing strongly correlated photon fluids with non-Markovian reservoirs
Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo
2017-09-01
We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Energy Technology Data Exchange (ETDEWEB)
Kong, Tai [Iowa State Univ., Ames, IA (United States)
2016-12-17
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
First-principles study of strong correlation effects in pyrochlore iridates
Energy Technology Data Exchange (ETDEWEB)
Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)
2016-07-01
The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.
Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K
2017-03-15
In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M
2006-01-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2006-05-28
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
Ordering and low energy excitations in strongly correlated bronzes
Sagara, Dodderi Manjunatha
2006-01-01
Summary In any solid system, whether it is superconducting, shows a charge-density-wave behavior, or any other kind of ground state, two aspects drag the attention of the scientific community. They are order and excitations in solids. The ordering may be due to electronic, lattice, spin or orbital
Macroscopic quantum phenomena in strongly correlated fermionic systems
International Nuclear Information System (INIS)
Rech, J.
2006-06-01
It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)
Joint statistics of strongly correlated neurons via dimensionality reduction
International Nuclear Information System (INIS)
Deniz, Taşkın; Rotter, Stefan
2017-01-01
The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input. (paper)
Robust mesoscopic superposition of strongly correlated ultracold atoms
International Nuclear Information System (INIS)
Hallwood, David W.; Ernst, Thomas; Brand, Joachim
2010-01-01
We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.
Lattice disorder in strongly correlated lanthanide and actinide intermetallics
International Nuclear Information System (INIS)
Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.
2001-01-01
Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Small Fermi surfaces and strong correlation effects in Dirac materials with holography
Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin
2017-10-01
Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.
Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.
2012-01-01
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...
Wang, Jigang
2014-03-01
Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).
Mláka, Michal
2010-01-01
This bachelor thesis analysis issue of electronic payment systems. It discusses their use for payments on the internet and sending funds via e-mail. The first part is devoted to the theoretical definition and legislation of the issuance of electronic money and activities of electronic money institutions. The main part of the work clearly focuses on the use of e-wallets, which is an integral part of electronic payment systems. E-wallet of electronic payment system Moneybookers is considered as...
Rydberg-atom formation in strongly correlated ultracold plasmas
International Nuclear Information System (INIS)
Bannasch, G.; Pohl, T.
2011-01-01
In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.
International Nuclear Information System (INIS)
Chou, C-P; Lee, T K; Ho, C-M
2009-01-01
We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.
Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N
International Nuclear Information System (INIS)
Filippetti, A.; Spaldin, N.A.; Sanvito, S.
2005-01-01
The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
International Nuclear Information System (INIS)
Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.
2011-01-01
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
Energy Technology Data Exchange (ETDEWEB)
Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)
2011-11-15
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields
International Nuclear Information System (INIS)
Shaginyan, V. R.
2011-01-01
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.
Nonperturbative stochastic dynamics driven by strongly correlated colored noise
Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting
2015-02-01
We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.
Phase diagram of incoherently driven strongly correlated photonic lattices
Biella, Alberto; Storme, Florent; Lebreuilly, José; Rossini, Davide; Fazio, Rosario; Carusotto, Iacopo; Ciuti, Cristiano
2017-08-01
We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition associated with the spontaneous breaking of the U(1 ) symmetry occurs. The transition from an incompressible Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization methods.
Electron-phonon interactions in correlated systems
International Nuclear Information System (INIS)
Wysokinski, K.I.
1996-01-01
There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)
Can strong correlations be experimentally revealed for Ҡ -mesons?
Directory of Open Access Journals (Sweden)
Hiesmayr Beatrix C.
2014-01-01
Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.
Electronic theodolite intersection systems
Bingley, R. M.
1990-01-01
The development of electronic surveying instruments, such as electronic theodolites, and concurrent advances in computer technology, has revolutionised engineering surveying; one of the more recent examples being the introduction of Electronic Theodolite Intersection Systems (ETISs). An ETIS consists of two or more electronic theodolites and a computer, with peripheral hardware and suitable software. The theoretical principles on which they are based have been known for a long time, but ...
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched
Electronics circuits and systems
Bishop, Owen
2007-01-01
The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set
Electronics circuits and systems
Bishop, Owen
2011-01-01
The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea
BEPCII electronic logbook system
International Nuclear Information System (INIS)
Liu Shu; Zhao Jijiu; Wang Chunhong
2007-01-01
According to demands of BEPCII construction and future operation, we are going to supply an open electronic logbook platform for people to record their message in developing and running BEPCII, and browse the log-book on website. That gives people an open and transparent logbook, rather than traditional paper notebook. With the template of DESY's Elogbook, the BEPCII electronic logbook was developed, using the popular JSP technology to develop dynamic Web applications. This paper will introduce the development of BEPCII electronic logbook system. (authors)
Electronic components and systems
Dennis, W H
2013-01-01
Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn
International Nuclear Information System (INIS)
Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)
2001-01-01
A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By
Electronics a systems approach
Storey, Neil
2017-01-01
Electronics plays a central role in our everyday lives. It is at the heart of almost all of today's essential technology, from mobile phones to computers and from cars to power stations. As such, all engineers, scientists and technologists need to have a fundamental understanding of this exciting subject, and for many this will just be the beginning. Now in its sixth edition, Electronics: A Systems Approach provides an outstanding introduction to this fast-moving and important field. Comprehensively revised and updated to cover the latest developments in the world of electronics, the text continues to use Neil Storey's established and well-respected systems approach. It introduces the basic concepts first before progressing to a more advanced analysis, enabling you to contextualise what a system is designed to achieve before tackling the intricacies of designing or analysing its various components with confidence. This book is accompanied by a website which contains over 100 video tutorials to help explain ke...
Programmable electronic safety systems
International Nuclear Information System (INIS)
Parry, R.R.
1993-01-01
Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement fail-safe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL
Programmable Electronic Safety Systems
International Nuclear Information System (INIS)
Parry, R.
1993-05-01
Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement failsafe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL
Electron-electron interactions in disordered systems
Efros, AL
1985-01-01
``Electron-Electron Interactions in Disordered Systems'' deals with the interplay of disorder and the Coulomb interaction. Prominent experts give state-of-the-art reviews of the theoretical and experimental work in this field and make it clear that the interplay of the two effects is essential, especially in low-dimensional systems.
Electron beam processing system
International Nuclear Information System (INIS)
Kashiwagi, Masayuki
2004-01-01
Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)
Novel strongly correlated electron states in filled skutterudite lanthanide osmium antimonides
International Nuclear Information System (INIS)
Maple, M.B.; Frederick, N.A.; Ho, P.-C.; Yuhasz, W.M.; Sayles, T.A.; Butch, N.P.; Jeffries, J.R.; Taylor, B.J.
2005-01-01
Recent measurements on the filled skutterudite compounds Pr(Os 1-x Ru x ) 4 Sb 12 , NdOs 4 Sb 12 , and SmOs 4 Sb 12 are discussed. Pr(Os 1-x Ru x ) 4 Sb 12 displays superconductivity for all values of x with a minimum at x=0.6, and only the compounds with x 4 Sb 12 and the BCS superconductivity of PrRu 4 Sb 12 . NdOs 4 Sb 12 is a heavy fermion ferromagnet, with a sharp transition observed at 1.0K. SmOs 4 Sb 12 is also a heavy fermion material, and it may display weak ferromagnetic behavior below 2.6K
Electronics for embedded systems
Bindal, Ahmet
2017-01-01
This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.
2012-11-19
we mean that we cannot describe a system by working perturbatively from non-interacting particles or quasiparticles. In the case of electrons in...typically about 100µm in size, and is deformed by harmonic trapping fields into prolate or oblate forms, commonly called a cigar or a pancake. In the...metals, the electron outside the closed shell. For instance, 6Li has a nuclear spin of 1 and one unpaired electron . The two lowest hyperfine 11
NMR Probe for Electrons in Semiconductor Mesoscopic Structures
Indian Academy of Sciences (India)
2009-11-14
Nov 14, 2009 ... Strongly correlated electron systems: Overview ... Mutual interaction of electrons dominates their kinetic energies giving rise to ... transport properties. .... Low energy spin-flip excitations of a spin chain with lattice constant 1/n ...
Ryou, Albert
Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k
Electronic Nicotine Delivery Systems.
Walley, Susan C; Jenssen, Brian P
2015-11-01
Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.
Karima, H. R.; Majidi, M. A.
2018-04-01
Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.
Reliability of electronic systems
International Nuclear Information System (INIS)
Roca, Jose L.
2001-01-01
Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)
Prats, J. M.; Lopez-Aguilar, F.
1996-01-01
Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...
International Nuclear Information System (INIS)
Senatore, G.; Rapisarda, F.; Conti, S.
1998-01-01
We review recent progress on the physics of electrons in the bilayered electron gas, relevant to coupled quantum wells in GaAs/AIGaAs heterostructures. First we focus on the phase diagram of a symmetric bilayer at T = B = 0, obtained by diffusion Monte Carlo (DMC) simulations. It is found that inter-layer correlations stabilize crystalline structures at intermediate inter-layer separation, while favoring a liquid phase at smaller distance. Also, the available DMC evidence is in contrast with the recently (Hartree-Fock) predicted total charge transfer (TCT), whereby all the electron spontaneously jump in one layer. In fact, one can show that such a TCT state is never stable in the ideal bilayer with no tunneling. We finally comment on ongoing DMC investigations on the electron-hole bilayer, where excitonic condensation is expected to take place. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
[Electronic poison information management system].
Kabata, Piotr; Waldman, Wojciech; Kaletha, Krystian; Sein Anand, Jacek
2013-01-01
We describe deployment of electronic toxicological information database in poison control center of Pomeranian Center of Toxicology. System was based on Google Apps technology, by Google Inc., using electronic, web-based forms and data tables. During first 6 months from system deployment, we used it to archive 1471 poisoning cases, prepare monthly poisoning reports and facilitate statistical analysis of data. Electronic database usage made Poison Center work much easier.
Decal electronics for printed high performance cmos electronic systems
Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.
2017-01-01
High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications
Electronic Resource Management Systems
Directory of Open Access Journals (Sweden)
Mark Ellingsen
2004-10-01
Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
Directory of Open Access Journals (Sweden)
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
The ALS gun electronics system
International Nuclear Information System (INIS)
Lo, C.C.
1993-01-01
The ALS Gun Electronics system has been designed to accommodate the gun with a custom made socket and a high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters
The ALS Gun Electronics system
International Nuclear Information System (INIS)
Lo, C.C.
1993-05-01
The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters
Phase transition study in strongly correlated VO{sub 2} based sensing systems
Energy Technology Data Exchange (ETDEWEB)
Simo, A., E-mail: alinesimo.aline@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Kaviyarasu, K. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Mwakikunga, B. [Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Madjoe, R. [Physics Department, University of Western Cape, 7535 Belville Cape Town (South Africa); Gibaud, A. [Laboratoire de Physique de l’Etat Condensé, Université du Maine Faculte des sciences, UPRESA 6087, 72085, Le Mans Cedex 9 (France); Maaza, M. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa)
2017-04-15
Highlights: • At 230 °C for about 48 h to prepare successfully VO{sub 2} nanobelts. • 1D shows good sensing performance due to the large active surface of the material. • The good selectivity of methanol compared to acetone and isopropanol. • VOC compounds was observed at room temperature. - Abstract: Intermediate phase monoclinic M2 was observed by inducing in situ X-ray thermo diffraction on VO{sub 2} (M) nanoplatelets. The solid-solid phase transition occurs at around 65 °C assisted with the percolative transition metal-insulator. The existence of an intermediate crystalline phase with room temperature insulator phase and high temperature metallic phase across MIT in VO{sub 2} could be of relevance to understand structural contributions to the phase transition dynamics. In addition, pellet of VO{sub 2} nanostructures have shown to present good sensing properties to various alcohols vapors at room temperature and good selectivity of methanol with 5.54% sensitivity and limit detection below 5 ppm, compared to isopropanol 3.2% and acetone 2.4% respectively.
ELECTRONIC FILE MONITORING SYSTEM
African Journals Online (AJOL)
GBUBEMI
2014-11-06
Nov 6, 2014 ... The result of the developed system shows a simple and effective graphic user interface ... business transactions, decision-making records and storage of .... Start. Input username and password. Access denied was login.
Vessel Electronic Reporting System (VERS)
National Oceanic and Atmospheric Administration, Department of Commerce — The VERS system is composed of a database and other related applications which facilitate the reporting of electronically collected research data via Fisheries...
High energy x-ray scattering studies of strongly correlated oxides
International Nuclear Information System (INIS)
Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T
2003-01-01
Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model
Mohan, Minette M.
1992-08-01
I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.
Record statistics of a strongly correlated time series: random walks and Lévy flights
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Component reliability for electronic systems
Bajenescu, Titu-Marius I
2010-01-01
The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.
Fundamentals of electronic systems design
Lienig, Jens
2017-01-01
This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.
Analytical purpose electron backscattering system
International Nuclear Information System (INIS)
Desdin, L.; Padron, I.; Laria, J.
1996-01-01
In this work an analytical purposes electron backscattering system improved at the Center of Applied Studies for Nuclear Development is described. This system can be applied for fast, exact and nondestructive testing of binary and AL/Cu, AL/Ni in alloys and for other applications
The PAUCam readout electronics system
Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard
2016-08-01
The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.
Quality cost system in electronics
International Nuclear Information System (INIS)
Denzer, H.O.
1978-01-01
A description is presented of a formal cost of quality system used in an electronic manufacturing facility. The system elements and reports are illustrated. Examples of the use of a quality cost system to measure quality performance and to improve product quality are included. A comparison to industry averages for quality costs is made. The paper attempts to show that the collection and use of quality costs are an aid to management and can be accompanied by improved product quality
Portable digital electronic radiography system
International Nuclear Information System (INIS)
Sawicka, B.D.
1995-01-01
Radiography is a standard nondestructive technique in the industrial testing of materials and components. It is routinely used during the construction, maintenance and repair of nuclear plants. Traditionally, radiography is performed using photographic film (film radiography, FR). Recent developments in solid-state area imaging radiation detectors, miniature electronics and computer software/hardware techniques have brought electronic alternatives to FR. In recent years various electronic radiography (ER) techniques have served as alternatives to FR, these proved beneficial in some applications. While originally developed to provide real time imaging, ER may offer other advantages over FR, depending on the application. Work was undertaken at CRL to review progress in ER techniques and evaluate the possibility of constructing a portable DER (digital electronic radiography) system, for the inspection of power plant components. A suitable DER technique has been developed and a proof of principle portable system constructed. As this paper demonstrates, a properly designed ER system can be small and compact, while providing radiographic examination with acceptable image quality and the benefits of ER imaging. The CRL DER system can operate with radioactive sources typical of FR. While it does not replace FR, our DER system is expected to be beneficial in specific applications for Candu maintenance, reducing cost, labour and time. Practical, cost saving applications of this system are expected to include valve monitoring and foreign object location during maintenance at Candu reactors
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising
FTU bolometer electronic system upgrade
Energy Technology Data Exchange (ETDEWEB)
Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Neri, Carlo; Florean, Marco; Ciccone, Giovanni [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)
2013-10-15
Highlights: ► Design and realization of a new bolometer electronic system. ► Many improvements over the actual commercial system. ► Architecture based on digital electronic hardware with minimal analog front end. ► Auto off-set correction, real time visualization features and small system size. ► Test results for the electronic system. -- Abstract: The FTU (Frascati Tokamak Upgrade) requires a bolometer diagnostic in order to measure the total plasma radiation. The current diagnostic architecture is based on a full analog multichannel AC bolometer system, which uses a carrier frequency amplifier with a synchronous demodulation. Taking into account the technological upgrades in the field of electronics, it was decided to realize an upgrade for the bolometric electronic system by using a hybrid analog/digital implementation. The new system developed at the ENEA Frascati laboratories has many improvements, and mainly a massive system volume reduction, a good measurement linearity and a simplified use. The new hardware system consists of two subsystems: the Bolometer Digital Control and the Bolometer Analog System. The Bolometer Digital Control can control 16 bolometer bridges through the Bolometer Analog System. The Bolometer Digital Control, based on the FPGA architecture, is connected via Ethernet with a PC; therefore, it can receive commands settings from the PC and send the stream of bolometric measurements in real time to the PC. In order to solve the cross-talk between the bridges and the cables, each of the four bridges in the bolometer head receives a different synthesized excitation frequency. Since the system is fully controlled by a PC GUI (Graphic User Interface), it is very user friendly. Moreover, some useful features have been developed, such as: auto off-set correction, bridge amplitude regulation, software gain setting, real time visualization, frequency excitation selection and noise spectrum analyzer embedded function. In this paper, the
Generative electronic background music system
Energy Technology Data Exchange (ETDEWEB)
Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)
2015-03-10
In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.
Generative electronic background music system
International Nuclear Information System (INIS)
Mazurowski, Lukasz
2015-01-01
In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions
Computational time-resolved and resonant x-ray scattering of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Bansil, Arun [Northeastern Univ., Boston, MA (United States)
2016-11-09
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole
Field reliability of electronic systems
International Nuclear Information System (INIS)
Elm, T.
1984-02-01
This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)
Effects of geometry in itinerant electron magnets
Energy Technology Data Exchange (ETDEWEB)
Nakamura, H [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Muro, Y [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Shiga, M [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2007-04-11
The magnetism of quasi-one-dimensional itinerant electron magnets RMn{sub 4}Al{sub 8} is compared with that of the typical frustrated itinerant electron magnet YMn{sub 2}. The possible formation and observation of the spin pseudogap are discussed in connection with the spin-liquid state in strongly correlated itinerant electron systems.
Decal electronics for printed high performance cmos electronic systems
Hussain, Muhammad Mustafa
2017-11-23
High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.
Transfer of spectral weight in spectroscopies of correlated electron systems
International Nuclear Information System (INIS)
Rozenberg, M.J.; Kotliar, G.; Kajueter, H.
1996-01-01
We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society
Thermal properties of UO2 from density functional theory: role of strong correlations
International Nuclear Information System (INIS)
Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.
2011-01-01
We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)
Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2017-06-01
We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.
Abstracts of the workshop on orbital ordering and fluctuations in d- and f-electron systems
International Nuclear Information System (INIS)
Ueda, Kazuo; Hotta, Takashi
2002-12-01
Strongly correlated f- and d-electron systems including heavy Fermion systems and transition metal oxides are important source of exciting new phenomena in condensed matter physics. Recently it has been recognized in more profound way that the orbital degeneracy of the f- and d-electrons plays very important role underlying those exotic phenomena. The idea of the present workshop is to bring active researchers in the field together and to exchange ideas in informal atmosphere. In the workshop, twenty seven papers were presented and the following subjects were discussed: orbital ordering in transition metal oxides, role of orbital degeneracy in heavy Fermion systems and effect of geometrical frustration on orbital fluctuations. (author)
Quantum criticality and emergence of the T/B scaling in strongly correlated metals
International Nuclear Information System (INIS)
Watanabe, Shinji; Miyake, Kazumasa
2016-01-01
A new type of scaling observed in heavy-electron metal β-YbAlB_4, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.
Quantum criticality and emergence of the T/B scaling in strongly correlated metals
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Shinji [Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu (Japan); Miyake, Kazumasa [Toyota Physical and Chemical Research Institute, Nagakute (Japan)
2016-02-15
A new type of scaling observed in heavy-electron metal β-YbAlB{sub 4}, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.
Electronic structure of spin systems
Energy Technology Data Exchange (ETDEWEB)
Saha-Dasgupta, Tanusri
2016-04-15
Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.
Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects
International Nuclear Information System (INIS)
Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.
1989-01-01
The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies
Johnson, Timothy J; Youmans, Bonnie P; Noll, Sally; Cardona, Carol; Evans, Nicholas P; Karnezos, T Peter; Ngunjiri, John M; Abundo, Michael C; Lee, Chang-Won
2018-04-06
Defining the baseline bacterial microbiome is critical towards understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define due to high variability between birds and flocks. Presented are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system, and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxa in the trachea. Numerous bacterial taxa were identified which were strongly correlated with broiler chicken performance, across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating subclinical dynamics occurring that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production. Importance Multidrug resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21 st century and beyond. Antibiotics are necessary in animal
Electronic Nicotine Delivery Systems Key Facts Infographic
U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...
A theory of electron baths: One-electron system dynamics
International Nuclear Information System (INIS)
McDowell, H.K.
1992-01-01
The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath
Generalized virial theorem and pressure relation for a strongly correlated Fermi gas
International Nuclear Information System (INIS)
Tan, Shina
2008-01-01
For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations
Metastability and avalanche dynamics in strongly correlated gases with long-range interactions
Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman
2018-03-01
We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.
Digital simulation of power electronic systems
International Nuclear Information System (INIS)
Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.
1981-01-01
The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de
Reliability of Power Electronic Converter Systems
DEFF Research Database (Denmark)
-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...
The electronic system of Beijing spectrometer
International Nuclear Information System (INIS)
Xi Deming
1990-01-01
Beijing Spectrometer (BES) in an experimental facility of high energy physics on Beijing Electron Positron Collider (BEPC). A brief description including the global design, the read out circuits, the performances and the recent status of its electronic system is presented
Zee, Frank C.
2011-12-01
The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one
Integrated control system for electron beam processes
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
Survey of electronic payment methods and systems
Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Helme, A.; Verbraeck, A.
1996-01-01
In this paper an overview of electronic payment methods and systems is given. This survey is done as part of the Moby Dick project. Electronic payment systems can be grouped into three broad classes: traditional money transactions, digital currency and creditdebit payments. Such payment systems have
Electronic Official Personnel Folder System
US Agency for International Development — The eOPF is a digital recreation of paper personnel folder that stores electronic personnel data spanning an individual's Federal career. eOPF allows employees to...
Simulations of the ILC Electron Gun and Electron Bunching System
International Nuclear Information System (INIS)
Haakonsen, C.B.; McGill U.
2006-01-01
The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement
Correlated electrons and generalized statistics
International Nuclear Information System (INIS)
Wang, Q.A.
2003-01-01
Several important generalizations of Fermi-Dirac distribution are compared to numerical and experimental results for correlated electron systems. It is found that the quantum distributions based on incomplete information hypothesis can be useful for describing this kind of systems. We show that the additive incomplete fermion distribution gives very good description of weakly correlated electrons and that the non-additive one is suitable to very strong correlated cases. (author)
Implementation of an Electronic Medical Records System
2008-05-07
Hartman, MAJ Roddex Barlow , CPT Christopher Besser and Capt Michael Emerson...thank you I am truly honored to call each of you my friends. Electronic... abnormal findings are addressed. 18 Electronic Medical Record Implementation Barriers of the Electronic Medical Records System There are several...examination findings • Psychological and social assessment findings N. The system provides a flexible mechanism for retrieval of encounter
High perveance electron gun for the electron cooling system
International Nuclear Information System (INIS)
Korotaev, Yu.; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.
2000-01-01
The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V 3/2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)
High perveance electron gun for the electron cooling system
Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I
2000-01-01
The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).
Control system for JAERI Free Electron Laser
International Nuclear Information System (INIS)
Sugimoto, Masayoshi
1992-01-01
A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)
Electronic Resources Management System: Recommendation Report 2017
Ramli, Rindra M.
2017-01-01
This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system
Reliability of power electronic converter systems
Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael
2016-01-01
This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.
A simple electron-beam lithography system
DEFF Research Database (Denmark)
Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter
2005-01-01
A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....
Design of electron detection system for pulse electron irradiator
International Nuclear Information System (INIS)
Anjar Anggraini H; Agus Purwadi; Lely Susita RM; Bambang Siswanto; Agus Wijayanto
2016-01-01
Design of electron detection system for pulse electron irradiator has been conducted on the Plasma Cathode Electron Source by Rogowski coil technique. Rogowski coil has ability to capture the induced magnetic field of the electric current, subsequent induced magnetic field will provide voltage after passing integrator. This diagnostic used combination of copper wire, ferrite and RC integrator. The design depends on the pulse width and the value of plasma current that passes through the coil, thus the number of windings, coil area and integrator can be designed. For plasma spots current of IDPS expected to be 10 A and pulse width 10 μs the Rogowski coil using MnZn ferrite with inductance L = 0.275 mH and permeability μr = 200 H/m. For the current of plasma arc ADPS expected to be 100 A and pulse width 100 μs by using inductance L=1.9634 mH and permeability μr = 6256 H/m. Electron current in extraction system expected to be 30 A and pulse width 100 μs the Rogowski coil using inductance L=51.749 mH and permeability μr= 4987 H/m. Design integrator used is the type of RC integrator. (author)
Electronic construction collaboration system : phase III.
2011-12-01
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Br...
Electronic states in systems of reduced dimensionality
International Nuclear Information System (INIS)
Ulloa, S.E.
1992-01-01
This report briefly discusses the following research: magnetically modulated systems, inelastic magnetotunneling, ballistic transport review, screening in reduced dimensions, raman and electron energy loss spectroscopy; and ballistic quantum interference effects. (LSP)
Preparation of targets using electron gun systems
International Nuclear Information System (INIS)
Maier-Komor, P.
1975-01-01
Most targets of isotopes with very low vapor pressure can only be fabricated by vacuum deposition using an electron gun system or a heavy ion sputtering system. Heavy ion sputtering is a very new technique with many unsolved problems. Therefore it seems to be easier to work with an electron gun. Different commercially available electron guns, which are all designed for the high evaporation rates used in industry, are examined for their qualification in processing small amounts of material as used in fabrication of isotope targets. Electron backscattering and the associated efficiency of the electron beam power is strongly dependent on the atomic number Z of the evaporant and the incident angle of the electron beam on the surface of the evaporant. This dependence leads also to the undesired effects to the target layers from electrons and ions. Some precautions are necessary against the effects of the electrons and ions, which are formed in the plasma directly over the beam impact point. Beam power and beam density have to be chosen to get a constant evaporation rate and a low enough condensation rate in order not to overheat the target substrates. To evaporate some metals it may be helpful to pulse the electron beam
Dynamism in Electronic Performance Support Systems.
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
Electron correlation energy in confined two-electron systems
Energy Technology Data Exchange (ETDEWEB)
Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)
2010-09-27
Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.
Design for Reliability of Power Electronic Systems
DEFF Research Database (Denmark)
Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya
2018-01-01
Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...
Data base systems in electronic design engineering
Williams, D.
1980-01-01
The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.
Design for Reliability of Power Electronic Systems
DEFF Research Database (Denmark)
Wang, Huai; Ma, Ke; Blaabjerg, Frede
2012-01-01
Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....
Control system in the technological electron linacs
International Nuclear Information System (INIS)
Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.
1999-01-01
The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system
The Intelligent Technologies of Electronic Information System
Li, Xianyu
2017-08-01
Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.
Power Electronics in Wind Turbine Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus
2006-01-01
the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....
Electronic ignition system for internal combustion engines
Energy Technology Data Exchange (ETDEWEB)
Crowder, L W
1980-11-20
Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.
Electron-optical systems for Mott polarimeters
International Nuclear Information System (INIS)
Fishkova, T.Ya.; Mamaev, Yu.A.; Ovsyannikova, I.P.; Petrov, V.N.; Shpak, E.V.
1994-01-01
Electron-optical systems, forming polarized electron beams from solid and gaseous sources at a Mott detector with operating potentials of 20 and 50 kV, have been theoretically investigated. The integral EOS creates a beam <2.6 nm in diameter at the target of the Mott detector for secondary electrons with energies of 1-20 eV and exit angles of 0 -60 . The differential EOS provides an energy resolution of 2-6% within the range of 3-2000 eV, the illumination being 5-13% for a 4π angle; at the target of the Mott detector it creates a beam of 1-6 mm in diameter. Both systems have been constructed at the laboratory of Spin-polarized Electron Spectroscopy (Department of Experimental Physics) at St. Petersburg State Technical University. ((orig.))
Sensor Arrays and Electronic Tongue Systems
Directory of Open Access Journals (Sweden)
Manel del Valle
2012-01-01
Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.
International Nuclear Information System (INIS)
1988-01-01
This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity
Programmable electronic system design & verification utilizing DFM
Houtermans, M.J.M.; Apostolakis, G.E.; Brombacher, A.C.; Karydas, D.M.
2000-01-01
The objective of this paper is to demonstrate the use of the Dynamic Flowgraph Methodology (DIM) during the design and verification of programmable electronic safety-related systems. The safety system consists of hardware as well as software. This paper explains and demonstrates the use of DIM to
Design management of electronic data interchange systems
Heck, van H.W.G.M.
1993-01-01
This study deals with the management of the design process of Electronic Data Interchange (EDI) systems. Its objectives are (1) to investigate the design process of EDI systems from a practical and theoretical perspective; (2) to develop a model to describe factors relevant to EDI
Electron-ion-x-ray spectrometer system
International Nuclear Information System (INIS)
Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.
1993-01-01
The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays
Electron localization in one-dimensional systems
International Nuclear Information System (INIS)
Chao, K.A.
1984-01-01
The pure regional localization and the global localization have been investigated via the inverse participation ratio and te moment analysis. If the envelop function of a localized state is more complicated than the simple exponential function e sup(-r/xi), the inverse participation ratio is inadequate to describe the localization properties of an electron. This is the case discovered recently in a stereo-irregular chain fo atoms including the electron-electron interaction and the structure disorder. The localization properties in this system are analysed in terms of the moments. (Author) [pt
Power electronics for renewable energy systems
DEFF Research Database (Denmark)
Iov, Florin; Blaabjerg, Frede
2009-01-01
sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....
Bio-integrated electronics and sensor systems
Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.
2013-05-01
Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.
A Flexible Electronic Commerce Recommendation System
Gong, Songjie
Recommendation systems have become very popular in E-commerce websites. Many of the largest commerce websites are already using recommender technologies to help their customers find products to purchase. An electronic commerce recommendation system learns from a customer and recommends products that the customer will find most valuable from among the available products. But most recommendation methods are hard-wired into the system and they support only fixed recommendations. This paper presented a framework of flexible electronic commerce recommendation system. The framework is composed by user model interface, recommendation engine, recommendation strategy model, recommendation technology group, user interest model and database interface. In the recommender strategy model, the method can be collaborative filtering, content-based filtering, mining associate rules method, knowledge-based filtering method or the mixed method. The system mapped the implementation and demand through strategy model, and the whole system would be design as standard parts to adapt to the change of the recommendation strategy.
Collimation system for electron arc therapy
International Nuclear Information System (INIS)
Brunelli, R.J.; Carter, J.C.
1984-01-01
An electron collimation system for electron arc therapy treatments consists of a slit collimation system which is movable with the electron beam applicator and is designed to allow for dose compensation in the sagittal direction and a hoop-and-clamp assembly for final field shaping. By correctly designing the shape of the slit in the former and properly adjusting the components of the latter, it is possible to accomplish quite uniform shielding without causing any weight of the shielding material to rest on the patient. The slit collimation system has a specially shaped aperture for confining the radiation beam. The hoop-and-clamp assembly has hoops and clamps which locate shielding over the patient's body. The shielding locating clamps are adjustably movable radially with respect to the hoops. (author)
Electronic Resources Management System: Recommendation Report 2017
Ramli, Rindra M.
2017-05-01
This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.
Electronic instrumentation system for pulsed neutron measurements
International Nuclear Information System (INIS)
Burda, J.; Igielski, A.; Kowalik, W.
1982-01-01
An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)
The second generation of electronic blasting systems
Energy Technology Data Exchange (ETDEWEB)
Hammelmann, F.; Petzold, J. [Dynamit Nobel GmbH (Germany)
2001-07-01
8 years after the market introduction of the first commercial electronic detonator - DYNATRONIC - the paper describes a new area of electronic blasting systems Made in Germany: i-kon. The results of a joint development between Dynamit Nobel and Orica is a unique universal electronic detonator, which is as simple to use as a standard non-electric detonator. The delay time or delay interval is not factory preprogrammed and the system is not based on a numbered system like conventional detonators. The miner or Blaster decides on site which delay timing he likes to use and is programming the whole blast on site. The new i-kon system allows delay times between 0 and 8000 ms by increments of 1 ms. With the control equipment it is possible to blast up to 1600 detonators in a single blast. The paper describes the construction and functionality of this new electronic blasting system - manufactured and developed by Precision Blasting Systems, a joint venture between Orica and Dynamic Nobel. (orig.)
Power Electronics for Renewable Energy Systems
DEFF Research Database (Denmark)
Choi, U. M.; Lee, K. B.; Blaabjerg, Frede
2012-01-01
The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...
Electronic system of TBR tokamak device
International Nuclear Information System (INIS)
Silva, R.P. da.
1980-01-01
The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt
Method of fabricating a cooled electronic system
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2014-02-11
A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Automatic control variac system for electronic accelerator
International Nuclear Information System (INIS)
Zhang Shuocheng; Wang Dan; Jing Lan; Qiao Weimin; Ma Yunhai
2006-01-01
An automatic control variac system is designed in order to satisfy the controlling requirement of the electronic accelerator developed by the Institute. Both design and operational principles, structure of the system as well as the software of industrial PC and micro controller unit are described. The interfaces of the control module are RS232 and RS485. A fiber optical interface (FOC) could be set up if an industrial FOC network is necessary, which will extend the filed of its application and make the communication of the system better. It is shown in practice that the system can adjust the variac output voltage automatically and assure the accurate and automatic control of the electronic accelerator. The system is designed in accordance with the general design principles and possesses the merits such as easy operation and maintenance, good expansibility, and low cost, thus it could also be used in other industrial branches. (authors)
Electronic warfare receivers and receiving systems
Poisel, Richard A
2014-01-01
Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o
Critical issues in an electronic documentation system.
Weir, Charlene R; Nebeker, Jonathan R
2007-10-11
The Veterans Health Administration (VHA), of the U.S. Department of Veteran Affairs has instituted a medical record (EMR) that includes electronic documentation of all narrative components of the medical record. To support clinicians using the system, multiple efforts have been instituted to ease the creation of narrative reports. Although electronic documentation is easier to read and improves access to information, it also may create new and additional hazards for users. This study is the first step in a series of studies to evaluate the issues surrounding the creation and use of electronic documentation. Eighty-eight providers across multiple clinical roles were interviewed in 10 primary care sites in the VA system. Interviews were tape-recorded, transcribed and qualitatively analyzed for themes. In addition, specific questions were asked about perceived harm due to electronic documentation practices. Five themes relating to difficulties with electronic documentation were identified: 1) information overload; 2) hidden information; 3) lack of trust; 4) communication; 5) decision-making. Three providers reported that they knew of an incident where current documentation practices had caused patient harm and over 75% of respondents reported significant mis-trust of the system.
ELECTRONIC PAYMENT SYSTEM AND ITS PROTECTION
Directory of Open Access Journals (Sweden)
Miroslav Milutinovic
2015-01-01
Full Text Available All developed countries are in transition from the IT economy to a web economy - the biggest technological innovation that will have a long-term positive effect on the formation of the economic growth rate, the major structural changes and on the differentiated effects on the economic areas that are, at a faster or a slower rate, being included in this technological change. The electronic commerce or e-commerce has a huge potential for development. The electronic commerce between the companies (B-2-B is significantly greater compared to retail electronic commerce (B-2-C. In both spheres of trade, the Internet is used as a platform for the transfer of information and for concluding business deals. Market economy requires Accelerated Payment Processing which is achieved by introducing and improving the electronic payment procedures. There is an emphasized dichotomy between the two spheres of the payment system: large-value and small-value payments. The large value payment systems can be described as the arteries of the payment system, and the small-value transfer systems as a complex network of veins that bind the entire economy.
Accounting Systems and the Electronic Office.
Gafney, Leo
1986-01-01
Discusses a systems approach to accounting instruction and examines it from the viewpoint of four components: people (titles and responsibilities, importance of interaction), forms (nonpaper records such as microfiche, floppy disks, hard disks), procedures (for example, electronic funds transfer), and technology (for example, electronic…
Support system of electronic health cards
Directory of Open Access Journals (Sweden)
Yu. L. Nechiporenko
2013-02-01
Full Text Available Made the survey online sources regarding the specification of functions of systems support electronic medical records. Given the tendency to attract mobile devices to conduct an array of medical data expedient development of EHR, which can be installed on a personal mobile device.
Electronic Subsystems For Laser Communication System
Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael
1992-01-01
Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.
Radiation from systems with relativistic electrons
International Nuclear Information System (INIS)
Ternov, I.M.; Khalilov, V.R.; Bagrov, V.G.; Nikitin, M.M.
1980-01-01
Different methods of generation of electromagnetic radiation in the course of electron motion in external electromagnetic fields are considered. Singularities of ''free electron lasers'' (FEL), synchrotronous, ondulator and Compton radiation sources are discussed. The effect of induced radiation of electrons moving in a magnetic field is studied on the basis of the quantum theory methods. The results obtained are compared with the results of the classical theory. The theoretical and experimental results of the main singularities of the ondulator radiation (OR) are presented. It is shown that when the recoil effects are negligible and nonequidistancy of the energy spectrum of an electron in a magnetic field is of an error character, the results for the dose rate calculated by the quantum and classical theory methods completely coincide in the range of great filling numbers. Both in the quantum and classical theories the effects of the induced radiation of electrons moving in external electromagnetic fields (nonstationary in a general case) of a rather general type depend on two main mechanisms, which are nonequidistancy of the energy spectrum and the recoil effect (the quantum theory); appearance of phase and longitudinal electron bunching under the effect of an alternating radiation field (the classical theory). On the basis of the investigations the conclusion is made that OR can be successfully used for measuring the charged particle beam parameters (dispersion of angular spread and the absolute energy), as well as for measuring the amplitude of the magnetic field intensity in a space-periodic system
Soft errors in modern electronic systems
Nicolaidis, Michael
2010-01-01
This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, s
Electron and nuclear spin system polarization in semiconductors by light
Energy Technology Data Exchange (ETDEWEB)
Zakharchenya, B; Flejsher, V
1981-02-01
Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.
Laser system for a subpicosecond electron linac
International Nuclear Information System (INIS)
Crowell, R. A.
1998-01-01
At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions
Electron dynamics inside short-coherence systems
International Nuclear Information System (INIS)
Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo
2006-01-01
We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts
The electron-neutrino system, ch. 3
International Nuclear Information System (INIS)
Kox, A.J.
1976-01-01
Relativistic kinetic gas theory is applied to a mixture of electrons and electronic neutrinos. The phenomena of diffusion are especially studied in this system, assuming properties comparable to those of the universe in the lepton era as assumed in the hot big bang theory: a hot (Tapproximately 10 12 K), dense (n = 10 38 ) mixture, colliding elastically. An expression for the diffusion coefficient is derived and numerical values are computed as a function of the reduced temperature z -1 = kT/mc 2 , assuming equal number densities
The effects of radiation on electronic systems
International Nuclear Information System (INIS)
Messenger, G.C.; Ash, M.S.
1986-01-01
This book is the first unified treatment of the analysis and design methods for protection of principally electronic systems from the deleterious effects of nuclear and electro-magnetic radiation. Coverage spans from a detailed description of the nuclear radiation sources to pertinent semiconductor physics, then to hardness assurance. This work combines the disciplines of solid state physics, semiconductor physics, circuit engineering, nuclear physics, together with electronics and electromagnetic theory into a book that can be used as a text with problems at the end of the majority of the chapters. Written by veterans in the field, the most significant feature of this book is its comprehensive treatment of the phenomena involved. This treatment includes the analysis and design of the effect of nuclear radiation on electronic systems from the experimental, theoretical, and engineering viewpoints. Unique pedagogical attempts are employed to make the material more understandable from the position of an enlightened engineering and scientific readership whose task is the design and analysis of radiation hardened electronic systems
Test software for BESIII MDC electronics system
International Nuclear Information System (INIS)
Zhang Hongyu; Sheng Huayi; Zhu Haitao; Ji Xiaolu; Zhao Dongxu
2006-01-01
This paper presents the design of Test System Software for BESIII MDC Electronics. Two kinds of test systems, SBS VP7 based and PowerPC based systems, and their corresponding test software are introduced. The software is developed in LabVIEW 7.1 and Microsoft Visual C++ 6.0, some test functions of the software, as well as their user interfaces, are described in detail. The software has been applied in hardware debugging, performance test and long term stability test. (authors)
System for Cooling of Electronic Components
Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.
2017-01-01
Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.
Temperature measurement systems in wearable electronics
Walczak, S.; Gołebiowski, J.
2014-08-01
The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.
Zope based electronic operation log system - Zlog
International Nuclear Information System (INIS)
Yoshii, K.; Satoh, Y.; Kitabayashi, T.
2004-01-01
Since January 2004, the Zope based electronic operation logging system, named Zlog, has been running at the KEKB and AR accelerator facilities. Since Zope is the python based open source web application server software and python language is familiar for the members in the KEKB accelerator control group, we have developed the Zlog system rapidly. In this paper, we report the development history and the present status of Zlog system. Also we show some general plug-in components, called Zope products, have been useful for our Zlog development. (author)
Electron correlations in narrow band systems
International Nuclear Information System (INIS)
Kishore, R.
1983-01-01
The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt
Electron Radiation Belts of the Solar System
Mauk, Barry; Fox, Nicola
To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Sevilla, Galo T.
2016-10-14
High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.
Sevilla, Galo T.; Cordero, Marlon D.; Nassar, Joanna M.; Hanna, Amir; Kutbee, Arwa T.; Carreno, Armando Arpys Arevalo; Hussain, Muhammad Mustafa
2016-01-01
High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.
Electronic Document Management Using Inverted Files System
Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon
2014-03-01
The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.
Electronic Document Management Using Inverted Files System
Directory of Open Access Journals (Sweden)
Suhartono Derwin
2014-03-01
Full Text Available The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.
Electronic circuits for communications systems: A compilation
1972-01-01
The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.
Advanced electronics for the CTF MEG system.
McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A
2004-11-30
Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.
Design of the BEPCII electron gun system
International Nuclear Information System (INIS)
Liu Bo; Gu Mengping; Chi Yunlong
2006-01-01
BEPCII upgrading project needs a new high current electron gun. The design stage such as physical design, mechanical design and control system design of this new electron gun is described. The emission current is designed to be higher than 10 A for the pulse width of 1 ns with repetition rate of 50 Hz. The gun will operate with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport. EGUN and DGUN codes are used to simulate the gun geometry, and the results show that the perveance is about 0.22 μA·V -3/2 , and the emittance at gun exit is about 16 π·mm·mrad. PARMELA code shows that the electron beam can be easily transported to the end of the first accelerating tube with a capture efficiency of 67% and root mean square emittance of 25 mm·mrad. New scheme of the gun control system based on EPICS is also presented. Two-bunch operation mode and 2.5 μs long pulse operation mode are available in the control system. (authors)
Future directions in electron momentum spectroscopy of matter
International Nuclear Information System (INIS)
Weigold, E.
1998-01-01
The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia
ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT
Directory of Open Access Journals (Sweden)
M. Shishkina
2011-11-01
Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.
Electronic document management systems: an overview.
Kohn, Deborah
2002-08-01
For over a decade, most health care information technology (IT) professionals erroneously learned that document imaging, which is one of the many component technologies of an electronic document management system (EDMS), is the only technology of an EDMS. In addition, many health care IT professionals erroneously believed that EDMSs have either a limited role or no place in IT environments. As a result, most health care IT professionals do not understand documents and unstructured data and their value as structured data partners in most aspects of transaction and information processing systems.
Development of HF-systems for electron storage systems
International Nuclear Information System (INIS)
Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.
1999-01-01
Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given
Effects of electron-electron interactions on electronic transport in disordered systems
International Nuclear Information System (INIS)
Foley, Simon Timothy
2002-01-01
This thesis is concerned with the role of electron-electron interactions on electronic transport in disordered systems. We first consider a novel non-linear sigma model in order to microscopically treat the effects of disorder and electronic interaction. We successfully reproduce the perturbative results for the zero-bias anomaly and the interaction correction to the conductivity in a weakly disordered system, and discuss possible directions for future work. Secondly we consider the fluctuations of the dephasing rate for a closed diffusive and quantum dot system. Using the Keldysh technique we derive an expression for the inelastic scattering rate with which we self-consistently obtain the fluctuations in the dephasing rate. For the diffusive regime we find the relative fluctuations is given by F ∼ (L φ /L) 2 /g 2 , where g is the dimensionless conductance, L φ is the dephasing length and L is the sample size. For the quantum dot regime we find a perturbative divergence due to the presence of the zero mode. By mapping divergent diagrams to those for the two-level correlation function, we conjecture the existence of an exact relation between the two. Finally we discuss the consequences of this relation. (author)
42 CFR 456.722 - Electronic claims management system.
2010-10-01
... Electronic Claims Management System for Outpatient Drug Claims § 456.722 Electronic claims management system...'s Medicaid Management Information System (MMIS) applicable to prescription drugs. (ii) Notifying the... 42 Public Health 4 2010-10-01 2010-10-01 false Electronic claims management system. 456.722...
Electronic Integrated Disease Surveillance System and Pathogen Asset Control System
Directory of Open Access Journals (Sweden)
Tom G. Wahl
2012-06-01
Full Text Available Electronic Integrated Disease Surveillance System (EIDSS has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS. Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP sponsored by the US Defense Threat Reduction Agency (DTRA.
Electronic integrated disease surveillance system and pathogen asset control system.
Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K
2012-06-20
Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).
Electron density profile in multilayer systems
International Nuclear Information System (INIS)
Toekesi, K.
2004-01-01
Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of
New Electron Gun System for BEPCII
Liu, Bo; Long Chi, Yun; Zhang, Chuang
2005-01-01
The new electron gun system for BEPCII has been put into operation since Nov. 2004. The article describes the design, experiment and operation of this new system. The design current of the gun is 10 A for the pulse lengths of 1 ns, 2.5 ns and 1 μs with repetition rate of 50 Hz. The gun is operated with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations have been carried out in the design stage, including simulation of the gun geometry and beam transportation. Some important relation curves are obtained during the experiment. Two-bunch operation is available and some elementary tests have been performed. New scheme of the gun control system based on EPICS is also presented. The real operation shows that the design and manufacturing is basically successful.
Controlling Underwater Robots with Electronic Nervous Systems
Directory of Open Access Journals (Sweden)
Joseph Ayers
2010-01-01
Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.
Electron scattering and few nucleon systems
International Nuclear Information System (INIS)
Frois, B.
1983-08-01
Recent result obtained by electron scattering in the few-nucleon systems (A 3 He charge and magnetic form factors are discussed. New theoretical results indicate that three body forces improve considerably the saturation properties of 3 He, 4 He and nuclear matter, but are not able to reconcile experiment and theory for the charge form factors of 3 He and 4 He. Calculations of meson exchange effects with different theoretical approaches bring the theory into reasonable agreement with the experimental charge and magnetic form factor fo 3 He. Recent results of the measurements of the two and three body break-up of 3 He are discussed
Electronic resource management systems a workflow approach
Anderson, Elsa K
2014-01-01
To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft
Structural dynamics of electronic and photonic systems
Suhir, Ephraim; Steinberg, David S
2011-01-01
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducte
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
Slutskin, A A; Pepper, M
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...
Complexity in electronic negotiation support systems.
Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
Energy transformation in molecular electronic systems
International Nuclear Information System (INIS)
Kasha, M.
1985-01-01
Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs
Educational Systems Design Implications of Electronic Publishing.
Romiszowski, Alexander J.
1994-01-01
Discussion of electronic publishing focuses on the four main purposes of media in general: communication, entertainment, motivation, and education. Highlights include electronic journals and books; hypertext; user control; computer graphics and animation; electronic games; virtual reality; multimedia; electronic performance support;…
Kulasekararaj, Austin G; Smith, Alexander E; Mian, Syed A; Mohamedali, Azim M; Krishnamurthy, Pramila; Lea, Nicholas C; Gäken, Joop; Pennaneach, Coralie; Ireland, Robin; Czepulkowski, Barbara; Pomplun, Sabine; Marsh, Judith C; Mufti, Ghulam J
2013-03-01
This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17-89 years) and median follow-up was 45 months [95% confidence interval (CI) 27-62 months]. TP53 mutations occurred in 30 (9.4%) patients, exclusively in isolated del5q (19%) and complex karyotype (CK) with -5/5q-(72%), correlated with International Prognostic Scoring System intermediate-2/high, TP53 protein expression, higher blast count and leukaemic progression. Patients with mutant TP53 had a paucity of mutations in other genes implicated in myeloid malignancies. Median overall survival of patients with TP53 mutation was shorter than wild-type (9 versus 66 months, P disappearance of the mutant clone or emergence of new clones, suggesting an early occurrence of TP53 mutations. A reduction in mutant clone correlated with response to 5-azacitidine, however clones increased in non-responders and persisted at relapse. The adverse impact of TP53 persists after adjustment for cytogenetic risk and is of practical importance in evaluating prognosis. The relatively common occurrence of these mutations in two different prognostic spectrums of MDS, i.e. isolated 5q- and CK with -5/5q-, possibly implies two different mechanistic roles for TP53 protein. © 2013 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Electronic nicotine delivery systems: a research agenda.
Etter, Jean-François; Bullen, Chris; Flouris, Andreas D; Laugesen, Murray; Eissenberg, Thomas
2011-05-01
Electronic nicotine delivery systems (ENDS, also called electronic cigarettes or e-cigarettes) are marketed to deliver nicotine and sometimes other substances by inhalation. Some tobacco smokers report that they used ENDS as a smoking cessation aid. Whether sold as tobacco products or drug delivery devices, these products need to be regulated, and thus far, across countries and states, there has been a wide range of regulatory responses ranging from no regulation to complete bans. The empirical basis for these regulatory decisions is uncertain, and more research on ENDS must be conducted in order to ensure that the decisions of regulators, health care providers and consumers are based on science. However, there is a dearth of scientific research on these products, including safety, abuse liability and efficacy for smoking cessation. The authors, who cover a broad range of scientific expertise, from basic science to public health, suggest research priorities for non-clinical, clinical and public health studies. They conclude that the first priority is to characterize the safety profile of these products, including in long-term users. If these products are demonstrated to be safe, their efficacy as smoking cessation aids should then be tested in appropriately designed trials. Until these studies are conducted, continued marketing constitutes an uncontrolled experiment and the primary outcome measure, poorly assessed, is user health. Potentially, this research effort, contributing to the safety and efficacy of new smoking cessation devices and to the withdrawal of dangerous products, could save many lives.
Simulation of the electron acoustic instability for a finite-size electron beam system
International Nuclear Information System (INIS)
Lin, C.S.; Winske, D.
1987-01-01
Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation
CERN Sells its Electronic Document Handling System
2001-01-01
The EDH team. Left to right: Derek Mathieson, Rotislav Titov, Per Gunnar Jonsson, Ivica Dobrovicova, James Purvis. Missing from the photo is Jurgen De Jonghe. In a 1 MCHF deal announced this week, the British company Transacsys bought the rights to CERN's Electronic Document Handling (EDH) system, which has revolutionised the Laboratory's administrative procedures over the last decade. Under the deal, CERN and Transacsys will collaborate on developing EDH over the coming 12 months. CERN will provide manpower and expertise and will retain the rights to use EDH, which will also be available freely to other particle physics laboratories. This development is an excellent example of the active technology transfer policy CERN is currently pursuing. The negotiations were carried out through a fruitful collaboration between AS and ETT Divisions, following the recommendations of the Technology Advisory Board, and with the help of SPL Division. EDH was born in 1991 when John Ferguson and Achille Petrilli of AS Divisi...
The ALTA cosmic ray experiment electronics system
International Nuclear Information System (INIS)
Brouwer, W.; Burris, W.J.; Caron, B.; Hewlett, J.; Holm, L.; Hamilton, A.; McDonald, W.J.; Pinfold, J.L.; Price, P.; Schaapman, J.R.; Sibley, L.; Soluk, R.A.; Wampler, L.J.
2005-01-01
Understanding the origin and propagation of high-energy cosmic rays is a fundamental area of astroparticle physics with major unanswered questions. The study of cosmic rays with energy more than 10 14 eV, probed only by ground-based experiments, has been restricted by the low particle flux. The Alberta Large-area Time-coincidence Array (ALTA) uses a sparse array of cosmic ray detection stations located in high schools across a large geographical area to search for non-random high-energy cosmic ray phenomena. Custom-built ALTA electronics is based on a modular board design. Its function is to control the detectors at each ALTA site allowing precise measurements of event timing and energy in the local detectors as well as time synchronization of all of the sites in the array using the global positioning system
Electron beam accelerator energy control system
International Nuclear Information System (INIS)
Sharma, Vijay; Rajan, Rehim; Acharya, S.; Mittal, K.C.
2011-01-01
A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)
Electron and nuclear spin system polarization in semiconductors by light
International Nuclear Information System (INIS)
Zakharchenya, B.; Flejsher, V.
1981-01-01
Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)
Development of the electron gun control system of SSRF
International Nuclear Information System (INIS)
Zhou Dayong; Lin Guoqiang; Liu Dekang; Shen Liren
2010-01-01
An electron gun is the key part of a linac, the beam quality of which depends on beam quality of the electron gun, hence the need of a stable control system of the electron gun to ensure its safe operation.In this paper, we report our progresses in developing the linac's electron gun control system of Shanghai Synchrotron Radiation Facility (SSRF). It uses PLC as the device controllers, with the monitoring software developed on EPICS. The whole system is connected by Ethernet. The PLC and Ethernet technology ensures good reliability and easy maintenance of the electron gun control system. (authors)
National Research Council Canada - National Science Library
Rowe, Arthur
2002-01-01
... as they relate to contracting and purchasing of supplies and services, The issues and concerns with legacy on-line procurement systems will be compared to a newly developed Pure Electronic Ordering System...
The Mott localization and magnetic properties in condensed fermions systems
International Nuclear Information System (INIS)
Wojcik, W.
1995-01-01
In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs
One nanosecond pulsed electron gun systems
International Nuclear Information System (INIS)
Koontz, R.F.
1979-02-01
At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun
[Theory of exotic superconducting and normal states of heavy electron and high Tc materials
International Nuclear Information System (INIS)
1990-01-01
This paper discusses: quadrupole Kondo effect; heavy electron transport properties; quadrupolar fluctuation mechanism for high-T c superconductors; research accomplishments for the t--J model of high-T c superconductors; interpretation of high-T c superconductors experimental data; and dynamics of strongly correlated systems
Power electronic converters and systems frontiers and applications
Trzynadlowski, Andrzej M
2016-01-01
Power electronics is a branch of electrical engineering dealing with conversion and control of electric power using semiconductor power switches. This book provides an overview of modern power electronic converters and systems, and their applications.
Hybrid electronic/optical synchronized chaos communication system.
Toomey, J P; Kane, D M; Davidović, A; Huntington, E H
2009-04-27
A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.
Implementation of an Electronic Medical Records System
National Research Council Canada - National Science Library
Fletcher, Chadwick B
2008-01-01
.... Substantial benefits are realized through routine use of electronic medical records include improved quality, safety, and efficiency, along with the increased ability to conduct education and research...
Electronic Resource Management System. Vernetzung von Lizenzinformationen
Directory of Open Access Journals (Sweden)
Michaela Selbach
2014-12-01
collections efficiently. Not only libraries, but also the negotiators of Alliance and National Licences need a software application which helps them to handle these complex licences efficiently. The project presented in this paper aims at developing a national Electronic Resource Management System (ERMS. It is funded by the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG. The project partners are the North Rhine-Westphalian Library Service Centre (hbz, the University Library Johann Christian Senckenberg Frankfurt, the Head Office of the Gemeinsamer Bibliotheksverbund (GBV and the Freiburg University Library. The projected ERMS will provide a software system with a central knowledge base which supports a unified overview of licence data with a local, regional and national scope. In the current state of development, the focus is on data and function modelling and on designing concepts for rights management, cooperative data management, implementation of interface standards and the intended services such as statistical analyses.
Advanced Photonic and Electronic Systems WILGA 2010
Romaniuk, R S
2010-01-01
SPIE – PSP WILGA Symposium gathers two times a year in January and in May new adepts of advanced photonic and electronic systems. The event is oriented on components and applications. WILGA Symposium on Photonics and Web Engineering is well known on the web for its devotion to “young research” promotion under the eminent sponsorship of international engineering associations like SPIE and IEEE and their Poland Sections or Counterparts. WILGA is supported by the most important national professional organizations like KEiT PAN and PSP-Photonics Society of Poland. The Symposium is organized since 1998 twice a year. It has gathered over 4000 young researchers and published over 2000 papers mainly internationally, including more than 900 in 10 published so far volumes of Proc. SPIE. This paper is a digest of WILGA Symposium Series and WILGA 2010 summary. Introductory part treats WILGA Photonics Applications characteristics over the period 1998-2010. Following part presents a short report on the XXVth and XXVI...
Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.
2014-11-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Power electronic converter systems for direct drive renewable energy applications
DEFF Research Database (Denmark)
Chen, Zhe
2013-01-01
This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....
Implementing CORAL: An Electronic Resource Management System
Whitfield, Sharon
2011-01-01
A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…
Controlled cooling of an electronic system for reduced energy consumption
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
2016-08-09
Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.
Controlled cooling of an electronic system for reduced energy consumption
Energy Technology Data Exchange (ETDEWEB)
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
2018-01-30
Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.
VISA Final Report: Fully Integrated Power Electronic Systems in Automotive Electronics
Waffenschmidt, E.
2011-01-01
This report summarizes the activities related to the public funded project “Vollintegrierte leistungselektronische Systeme in der Automobilelektronik – VISA” (Fully Integrated Power Electronic Systems in Automotive Electronics). Aim of the project is to investigate the integration of components into
Electron gun design study for the IUCF beam cooling system
International Nuclear Information System (INIS)
Friesel, D.L.; Ellison, T.; Jones, W.P.
1985-01-01
The design of a low temperature electron beam cooling system for the Indiana University electron-cooled storage ring is in progress. The storage ring, which will accept the light ion beams from the existing k=200, multi-stage cyclotron facility, requires an electron beam variable in energy from about 7 to 275 keV. The electron beam system consists of a high perveance electron gun with Pierce geometry and a flat cathode. The gun and a 28 element accelerating column are immersed in a uniform longitudinal magnetic guide field. A computer modeling study of the system was conducted to determine electron beam density and transverse temperature variations as a function of anode region and accelerator column design parameters. Transverse electron beam temperatures (E /SUB t/ = mc 2 β 2 γ(/theta/ /SUB H/ +/theta/ /SUB v/ )) of less than a few tenths of an electron volt at a maximum current density of 0.4 A/cm 2 are desired over the full energy range. This was achieved in the calculations without the use of resonant focusing for a 2 Amp, 275 keV electron beam. Some systematics of the electron beam temperature variations with system design parameters are presented. A short discussion of the mechanical design of the proposed electron beam system is also given
International Nuclear Information System (INIS)
Deore, A.V.; Bhoraskar, V.N.; Dhole, S.D.
2011-01-01
A tetrode type electron gun system for the generation of low energy electrons was designed, developed and characterized. An electron gun having four electrodes namely cathode, focusing electrode, control electrode and anode has been designed for the irradiation experiments. This electron gun is capable to provide electrons of energy over the range of 1 keV to 20 keV, with current maximum upto 100 μA. The electron gun and a faraday cup are mounted in the evacuated cylindrical chamber. The samples are fixed on the faraday cup and irradiated with low energy electrons at a pressure around 10 -6 mbar. In this electron gun system, at any electron energy over the entire range, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. Also, the circular shape of the beam spot was maintained, even though the beam current and beam diameter are varied. The uniformity of the electron beam over the entire beam area was measured with a multi electrode assembly and found to be well within 15%. This system is being used for the synthesis and diffusion of metal and semiconductor nanoparticles in polymeric materials. (author)
Tuning intermetallic electronic coupling in polyruthenium systems ...
Indian Academy of Sciences (India)
molecular architecture. SANDEEP GHUMAAN and GOUTAM KUMAR LAHIRI ... complexes encompassing selective combinations of spacer (bridging ligand, BL) and ancillary (AL) functionalities have been designed. ... plications in designing molecular electronic devices3 such as molecular wires, semi-conductors, rods etc.
Theory of Raman scattering in coupled electron-phonon systems
Itai, K.
1992-01-01
The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.
Electrically induced spontaneous emission in open electronic system
Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration
A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.
A new electronic control system for unmanned underwater vehicles
Molina Molina, J.C.; Guerrero González, A.; Gilabert, J.
2015-01-01
In this paper a new electronic control system for unmanned underwater vehicles is presented. This control system is characterized by a distribution in control over two network of type CANBus and Ethernet. This new electronic control system integrates functionalities of AUVs, as the automatic execution of preprogrammed trajectories. The control system also integrates an acoustic positioning system based on USBL. The information of relative positioning is sent through specific...
Grid system design on the plasma cathode electron source
International Nuclear Information System (INIS)
Agus Purwadi
2014-01-01
It has been designed the grid system on the Plasma Cathode Electron Source (PCES). Grid system with the electron emission hole of (15 x 60) cm 2 , the single aperture grid size of (0,5 x O,5) mm 2 and the grid wire diameter of 0,25 mm, will be used on the plasma generator chamber. If the sum of grid holes known and the value of electron emission current through every the grid hole known too then the total value of electron emission Current which emits from the plasma generator chamber can be determined It has been calculated the value of electron emission current I e as function of the grid radius r e =(0.28, 0.40, 0.49, 0.56, 0.63, 0.69) mm on the electron temperature of T e = 5 eV for varying of the value plasma electron densities n e = (10 15 , 10 16 , 10 17 , 10 18 ) m -3 . Also for the value of electron emission current fe as function of the grid radius r e = (0.28, 0.40, 0.49. 0.56, 0.63,0.69) mm on the electron density n e = 10 17 m -3 for varying of the value of plasma electron temperatures T e = (1, 2, 3, 4, 5) eV. electron emission current will be increase by increasing grid radius, electron temperature as well as plasma electron density. (author)
Observation of bifurcation phenomena in an electron beam plasma system
International Nuclear Information System (INIS)
Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.
1995-01-01
When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system
Diagnostic Neural Network Systems for the Electronic Circuits
International Nuclear Information System (INIS)
Mohamed, A.H.
2014-01-01
Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases
Controlled cooling of an electronic system based on projected conditions
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
2015-08-18
Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.
Freeform Compliant CMOS Electronic Systems for Internet of Everything Applications
Shaikh, Sohail F.
2017-01-17
The state-of-the-art electronics technology has been an integral part of modern advances. The prevalent rise of the mobile device and computational technology in the age of information technology offers exciting applications that are attributed to sophisticated, enormously reliable, and most mature CMOS-based electronics. We are accustomed to high performance, cost-effective, multifunctional, and energy-efficient scaled electronics. However, they are rigid, bulky, and brittle. The convolution of flexibility and stretchability in electronics for emerging Internet of Everything application can unleash smart application horizon in unexplored areas, such as robotics, healthcare, smart cities, transport, and entertainment systems. While flexible and stretchable device themes are being remarkably chased, the realization of the fully compliant electronic system is unaddressed. Integration of data processing, storage, communication, and energy management devices complements a compliant system. Here, a comprehensive review is presented on necessity and design criteria for freeform (physically flexible and stretchable) compliant high-performance CMOS electronic systems.
High quality flux control system for electron gun evaporation
International Nuclear Information System (INIS)
Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.
1991-01-01
This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner
The system of RF beam control for electron gun
International Nuclear Information System (INIS)
Barnyakov, A.M.; Levichev, A.E.; Chernousov, Yu.D.; Ivannikov, V.I.; Shebolaev, I.V.
2015-01-01
The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described
A 20 keV electron gun system for the electron irradiation experiments
International Nuclear Information System (INIS)
Mahapatra, S.K.; Dhole, S.D.; Bhoraskar, V.N.
2005-01-01
An electron gun consisting of cathode, focusing electrode, control electrode and anode has been designed and fabricated for the electron irradiation experiments. This electron gun can provide electrons of any energy over the range 1-20 keV, with current upto 50 μA. This electron gun and a Faraday cup are mounted in the cylindrical chamber. The samples are fixed on the Faraday cup and irradiated with electrons at a pressure ∼10 -7 mbar. The special features of this electron gun system are that, at any electron energy above 1 keV, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. The variation in the electron current over the beam spot of 120 mm diameter is less than 15% and the beam current stability is better than 5%. This system is being used for studying the irradiation effects of 1-20 keV energy electrons on the space quality materials in which the irradiation time may vary from a few tens of seconds to hours
A 20 keV electron gun system for the electron irradiation experiments
Energy Technology Data Exchange (ETDEWEB)
Mahapatra, S.K. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411007 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India)]. E-mail: vnb@physics.unipune.ernet.in
2005-01-01
An electron gun consisting of cathode, focusing electrode, control electrode and anode has been designed and fabricated for the electron irradiation experiments. This electron gun can provide electrons of any energy over the range 1-20 keV, with current upto 50 {mu}A. This electron gun and a Faraday cup are mounted in the cylindrical chamber. The samples are fixed on the Faraday cup and irradiated with electrons at a pressure {approx}10{sup -7} mbar. The special features of this electron gun system are that, at any electron energy above 1 keV, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. The variation in the electron current over the beam spot of 120 mm diameter is less than 15% and the beam current stability is better than 5%. This system is being used for studying the irradiation effects of 1-20 keV energy electrons on the space quality materials in which the irradiation time may vary from a few tens of seconds to hours.
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
International Nuclear Information System (INIS)
Slutskin, A.A.; Kovtun, H.A.; Pepper, M.
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted
Multilayer electronic component systems and methods of manufacture
Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)
2010-01-01
Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.
Electron-nuclear dynamics of molecular systems
International Nuclear Information System (INIS)
Diz, A.; Oehrn, Y.
1994-01-01
The content of an ab initio time-dependent theory of quantum molecular dynamics of electrons and atomic nuclei is presented. Employing the time-dependent variational principle and a family of approximate state vectors yields a set of dynamical equations approximating the time-dependent Schroedinger equation. These equations govern the time evolution of the relevant state vector parameters as molecular orbital coefficients, nuclear positions, and momenta. This approach does not impose the Born-Oppenheimer approximation, does not use potential energy surfaces, and takes into account electron-nuclear coupling. Basic conservation laws are fully obeyed. The simplest model of the theory employs a single determinantal state for the electrons and classical nuclei and is implemented in the computer code ENDyne. Results from this ab-initio theory are reported for ion-atom and ion-molecule collisions
Thermal modeling and design of electronic systems and devices
International Nuclear Information System (INIS)
Wirtz, R.A.; Lehmann, G.L.
1990-01-01
The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance
76 FR 61956 - Electronic Tariff Filing System (ETFS)
2011-10-06
...] Electronic Tariff Filing System (ETFS) AGENCY: Federal Communications Commission. ACTION: Final rule... with the Commission's Electronic Tariff Filing System (ETFS), Report and Order (Order). This notice is...: Pamela Arluk, Pricing Policy Division, Wireline Competition Bureau, at (202) 418-1520, or email: pamela...
Security analysis of electronic voting and online banking systems
Tjøstheim, Thomas
2007-01-01
The main focus of this dissertation is on security analysis of electronic voting and online banking systems. Six papers form the basis of the thesis and include the following topics: a model for analysis of voting systems, a case study where we apply the proposed model, a new scheme for remote electronic voting, and three case studies of commercial online banking solutions in Norway.
CSIR's new integrated electronic library information-system
CSIR Research Space (South Africa)
Michie, A
1995-08-01
Full Text Available The CSIR has developed a CDROM-based electronic library information system which provides the ability to reproduce and search for published information and colour brochures on the computer screen. The system integrates this information with online...
A control system for a free electron laser experiment
International Nuclear Information System (INIS)
Giove, D.
1992-01-01
The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)
Tuey, Richard C.; Lane, Robert; Hart, Susan V.
1995-01-01
The NASA Scientific and Technical Information Office was assigned the responsibility to continue with the expansion of the NASAwide networked electronic duplicating effort by including the Goddard Space Flight Center (GSFC) as an additional node to the existing configuration of networked electronic duplicating systems within NASA. The subject of this report is the evaluation of a networked electronic duplicating system which meets the duplicating requirements and expands electronic publishing capabilities without increasing current operating costs. This report continues the evaluation reported in 'NASA Electronic Publishing System - Electronic Printing and Duplicating Evaluation Report' (NASA TM-106242) and 'NASA Electronic Publishing System - Stage 1 Evaluation Report' (NASA TM-106510). This report differs from the previous reports through the inclusion of an external networked desktop editing, archival, and publishing functionality which did not exist with the previous networked electronic duplicating system. Additionally, a two-phase approach to the evaluation was undertaken; the first was a paper study justifying a 90-day, on-site evaluation, and the second phase was to validate, during the 90-day evaluation, the cost benefits and productivity increases that could be achieved in an operational mode. A benchmark of the functionality of the networked electronic publishing system and external networked desktop editing, archival, and publishing system was performed under a simulated daily production environment. This report can be used to guide others in determining the most cost effective duplicating/publishing alternative through the use of cost/benefit analysis and return on investment techniques. A treatise on the use of these techniques can be found by referring to 'NASA Electronic Publishing System -Cost/Benefit Methodology' (NASA TM-106662).
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Modeling and Verification of Dependable Electronic Power System Architecture
Yuan, Ling; Fan, Ping; Zhang, Xiao-fang
The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.
Security of Electronic Payment Systems: A Comprehensive Survey
Solat , Siamak
2017-01-01
This comprehensive survey deliberated over the security of electronic payment systems. In our research, we focused on either dominant systems or new attempts and innovations to improve the level of security of the electronic payment systems. This survey consists of the Card-present (CP) transactions and a review of its dominant system i.e. EMV including several researches at Cambridge university to designate variant types of attacks against this standard which demonstrates lack of a secure "o...
New Project System for Undergraduate Electronic Engineering
Chiu, Dirk M.; Chiu, Shen Y.
2005-01-01
A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…
Smart parking management system with decal electronics system
Hussain, Muhammad Mustafa; Wicaksono, Irmandy
2017-01-01
Various examples are related to parking management, including identifying and reserving empty parking spaces. In one example, a smart parking space system includes a parking controller located at a parking space. The parking controller can identify a vehicle located at the parking space via an input sensor or a transceiver that initiates wireless communication with an electronic tag associated with the vehicle; and communicate a parking vacancy associated with the parking space to a remote computing device based at least in part on the identification of the vehicle. In another example, a computing device can receive parking vacancy data associated with a parking space from a parking controller; determine a parking vacancy associated with the parking space using the parking vacancy data; and encode for display on a client device a network page that includes an indication of the parking vacancy associated with the parking space.
Smart parking management system with decal electronics system
Hussain, Muhammad Mustafa
2017-09-21
Various examples are related to parking management, including identifying and reserving empty parking spaces. In one example, a smart parking space system includes a parking controller located at a parking space. The parking controller can identify a vehicle located at the parking space via an input sensor or a transceiver that initiates wireless communication with an electronic tag associated with the vehicle; and communicate a parking vacancy associated with the parking space to a remote computing device based at least in part on the identification of the vehicle. In another example, a computing device can receive parking vacancy data associated with a parking space from a parking controller; determine a parking vacancy associated with the parking space using the parking vacancy data; and encode for display on a client device a network page that includes an indication of the parking vacancy associated with the parking space.
Electron energy recovery system for negative ion sources
International Nuclear Information System (INIS)
Dagenhart, W.K.; Stirling, W.L.
1982-01-01
An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy
Conductivity of the electron-impurity system
International Nuclear Information System (INIS)
Goettig, S.
1983-09-01
The free-carrier absorption of electromagnetic radiation due to the presence of static scatterers is examined taking into account the electron-electron interaction, the plasma-phonon polar coupling and the plasma anisotropy. For the case of strong coupling in the isotropic plasma the absorption due to the collective-mode excitation processes is, for frequencies just above the plasmon-like collective mode frequency, shown to be dominant over the absorption due to single-particle excitations. The expression for the frequency-dependent absorptive part of the conductivity due to the long-wavelength collective-mode excitations is derived for the case of multicomponent anisotropic degenerate plasma (e.g. lead chalcogenides). The results are discussed in detail and compared with available experimental data for n-PbSe. The comparison with the previous theories is also given. (author)
Electronic system for Langmuir probe measurements
Czech Academy of Sciences Publication Activity Database
Mitov, M.; Bankova, A.; Dimitrova, M.; Ivanova, P.; Tutulkov, K.; Djermanova, N.; Dejarnac, Renaud; Stöckel, Jan; Popov, Tsv.K.
2012-01-01
Roč. 356, č. 1 (2012), s. 012008 ISSN 1742-6588. [InternationalSummerSchoolonVacuum,Electron, and IonTechnologies(VEIT2011)/17./. Sunny Beach, 19.09.2011-23.09.2011] Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * tokamak * diagnostics * electric probe Subject RIV: BL - Plasma and Gas Discharge Physics http://iopscience.iop.org/1742-6596/356/1/012008/pdf/1742-6596_356_1_012008.pdf
Energy Transformation in Molecular Electronic Systems
Energy Technology Data Exchange (ETDEWEB)
Kasha, Michael
1999-05-17
This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.
f-electron systems: pushing band theory
International Nuclear Information System (INIS)
Koelling, D.D.
1991-01-01
The f-electron orbitrals have always been the ''incomplete atomic shells acting as local moments, and weakly interacting with the remaining electronic structure'' in the minds of most people. So examining them using a band theory where one views them as itinerant was once - and to some extent even today still is - considered with some skepticism. Nonetheless, a very significant community has successfully utilized band theory as a probe of the electronic structure of the appropriate actinides and rare earths. Those people actually using the approach would be the first to declare that it is not the whole solution. Instead, one is pushing and even exceeding its limit of applicability. However, the apropriate procedure is to push the model consistently to its limits, patch where possible, and then look to see where discrepancies remain. I propose to offer a selected review of past developments (emphasizing the career to data of A.J. Freeman in this area), offer a list of interesting puzzles for the future, and then make some guesses as to the techniques one might want to use. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wojcik, W. [Politechnika Krakowska, Cracow (Poland)
1995-12-31
In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs.
Energy Technology Data Exchange (ETDEWEB)
Wojcik, W [Politechnika Krakowska, Cracow (Poland)
1996-12-31
In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs.
The electronic identification, signature and security of information systems
Directory of Open Access Journals (Sweden)
Horovèák Pavel
2002-12-01
Full Text Available The contribution deals with the actual methods and technologies of information and communication systems security. It introduces the overview of electronic identification elements such as static password, dynamic password and single sign-on. Into this category belong also biometric and dynamic characteristics of verified person. Widespread is authentication based on identification elements ownership, such as various cards and authentication calculators. In the next part is specified a definition and characterization of electronic signature, its basic functions and certificate categories. Practical utilization of electronic signature consists of electronic signature acquirement, signature of outgoing email message, receiving of electronic signature and verification of electronic signature. The use of electronic signature is continuously growing and in connection with legislation development it exercises in all resorts.
Electronic systems for the organization and planning of school
Vodová, Alena
2014-01-01
TITLE: Electronic systems for the organization and planning of school AUTHOR: Alena Vodová DEPARTMENT: The Center of School management SUPERVISOR: Ing. Petr Svoboda Ph.D. ABSTRACT: The bachelor thesis gives comprehensive overview electronic systems for organization and planning of school. Maps of species, describes their function, demonstrates the benefits, modes and applications to use in school. In the research part individuals system compares between them and validates their use in schools...
Handbook of power systems engineering with power electronics applications
Hase, Yoshihide
2012-01-01
Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u
Secure electronic commerce communication system based on CA
Chen, Deyun; Zhang, Junfeng; Pei, Shujun
2001-07-01
In this paper, we introduce the situation of electronic commercial security, then we analyze the working process and security for SSL protocol. At last, we propose a secure electronic commerce communication system based on CA. The system provide secure services such as encryption, integer, peer authentication and non-repudiation for application layer communication software of browser clients' and web server. The system can implement automatic allocation and united management of key through setting up the CA in the network.
Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System
Louksha, O. I.; Trofimov, P. A.
2018-04-01
New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.
Implementation of a pedagogically efficient system for electronic testing
Preskar, Peter
2012-01-01
Nowadays online learning is a very common process. Together with online learning there has been strong development of online assessment systems. Time is money and online assessment or electronic tests save us exactly that - time. For a teacher and for a student it enables fast feedback information. The diploma thesis at first presents information and communications technology (ICT) and the role of ICT in development of electronic tests and standardisation of records of electronic tests. I...
Power Electronics and Controls for Wind Turbine Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Iov, Florin; Chen, Zhe
2010-01-01
term) based energy sources to renewable energy sources. Another is to use power electronics to achieve high efficiency in power generation, transmission/distribution and utilization. This paper discuss trends of the most promising renewable energy sources, wind energy, which ,integrated with power...... electronics, is changing the future electrical infrastructure and also contributes steadily to non-carbon based electricity production. The paper’s focus is on the power electronics technologies used in wind turbine systems....
Control electronics of the PEP RF system
International Nuclear Information System (INIS)
Pellegrin, J.L.; Schwarz, H.
1981-01-01
The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented
A radiation-tolerant electronic readout system for portal imaging
Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.
2004-06-01
A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.
Electron Cyclotron Resonance Heating (ECRH) Control System
International Nuclear Information System (INIS)
Heefner, J.W.; Williams, C.W.; Lauze, R.R.; Karsner, P.G.
1985-01-01
The ECRH Control System was installed on the Tandem Mirror Experiment-Upgrade (TMX-U) in 1980. The system provides approximately 1 MW of 28 GHz microwave power to the TMX-U plasma. The subsystems of ECRH that must be controlled include high-voltage charging supplies, series pass tubes, and magnet supplies. In addition to the devices that must be controlled, many interlocks must be continuously monitored. The previous control system used relay logic and analog controls to operate the system. This approach has many drawbacks such as lack of system flexibility and maintainability. In order to address these problems, it was decided to go with a CAMAC and Modicon based system that uses a Hewlett-Packard 9836C personal computer to replace the previous analog controls. 2 figs
Electronic consultation system demonstrates educational benefit for primary care providers.
Kwok, Jonas; Olayiwola, J Nwando; Knox, Margae; Murphy, Elizabeth J; Tuot, Delphine S
2017-01-01
Background Electronic consultation systems allow primary care providers to receive timely speciality expertise via iterative electronic communication. The use of such systems is expanding across the USA with well-documented high levels of user satisfaction. We characterise the educational impact for primary care providers of a long-standing integrated electronic consultation and referral system. Methods Primary care providers' perceptions of the educational value inherent to electronic consultation system communication and the impact on their ability to manage common speciality clinical conditions and questions were examined by electronic survey using five-point Likert scales. Differences in primary care providers' perceptions were examined overall and by primary care providers' speciality, provider type and years of experience. Results Among 221 primary care provider participants (35% response rate), 83.9% agreed or strongly agreed that the integrated electronic consultation and referral system provided educational value. There were no significant differences in educational value reported by provider type (attending physician, mid-level provider, or trainee physician), primary care providers' speciality, or years of experience. Perceived benefit of the electronic consultation and referral system in clinical management appeared stronger for laboratory-based conditions (i.e. subclinical hypothyroidism) than more diffuse conditions (i.e. abdominal pain). Nurse practitioners/physician assistants and trainee physicians were more likely to report improved abilities to manage specific clinical conditions when using the electronic consultation and/or referral system than were attending physicians, as were primary care providers with ≤10 years experience, versus those with >20 years of experience. Conclusions Primary care providers report overwhelmingly positive perceptions of the educational value of an integrated electronic consultation and referral system. Nurse
XXIII International Conference on Nonlinear Dynamics of Electronic Systems
Stoop, Ruedi; Stramaglia, Sebastiano
2017-01-01
This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.
ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL
Directory of Open Access Journals (Sweden)
D. V. Yevdulov
2016-01-01
Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient.
The development of efficient coding for an electronic mail system
Rice, R. F.
1983-01-01
Techniques for efficiently representing scanned electronic documents were investigated. Major results include the definition and preliminary performance results of a Universal System for Efficient Electronic Mail (USEEM), offering a potential order of magnitude improvement over standard facsimile techniques for representing textual material.
Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators
International Nuclear Information System (INIS)
Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito
2008-01-01
This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions
On the validity of the Migdal's theorem in heavy fermion systems
International Nuclear Information System (INIS)
Wojciechowski, R.J.
1996-09-01
The interaction between phonons and electrons in strongly correlated electron systems is investigated in the context of the electron-phonon vertex correction. We preserve characteristic features of heavy fermion systems assuming a high density of states near the Fermi level and a very large effective mass m * . We have calculated the lowest-order vertex correction to the quasi particle-phonon interaction and shown that there is no Migdal's theorem for heavy fermion systems. (author). 12 refs, 1 fig
The theory of electrocarrying in systems with narrow energetic bands in magnetic fields
International Nuclear Information System (INIS)
Nakonechnij, O.G.; Repets'kij, S.P.; Stashchuk, B.V.
2009-01-01
The method for calculation of conductivity of disorder systems with strong electron correlations is developed. The method is based on the theory of multiple scattering. The cluster expansion is derived for two-particle Green's function of a disorder system with the account electron-electron interaction. As a zero one-site approximation of that expansion it is chosen the coherent potential approximation. The received expressions allow investigating the phenomenon of spin transport in strong correlated systems.
A computer-controlled conformal radiotherapy system. IV: Electronic chart
International Nuclear Information System (INIS)
Fraass, Benedick A.; McShan, Daniel L.; Matrone, Gwynne M.; Weaver, Tamar A.; Lewis, James D.; Kessler, Marc L.
1995-01-01
Purpose: The design and implementation of a system for electronically tracking relevant plan, prescription, and treatment data for computer-controlled conformal radiation therapy is described. Methods and Materials: The electronic charting system is implemented on a computer cluster coupled by high-speed networks to computer-controlled therapy machines. A methodical approach to the specification and design of an integrated solution has been used in developing the system. The electronic chart system is designed to allow identification and access of patient-specific data including treatment-planning data, treatment prescription information, and charting of doses. An in-house developed database system is used to provide an integrated approach to the database requirements of the design. A hierarchy of databases is used for both centralization and distribution of the treatment data for specific treatment machines. Results: The basic electronic database system has been implemented and has been in use since July 1993. The system has been used to download and manage treatment data on all patients treated on our first fully computer-controlled treatment machine. To date, electronic dose charting functions have not been fully implemented clinically, requiring the continued use of paper charting for dose tracking. Conclusions: The routine clinical application of complex computer-controlled conformal treatment procedures requires the management of large quantities of information for describing and tracking treatments. An integrated and comprehensive approach to this problem has led to a full electronic chart for conformal radiation therapy treatments
Electronic construction collaboration system -- phase II.
2010-06-01
During the first year of research, work was completed to identify Iowa DOT needs for web-based project management system (WPMS) : and evaluate how commercially available solutions could meet these needs. Researchers also worked to pilot test custom d...
Electronics and braking systems; Elektronik in Bremssystemen
Energy Technology Data Exchange (ETDEWEB)
Gaupp, W. [Rheinisch-Westfaelischer Technischer Ueberwachungs-Verein e.V., Essen (Germany). Inst. fuer Fahrzeugtechnik
2000-02-01
In addition to the anti-lock braking system ABS, which is now fitted to almost every new passenger car, an increasing number of other control systems which intervene in the vehicle's driving dynamics, such as ASR, DSC or ESP, are being introduced. This article gives an overview of such systems, from their beginnings up to the present-day, and describes future developments. (orig.) [German] Neben das Antiblockiersystem ABS, mit dem heute fast jeder neue Pkw ausgestattet ist, treten zunehmend weitere Regelsysteme, die in die Fahrdynamik des Fahrzeugs eingreifen, wie zum Beispiel ASR, DSC oder ESP. Dieser Beitrag gibt einen Ueberblick von den Anfaengen dieser Systeme bis hin zu zukuenftigen Entwicklungen. (orig.)
System and method for compressive scanning electron microscopy
Reed, Bryan W
2015-01-13
A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.
Real Time Space Radiation Effects in Electronic Systems
National Aeronautics and Space Administration — The effects that solar particle events can have on operational electronic systems is a significant concern for all missions, but especially for those beyond Low...
Electronic Systems for Spacecraft Vehicles: Required EDA Tools
Bachnak, Rafic
1999-01-01
The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.
Electronics for the LAMPF neutrino experiment's veto counter system
International Nuclear Information System (INIS)
Dalton, C.
1981-09-01
A cosmic-ray veto detector has been constructed in the neutrino cave at Los Alamos National Laboratory. This report describes the electronic readout system designed to buffer and compact the data from the detector
Automotive mechatronics automotive networking, driving stability systems, electronics
2015-01-01
As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...
Using electronic document management systems to manage highway project files.
2011-12-12
"WisDOTs Bureau of Technical Services is interested in learning about the practices of other state departments of : transportation in developing and implementing an electronic document management system to manage highway : project files"
CPSC’s National Electronic Injury Surveillance System (NEISS)
US Consumer Product Safety Commission — CPSC’s National Electronic Injury Surveillance System (NEISS) is a national probability sample of hospitals in the U.S. and its territories. Patient information is...
Power System Electronics (PSE) Development for SmallSat Technology
National Aeronautics and Space Administration — We develop a modular Power System Electronics (PSE) that is reliable, efficient, and flexible to meet the Goddard Modular Smallsat Architecture (GMSA) challenge....
Assessment of Safety Standards for Automotive Electronic Control Systems
2016-06-01
This report summarizes the results of a study that assessed and compared six industry and government safety standards relevant to the safety and reliability of automotive electronic control systems. These standards include ISO 26262 (Road Vehicles - ...
Freeform Compliant CMOS Electronic Systems for Internet of Everything Applications
Shaikh, Sohail F.; Ghoneim, Mohamed T.; Sevilla, Galo T.; Nassar, Joanna M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa
2017-01-01
of flexibility and stretchability in electronics for emerging Internet of Everything application can unleash smart application horizon in unexplored areas, such as robotics, healthcare, smart cities, transport, and entertainment systems. While flexible
designing a framework for a unified electronic identity system
African Journals Online (AJOL)
DJFLEX
In this paper, a Unified Identity System is proposed where single electronic identity (eID) is issued that can be used ... online commerce and public sector organizations. Because ..... SearchUnifiedCommunications.com Definitions, Access date.
total electron content derived from global positioning system during ...
African Journals Online (AJOL)
SULUNGU
POSITIONING SYSTEM DURING SOLAR MAXIMUM OF 2012-2013. OVER THE ..... diffusion of the transported electrons from the equator (Panda et al. 2015). As the sun rises, the ..... Wang M and Christensen AB 2008 Features of annual and ...
Design for Reliability of Power Electronics in Renewable Energy Systems
DEFF Research Database (Denmark)
Ma, Ke; Yang, Yongheng; Wang, Huai
2014-01-01
Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...
Monitoring and control system of the Saclay electron linear accelerator
International Nuclear Information System (INIS)
Lafontaine, Antoine
1974-01-01
A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr
ELECTRONIC PAYMENT SYSTEMS AND THEIR POSSIBLE WAY OF DEVELOPMENT
Directory of Open Access Journals (Sweden)
K. V. Karvai
2013-01-01
Full Text Available With development of a century of technologies, the economy has had access also for development in Internet industry sphere too. Thanks to this development have appeared: e-money, electronic payment systems, Internet-banking. In the given work the general scheme of works of electronic payment systems, their conditions and function, examples of possible ways of development are presented. In the conclusion the recommendations how it is possible to optimize the market for development of electronic commerce are given and resulted
Electronic control system for irradiation probes
International Nuclear Information System (INIS)
Gluza, E.; Neumann, J.; Zahalka, F.
1980-01-01
The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)
Electronic medical records system user acceptance
CSIR Research Space (South Africa)
Erasmus, L
2015-06-01
Full Text Available on literature and confirmed in this case study, if adoption of EMR systems is the ultimate goal, the implementation thereof should be properly managed with strong leadership and political backing at the highest level. Adoption is also supported by keeping...
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Renewable Energy Systems in the Power Electronics Curriculum
DEFF Research Database (Denmark)
Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus
2005-01-01
of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...... as a full-scale example. Different project examples will be given as well as important laboratories for adjustable speed drives and renewable energy systems which are used at the university are described.......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...
Power Electronics and Reliability in Renewable Energy Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Ma, Ke; Zhou, Dao
2012-01-01
Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...
Conduction mechanism studies on electron transfer of disordered system
Institute of Scientific and Technical Information of China (English)
徐慧; 宋祎璞; 李新梅
2002-01-01
Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.
Terrestrial radiation effects in ULSI devices and electronic systems
Ibe, Eishi H
2014-01-01
A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...
The integration of cryogenic cooling systems with superconducting electronic systems
International Nuclear Information System (INIS)
Green, Michael A.
2003-01-01
The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.
A Thermoelectric Generation System and Its Power Electronics Stage
DEFF Research Database (Denmark)
Gao, Junling; Sun, Kai; Ni, Longxian
2012-01-01
stage and signal-conditioning circuits of the load, including DC–DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG...... system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC–DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features...... a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify...
Data Acquisition System for Electron Energy Loss Coincident Spectrometers
International Nuclear Information System (INIS)
Zhang Chi; Yu Xiaoqi; Yang Tao
2005-01-01
A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown
Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies
Energy Technology Data Exchange (ETDEWEB)
Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.
2008-03-01
This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.
Integration of electronic document management system with other systems in a company
Pintar, Matej
2016-01-01
This master's thesis presents specific model of integration between electronic document management system and other systems in a medium-sized company in Slovenia. The introduction part of the thesis begins with theoretical basis of the research, which is the integration of computer systems. The introduction part is folowed by presentation of a concrete electronic document management system EBA DMS. Central part of the master's thesis presents different methods of integration of electronic doc...
Help system for control of JAERI FEL (Free Electron laser)
International Nuclear Information System (INIS)
Sugimoto, Masayoshi
1993-01-01
The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)
STRATEGY FOR EVALUATION AND SELECTION OF SYSTEMS FOR ELECTRONIC LEARNING
Dubravka Mandušić; Lucija Blašković
2012-01-01
Today`s technology supported and accelerated learning time requires constant and continuous acquisition of new knowledge. On the other hand, it does not leave enough time for additional education. Increasing number of E-learning systems, withdraws a need for precise evaluation of functionality that those systems provide; so they could be reciprocally compared. While implementing new systems for electronic learning, it is very important to pre-evaluate existing systems in order to ...
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
Electronic security systems better ways to crime prevention
Walker, Philip
2013-01-01
Electronic Security Systems: Better Ways to Crime Prevention teaches the reader about the application of electronics for security purposes through the use of case histories, analogies, anecdotes, and other related materials. The book is divided into three parts. Part 1 covers the concepts behind security systems - its objectives, limitations, and components; the fundamentals of space detection; detection of intruder movement indoors and outdoors; surveillance; and alarm communication and control. Part 2 discusses equipments involved in security systems such as the different types of sensors,
CMS Forward Pixel Upgrade Electronics and System Testing
Weber, Hannsjorg Artur
2016-01-01
This note discusses results of electronics and system testing of the CMS forward pixel (FPIX) detector upgrade for Phase 1. The FPIX detector is comprised of four stand-alone half cylinders, each of which contains frontend readout electronic boards, power regulators, cables and fibers in addition to the pixel modules. All of the components undergo rigorous testing and quality assurance before assembly into the half cylinders. Afterwards, we perform full system tests on the completely assembled half cylinders, including calibrations at final operating temperatures, characterization of the realistic readout chain, and system grounding and noise studies. The results from all these tests are discussed.
National electronic medical records integration on cloud computing system.
Mirza, Hebah; El-Masri, Samir
2013-01-01
Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.
Electronic systems study topics in physics book 8
Bolton, William
2013-01-01
Electronic Systems is concerned with electronic systems such as sine-wave oscillators, amplifiers with negative feedback, operational amplifiers, analogue and digital computers, switching circuits, bistable circuits, and microprocessors. This text is comprised of five chapters; the first of which introduces the basic ideas of a system, feedback, control, and logic gates. Examples of feedback and closed-loop control are given, and the distinction between the effects of positive and negative feedback is described, along with the functions of AND, OR, NOT, NOR, and NAND logic gates. The next chap
A set of dosimetry systems for electron beam irradiation
International Nuclear Information System (INIS)
Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng
1999-01-01
To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)
Front-end electronics for multichannel semiconductor detector systems
Grybos, P
2010-01-01
Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...
Electronic structure properties of UO2 as a Mott insulator
Sheykhi, Samira; Payami, Mahmoud
2018-06-01
In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.
Teaching Case: Analysis of an Electronic Voting System
Thompson, Nik; Toohey, Danny
2014-01-01
This teaching case discusses the analysis of an electronic voting system. The development of the case was motivated by research into information security and management, but as it includes procedural aspects, organizational structure and personnel, it is a suitable basis for all aspects of systems analysis, planning and design tasks. The material…
Use of electronic information systems in nursing management.
Lammintakanen, Johanna; Saranto, Kaija; Kivinen, Tuula
2010-05-01
The purpose of this study is to describe nurse managers' perceptions of the use of electronic information systems in their daily work. Several kinds of software are used for administrative and information management purposes in health care organizations, but the issue has been studied less from nurse managers' perspective. The material for this qualitative study was acquired according to the principles of focus group interview. Altogether eight focus groups were held with 48 nurse managers from both primary and specialized health care organizations. The nurse managers were asked in focus groups to describe the use of information systems in their daily work in addition to some other themes. The material was analyzed by inductive content analysis using ATLAS.ti computer program. The main category "pros and cons of using information systems in nursing management" summarized the nurse managers' perceptions of using electronic information systems. The main category consisted of three sub-categories: (1) nurse managers' perceptions of the use of information technology; (2) usability of management information systems; (3) development of personnel competencies and work processes. The nurse managers made several comments on the implementation of immature electronic information systems which caused inefficiencies in working processes. However, they considered electronic information systems to be essential elements of their daily work. Furthermore, the nurse managers' descriptions of the pros and cons of using information systems reflected partly the shortcomings of strategic management and lack of coordination in health care organizations. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
A Comparative Study of Electronic Performance Support Systems
Nguyen, Frank; Klein, James D.; Sullivan, Howard
2005-01-01
Electronic performance support systems (EPSS) deliver relevant support information to users while they are performing tasks. The present study examined the effect of different types of EPSS on user performance, attitudes, system use and time on task. Employees at a manufacturing company were asked to complete a procedural software task and…
Nonlinear transport behavior of low dimensional electron systems
Zhang, Jingqiao
The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance
Progress of electron processing system useful for environmental preservation
International Nuclear Information System (INIS)
Hoshi, Yasuhisa
1998-01-01
Electron Processing has been used in the field of industrial application, mainly to process plastics or polymers, which is represented by the cross-linking of Polyethylene to improve heat resistance. On the other hand, there has been many research studies to use Electron Beam for an environmental preservation. Typical examples are Sterilization of Food, Flue Gas Treatment, Sterilization of Waste Water Sludge, Purification of Water, Removal of Volatile Organic Compound (VOC), etc. These research works have been done in the USA, Germany, Austria, Japan, etc. They reported some of the features of electron beam method. In addition, there is an unique report that the combination of Ozone and Electron Beam provides a better efficiency of the purification of the water. Recently, they have started the investigation for the practical use of Electron Beam in the environmental application. Flue gas treatment is a remarkable example of the investigation. They built the demonstration plant last year and they started the operation last fall. Presently, the system is in a demonstrative operation. This paper will report an outline of the R and D works of environmental applications of Electron Beam and also will introduce the latest technologies of Electron Processing Systems which will be available for the environmental preservation. (author)
Cooled electronic system with thermal spreaders coupling electronics cards to cold rails
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2013-07-23
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Trends in Power Electronics and Control of Renewable Energy Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas
2010-01-01
term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...
Study on tamper-indicating technology in electronic seals system
International Nuclear Information System (INIS)
Xu Xiong; Han Feng; Zuo Guangxia; Zhao Xin; Zhang Quanhu; Di Yuming
2009-01-01
To strengthen our national arms control verification technical storage and deepen electronic seals' research, this paper mainly introduces seals' characteristics, functions and work principle, studies on tamper-indicating technology which is a key technology in electronic seals, designs some hardware circuit such as optical transceiver, temperature detection circuit, move detection circuit, re-prized circuit and so on, also designs a software program which is used for recording the destroying or tampering events' information. Experimental results show that electronic seals system can record the destroying or tampering events' information accurately and quickly, and give corresponding tamper-indication. (authors)
Design of automatic tracking system for electron beam welding
International Nuclear Information System (INIS)
He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan
2004-01-01
The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)
Power Electronics for Renewable Energy Systems - Status and Trends
DEFF Research Database (Denmark)
Blaabjerg, Frede; Ma, Ke; Yang, Yongheng
2014-01-01
electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....
International Conference on Power Electronics and Renewable Energy Systems
Suresh, L; Dash, Subhransu; Panigrahi, Bijaya
2015-01-01
The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
Private Electronic Money, Fiat Money and the Payments System
Andrew B. Whinston; Paula Hernandez-Verme; Haibo Huang
2004-01-01
Temzelides and Williamson (2001) provides valuable contribution into the private money literature, however, as pointed out by Schreft (2001), while the model provides insight about historical experiences with private paper monies, it does not provide a clear insight on how a modern system of private electronic money would work and how the necessary network shall function. Our target of this paper is to fill in that gap. We present a model with two types of private electronic currencies with o...
2D electron systems viewed through an RF spectrometer
International Nuclear Information System (INIS)
Andrei, E.Y.
1994-01-01
Electrons trapped at the liquid helium-vacuum interface are an almost ideal realization of a 2D electron system. I will describe experiments probing the in-plane as well as the out-of-plane motion of the electrons. The former have emphasized the dynamics and thermodynamics of the electronic motion within the plane to understand the nature of the liquid-solid transition and to outline its phase boundary. The latter have studied the escape out of the electron layer and provided an opportunity to observe tunneling in a clean and well-characterized system as well as to measure the effects of correlations on the tunneling process. More recently experiments in the presence of a magnetic field transverse to the direction of tunneling have revealed several novel phenomena associated with the magnetic coupling between the in-plane and the out-of-plane electronic motions. Together, these experiments helped uncover the multi-faceted physics that can be found in this system. (orig.)
Electron capture in pseudo-two-electron systems: Ar8++He
International Nuclear Information System (INIS)
Kimura, M.; Olson, R.E.
1985-01-01
Molecular-structure calculations using the pseudopotential method have been performed on the (ArHe) 8+ system. The cross section for single-electron capture in Ar 8+ +He collisions was calculated for energies from 20 eV to 10 keV/amu. The perturbed-stationary-state method [M. Kimura, H. Sato, and R. E. Olson, Phys. Rev. A 28, 2085 (1983)], modified to include electron translation factors appropriate to two-electron systems, was used. The total cross section is relatively energy independent with a value of approximately 2.5 x 10 -15 cm 2 . The n = 4 level of Ar 7+ is found to be preferentially populated, with the 4f level being dominant
Phase synchronized quasiperiodicity in power electronic inverter systems
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Andriyanov, Alexey I.
2014-01-01
The development of switch-mode operated power electronic converter systems has provided a broad range of new effective approaches to the conversion of electric power. In this paper we describe the transitions from regular periodic operation to quasiperiodicity and high-periodic resonance behavior...... findings are verified through comparison with an experimental inverter system. The results shed light on the transitions to quasiperiodicity and to various forms of three-frequency dynamics in non-smooth systems....
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien
2015-03-01
In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.
Reliability and corrosion induced degradation of electronic system
International Nuclear Information System (INIS)
Tapas, V.K.; Varde, P.V.
2014-01-01
This paper describe the corrosion induced degradation of electronic system failures due to environmental conditions such as humidity, temperature, ionic or organic contaminants, residuals; etc. which can accelerates as electrochemical reaction and causes corrosion of electronic components, Corrosive gases and water vapours from humid condition come into contact with the base metal results in buildup of various chemical reaction products. Ionic contamination responsible for electrochemical reaction, forms soluble complexes with metals, it can degrade the protective oxide film that forms on the positively biased metallization and/or lead to change in the local pH. Deterioration of metal components or electronic circuitry due to electrochemical migration needs to be controlled in order to reduce the corrosion. With explosive increase in demand and miniaturization in electronic system resulted in smaller components, closer spacing and thinner metallic path, it is expected that the corrosion and deterioration of electronic components may become cause or concern. This paper summarises the current understanding of chemistry behind possible causes of corrosion of electronic devices and its failure mechanism. (author)
Electronic properties of graphene-based bilayer systems
Energy Technology Data Exchange (ETDEWEB)
Rozhkov, A.V., E-mail: arozhkov@gmail.com [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: fnori@riken.jp [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2016-08-23
This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.
Radiation Testing of Electronics for the CMS Endcap Muon System
INSPIRE-00070357; Celik, A.; Durkin, L.S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.
2013-01-01
The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels o...
Power Electronics Control of Wind Energy in Distributed Power System
DEFF Research Database (Denmark)
Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede
2008-01-01
is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....
Charge-transfer collisions involving few-electron systems
International Nuclear Information System (INIS)
Kirchner, T.
2016-01-01
Ion-atom collision systems that involve more than one electron constitute nonseparable few-body problems, whose full solution is difficult to say the least. At impact energies well below 1 keV/amu an expansion of the stationary scattering wave function in terms of a limited number of products of nuclear and molecular state wave functions (amended to satisfy scattering boundary conditions) is feasible and usually sufficient to obtain accurate charge-transfer cross sections provided the electronic wave functions include configuration interaction. At energies above 1 keV/amu this approach becomes inefficient and close-coupling methods within the semi classical approximation are better suited to treat the problem. For bare-ion collisions from helium target atoms explicit solutions of the two-electron time-dependent Schrödinger equation can be achieved, but are computationally costly and cannot be extended to problems which involve more than two electrons.
Electron linear accelerator system for natural rubber vulcanization
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
Architectural development of an advanced EVA Electronic System
Lavelle, Joseph
1992-01-01
An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.
A decision technology system for health care electronic commerce.
Forgionne, G A; Gangopadhyay, A; Klein, J A; Eckhardt, R
1999-08-01
Mounting costs have escalated the pressure on health care providers and payers to improve decision making and control expenses. Transactions to form the needed decision data will routinely flow, often electronically, between the affected parties. Conventional health care information systems facilitate flow, process transactions, and generate useful decision information. Typically, such support is offered through a series of stand-alone systems that lose much useful decision knowledge and wisdom during health care electronic commerce (e-commerce). Integrating the stand-alone functions can enhance the quality and efficiency of the segmented support, create synergistic effects, and augment decision-making performance and value for both providers and payers. This article presents an information system that can provide complete and integrated support for e-commerce-based health care decision making. The article describes health care e-commerce, presents the system, examines the system's potential use and benefits, and draws implications for health care management and practice.
Survey of electronic safety systems in accelerator applications
International Nuclear Information System (INIS)
Mahoney, K.
1997-01-01
This paper presents the preliminary results and analysis of a comprehensive survey of the implementation of accelerator safety interlock systems from over 30 international labs. At the present time there is not a self consistent means to evaluate both the experiences and level of protection provided by electronic safety interlock systems. This research is intended to analyze the strength and weaknesses of several different types of interlock system implementation methodologies. Research, medical, and industrial accelerators are compared. Thomas Jefferson National Accelerator Facility (TJNAF) was one of the first large particle accelerators to implement a safety interlock system using programmable logic controllers. Since that time all of the major new U.S. accelerator construction projects plan to use some form of programmable electronics as part of a safety interlock system in some capacity
Challenges in implementing electronic hand hygiene monitoring systems.
Conway, Laurie J
2016-05-02
Electronic hand hygiene (HH) monitoring systems offer the exciting prospect of a more precise, less biased measure of HH performance than direct observation. However, electronic systems are challenging to implement. Selecting a system that minimizes disruption to the physical infrastructure and to clinician workflow, and that fits with the organization's culture and budget, is challenging. Getting front-line workers' buy-in and addressing concerns about the accuracy of the system and how the data will be used are also difficult challenges. Finally, ensuring information from the system reaches front-line workers and is used by them to improve HH practice is a complex challenge. We describe these challenges in detail and suggests ways to overcome them. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
High energy electron disinfection of sewage wastewater in flow systems
Energy Technology Data Exchange (ETDEWEB)
Miyata, T; Arai, H; Hosono, M; Tokunaga, O; Machi, S [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kondoh, M; Minemura, T; Nakao, A; Seike, Y [Sumitomo Heavy Industries Ltd., Tokyo (Japan)
1990-01-01
The disinfection of effluent municipal wastewaters by high-energy electrons in flow systems was studied using an experimental apparatus which has the maximum treatment capacity of 10.8 m{sup 3}/h. An electron accelerator with an accelerating voltage of 2 MV was used. The electron beam current was controlled to deliver the desired doses ranging from 0.05 to 1 kGy. Treatment times were in the range from 0.0022 to 0.051 s. Preliminary experiments with batch system using Petri dish of 100 ml showed that the effectiveness of electron irradiation on inactivation of coliforms was not influenced significantly by factors such as pH, SS, COD, DO and irradiation temperature. The dose required to produce 99.9% kill in the total population presented in wastewater were markedly affected by the thickness of water exposure to electron irradiation; that is, 0.39, 0.4 and 0.44 kGy for the depth of 5, 6 and 7 mm, respectively. The data obtained after a suitable correction for the doses due to the depth dose distribution showed no deviation from an experimental survival curve. Experiments with flow system indicated no measureable effect of the flow rate of wastewaters on the efficiency of disinfection in the range from 0.5 to 3.5 m/s. (author).
An automatic chip structure optical inspection system for electronic components
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Revisiting Mg–Mg2Ni System from Electronic Perspective
Directory of Open Access Journals (Sweden)
Zhao Qian
2017-11-01
Full Text Available Both Mg and Mg2Ni are promising electrode materials in conversion-type secondary batteries. Earlier studies have shown their single-phase prospects in electro-devices, while in this work, we have quantitatively reported the electronic properties of their dual-phase materials, that is, Mg–Mg2Ni alloys, and analyzed the underlying reasons behind the property changes of materials. The hypoeutectic Mg–Mg2Ni alloys are found to be evidently more conductive than the hypereutectic Mg–Mg2Ni system. The density functional theory (DFT calculations give the intrinsic origin of electronic structures of both Mg2Ni and Mg. The morphology of quasi-nanoscale eutectics is another factor that can affect the electronic properties of the investigated alloy system; that is, the electrical property change of the investigated alloys system is due to a combination of the intrinsic property difference between the two constituting phases and the change of eutectic microstructures that affect electron scattering. In addition, regarding the Mg–Mg2Ni alloy design for device applications, the electronic property and mechanical aspect should be well balanced.
International Nuclear Information System (INIS)
Huang Jiang; Xiong Yongqian; Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Yu Tiaoqin; Fan Mingwu; Yang Bo
2014-01-01
The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size. (authors)
Intermolecular thermoelectric-like effects in molecular nano electronic systems
International Nuclear Information System (INIS)
Sabzyan, H.; Safari, R.
2012-01-01
Intramolecular thermoelectric-like coefficients are introduced and computed of a single molecule nano electronic system. Values of the electronic Intramolecular thermoelectric-like coefficients are calculated based on the density and energy transfers between different parts of the molecule using quantum theory of atoms in molecule. Since, Joule and Peltier heating are even (symmetrical) and odd (antisymmetric) functions of the external bias, it is possible to divide Intramolecular thermoelectric-like coefficients into two components, symmetrical and antisymmetrical Intramolecular thermoelectric-like coefficients, which describe the intramolecular Joule-like and Peltier-like effects, respectively. In addition, a semiclassical temperature model is presented to describe intramolecular temperature mapping (intramolecular energy distributions) in molecular nano electronic systems.
Modeling power electronics and interfacing energy conversion systems
Simões, Marcelo Godoy
2017-01-01
Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.
Electronic clinical safety reporting system: a benefits evaluation.
Elliott, Pamela; Martin, Desmond; Neville, Doreen
2014-06-11
Eastern Health, a large health care organization in Newfoundland and Labrador (NL), started a staged implementation of an electronic occurrence reporting system (used interchangeably with "clinical safety reporting system") in 2008, completing Phase One in 2009. The electronic clinical safety reporting system (CSRS) was designed to replace a paper-based system. The CSRS involves reporting on occurrences such as falls, safety/security issues, medication errors, treatment and procedural mishaps, medical equipment malfunctions, and close calls. The electronic system was purchased from a vendor in the United Kingdom that had implemented the system in the United Kingdom and other places, such as British Columbia. The main objective of the new system was to improve the reporting process with the goal of improving clinical safety. The project was funded jointly by Eastern Health and Canada Health Infoway. The objectives of the evaluation were to: (1) assess the CSRS on achieving its stated objectives (particularly, the benefits realized and lessons learned), and (2) identify contributions, if any, that can be made to the emerging field of electronic clinical safety reporting. The evaluation involved mixed methods, including extensive stakeholder participation, pre/post comparative study design, and triangulation of data where possible. The data were collected from several sources, such as project documentation, occurrence reporting records, stakeholder workshops, surveys, focus groups, and key informant interviews. The findings provided evidence that frontline staff and managers support the CSRS, identifying both benefits and areas for improvement. Many benefits were realized, such as increases in the number of occurrences reported, in occurrences reported within 48 hours, in occurrences reported by staff other than registered nurses, in close calls reported, and improved timelines for notification. There was also user satisfaction with the tool regarding ease of use
Designing a framework for a unified electronic identity system ...
African Journals Online (AJOL)
In this paper, a Unified Identity System is proposed where single electronic identity (eID) is issued that can be used across the various platforms of business transaction. The activity/state diagram of the model is presented, and the means of authentication is based on the Secure Assertion Markup Language (SAML) ...
An Electronic Dictionary and Translation System for Murrinh-Patha
Seiss, Melanie; Nordlinger, Rachel
2012-01-01
This paper presents an electronic dictionary and translation system for the Australian language Murrinh-Patha. Its complex verbal structure makes learning Murrinh-Patha very difficult. Design learning materials or a dictionary which is easy to understand and to use also presents a challenge. This paper discusses some of the difficulties posed by…
A security analysis of the Dutch electronic patient record system
van 't Noordende, G.
2010-01-01
In this article, we analyze the security architecture of the Dutch Electronic Patient Dossier (EPD) system. Intended as a national infrastructure for exchanging medical patient records among authorized parties (particularly, physicians), the EPD has to address a number of requirements, ranging from
Security in the Dutch electronic patient record system
van 't Noordende, G.
2010-01-01
In this article, we analyze the security architecture of the Dutch Electronic Patient Dossier (EPD) system. Intended as a mandatory infrastructure for exchanging medical records of most if not all patients in the Netherlands among authorized parties (particularly, physicians), the EPD has to address
ELECTRONIC SYSTEM FOR EXPERIMENTATION IN AC ELECTROGRAVIMETRY I: TECHNIQUE FUNDAMENTALS
Directory of Open Access Journals (Sweden)
Róbinson Torres
Full Text Available Basic fundamentals of AC electrogravimetry are introduced. Their main requirements and characteristics are detailed to establish the design of an electronic system that allows the appropriate extraction of data needed to determine the electrogravimetric transfer function (EGTF and electrochemical impedance (EI, in an experimental set-up for the AC electrogravimetry technique.
Redesigning a collection system for "small" consumer electronics
Melissen, Franciscus
2006-01-01
This paper establishes that the collection system within the recycling scheme for consumer electronics in the Netherlands has not been entirely successful in convincing consumers to hand in their used appliances by means of dedicated collection routes. Particularly regarding small appliances,
Measuring and recording system for electron beam welding parameters
International Nuclear Information System (INIS)
Lobanova, N.G.; Lifshits, M.L.; Efimov, I.I.
1987-01-01
The observation possibility during electron beam welding of circular articles with guaranteed clearance of welding bath leading front in joint gap and flare cloud over the bath by means of television monitor is considered. The composition and operation mode of television measuring system for metric characteristics of flare cloud and altitude of welding bath leading front in the clearance are described
Electronic Payment System in Nigeria: Its Economic Benefits and Challenges
Okifo, Joseph; Igbunu, Richard
2015-01-01
The crux of this study is on the adoption of E-payment system in Nigeria: Its economic benefits and challenges. The arrival of the internet has taken electronic payments and transactions to an exponential growth level. Consumers could purchase goods and services from the internet and send unencrypted credit card numbers across the network, which…
Household of care in electronic health information exchange systems
CSIR Research Space (South Africa)
Sibiya, Mhlupheki G
2017-09-01
Full Text Available by the organisation have presented the protocols and message profiles that can be used for communication among the systems within Electronic Health Information Exchange (HIE)[17, 6]. HIE “allows doctors, nurses, pharmacists, other healthcare providers and patients...
Impact of CALS on Electronic Publishing Systems and Users.
Beazley, William G.
1990-01-01
The U.S. Department of Defense has begun using its buying power to enforce standards on the vendors and contractors of automatic data processing hardware and software. An example of this, the Computer-Aided Acquisition and Logistic Support (CALS) program, is described, and how it will affect electronic publishing systems is discussed. (five…