WorldWideScience

Sample records for strongly temperature dependent

  1. Why does the martensitic transformation temperature strongly depend on composition?

    International Nuclear Information System (INIS)

    Ren, X.; Otsuka, K.

    2000-01-01

    The reason for the strong composition and heat-treatment dependence of the martensitic transformation temperature was investigated by a simple Landau-type model. Assuming the anharmonic and coupling coefficients are insensitive to composition, we obtained an important result martensitic transformation occurs at a critical elastic constant c' and a critical TA 2 phonon energy ω η 2 , which are independent of alloy composition. This result gained support from a large body of experimental data of Cu-based alloys. Since c' and phonon energy are strongly dependent on composition, the constancy of c' at Ms demands that the (transformation) temperature must exhibit an opposite effect to compensate the composition effect. Therefore, the lower the c', the higher the Ms is. Because the temperature dependence of c' is weak (due to the 1 st order nature of the transformation), the big c' change by a slight composition change must be compensated by a large change in temperature. Thus Ms has strong composition dependence. The effect of quench is to increase point defects, being equivalent to a composition change, thus has a strong effect on Ms. From the present study, we can conclude that the strong composition dependence of Ms is mainly a harmonic effect. (orig.)

  2. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  3. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene

    OpenAIRE

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-01-01

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (2 to 5 layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us ...

  4. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    Science.gov (United States)

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  5. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819

  6. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis.

    Directory of Open Access Journals (Sweden)

    Lizanne Janssens

    Full Text Available Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance. Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii strongly differed depending on the fitness-related variable under study, (iii were not always predictable based on the effect of the environmental condition in isolation, and (iv bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities.

  7. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    Science.gov (United States)

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  8. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Both STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.

  9. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  10. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  11. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    Science.gov (United States)

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  13. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  14. An important role of temperature dependent scattering time in understanding the high temperature thermoelectric behavior of strongly correlated system: La0.75Ba0.25CoO3.

    Science.gov (United States)

    Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K

    2017-03-15

    In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be  ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at  ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of  ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.

  15. Universal contact of strongly interacting fermions at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hui; Liu Xiaji; Drummond, Peter D, E-mail: hhu@swin.edu.au, E-mail: xiajiliu@swin.edu.au, E-mail: pdrummond@swin.edu.au [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-03-15

    The recently discovered universal thermodynamic behavior of dilute, strongly interacting Fermi gases also implies a universal structure in the many-body pair-correlation function at short distances, as quantified by the contact I. Here, we theoretically calculate the temperature dependence of this universal contact for a Fermi gas in free space and in a harmonic trap. At high temperatures above the Fermi degeneracy temperature, T{approx}>T{sub F}, we obtain a reliable non-perturbative quantum virial expansion up to third order. At low temperatures, we compare different approximate strong-coupling theories. These make different predictions, which need to be tested either by future experiments or by advanced quantum Monte Carlo simulations. We conjecture that in the universal unitarity limit, the contact or correlation decreases monotonically with increasing temperature, unless the temperature is significantly lower than the critical temperature, T<

  16. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  17. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  18. Measurements of temperature dependence of 'localized susceptibility'

    CERN Document Server

    Shiozawa, H; Ishii, H; Takayama, Y; Obu, K; Muro, T; Saitoh, Y; Matsuda, T D; Sugawara, H; Sato, H

    2003-01-01

    The magnetic susceptibility of some rare-earth compounds is estimated by measuring magnetic circular dichroism (MCD) of rare-earth 3d-4f absorption spectra. The temperature dependence of the magnetic susceptibility obtained by the MCD measurement is remarkably different from the bulk susceptibility in most samples, which is attributed to the strong site selectivity of the core MCD measurement.

  19. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  20. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  1. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    able for comparison with theory, the resistivity data in α-Ga at low temperature strongly support this anisotropic ... renormalized free-atom (RFA) model [3], band model [5–7] and quantum Monte Carlo ... probability distribution function.

  2. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  3. Temperature dependence of coherence in transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Schloer, Steffen; Braumueller, Jochen; Lukashenko, Oleksandr; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Physikalisches Institut, KIT, Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [NIST, Boulder, CO (United States)

    2015-07-01

    Superconducting qubits are a promising field of research, not only with respect to quantum computing but also as highly sensitive detectors and due to the possibility of using them to study fundamental implications of quantum mechanics. The requirements for qubits that can be used as building blocks in a potential quantum computer are challenging. Modern superconducting qubits like the transmon are strong candidates for achieving these goals. The main challenge here is to increase the coherence of prepared quantum states. Here, we experimentally investigate the influence of temperature variation on relaxation and dephasing of a transmon qubit. Our goal is to understand decoherence mechanisms in material optimized circuits. Aiming at longer coherence, in this case peaking over 50 μs for T{sub 1} and T{sub 2}, our samples are fabricated at NIST using two different materials. Low-loss TiN was used for the shunt capacitance as well as the resonator, combined with shadow evaporated ultra-small Al-AlO{sub x}-Al Josephson junctions. We will present temperature-dependent data on qubit relaxation and dephasing times as well as power spectra. Our data will be compared to previously obtained temperature dependent data for other types of qubits.

  4. Strong dependence of ultracold chemical rates on electric dipole moments

    International Nuclear Information System (INIS)

    Quemener, Goulven; Bohn, John L.

    2010-01-01

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  5. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  6. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  7. TEMPERATURE DEPENDENCE OF THE THERMAL ...

    African Journals Online (AJOL)

    Thermal conductivity values, in the temperature range 300 – 1200 K, have been measured in air and at atmospheric pressure for a Kenyan kaolinite refractory with 0% - 50% grog proportions. The experimental thermal conductivity values were then compared with those calculated using the Zumbrunnen et al [1] and the ...

  8. A multifluid model extended for strong temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.

  9. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  10. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    Science.gov (United States)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  11. Temperature dependence of radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

    1990-01-01

    Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

  12. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  13. Temperature dependency in motor skill learning.

    Science.gov (United States)

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  14. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  15. Temperature Dependence of Factors Controlling Isoprene Emissions

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  16. Evaluation of temperature dependent neutron resonance integrals

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1975-01-01

    The Fourier transform method is extended for evaluating temperature dependent resonance integrals and Doppler coefficients. With the temperature dependent cross-sections, the slowing-down equation is transformed into a Fredholm integral equation of second kind. A method of solution is presented using the familiar Gauss-Hermite quadrature formulae. As a byproduct of the above technique, a fast and accurate method for computing the resonance integral J-function is given. (orig.) [de

  17. Investigation Of Temperature Dependent Characteristics Of ...

    African Journals Online (AJOL)

    The structure, magnetization and magnetostriction of Laves phase compound TbCo2 were investigated by temperature dependent high resolution neutron powder diffraction. The compound crystallizes in the cubic Laves phase C15 structure above its Curie temperature, TC and exhibits a rhombohedral distortion (space ...

  18. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  19. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  20. The temperature dependent amide I band of crystalline acetanilide

    International Nuclear Information System (INIS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-01-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  1. The temperature dependent amide I band of crystalline acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Physics Department, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Freedman, Holly [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  2. The temperature dependent amide I band of crystalline acetanilide

    Science.gov (United States)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  3. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  4. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  5. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  6. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    Science.gov (United States)

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  7. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    International Nuclear Information System (INIS)

    Niez, J.J.

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  8. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  9. Theory of temperature dependent photoemission spectrum of heavy fermion semiconductors

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1998-01-01

    The heavy fermion semiconductors are a class of strongly correlated materials, that at high temperatures show properties similar to those of heavy fermion materials, but at low temperatures show a cross-over into a semi-conducting state. The low temperature insulating state is characterized by an anomalously small energy gap, varying between 10 and 100 K. The smallness of the gap is attributed to the result of a many-body renormalization, and is temperature dependent. The temperature dependence of the electronic spectral density of states is calculated, using the Anderson lattice model at half filling. The spectrum is calculated to second order in 1/N, where N is the degeneracy of the 'f' orbitals, using a slave boson technique. The system is an indirect gap semi-conductor, with an extremely temperature dependent electronic spectral density A(k, ω). The indirect gap is subject to a temperature dependent many-body renormalization, and leads to a sharp temperature dependent structure in the angle resolved photo-emission spectrum at the indirect threshold. The theoretical predictions are compared with experimental observations on FeSi. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  10. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    volume which attains a value of 1.0 in the fully saturated material. In the case of fully saturated bentonite with high dry density this value may exceed this theoretical limit due to very strong forces acting within the structure of the solid material which change the properties of the fixed water monolayer (the highest values of water density are close to 2000 kg/m 3 ). The aim of the experiment was to compare the degree of saturation of samples saturated at different temperatures (25 deg. C, 95 deg. C and 110 deg. C). Nine small physical models were used in the experiment. Cylindrically shaped samples with a height of 20 mm and a diameter of 30 mm were tested. The models were perforated and equipped with permeable plates on both bases to allow the supply of water. The expansion of the samples (volume change) was not permitted. The swelling pressure was not measured so as to keep the construction of the models as simple as possible. The saturation medium consisted of distilled water. The samples were compacted directly into the body of the individual models. The investigated medium consisted of Czech Ca-Mg bentonite from the Rokle locality, sieved to a fraction of 0-1 mm. The target dry density was 1700 kg/m 3 because Rokle bentonite at this dry density level contains the desired properties for use as a buffer (principally low permeability and a certain level of swelling pressure). A specific density of 2800 kg/m 3 was used for further calculations. Three models were used for testing at a certain temperature. The three models were then placed in a pressure cooker and each pressure cooker was stored at a different temperature (25 deg. C, 95 deg. C and 110 deg. C). The cookers had safety valves to limit the increase in generated steam pressure at higher temperatures; the exact monitoring of steam pressure was, unfortunately not possible. The models were dismantled after all the bentonite samples became fully saturated. The experiment was monitored by the regular weighing

  11. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  12. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  13. Temperature dependent quasiparticle renormalization in nickel metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II

    2009-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.

  14. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  15. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  16. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    Compton profiles of momentum distribution of conduction electrons in the orthorhombic phase of -Ga metal at low temperature are calculated in the band model for the three crystallographic directions (100), (010), and (001). Unlike the results at room temperature, previously reported by Lengeler, Lasser and Mair, the ...

  17. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  18. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  19. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  20. Temperature dependence of PZT film optical properties

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    11-12, - (2001), s. 352-354 ISSN 0447-6441 R&D Projects: GA ČR GA202/00/1425; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : refractive index profile * PZT film * temperature dependence of optical properties Subject RIV: BH - Optics, Masers, Lasers

  1. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  2. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  3. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  4. Temperature dependence of gafchromic MD-55 dosimeter

    International Nuclear Information System (INIS)

    Klassen, Norman V.; Zwan, Len van der; Cygler, Joanna

    1997-01-01

    Objective: Gafchromic MD-55 is a fairly new, thin film dosimeter that develops a blue color (λ max = 676 nm) when irradiated with ionizing radiation. The increase in absorbance is nearly proportional to the absorbed dose. MD-55 can be used for high precision dosimetry if care is taken to assure reproducible film orientation in the spectrophotometer as well as temperature control during both irradiation and reading. In order to achieve the maximum sensitivity of this dosimeter the readings of the optical density should be taken at λ max . It was reported for another type of Gafchromic film (DM-1260), that both λ max and ε max decrease with an increase in the temperature of the spectrophotometer. The purpose of this study was to characterize the reading temperature dependence of the new type of Gafchromic film available on the market and to find optimal conditions for using it for high precision dosimetry. Materials and Methods: Irradiations were carried out using 60 Co gamma rays from an Eldorado irradiator. The dosimeters were sandwiched in a lucite phantom with 4.4 mm build-up and irradiated in the center of a 10 cm x 10 cm field at 1 meter from the source. The temperature during irradiations was 22 deg. C. The dose rate was about 0.68 Gy/min. Measurements of optical density were made using a Cary 210 spectrophotometer. A bandpass of 3.5 nm was used. The temperature of the baseplate of the sample holder was regulated to +/-0.05 deg. C and measured by a probe lying on the baseplate. In all cases, values of OD were only recorded after they had come to a constant value, which was reached within 5 minutes of inserting the dosimeter into the sample chamber of the spectrophotometer. Results: The temperature dependence of the OD at 676 nm was measured in 2 studies using 6 dosimeters that had received 0, 1.0, 3.5, 6.2, 14.5 Gy. Readings were taken at 7 temperatures between 18.8 and 28.1 deg. C. By returning to the initial temperature several hours later, it was found

  5. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  6. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  7. Temperature-dependent errors in nuclear lattice simulations

    International Nuclear Information System (INIS)

    Lee, Dean; Thomson, Richard

    2007-01-01

    We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems

  8. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  9. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  10. Modeling the temperature dependence of thermophysical properties: Study on the effect of temperature dependence for RFA.

    Science.gov (United States)

    Watanabe, Hiroki; Kobayashi, Yo; Hashizume, Makoto; Fujie, Masakatsu G

    2009-01-01

    Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.

  11. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  12. Temperature-dependent ion beam mixing

    International Nuclear Information System (INIS)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to 'radiation-enhanced diffusion' (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results

  13. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    International Nuclear Information System (INIS)

    Shaginyan, V. R.

    2011-01-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  14. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  15. Correction of SiPM temperature dependencies

    International Nuclear Information System (INIS)

    Kaplan, A.

    2009-01-01

    The performance of a high granular analogue hadronic calorimeter (AHCAL) using scintillator tiles with built-in Silicon Photomultiplier (SiPM) readout is reported. A muon beam is used for the minimum ionizing particle (MIP) based calibration of the single cells. The calibration chain including corrections for the non-linearity of the SiPM is presented. The voltage and temperature dependencies of the SiPM signal have been investigated using the versatile LED system of the AHCAL. Monitoring and correction methods are discussed. Measurements from the operation 2006 and 2007 at the CERN SPS test beam and data provided by the Institute for Theoretical and Experimental Physics (ITEP) in Moscow are compared.

  16. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  17. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  18. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  19. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  20. Current dependent angular magnetoresistance in strongly Pr-doped Y Ba2Cu3O7-δ single crystal

    International Nuclear Information System (INIS)

    Sandu, V; Gyawali, P; Katuwal, T; Almasan, C C; Taylor, B J; Maple, M B

    2009-01-01

    We report a strong dependence of the angular magnetoresistance (AMR) on the current density in Y Ba 2 Cu 3 O 7-δ single crystal above the critical temperature T c = 13 K for any applied field up to 14 T. We estimated the current dependence from the angular dependence of the top resistance R top , as measured on the face where the current is applied, and the bottom resistance R bot as measured on the opposite face. At any temperature, both below and above T c , R top decreases as the field becomes parallel to the current and ab-plane with an angle dependence that suggests an important contribution arising from the vortex flow. R bot evolves from a monotonic to nonmonotonic angle dependence with three minima and two maxima in the angle range 0 - 180 deg. as the temperature increases. For less Pr-doped samples, Y 0.58 Pr 0.42 Ba 2 Cu 3 O 7-δ (T c = 39 K) and Y 0.68 rP 0.32 Ba 2 Cu 3 O 7-δ (T c = 55 K), where the interplane resistivity is much lower, both R top and R bot follow the same monotonic angle dependence in all temperature and field range.

  1. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  2. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  3. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    Science.gov (United States)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  4. Regional amplification of extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M.; Orth, R.; Seneviratne, S. I.

    2016-12-01

    Land temperatures, and in particular hot extremes, will likely increase by more than 2° C in many regions, even in the case that the global temperature increase with respect to pre-industrial levels can be limited to 2°C. We investigate here the role of soil moisture-temperature feedbacks for projected changes of extreme temperatures by comparing experiments from the GLACE-CMIP5 (Global Land-Atmosphere Coupling Experiment - Coupled Model Intercomparison Project Phase 5) project. In particular, we consider fully coupled experiments with all 6 involved GCMs and corresponding experiments where soil moisture is fixed to the local present-day seasonal cycle until the end of the 21st century. We consider the yearly hottest days and apply a scaling approach whereby we relate changes of hottest days to global mean temperature increase. We find that soil moisture-temperature coupling significantly contributes to additional future warming of extreme temperatures in many regions: In particular, it can explain more than 70% of the warming amplification of hottest days compared to global mean temperature in Central Europe, Central North America and Northern Australia, and around 50% of this signal in the Amazonian Region and Southern Africa.

  5. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  6. Similar temperature dependencies of glycolytic enzymes : An evolutionary adaptation to temperature dynamics?

    NARCIS (Netherlands)

    Cruz, L.A.B.; Hebly, M.; Duong, G.H.; Wahl, S.A.; Pronk, J.T.; Heijnen, J.J.; Daran-Lapujade, P.; Van Gulik, W.M.

    2012-01-01

    Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in

  7. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  8. Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-12-01

    Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.

  9. Correlation between temperature dependence of elastic moduli and Debye temperature of paramagnetic metal

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Povzner, A.A.

    2000-01-01

    The correlation between the temperature dependence of elastic moduli and the Debye temperature of paramagnetic metal is analyzed in neglect of the temperature dependence of the Poison coefficient σ within the frames of the Debye-Grueneisen presentations. It is shown, that namely the temperature dependence of the elastic moduli determines primarily the temperature dependence of the Debye temperature Θ(T). On the other hand, the temperature dependence Θ(T) very weakly effects the temperature dependence of the elastic moduli. The later made it possible to formulate the self-consistent approach to calculation of the elastic moduli temperature dependence. The numerical estimates of this dependence parameters are conducted by the example of the all around compression modulus of the paramagnetic lutetium [ru

  10. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  11. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  12. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  13. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  14. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  15. Temperature Dependent Electrical Properties of PZT Wafer

    Science.gov (United States)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  16. Temperature dependent transport characteristics of graphene/n-Si diodes

    International Nuclear Information System (INIS)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10 −10  A) and rectification of more than 10 6 . We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler

  17. Temperature dependence of the two photon absorption in indium arsenide

    International Nuclear Information System (INIS)

    Berryman, K.W.; Rella, C.W.

    1995-01-01

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms

  18. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  19. Change of MMP dependent on temperature

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Akwansa, Eugene

    2008-01-01

       The experiment was conducted with the purpose to investigate how Minimum Miscibility Pressure (MMP) changes at different temperatures. MMP was measured in a high pressure unit. An original oil saturated chalk core plug from the Danish oil field in North Sea was under investigation. The plug...... underestimation of MMP values which can lead to the loss of efficiency of oil extraction....

  20. Strong dopant dependence of electric transport in ion-gated MoS2

    NARCIS (Netherlands)

    Piatti, Erik; Chen, Qihong; Ye, Jianting

    2017-01-01

    We report modifications of the temperature-dependent transport properties of MoS2 thin flakes via field-driven ion intercalation in an electric double layer transistor. We find that intercalation with Li+ ions induces the onset of an inhomogeneous superconducting state. Intercalation with K+ leads

  1. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    National Research Council Canada - National Science Library

    Raye, Julie K; Smith, Ralph C

    2004-01-01

    This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...

  2. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  3. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  4. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  5. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  6. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  7. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    Science.gov (United States)

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  8. Temperature dependence of organic solar cell parameters

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias; Mueller, Klaus; Philip, Shine; Paloumpa, Ioanna; Henkel, Karsten; Schmeisser, Dieter [Brandenburgische Technische Universitaet Cottbus (Germany). Angewandte Physik - Sensorik

    2009-07-01

    The influence of an annealing step on the parameters of bulk heterojunction organic solar cells is investigated. In order to fabricate the solar cells we use glass coated with ITO (indium-tin oxide) as a substrate on which the active layer consisting of P3HT and PCBM is spincoated. Al-electrodes are evaporated on top of the active layer. We use PEDOT:PSS as buffer layer. Each sample is annealed at different temperatures for a short time. Between every temperature step the I-V characteristic of the cell is measured. The following parameters are derived afterwards: FF, I{sub sc} (density), V{sub oc}. Also the efficiency is estimated. The results show a maximum cell efficiency for drying at 100 C for 20sec. A further important step for preparation is the drying procedure of the PEDOT:PSS layer. Here an improvement of about 50% in cell efficiency is measured after drying at 50 C for 5 days under inert gas atmosphere.

  9. Temperature dependence of fluorescence decay time and emission spectrum of bismuth germanate

    International Nuclear Information System (INIS)

    Melcher, C.L.; Liberman, A.; Schweitzer, J.S.; Simonetti, J.

    1985-01-01

    Bismuth germanate has become an increasingly popular replacement for NaI(Tl) scintillators in recent years, mainly due to its higher detection efficiency. However, its scintillation efficiency and fluorescence decay time are strongly temperature dependent. Optimum performance of detector systems which employ BGO crystals depends on knowledge of the BGO pulse shape and intensity and its emission spectrum at the operating temperature of the detector. Measurements of these quantities are presented over the temperature range -47 0 C to +111 0 C. Although the emission spectrum shifts only slightly over this temperature range, the scintillation efficiency and fluorescence decay time are strongly temperature dependent. In addition to the usefulness of these data for optimizing detector design, the results imply that luminescence quenching in BGO cannot be characterized by a single thermal activation to a radiationless transition but that a more complex model is required to characterize the light output from BGO crystals

  10. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  11. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  12. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  13. Crossing regimes of temperature dependence in animal movement.

    Science.gov (United States)

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. © 2016 John Wiley & Sons Ltd.

  14. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  15. A temperature dependent slip factor based thermal model for friction

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  16. Temperature dependence of the resonance frequency of thermogravimetric devices

    NARCIS (Netherlands)

    Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.

    2010-01-01

    This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to

  17. Power-law temperature dependence of the inelastic-scattering rate in disordered superconductors

    International Nuclear Information System (INIS)

    Devereaux, T.P.; Belitz, D.

    1991-01-01

    We present a theory of the quasiparticle inelastic lifetime τ in in disordered superconducting films. We find that both the Coulomb and the electron-phonon contribution to τ in -1 are enhanced by disorder, and that for reasonably strong electron-phonon coupling the latter is dominant. In contrast to clean superconductors, the scattering rate is larger than the recombination rate at all temperatures. This leads to a power-law temperature dependence of τ in -1 , in agreement with experimental observations. The theory quantitatively accounts for the magnitude, disorder dependence, and temperature dependence of τ in measured in recent experiments

  18. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  19. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  20. Temperature dependence of single-particle properties in nuclear matter

    International Nuclear Information System (INIS)

    Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.

    2006-01-01

    The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed

  1. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  2. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  3. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  4. Relation of extended Van Hove singularities to high-temperature superconductivity within strong-coupling theory

    International Nuclear Information System (INIS)

    Radtke, R.J.; Norman, M.R.

    1994-01-01

    Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling

  5. Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor

    Science.gov (United States)

    Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz

    2018-01-01

    We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.

  6. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  7. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  8. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  9. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  10. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1985-01-01

    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  11. Studies of the wavelength dependence of non-sequential double ionization of xenon in strong fields

    International Nuclear Information System (INIS)

    Kaminski, P.; Wiehle, R.; Kamke, W.; Helm, H.; Witzele, B.

    2005-01-01

    Full text: The non-sequential double ionization of noble gases in strong fields is still a process which is not completely understood. The most challenging question is: what is the dominant physical process behind the knee structure in the yield of doubly charged ions which are produced in the focus of an ultrashort laser pulse in dependence of the intensity? Numerous studies can be explained with the so-called rescattering model, where an electron is freed by the strong laser field and then driven back to its parent ion due to the oscillation of the field. Through this backscattering process it is possible to kick out a second electron. However in the low intensity or multiphoton (MPI) region this model predicts that the first electron can not gain enough energy in the oscillating electric field to further ionize or excite the ion. We present experimental results for xenon in the MPI region which show a significant contribution of doubly charged ions. A Ti:sapphire laser system (800 nm, 100 fs) is used to ionize the atoms. The coincident detection of the momentum distribution of the photoelectrons with an imaging spectrometer and the time of flight spectrum of the ions allows a detailed view into the ionization process. For the first time we also show a systematic study of the wavelength dependence (780-830 nm and 1180-1550 nm) on the non-sequential double ionization. The ratio Xe 2+ /Xe + shows a surprising oscillatory behavior with varying wavelength. Ref. 1 (author)

  12. Interrelated temperature dependence of bulk etch rate and track length saturation time in CR-39 detector

    International Nuclear Information System (INIS)

    Azooz, A.A.; Al-Jubbori, M.A.

    2013-01-01

    Highlights: • New empirical parameterization of CR-39 bulk etch rate. • Bulk etch rates measurements using two different methods give consistent results. • Temperature independence of track saturation length. • Two empirical relation between bulk etch rate and temperature are suggested. • Simple inverse relation between bulk etch rate and track saturation time. -- Abstract: Experimental measurements of the etching solution temperature dependence of bulk etch rate using two independent methods revealed a few interesting properties. It is found that while the track saturation length is independent of etching temperature, the etching time needed to reach saturation is strongly temperature-dependent. It is demonstrated that there is systematic simple inverse relation between track saturation time, and etching solution temperature. In addition, and although, the relation between the bulk etch rate and etching solution temperature can be reasonably described by a modified form of the Arrhenius equation, better fits can be obtained by another equation suggested in this work

  13. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  14. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  15. Identification of temperature-dependent thermal conductivity and experimental verification

    International Nuclear Information System (INIS)

    Pan, Weizhen; Yi, Fajun; Zhu, Yanwei; Meng, Songhe

    2016-01-01

    A modified Levenberg–Marquardt method (LMM) for the identification of temperature-dependent thermal conductivity is proposed; the experiment and structure of the specimen for identification are also designed. The temperature-dependent thermal conductivities of copper C10200 and brass C28000 are identified to verify the effectiveness of the proposed identification method. The comparison between identified results and the measured data of laser flash diffusivity apparatus indicates the fine consistency and potential usage of the proposed method. (paper)

  16. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....

  17. Frequency and temperature dependence of dielectric properties of chicken meat

    Science.gov (United States)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  18. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  19. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  20. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  1. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  2. On the temperature dependence of flammability limits of gases.

    Science.gov (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  4. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOX barriers

    Science.gov (United States)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; Huang, S.; Kato, H.; Bi, C.; Xu, M.; LeRoy, B. J.; Wang, W. G.

    2018-02-01

    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here, we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.

  5. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  6. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  7. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  8. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  9. Temperature dependence of mobility in silicon (100) inversion layers at low temperatures

    International Nuclear Information System (INIS)

    Kawaguchi, Y.; Suzuki, T.; Kawaji, S.

    1982-01-01

    Electron mobility of Si(100) n-inversion layers in MOSFETs having μsub(peak) (4.2 K) = 4000.6500 and 12000 cm 2 /V x s has been measured at temperatures between 1 and 80 K. The carrier concentration dependence of the mobility extrapolated to T = O and the temperature dependent part of the scattering probability are investigated. (orig.)

  10. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  11. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  13. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  14. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  15. Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    OpenAIRE

    Hoefener, C.; Philipp, J. B.; Klein, J.; Alff, L.; Marx, A.; Buechner, B.; Gross, R.

    2000-01-01

    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current...

  16. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  17. Temperature dependence of the dispersion of single crystals SrCl/sub 2/. [Temperature coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, M P [L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1976-01-01

    The dispersion of the refractive index of SrCl/sub 2/ monocrystals in the spectral range 300-700 nm at temperatures of 223, 295 adn 373 K has been studied. The temperature coefficient of the refractive index as a function of the wave length has been determined for the room temperature. The function resembles the corresponding dependence for alkali-halide crystals.

  18. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    2011-03-01

    Full Text Available The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as "dauer pheromones" because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development.Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone. After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions.Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings

  19. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  20. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    International Nuclear Information System (INIS)

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-01-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T ≤ 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E eff of 42.0 ± 0.9 kJ mole -1 . E eff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole -1 . A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies

  1. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  2. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  3. Temperature dependence of the elastocaloric effect in natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhongjian, E-mail: zhongjian.xie521@gmail.com; Sebald, Gael; Guyomar, Daniel

    2017-07-12

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers. - Highlights: • A large elastocaloric effect over a broad temperature range was found in natural rubber (NR). • The caloric performance of NR was compared with that of shape memory alloys. • The temperature dependence of the elastocaloric effect in NR can be prediced by the theory of strain-induced crystallization.

  4. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  5. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  6. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  7. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  8. Temperature dependent transport characteristics of graphene/n-Si diodes

    NARCIS (Netherlands)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and

  9. Temperature dependence of the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, A.; Kalitsov, A.; Khanikaev, A.; Sato, H.; Aoki, Y.

    2003-01-01

    We present the results of theoretical investigation of the temperature dependence of the extraordinary Hall effect (EHE) in granular metal-metal and metal-insulator alloys in the case of electron-phonon scattering at high temperatures. Skew scattering is assumed to be the dominant mechanism of the EHE. The calculations were carried out using Zhang-Levy model and the effective-medium approximation. The single-site electron-phonon interaction model was considered by analogy to that one in the theory of disordered alloys. In the case of strong spin-dependent scattering there is an additional term in the temperature dependence of the EHE coefficient of magnetic granular alloys in comparison with that for bulk ferromagnets. This term is linear with T 3 . The similar temperature dependence for the EHE conductivity in granular metal-metal and metal-insulator alloys takes place in spite of the different origin of giant magnetoresistance in these systems. The strong temperature dependence of the EHE coefficient can be viewed as an evidence of enhanced spin-orbit interaction at interfaces between granules and the matrix. We show a linear correlation between the interface contribution to the EHE coefficient and the interface contribution to alloy resistivity. The obtained results are in a qualitative agreement with the recent experimental data for nanocomposites

  10. Temperature dependence of the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, A. E-mail: granov@magn.ru; Kalitsov, A.; Khanikaev, A.; Sato, H.; Aoki, Y

    2003-02-01

    We present the results of theoretical investigation of the temperature dependence of the extraordinary Hall effect (EHE) in granular metal-metal and metal-insulator alloys in the case of electron-phonon scattering at high temperatures. Skew scattering is assumed to be the dominant mechanism of the EHE. The calculations were carried out using Zhang-Levy model and the effective-medium approximation. The single-site electron-phonon interaction model was considered by analogy to that one in the theory of disordered alloys. In the case of strong spin-dependent scattering there is an additional term in the temperature dependence of the EHE coefficient of magnetic granular alloys in comparison with that for bulk ferromagnets. This term is linear with T{sup 3}. The similar temperature dependence for the EHE conductivity in granular metal-metal and metal-insulator alloys takes place in spite of the different origin of giant magnetoresistance in these systems. The strong temperature dependence of the EHE coefficient can be viewed as an evidence of enhanced spin-orbit interaction at interfaces between granules and the matrix. We show a linear correlation between the interface contribution to the EHE coefficient and the interface contribution to alloy resistivity. The obtained results are in a qualitative agreement with the recent experimental data for nanocomposites.

  11. Temperature dependent pinning landscapes in REBCO thin films

    Science.gov (United States)

    Jaroszynski, Jan; Constantinescu, Anca-Monia; Hu, Xinbo Paul

    2015-03-01

    The pinning landscapes of REBCO (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their high ability to introduce various phases and defects. Pinning mechanisms studies in high temperature superconductors often require detailed knowledge of critical current density as a function of magnetic field orientation as well as field strength and temperature. Since the films can achieve remarkably high critical current, challenges exist in evaluating these low temperature (down to 4.2 K) properties in high magnetic fields up to 30 T. Therefore both conventional transport, and magnetization measurements in a vibrating coil magnetometer equipped with rotating sample platform were used to complement the study. Our results clearly show an evolution of pinning from strongly correlated effects seen at high temperatures to significant contributions from dense but weak pins that thermal fluctuations render ineffective at high temperatures but which become strong at lower temperatures Support for this work is provided by the NHMFL via NSF DRM 1157490

  12. Temperature dependence of spreading width of giant dipole resonance

    International Nuclear Information System (INIS)

    Storozhenko, A.N.; Vdovin, A.I.; Ventura, A.; Blokhin, A.I.

    2002-01-01

    The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Γ ↓ of a giant dipole resonance. Numerical calculations are made for 120 Sn and 208 Pb nuclei. It is found that Γ ↓ increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature

  13. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  14. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    Science.gov (United States)

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  15. Temperature-dependent luminescence dynamics in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany)]. E-mail: heiko.priller@physik.uni-karlsruhe.de; Hauschild, R. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Zeller, J. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Klingshirn, C. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Reuss, F. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Kirchner, Ch. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany)

    2005-04-15

    We report on an experimental study of the temporal photoluminescence dynamics of high-quality ZnO nanopillars from 10 K to room temperature. We find that defect states play an important role in the time evolution of the photoluminescence signal. At low excitation intensities capture into defects dominates the time dependence of the PL, at higher intensities they are saturated and the intrinsic excitation decay is observed. We separate the intrinsic exciton decay from the fast nonlinear M-band with the method of decay associated spectra and obtain the temperature dependence of the intrinsic exciton decay. High excitation measurements show a reduced exciton-exciton scattering in these thin nanorods.

  16. Temperature dependence of acceptor-hole recombination in germanium

    International Nuclear Information System (INIS)

    Darken, L.S.; Jellison, G.E. Jr.

    1989-01-01

    The recombination kinetics of several centers (Zn - , Cu - , B - , CuH - 2 , CuH - x , Zn = , Cu = , and CuH = x ) in high-purity Ge have been measured as a function of temperature from 8 to 160 K by transient capacitance techniques and are significantly faster than expected from cascade theory. The cascade theory also gives the wrong temperature dependence, and the wrong z dependence. Instead, the data are generally fit by the expression N v /4pτ c congruent kT/h (p and τ c are, respectively, the free-hole concentration in the sample and the experimental mean capture time for a center)

  17. Temperature dependence of collapse of quantized hall resistance

    International Nuclear Information System (INIS)

    Tanaka, Hiroyasu; Kawashima, Hironori; Iizuka, Hisamitsu; Fukuda, Hideaki; Kawaji, Shinji

    2006-01-01

    Similarity is observed in the deviation of Hall resistance from the quantized value with the increase in the source-drain current I SD in our butterfly-type Hall bars and in the Hall bars used by Jeanneret et al., while changes in the diagonal resistivity ρ xx with I SD are significantly different between these Hall bars. The temperature dependence of the critical Hall electric field F cr (T) for the collapse of R H (4) measured in these Hall bars is approximated using F cr (T) = F cr (0)(1 - (T/T cr ) 2 ). Here, the critical Hall electric field at zero temperature depends on the magnetic field B as F cr (0) ∝ B 3/2 . Theoretical considerations are given on F cr (T) on the basis of a temperature-dependent mobility edge model and a schema of temperature-dependent inter-Landau level tunneling probability arising from the Fermi distribution function. The former does not fit in with the I SD dependence of activation energy in ρ xx . (author)

  18. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  19. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    Science.gov (United States)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  20. Temperature dependence of non-Debye disorder in doped manganites

    International Nuclear Information System (INIS)

    Meneghini, C.; Cimino, R.; Pascarelli, S.; Mobilio, S.; Raghu, C.; Sarma, D.D.

    1997-01-01

    Ca-doped manganite La 1-x Ca x MnO 3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior. copyright 1997 The American Physical Society

  1. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  2. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  3. Temperature Dependence of the Moessbauer Effect on Prussian Blue Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Pingheng; Xue Desheng; Luo Haiqing; Shi Huigang [Lanzhou University, Key Lab for Magnetism and Magnetic Materials of MOE (China)

    2002-09-15

    Highly ordered Prussian blue nanowires with diameter of about 50 nm and length up to 4 {mu}m have been fabricated by an electrodepositing technology with two-step anodizing anodic aluminum oxide films. The Moessbauer spectra taken between 15 and 300 K indicate that the hyperfine parameters decrease as the temperature increases. The temperature dependence of the quadrupole splitting, the isomer shift and the spectra area are discussed. A decrease of Debye temperature for Prussian blue nanowires was found with respect to that of Prussian blue bulk.

  4. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  5. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  6. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  7. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  8. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  9. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  10. Quasi-pions with temperature dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    We construct the procedure to calculate thermodynamical functions for a system of quasi-particles with temperature dependent dispersion relation. Two models for the hot quasi-pion system are considered to illustrate the importance of thermodynamical self consistency requirements. 8 refs., 9 figs

  11. Temperature dependence of the μ+ hyperfine field in ferromagnets

    International Nuclear Information System (INIS)

    Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.

    1977-01-01

    The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)

  12. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  13. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  15. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  16. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  17. Temperature dependence of the optical properties of ion-beam sputtered ZrN films

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); Kiani, M. [Azad University, South Tehran Branch, Department of Physics, Tehran (Iran, Islamic Republic of); Jafari-Khamse, E. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); University of Kashan, Department of Physics, Kashan (Iran, Islamic Republic of); Fathollahi, V. [Nuclear Science Research School, NSTRI, Tehran (Iran, Islamic Republic of)

    2014-11-15

    The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8-6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity. (orig.)

  18. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  19. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  20. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  1. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  2. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  3. Temperature dependence of ion-beam induced amorphization in α-quartz

    International Nuclear Information System (INIS)

    Dhar, Sankar; Bolse, Wolfgang; Lieb, Klaus-Peter

    1999-01-01

    The temperature dependence of the amorphization in α-quartz by Ne-ion bombardment has been investigated using Rutherford Backscattering Spectrometry in channeling geometry (RBS-C). The experimental results show that the critical temperature T c for inhibiting amorphization in quartz is around 940 K. The damage depth profile χ(z,phi) is independent of the temperature and fluence and can be simulated with a power-law function [χ(z,phi)∝(phiF D (z)) 3 ] of the damage energy distribution F D (z). At low irradiation temperature, the critical dose phi c for amorphization is independent of the temperature but it strongly increases at higher temperatures with an activation energy of 0.28 eV and has been explained by out-diffusion model of Morehead and Crowder

  4. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  5. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  6. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  7. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  8. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  9. Temperature and angular dependence of substrate response in SEGR

    International Nuclear Information System (INIS)

    Mouret, I.; Allenspach, M.; Schrimpf, R.D.; Brews, J.R.; Galloway, K.F.

    1994-01-01

    This work examines the role of the substrate response in determining the temperature and angular dependence of Single-Event Gate Rupture (SEGR). Experimental data indicate that the likelihood of SEGR increases when the temperature of the device is increased or when the incident angle is made closer to normal. In this work, simulations are used to explore this influence of high temperature on SEGR and to support physical explanations for this effect. The reduced hole mobility at high temperature causes the hole concentration at the oxide-silicon interface to be greater, increasing the transient oxide field near the strike position. In addition, numerical calculations show that the transient oxide field decreases as the ion's angle of incidence is changed from normal. This decreased field suggests a lowered likelihood for SEGR, in agreement with the experimental trend

  10. Temperature dependent structural and vibrational properties of liquid indium

    Science.gov (United States)

    Patel, A. B.; Bhatt, N. K.

    2018-05-01

    The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.

  11. Temperature-dependence of the QCD topological susceptibility

    Science.gov (United States)

    Kovacs, Tamas G.

    2018-03-01

    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.

  12. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  13. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  14. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  15. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lø nborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Moran, Xose Anxelu G.; Bates, Nicholas R.; á lvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  16. The temperature dependences of electromechanical properties of PLZT ceramics

    Science.gov (United States)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  17. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Burdin

    2017-10-01

    Full Text Available The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  18. Sample holder for studying temperature dependent particle guiding

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Toekesi, K.; Kowarik, G.; Aumayr, F.

    2011-01-01

    Complete text of publication follows. The so called guiding effect is a complex process involving the interplay of a large number of charged particles with a solid. Although many research groups joined this field and carried out various experiments with insulator capillaries many details of the interactions are still unknown. We investigated the temperature dependence of the guiding since it opens new possibilities both for a fundamental understanding of the guiding phenomenon and for applications. For the temperature dependent guiding experiments a completely new heatable sample holder was designed. We developed and built such a heatable sample holder to make accurate and reproducible studies of the temperature dependence of the ion guiding effect possible. The target holder (for an exploded view see Fig. 1) consists of two main parts, the front and the back plates. The two plates of the sample holder, which function as an oven, are made of copper. These parts surround the capillary in order to guarantee a uniform temperature along the whole tube. The temperature of the copper parts is monitored by a K-Type thermocouple. Stainless steel coaxial heaters surrounding the oven are used for heating. The heating power up to a few watts is regulated by a PID controller. Cooling of the capillary is achieved by a copper feed-through connected to a liquid nitrogen bath outside the UHV chamber. This solution allows us to change the temperature of the sample from -30 deg C up to 90 deg C. Our experiments with this newly developed temperature regulated capillary holder show that the glass temperature (i.e. conductivity) can be used to control the guiding properties of the glass capillary and adjust the conditions from guiding at room temperature to simple geometrical transmission at elevated temperatures. This holds the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details

  19. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    Science.gov (United States)

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  20. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  1. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  2. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    International Nuclear Information System (INIS)

    Singh, Akhilesh Kumar; Hsu, Jen-Hwa; Perumal, Alagarsamy

    2016-01-01

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)] 2 /FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T A =200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T A ≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T A =300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T A and temperature. A large reduction in coercivity (H C ) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H C (T), i.e., a broad minimum in H C (T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H C (T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T C ) with T A (x). The multilayer films annealed at 200 °C exhibit low value of T C with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T C with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and nature of interfaces. - Highlights: • Preparation and

  3. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  4. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chungho@cityu.edu.hk

    2014-12-15

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected.

  5. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  6. On the Temperature Dependence of the UNIQUAC/UNIFAC Models

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage

    1980-01-01

    of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O.......Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...

  7. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    Gay, T.J.; Berry, H.G.

    1978-01-01

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1 S--3p 1 P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  8. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  9. On the urban heat island effect dependence on temperature trends

    International Nuclear Information System (INIS)

    Camilloni, I.; Barros, V.

    1997-01-01

    For US, Argentine and Australian cities, yearly mean urban to rural temperature differences (ΔT u-r ) and rural temperatures (T r ) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901-1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity. 36 refs., 7 figs., 2 tabs

  10. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  11. Temperature dependence on the time and momentum spectra in germanium

    International Nuclear Information System (INIS)

    Schultz, P.J.; MacKenzie, I.K.

    1982-01-01

    Recent measurements using the slow-#betta# + beam at Brookhaven, have suggested a thermally activated trapping mechanism which inhibited positron diffusion in single-crystal Ge. Supporting evidence has now been obtained from both Doppler broadening and lifetime measurements but, in both cases, the temperature dependence was so weak that it required the use of dual digital stabilization and unusual statistical precision in both types of spectrometry. (Auth.)

  12. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  13. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  14. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Sinclair IV, John W [ORNL; Zuev, Yuri L [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Cook, Sylvester W [ORNL; Kumar, Dhananjay [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  15. Wind measurements with SODAR during strong temperature inversions near the ground

    International Nuclear Information System (INIS)

    Thomas, P.; Vogt, S.

    1989-08-01

    SODAR (Sound Detection and Ranging) equipment has been increasingly used to measure vertical wind profiles with little expenditure in terms of staff, continuously over time and with a good spatial resolution. These informations serve as input variables for atmospheric transport and dispersion models, environmental monitoring of industrial facilities and, generally, for investigating a broad spectrum of meteorological phenomena. The SODAR principle has proved its suitability since long provided that the data recorded with SODAR have served to establish wind statistics valid for extended periods of time. At industrial sites potentially releasing substances prejudicial to health, e.g., chemical plants, nuclear power plants, etc., a SODAR must, moreover, be capable of measuring reliable the wind conditions also during short periods of release. This would, e.g., be important during accidental releases. Especially interesting situations for pollutant dispersion are distinct temperature inversions. It will be examined in this paper whether a SODAR is capable of measuring reliably the wind conditions also during those inversions. The selection of the situations of inversion as well as the direct intercomparison of data supplied by SODAR and conventional wind measuring instruments (anemometer and wind vane) are possible at the 200 m meteorological tower erected at the Karlsruhe Nuclear Research Center. The comparison between SODAR and the meteorological tower has shown that a SODAR is able to measure reliably the wind data also in situations characterized by strong ground-based and elevated inversions, respectively. (orig./KW) [de

  16. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  17. Strong renormalization scheme dependence in τ-lepton decay: Fact or fiction?

    International Nuclear Information System (INIS)

    Chyla, J.

    1995-01-01

    The question of the renormalization scheme dependence of the τ semileptonic decay rate is examined in response to a recent criticism. Particular attention is payed to a distinction between a consistent quantitative description of this dependence and the actual selection of a subset of ''acceptable'' renormalization schemes. It is pointed out that this criticism is valid only within a particular definition of the ''strength'' of the renormalization scheme dependence and should not discourage further attempts to use the semileptonic τ decay rate for quantitative tests of perturbative QCD

  18. Temperature dependent thermoelectric properties of chemically derived gallium zinc oxide thin films

    KAUST Repository

    Barasheed, Abeer Z.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this study, the temperature dependent thermoelectric properties of sol-gel prepared ZnO and 3% Ga-doped ZnO (GZO) thin films have been explored. The power factor of GZO films, as compared to ZnO, is improved by nearly 17% at high temperature. A stabilization anneal, prior to thermoelectric measurements, in a strongly reducing Ar/H2 (95/5) atmosphere at 500°C was found to effectively stabilize the chemically derived films, practically eliminating hysteresis during thermoelectric measurements. Subtle changes in the thermoelectric properties of stabilized films have been correlated to oxygen vacancies and excitonic levels that are known to exist in ZnO-based thin films. The role of Ga dopants and defects, formed upon annealing, in driving the observed complex temperature dependence of the thermoelectric properties is discussed. © The Royal Society of Chemistry 2013.

  19. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.

    Science.gov (United States)

    Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-12-05

    The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.

  20. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  1. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  2. Photon and spin dependence of the resonance line shape in the strong coupling regime

    NARCIS (Netherlands)

    Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel

    2012-01-01

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings

  3. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    Science.gov (United States)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  4. Temperature-dependent structure evolution in liquid gallium

    International Nuclear Information System (INIS)

    Xiong, L.H.; Wang, X.D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q.P.; Xie, H.L.; Xiao, T.Q.; Zhang, D.X.; Wang, C.Z.; Ho, K.M.

    2017-01-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for self-diffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q_6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts. - Graphical abstract: Atomistic structure evolution of liquid gallium has been investigated by using in situ high energy X-ray diffraction and ab initio molecular dynamics simulations, which both demonstrate the existence of a liquid structural change together with reported density, viscosity, electric resistivity and absolute thermoelectric power data.

  5. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  6. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  7. Temperature-dependent electrical property transition of graphene oxide paper

    International Nuclear Information System (INIS)

    Huang Xingyi; Jiang Pingkai; Zhi Chunyi; Golberg, Dmitri; Bando, Yoshio; Tanaka, Toshikatsu

    2012-01-01

    Reduction of graphene oxide is primarily important because different reduction methods may result in graphene with totally different properties. For systematically exploring the reduction of graphene oxide, studies of the temperature-dependent electrical properties of graphene oxide (GO) are urgently required. In this work, for the first time, broadband dielectric spectroscopy was used to carry out an in situ investigation on the transition of the electrical properties of GO paper from −40 to 150 °C. The results clearly reveal a very interesting four-stage transition of electrical properties of GO paper with increasing temperature: insulator below 10 °C (stage 1), semiconductor at between 10 and 90 °C (stage 2), insulator at between 90 and 100 °C (stage 3), and semiconductor again at above 100 °C (stage 4). Subsequently, the transition mechanism was discussed in combination with detailed dielectric properties, microstructure and thermogravimetric analyses. It is suggested that the temperature-dependent transition of electronic properties of GO is closely associated with the ion mobility, water molecules removal and the reduction of GO in the GO paper. Most importantly, the present work clearly demonstrates the reduction of GO paper starts at above 100 °C. (paper)

  8. Temperature dependence and the moving species during ion mixing

    International Nuclear Information System (INIS)

    Xia, W.; Fernandes, M.; Hewett, C.A.; Lau, S.S.; Poker, D.B.; Biersack, J.P.

    1988-01-01

    In this paper, the authors review the experimental observations of the temperature dependence and the moving species in ion mixing, emphasizing the metal-semiconductor systems. Ion mixing is the combined effect of two components. One component is temperature independent and is primarily due to events in the prompt regime, the other component is temperature dependent and has the characteristics of the associated thermal reactions. The moving species during ion mixing are influenced by collisional effects, either due to secondary recoils, or due to local hot spots, or both. The secondary recoil concept is consistent with experimental observations that the motion of the lighter element in a bilayer sample is enhanced. There is ample evidence that while the a thermal regime is caused by particle-solid interactions, thermodynamical forces are important in deciding the magnitude of mixing. In the thermally activated regime, the ion induced reaction product should be influenced by the heats of formation of various compounds. We also indicate areas where satisfactory explanations are not available at present

  9. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  10. Shock temperature dependent rate law for plastic bonded explosives

    Science.gov (United States)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  11. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  12. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    Science.gov (United States)

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  14. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  15. Temperature dependence of the kinetics of isometric myocardium relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.

    1981-11-01

    The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.

  16. Determination of the temperature dependence of tungsten erosion

    International Nuclear Information System (INIS)

    Maier, H.; Greuner, H.; Toussaint, U. von; Balden, M.; Böswirth, B.; Elgeti, S.

    2015-01-01

    We present the results of erosion measurements on actively cooled tungsten samples at quasi-constant surface temperature conditions performed in the high heat flux facility GLADIS. The samples were exposed to a H beam at a central power density of 10 MW/m 2 up to a fluence of 10 26 m −2 . We observe a weak temperature dependence of the erosion yield. The data are compared with similar data obtained from loading with a H beam with He admixture. Both datasets are analysed in a probabilistic approach. We obtain activation energies of 0.04 eV and 0.06 eV for the cases with and without He, respectively

  17. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  18. Temperature-dependent chemical changes of metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; KimJong Hwan; Song, Hoon; Kim, Jong Yun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    We observed the temperature-dependent variations of UZr alloy using surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscope (SEM) equipped with energy-dispersive Xray spectroscope (EDS). In this work, we exhibited the results of XPS, Raman, XRD, and SEM-EDS for U-10wt%Zr alloy at room temperature, 610 and 1130 .deg. C. In SEM-EDS data, we observed that uranium and zirconium elements uniformly exist. After the annealing of U-10Zr sample at 1130 .deg. C, the formation of zirconium carbide is verified through Raman spectroscopy and XRD results. Additionally, the change of valence state for uranium element is also confirmed by XPS analysis.

  19. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  20. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  1. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  2. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    Science.gov (United States)

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  3. CH3Cl self-broadening coefficients and their temperature dependence

    International Nuclear Information System (INIS)

    Dudaryonok, A.S.; Lavrentieva, N.N.; Buldyreva, J.V.

    2013-01-01

    CH 3 35 Cl self-broadening coefficients at various temperatures of atmospheric interest are computed by a semi-empirical method particularly suitable for molecular systems with strong dipole–dipole interactions. In order to probe the dependence on the rotational number K, the model parameters are adjusted on extensive room-temperature measurements for K≤7 and allow reproducing fine features of J-dependences observed for K≤3; for higher K up to 20, the fitting is performed on specially calculated semi-classical values. The temperature exponents for the standard power law are extracted and validated by calculation of low-temperature self-broadening coefficients comparing very favorably with available experimental data. An extensive line-list of self-broadening coefficients at the reference temperature 296 K and associated temperature exponents for 0≤J≤70, 0≤K≤20 is provided as Supplementary material for their use in atmospheric applications and spectroscopic databases. -- Highlights: • We calculated methyl chloride self-broadening coefficients using two methods. • Rotational quantum numbers were J from 0 till 70 and K from 0 till 20. • The temperature exponents were calculated for every mentioned line

  4. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  5. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    Science.gov (United States)

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  6. A note on the almost sure central limit theorems for the maxima of strongly dependent nonstationary Gaussian vector sequences

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2016-06-01

    Full Text Available Abstract We prove some almost sure central limit theorems for the maxima of strongly dependent nonstationary Gaussian vector sequences under some mild conditions. The results extend the ASCLT to nonstationary Gaussian vector sequences and give substantial improvements for the weight sequence obtained by Lin et al. (Comput. Math. Appl. 62(2:635-640, 2011.

  7. On an nth-order infinitesimal generator and time-dependent operator differential equation with a strongly almost periodic solution

    Directory of Open Access Journals (Sweden)

    Aribindi Satyanarayan Rao

    2002-01-01

    Full Text Available In a Banach space, if u is a Stepanov almost periodic solution of a certain nth-order infinitesimal generator and time-dependent operator differential equation with a Stepanov almost periodic forcing function, then u,u′,…,u (n−2 are all strongly almost periodic and u (n−1 is weakly almost periodic.

  8. Strong diameter-dependence of nanowire emission coupled to waveguide modes

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)

    2016-03-21

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.

  9. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.T.; Swanson, B.I.

    1985-03-15

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C/sub 6/H/sub 5/NHCOCH/sub 3/) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering from acetanilide and its N-D and /sup 13/C-O substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the N-D and /sup 13/C-O substituted species the unusual temperature dependence in the 1650 cm/sup -1/ region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane N-H deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species. 20 references, 3 figures.

  10. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    Science.gov (United States)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  11. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    Science.gov (United States)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  12. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    Science.gov (United States)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  13. Extension of the Nambu-Jona-Lasinio model predictions at high temperatures and strong external magnetic field

    International Nuclear Information System (INIS)

    Gomes, Karina P.; Farias, R.L.S.; Pinto, M.B.; Krein, G.

    2013-01-01

    dependent cutoff in the NJL model, incorporating, albeit in a crude way, the property of asymptotic freedom of QCD in the model, as the effective NJL coupling can be made to match QCD coupling at large magnetic fields. We present numerical results of our ongoing study on the effects of a strong external magnetic field on the critical temperature for chiral restoration within our model and compare with lattice result. (author)

  14. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  15. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  16. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    Science.gov (United States)

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  17. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yibo Feng

    2015-05-01

    Full Text Available We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF, the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  18. Laser based imaging of time depending microscopic scenes with strong light emission

    Science.gov (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  19. The dependence of thermoluminescence sensitivity upon the temperature of irradiation in meteorites and in terrestrial apatites

    International Nuclear Information System (INIS)

    Durrani, S.A.; Al-Khalifa, I.J.M.

    1990-01-01

    Measurements are reported on the TL sensitivity (i.e. TL glow output per unit γ ray test dose) of meteoritic specimens as well as terrestrial fluor- and chlor-apatites, as a function of irradiation temperature (T irr ). The irradiation temperatures ranged from liquid nitrogen to room temperature (77 - 293 K). A kilocurie 60 Co γ ray source was used to deliver test doses of 400 Gy (40 krad) and 40 (4 krad) to the various samples. A strong dependence of the TL sensitivity upon the temperature of irradiation was noted in the case of Kirin meteorite: its TL sensitivity (for the 493 K readout peak) decreased by a factor of ∼ 2 when T irr rose from liquid nitrogen (77 K) to dry ice in acetone (197 K) temperature, in the case of both 400 Gy and 40 Gy γ ray doses. In the case of the Antarctic meteorite specimen (ALHA 77182.13), there was a smaller effect, viz. a fall of ∼ 14% in the TL output corresponding to dry ice and higher irradiating temperatures as compared to the 77 K irradiation. For chlorapatite, the TL sensitivity decreased monotonically with increasing temperature for both the 563 K and the 448 K glow peaks. For the fluorapatite, the effect of reduced response was observed only between -17 0 C (256 K) and room temperature (293 K). Both the theoretical and the practical implications of these observations are discussed. (author)

  20. On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies

    Science.gov (United States)

    Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing

    2018-03-01

    Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates

  1. Polarization-dependent solitons in the strong coupling regime of semiconductor microcavities

    International Nuclear Information System (INIS)

    Fu, Y.; Zhang, W.L.; Wu, X.M.

    2015-01-01

    This paper studies the influence of polarization on formation of vectorial polariton soliton in semiconductor microcavities through numerical simulations. It is found that the polariton solution greatly depends on the polarization of both the pump and exciting fields. By properly choosing the pump and exciting field polarization, bright–bright or bright–dark vectorial polariton solitons can be formed. Especially, when the input conditions of pump or exciting field of the two opposite polarizations are slightly asymmetric, an interesting phenomenon that the dark solitons transform into bright solitons occurs in the branch of soliton solutions.

  2. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  3. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  4. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  5. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  6. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    International Nuclear Information System (INIS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-01-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al 2 O 3 (sapphire) and TiO 2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO 2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al 2 O 3 . Results for MgO and α-Al 2 O 3 show steep negative gradients from 10 to 370 K, whereas that for TiO 2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al 2 O 3 , this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO 2 , in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization

  7. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  8. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  9. Temperature dependent elasticity and damping in dehydrated sandstone

    Science.gov (United States)

    Darling, T. W.; Struble, W.

    2013-12-01

    Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are

  10. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  11. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    Science.gov (United States)

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  12. The role of inelastic processes in the temperature dependence of hall induced resistance oscillations

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2013-01-01

    We develop a model of magnetoresistance oscillations induced by the Hall field in order to study the temperature dependence observed in recent experiments in two dimensional electron systems. The model is based on the solution of the von Neumann equation incorporating the exact dynamics of two-dimensional damped electrons in the presence of arbitrarily strong magnetic and dc electric fields, while the effects of randomly distributed neutral and charged impurities are perturbatively added. Both the effects of elastic impurity scattering as well as those related to inelastic processes play an important role. The theoretical predictions correctly reproduce the experimentally observed oscillations amplitude, provided that the quantum inelastic scattering rate obeys a T 2 temperature dependence, consistent with electron–electron interaction effects

  13. The Dependence of the Dose Response Supralinearity of Peak 5 in TLD-100 on Recombination Temperature

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Satinger, D.; Oster, L.

    1999-01-01

    Isothermal readout of LiF:Mg,Ti (TLD-700) has recently been used to study the dependence of the supralinearity of peak 5 on recombination temperature. The results were interpreted to be in conflict with earlier results which investigated the effect of readout heating rate on the supralinearity of peak 5 in TLD-100. In this work the two experiments are inspected in greater detail. It is illustrated that the isothermal decay data is not in conflict with the heating rate data. However, the heating rate results do apparently indicate a strong transition in the temperature dependence of the relative strengths of the recombination and competitive cross sections at approximately 235 deg. C, which requires further study and analysis. (author)

  14. Solubility Temperature Dependence Predicted from 2D Structure

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2015-12-01

    Full Text Available The objective of the study was to find a computational procedure to normalize solubility data determined at various temperatures (e.g., 10 – 50 oC to values at a “reference” temperature (e.g., 25 °C. A simple procedure was devised to predict enthalpies of solution, ΔHsol, from which the temperature dependence of intrinsic (uncharged form solubility, log S0, could be calculated. As dependent variables, values of ΔHsol at 25 °C were subjected to multiple linear regression (MLR analysis, using melting points (mp and Abraham solvation descriptors. Also, the enthalpy data were subjected to random forest regression (RFR and recursive partition tree (RPT analyses. A total of 626 molecules were examined, drawing on 2040 published solubility values measured at various temperatures, along with 77 direct calori    metric measurements. The three different prediction methods (RFR, RPT, MLR all indicated that the estimated standard deviations in the enthalpy data are 11-15 kJ mol-1, which is concordant with the 10 kJ mol-1 propagation error estimated from solubility measurements (assuming 0.05 log S errors, and consistent with the 7 kJ mol-1 average reproducibility in enthalpy values from interlaboratory replicates. According to the MLR model, higher values of mp, H‑bond acidity, polarizability/dipolarity, and dispersion forces relate to more positive (endothermic enthalpy values. However, molecules that are large and have high H-bond basicity are likely to possess negative (exothermic enthalpies of solution. With log S0 values normalized to 25 oC, it was shown that the interlaboratory average standard deviations in solubility measurement are reduced to 0.06 ‑ 0.17 log unit, with higher errors for the least-soluble druglike molecules. Such improvements in data mining are expected to contribute to more reliable in silico prediction models of solubility for use in drug discovery.

  15. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Chowdhury, S. Ghosh [CSIR National Metallurgical Laboratory, MST Division, Jamshedpur 831007 (India)

    2010-06-15

    Over recent years there have been a remarkable number of studies dealing with compression of magnesium. A literature search, however, shows a noticeably less number of papers concerned with tension and a very few papers comparing both modes, systematically, in one study. The current investigation reports the anisotropic deformation behavior and concomitant texture and microstructure evolution investigated in uniaxial tension and compression tests in two sample directions performed on an extruded commercial magnesium alloy AZ31 at different Z conditions. For specimens with the loading direction parallel to the extrusion axis, the tension-compression strength anisotropy was pronounced at high Z conditions. Loading at 45{sup o} from the extrusion axis yielded a tension-compression strength behavior that was close to isotropic. During tensile loading along the extrusion direction the extrusion texture resists twinning and favors prismatic slip (contrary to compression). This renders the shape change maximum in the basal plane and equal to zero along the c-axis, which resulted in the orientation of individual grains remaining virtually intact during all tension tests at different Z conditions. For the other investigated sample direction, straining was accommodated along the c-axis, which was associated with a lattice rotation, and thus, a change of crystal orientation. Uniaxial compression at a low Z condition (400 deg. C/10{sup -4} s{sup -1}) yielded a desired texture degeneration, which was explained on the basis of a more homogeneous partitioning of slip systems that reduces anisotropy and enhanced dynamic recrystallization (DRX), which counteracts the strong deformation texture. The critical strains for the nucleation of DRX in tensiled specimens at the highest investigated Z condition (200 deg. C/10{sup -2} s{sup -1}) were found to range between 4% and 5.6%.

  16. Temperature dependent measurement of internal damping of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Oravcová Monika

    2018-01-01

    Full Text Available This article is aimed on the analysis of the internal damping changes of austenitic stainless steels AISI 304, AISI 316L and AISI 316Ti depending from temperature. In experimental measurements only resonance method was used which is based on continuous excitation of oscillations of the specimens and the whole apparatus vibrates at the frequency near to the resonance. Microplastic processes and dissipation of energy within the metals are evaluated and investigated by internal damping measurements. Damping capacity of materials is closely tied to the presence of defects including second phase particles and voids. By measuring the energy dissipation in the material, we can determine the elastic characteristics, Youngs modulus, the level of stress relaxation and many other.

  17. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  18. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  20. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  1. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  2. Strong association between corticosterone levels and temperature-dependent metabolic rate in individual zebra finches

    NARCIS (Netherlands)

    Jimeno Revilla, Blanca; Hau, Michaela; Verhulst, Simon

    2017-01-01

    Glucocorticoid hormones (GCs) are often assumed to be indicators of stress. At the same time, one of their fundamental roles is to facilitate metabolic processes to accommodate changes in energetic demands. Although the metabolic function of GCs is thought to be ubiquitous across vertebrates, we are

  3. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  4. Temperature dependent quasiparticle renormalization in nickel and iron

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Thirupathaiah, Setti; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann [Helmholtz Zentrum Berlin, BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2010-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed' with an excitation cloud resulting in quasiparticles. Such a quasiparticle will carry the same spin and charge as the original particle, but will have a renormalized mass and a finite lifetime. The properties of many-body interactions are described with a complex function called self energy which is directly accessible to modern high-resolution angle resolved photoemission spectroscopy (ARPES). Ferromagnetic metals like nickel or iron offers the exciting possibility to study the spin dependence of quasiparticle coupling to bosonic modes. Utilizing the exchange split band structure as an intrinsic 'spin detector' it is possible to distinguish between electron-phonon and electron-magnon coupling phenomena. In this contribution we will report a systematic investigation of the k- and temperature dependence of the electron-boson coupling in nickel and iron metals as well as discuss origin of earlier observed anomalous lifetime broadening of majority spin states of nickel at Fermi level.

  5. A model for temperature dependent resistivity of metallic superlattices

    Directory of Open Access Journals (Sweden)

    J. I. Uba

    2015-11-01

    Full Text Available The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant ε q , ω = 8 . 33 × 10 − 2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

  6. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  7. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. PROLARM: Cancer risk from medical diagnostic exposures is strongly dependent upon patients' prognosis

    International Nuclear Information System (INIS)

    Eschner, Wolfgang; Schmidt, Matthias; Dietlein, Markus; Schicha, Harald

    2008-01-01

    Full text: Purpose: a) To evaluate the impact of the reduced life expectancy of patients (compared to a non-patient group with same age distribution) on their risk of developing cancer from the diagnostic use of radiation. b) To find an approximation to such reduction in risk which depends only on the patient's age, a, and his life expectancy, but is independent of the choice of values for the baseline risk of cancer incidence, m(a), and the enhanced relative risk ERR(a) from radiation exposure. Method: The lifetime attributable risk LAR (of a radiation-induced malignancy to manifest itself) is a function of age at exposure, e, and given by integrating over attained age, a, the product of ERR(a), baseline cancer risk m(a) and the relative probability of surviving to age a, S'(a,e). We define a 'prognosis-based LAR modifier' (PROLARM) as the ratio of risks for non-patient, LAR(a), and patient, LAR p (a), a dimensionless quantity that gives a measure of reduction of LAR due to the patient's prognosis. With the survival of the patient group, S p ' (a,e), and for any choice of fitted function for ERR(a) like those used in BEIR VII report, PROLARM ≥∫d'(a,e) da/∫S p '(a,e) da, i.e. the ratio of the survival integrals gives a lower (thus conservative) estimate of the reduction in risk. Results: The method was applied to n=4285 patients with metastatic breast cancer for whom survival as a function of age at metastasis was known. Figure shows that LAR is decreased significantly for all ages at exposure. At younger ages, this decrease is more pronounced (PROLARM ≥ 20 for e ≤ 65). Example: using ERR values of BEIR VII, the LAR due to 10 mSv effective dose at age a = 50 would drop from 1.2 E-3 for non-patient to 4.3E-5 for a patient, i.e. by a factor (PROLARM) of 29. Using only survival data, that factor is 27 (but no LAR can be computed). In other words: 10 mSv for a patient correspond risk-wise to 0.4 mSv for non-patient. The method can be applied to any pathology

  9. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    Science.gov (United States)

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  10. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  11. Temperature dependence of exchange bias in (NiFe/IrMn)n multilayer films studied through static and dynamic techniques

    Science.gov (United States)

    Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard

    2018-05-01

    The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.

  12. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  13. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  14. High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction

    Science.gov (United States)

    Tomaka, G.; Grendysa, J.; ŚliŻ, P.; Becker, C. R.; Polit, J.; Wojnarowska, R.; Stadler, A.; Sheregii, E. M.

    2016-05-01

    Experimental results of the magnetotransport measurements (longitudinal magnetoresistance Rx x and the Hall resistance Rx y) are presented over a wide interval of temperatures for several samples of Hg1 -xCdxTe (x ≈0.13 -0.15 ) grown by MBE—thin layers (thickness about 100 nm) strained and not strained and thick ones with thickness about 1 μ m . An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behavior of the Hall resistance is registered in the same temperature interval. These peculiarities of the Rx x and Rx y for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS) [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011), 10.1103/PhysRevLett.106.126803]. In the case of not strained layers it is assumed that the QHC on the TPSS (or on the resonant interface states) contributes also to the conductance of the bulk samples.

  15. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akhilesh Kumar [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Hsu, Jen-Hwa [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2016-11-15

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)]{sub 2}/FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T{sub A}=200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T{sub A}≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T{sub A}=300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T{sub A} and temperature. A large reduction in coercivity (H{sub C}) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H{sub C}(T), i.e., a broad minimum in H{sub C}(T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H{sub C}(T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T{sub C}) with T{sub A} (x). The multilayer films annealed at 200 °C exhibit low value of T{sub C} with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T{sub C} with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and

  16. Temperature dependence of the thermal conductivity in chiral carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mensah, N.G. [Department of Mathematics, University of Cape Coast, Cape Coast (Ghana); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Nkrumah, G. [Department of Physics, University of Ghana, Legon, Accra (Ghana) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: geon@ug.edu.gh; Mensah, S.Y. [Department of Physics, Laser and Fibre Optics Centre, University of Cape Coast, Cape Coast (Ghana); Allotey, F.K.A. [Institute of Mathematical Sciences, Accra (Ghana)

    2004-08-30

    The thermal conductivity of a chiral carbon nanotube (CCNT) is calculated using a tractable analytical approach. This is based on solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation. The results obtained are numerically analysed. Unusually high electron thermal conductivity {chi}{sub ez} is observed along the tubular axis. The dependence of {chi}{sub ez} against temperature T was plotted for varying {delta}{sub z} and a given {delta}{sub s} ({delta}{sub z} and {delta}{sub s} are the overlapping integrals (exchange energy) for the jumps along the tubular axis and the base helix, respectively). It is noted that {chi}{sub ez} shows a peaking behaviour before falling off at higher temperature. As {delta}{sub z} varies from 0.010 eV to 0.048 eV for a given {delta}{sub s}=0.0150 eV, the peak values of {chi}{sub ez} shift from 40000 W/m K at 100 K to 55000 W/m K at about 300 K. Interestingly our results at 104 K which is 41000 W/m K and occurred at {delta}{sub z}=0.023 eV compares very well with that reported for a 99.9% isotopically enriched {sup 12}C diamond crystal. Another interesting result obtained is the fact that the circumferential electron thermal conductivity {chi}{sub ec} appears to be very small. The ratio of {chi}{sub ez} to {chi}{sub ec} is of the order of 2.

  17. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  18. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    Science.gov (United States)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  19. Magnetoconductance fluctuations in a strongly correlated disordered ring system at low temperatures

    International Nuclear Information System (INIS)

    Chen, H.; Ishihara, M.; Li, Z.; Kawazoe, Y.

    1996-01-01

    Using a recursive real-space Green close-quote s-function technique in the tight-binding model, we study the influence of the electron-electron Hubbard interaction on the magnetoconductance fluctuations in a disordered ring at low temperatures. Our numerical results improve the previous theoretical predictions for the magnetoconductance fluctuations as a function of magnetic flux compared with experiments. Meanwhile, we find several anomalous phenomena at low temperatures, which do not survive at high temperatures. For the Fermi level E f =0.1t (t is the hopping integral) the envelope of magnetoconductance fluctuations drops to a lower value at some magnetic flux, while the Hubbard interaction causes the drop to occur at larger flux. The magnetoconductance fluctuations vary with the Hubbard interaction for magnetic flux around 20Φ 0 (Φ 0 =hc/e) mainly in the range of small U. The Hubbard interaction narrows the widths of the main peaks in the Fourier spectrum, but it does not change their positions. copyright 1996 The American Physical Society

  20. The temperature--dependent expression of GST of Schistosoma japonicum (Philippine strain).

    Science.gov (United States)

    Cai, Z H; Song, G C; Xu, Y X; Liu, S X

    1993-03-01

    Obtained from pSj5, the cDNA gene encoding GST antigen of Schistosoma japonicum (Philippine strain) was ligated with efficient temperature-dependent PBV220 vector which was constructed in CAPM, and then introduced into host bacterium-DH5 alpha (E. coli) by transformation. Transformants were selected by ampicillin and recombinant clones were identified by restriction mapping. The result showed that recombinant clone 43 was the one carrying recombinant plasmid PBV 220 with the correct insertion of the gene fragment. The GST expression ability of clone 43 was investigated by GST enzymic activity assay and SDS-PAGE. A relatively high level of GST enzymic activity was expressed by this clone under the temperature-dependent condition, that is, cultured at 30 degrees C and expressed at 42 degrees C. A more strongly stained 26 kDa protein band was identified by SDS-PAGE. The result indicated that GST of S. japonicum (Philippine strain) could be expressed not only by IPTG induction, but also by the temperature-dependent method.

  1. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  2. Temperature dependence of the work function of ruthenium-based gate electrodes

    International Nuclear Information System (INIS)

    Alshareef, H.N.; Wen, H.C.; Luan, H.F.; Choi, K.; Harris, H.R.; Senzaki, Y.; Majhi, P.; Lee, B.H.; Foran, B.; Lian, G.

    2006-01-01

    The effect of device fabrication temperature on the work function of ruthenium (Ru) metal gate and its bilayers was investigated. The work function shows strong temperature dependence when Ru electrodes are deposited on silicon oxide, SiO 2 , but not on hafnium silicates (HfSiO x ). Specifically, the work function of Ru on SiO 2 increased from 4.5 eV at 500 deg. C to 5.0 eV at 700 deg. C. On further annealing to 900 deg. C or higher, the work function dropped to about 4.4 eV. In the case of HfSiO x , the work function of Ru changed by less than 100 mV over the same temperature range. Identical temperature dependence was observed using hafnium (Hf)/Ru and tantalum (Ta)/Ru bilayers. However, the peak values of the work function decreased with increasing Hf/Ru and Ta/Ru thickness ratios. Materials analysis suggests that these trends are driven by interactions at the Ru metal gate-dielectric interface

  3. Effects of a metallic front gate on the temperature-dependent electronic property of pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Tsao, Hou-Yen [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Liu, Day-Shan [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 632, Taiwan (China)

    2014-11-14

    The effect of a metallic front gate on the temperature-dependent electronic property of pentacene films was investigated in this study. The carrier mobility exhibits strong temperature dependence, implying the dominance of tunneling (hopping) at low (high) temperatures. The room-temperature mobility was drastically increased by capping an In (Au) layer on the pentacene front surface. However, the carrier concentration is not affected. An increase in the phonon energy occurs for In-capped or Au-capped pentacene samples, which corresponds to the abrupt transition to the nonlocal electron–phonon coupling. The enhanced mobility by capping a metal layer is attributed to a change in the electron–phonon coupling. - Highlights: • For the metal-capped and uncapped pentacene films, the mobility was researched. • The mobility was dramatically increased by capping an In (Au) layer. • The induced strain by capping a metal layer is found. • The strain may lead to the electron–phonon coupling variation. • The enhanced mobility is attributed to the weakened electron–phonon coupling.

  4. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    Science.gov (United States)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  5. The temperature dependent strontium isotope fractionation (δ88/86Sr) during calcium carbonate precipitation

    International Nuclear Information System (INIS)

    Fietzke, J.; Eisenhauer, A.

    2006-01-01

    Full text: In order to study the influence of stable isotope fractionation during inorganic and biologically controlled CaCO 3 precipitation we have developed the analytical principles for the measurement of strontium (Sr) isotope fractionation. We have established a measurement protocol for the application on a MC-ICP-MS (AXIOM) using the common bracketing standard technique. The Sr-standard CRM NBS987 was used as reference material for all measurements and to calculate the Sr fractionation. Latter value is expressed by the δ-notation defined as: δ 88/86 Sr = [( 88 Sr/ 86 Sr)sample / ( 88 Sr/ 86 Sr)standard ] * 1000 -1. A first set of experiments focused on the temperature dependency of Sr-isotope fractionation. For this purpose inorganically precipitated aragonite and calcite was prepared under controlled conditions in a temperature range from 10 to 50 o C. In addition, cultured and naturally grown corals were analyzed for their δ 88/86 Sr values. Repeated measurements of IAPSO seawater standard showed a mean δ 88/86 Sr value of 0.383 ± 0.008 (2 SEM) being the isotopically heaviest material measured so far. The first results of the inorganically precipitated aragonite and the natural corals revealed a clear temperature dependency of the δ 88/86 Sr values. For inorganic aragonite the slope of this correlation is about 0.0055 permil/ o C. However, for naturally grown corals (Pavona clavus) a 6 fold steeper slope of 0.033 permil/ o C was determined. This strong temperature dependency implies the potential to use stable Sr isotopes as a new marine (paleo)temperature proxy. (author)

  6. Moessbauer spectroscopy of iron (II) fluorosilicate-hexahydrate (temperature and pressure dependence)

    International Nuclear Information System (INIS)

    Volland, U.

    1979-01-01

    A pronounced temperature dependent asymmetry of the Moessbauer spectral lines with quadrupolar splitting is observed in the case of iron-fluoro-silicate-hexahydrate. For the increase in linewidth-difference at 225 K a thermal hysteresis is observed with a width of ΔT approx.= 2.5 K. As confirmed by X-ray analysis, at this temperature the crystal phase transition occurs simultaneously with the strong increase in linewidth, asymmetry. In slow electronic relaxation, which in the literature is porposed to be responsible for the different line-broadening characteristics, can be excluded on an experimental basis. Simple models are presented for an explanation of the findings, however, a physical interpretation of these models seems to be rather complicated. (orig./RB) [de

  7. Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots

    Science.gov (United States)

    Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.

    2018-02-01

    Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.

  8. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Temperature dependence of 1.55 μm VCSELs

    Science.gov (United States)

    Masum, J.; Balkan, N.; Adams, M. J.

    1998-08-01

    The temperature for minimum threshold carrier concentration in 1.55 μm VCSELs can be significantly lower than that at which the peak gain matches the cavity resonance. A simple model is implemented to investigate the magnitude of this temperature difference and to aid the design of VCSELs for room temperature operation.

  10. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  11. Temperature-dependence of stress and elasticity in wet-transferred graphene membranes

    Science.gov (United States)

    De Alba, Roberto; Abhilash, T. S.; Hui, Aaron; Storch, Isaac R.; Craighead, Harold G.; Parpia, Jeevak M.

    2018-03-01

    We report measurements of the mechanical properties of two suspended graphene membranes in the temperature range of 80 K to 550 K. For this entire range, the resonant frequency and quality factor of each device were monitored continuously during cooling and heating. Below 300 K, we have additionally measured the resonant frequency's tunability via electrostatic force, and modeled this data to determine graphene's tension and elastic modulus; both of these parameters are found to be strongly temperature-dependent in this range. Above 300 K, we observe a resonant frequency (and therefore tension) minimum near room temperature. This suggests that the thermal expansion coefficient is positive for temperatures below roughly 315 K, and negative for higher temperatures. Lastly, we observe a large, reproducible hysteresis in the resonant frequency as our graphene devices are cycled between 300 K and 550 K. After returning to 300 K, the measured frequency evolves exponentially in time with a time constant of ˜24 h. Our results clash with expectations for pristine graphene membranes, but are consistent with expectations for composite membranes composed of graphene coated by a thin layer of polymer residue.

  12. Temperature dependence of filament-coupling in Bi-2223 tapes: magneto-optical study

    International Nuclear Information System (INIS)

    Bobyl, A.V.; Shantsev, D.V.; Galperin, Y.M.; Johansen, T.H.; Baziljevich, M.; Gaevski, M.E.

    2000-01-01

    Coupling through random superconducting bridges between filaments in a multifilamentary Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ tape has been investigated by magneto-optical imaging at temperatures from 20 K up to T c . Magnetic flux distributions have been measured on the surface of an intact tape in the remanent state on applying a strong perpendicular magnetic field. The flux distributions observed at low temperatures reflect the arrangement of individual filaments. At high temperatures, the distribution becomes more similar to that for a uniform monocore tape, indicating that superconducting connections appear between the filaments. To discuss the relative contributions of the intra- and inter-filament currents, a simple model based on the Bean critical state was proposed and applied to analyse the temperature dependent behaviour. The inter-filament coupling, increasing with temperature, reaches at 77 K a point where the currents flowing in large inter-filament loops are roughly equal to the intra-filament currents. (author)

  13. Thickness dependent growth of low temperature atomic layer deposited zinc oxide films

    International Nuclear Information System (INIS)

    Montiel-González, Z.; Castelo-González, O.A.; Aguilar-Gama, M.T.; Ramírez-Morales, E.; Hu, H.

    2017-01-01

    Highlights: • Polycrystalline columnar ZnO thin films deposited by ALD at low temperatures. • Higher deposition temperature leads to a greater surface roughness in the ALD ZnO films. • Higher temperature originates larger refractive index values of the ALD ZnO films. • ZnO thin films were denser as the numbers of ALD deposition cycles were larger. • XPS analysis revels mayor extent of the DEZ reaction during the ALD process. - Abstract: Zinc oxide films are promising to improve the performance of electronic devices, including those based on organic materials. However, the dependence of the ZnO properties on the preparation conditions represents a challenge to obtain homogeneous thin films that satisfy specific applications. Here, we prepared ZnO films of a wide range of thicknesses by atomic layer deposition (ALD) at relatively low temperatures, 150 and 175 °C. From the results of X-ray photoelectron spectroscopy, X-ray diffraction and Spectroscopic Ellipsometry it is concluded that the polycrystalline structure of the wurtzite is the main phase of the ALD samples, with OH groups on their surface. Ellipsometry revealed that the temperature and the deposition cycles have a strong effect on the films roughness. Scanning electron micrographs evidenced such effect, through the large pyramids developed at the surface of the films. It is concluded that crystalline ZnO thin films within a broad range of thickness and roughness can be obtained for optic or optoelectronic applications.

  14. Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.

    Science.gov (United States)

    Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C

    2011-09-01

    1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic

  15. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle

    Science.gov (United States)

    Schroeder, Anthony L.; Metzger, Kelsey J.; Miller, Alexandra; Rhen, Turk

    2016-01-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina. We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926

  16. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 5900494 (Japan)]. E-mail: okada@rri.kyoto-u.ac.jp; Atobe, Kozo [Faculty of Science, Naruto University of Education, Naruto, Tokushima 7728502 (Japan); Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa 7608522 (Japan)

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, {alpha}-Al{sub 2}O{sub 3} (sapphire) and TiO{sub 2} (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature ({approx}370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 {mu}m band in TiO{sub 2} differs greatly from that of anion vacancy (F-type centers) in MgO and {alpha}-Al{sub 2}O{sub 3}. Results for MgO and {alpha}-Al{sub 2}O{sub 3} show steep negative gradients from 10 to 370 K, whereas that for TiO{sub 2} includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and {alpha}-Al{sub 2}O{sub 3}, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO{sub 2}, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 {mu}m band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  17. A revisit to the temperature dependence of electrical resistivity of α - Titanium at low temperatures

    Science.gov (United States)

    Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.

    2017-09-01

    The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.

  18. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... The crystallinity increases with increasing annealing temperature and a' form crystal is formed when the annealing temperature is higher than 100 oC. The stretched samples with low crystallinity show the first yield at draw temperatures below the glass transition temperature (Tg) and the second yield above Tg....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  19. Temperature dependence of ac response in diluted half-metallic CrO{sub 2} powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yajie; Zhang Xiaoyu; Cai Tianyi; Li Zhenya

    2004-10-06

    We present a study on temperature dependence of impedance spectra of the cold-pressed chromium dioxide (CrO{sub 2})-titanic dioxide (TiO{sub 2}) composite over the temperature range of 77-300 K, and over the frequency range of 40 Hz-500 kHz. The microstructure of the sample is analyzed using transmission electron microscopy (TEM), SEM and X-ray diffraction (XRD). The impedance spectra exhibit a strong dependence upon temperature. By evaluating the ac electricity behavior of the composite, we find the experimental data are successfully described by a power-law behavior {sigma}{sub ac}=A(T){omega}{sup s}, in which the frequency exponent s shows slightly greater than a universal value (0{<=}s{<=}1), and rises approximately linearly with temperature over a broad range of low temperature.

  20. Prediction of strong acceleration motion depended on focal mechanism; Shingen mechanism wo koryoshita jishindo yosoku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Y; Ejiri, J [Obayashi Corp., Tokyo (Japan)

    1996-10-01

    This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.

  1. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  2. Annealing temperature dependence of the structures and properties of Co-implanted ZnO films

    International Nuclear Information System (INIS)

    Chen, Bin; Tang, Kun; Gu, Shulin; Ye, Jiandong; Huang, Shimin; Gu, Ran; Zhang, Yang; Yao, Zhengrong; Zhu, Shunming; Zheng, Youdou

    2014-01-01

    Highlights: • To avoid the forming of Co clusters and explore the origin of the magnetism, detailed investigation on the properties of the Co-implanted ZnO films with a rather low dose of 8 × 10 15 cm −2 and high implantation energy of 1 MeV were carried out. • The crystalline structure of the damaged region caused by ion-implantation has been recovered via the thermal annealing treatment at the temperature of 900 °C and above. • The low temperature magnetic hysteresis loops have indicated paramagnetism for the annealed films with weak ferromagnetic characteristics. • The zero-field cooling (ZFC) magnetization curves of the Co-implanted ZnO samples have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C. - Abstract: The effects of thermal annealing treatment on the structural, electrical, optical and magnetic properties of Co-implanted ZnO (0 0 0 1) films have been investigated in detail. The crystalline structure of the damaged region caused by ion implantation has been recovered via the thermal annealing at the temperature of 900 °C and above, and no Co clusters or its related oxide phases have been observed. The electrical and optical properties of the annealed films have shown strong dependence on the annealing temperature. The zero field cooling magnetization curves of the annealed films have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C, which are possibly tuned by the changes of the ratio of the itinerant carriers over the localized spin density. The low temperature magnetic hysteresis loops have indicated paramagnetic behavior for the annealed films with weak ferromagnetic characteristics. The ferromagnetism is attributed to the substituted Co 2+ ions and vacancy defects, while the paramagnetism could be induced by ionized interstitial Zn defects

  3. Temperature dependence of looping rates in a short peptide.

    Science.gov (United States)

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  4. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  5. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    ... broad peak at a temperature higher than mt. The voltage constant 31 decreases and the planar coupling coefficient p remains constant up to half of the mt and then falls sharply with . Half of the mt can, therefore, be used for specifying the working temperature limit of the piezoceramics for the device applications.

  6. Temperature dependent lattice constant of InSb above room temperature

    Science.gov (United States)

    Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove

    2013-10-01

    Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).

  7. Temperature dependence of positron trapping by vacancies, loops and voids in molybdenum

    International Nuclear Information System (INIS)

    Bentzon, M.D.; Linderoth, S.; Petersen, K.

    1985-01-01

    The temperature dependence of positron trapping by defects in molybdenum has been studied. By resolving positron lifetime spectra into three components, it has been possible to distinguish the temperature dependence of positron trapping into loops and voids. The results show that the positron trapping rate into voids depends linearly on temperature. The temperature dependence of positron trapping by loops can be interpreted as positrons being trapped by jogs, directly or via the dislocation line. The temperature dependence of positrons trapped by loops is argued mainly to be due to the trapping at the dislocation line, and not to detrapping. The observed temperature dependence of positron annihilation parameters in an electron irradiated sample (below stage III), is explained by competitive positron trapping in interstitial loops at low temperatures

  8. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  9. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  10. Temperature dependence of three-point correlation functions of viscous liquids: the case of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Ferrier, Cecile; Eibl, Stefan; Alba-Simionesco, Christiane [Laboratoire de Chimie Physique, UMR 8000, Batiment 349, Universite Paris-Sud, 91405 Orsay (France); Pappas, Catherine [BENSC, Hahn-Meitner-Institute, HMI Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany)], E-mail: cecile.dalle-ferrier@lcp.u-psud.fr

    2008-12-10

    What causes the dramatic slowing down of flow and relaxation that leads to glass formation in liquids as temperature decreases is hardly understood so far and is the subject of intensive research work. It is tempting to ascribe the strong temperature dependence of the dynamics, irrespective of molecular details, to a collective or cooperative behavior characterized by a length scale that grows as one approaches the glass transition. To access this length experimentally, we use the recently introduced three-point dynamic susceptibility, from which the number of molecules dynamically correlated during the structural relaxation, N{sub corr}, can be extracted. The three-point functions are related to the sensitivity of the averaged two-time dynamics to external control parameters, such as temperature and density. We studied N{sub corr} values in an important temperature range for a large number of liquids, and found that it systematically grows when approaching the glass transition. Here we specially emphasize the case of glycerol for which we combined dielectric and neutron spin echo spectroscopy to cover more than 16 decades in relaxation time.

  11. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  12. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  13. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  14. Temperature dependent fission product removal efficiency due to pool scrubbing

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki; Hanamoto, Yukio; Osakabe, Masahiro; Fujikawa, Masahiro

    2016-01-01

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  15. Temperature-dependent structural properties of P3HT films

    Energy Technology Data Exchange (ETDEWEB)

    Grigorian, S; Joshi, S; Pietsch, U, E-mail: grigorian@physik.uni-siegen.de [Institute of Physics, University Siegen, Walter Flex Strasse 3, D-57068, Siegen (Germany)

    2010-11-15

    Structural investigations of spin coated and drop cast poly(3-hexylthiophene) P3HT films have been performed under x-ray grazing incidence geometry. Drop cast films revealed to be highly oriented and crystalline and only slightly modify with the temperature. In contrast, spin coated films provided random orientational distribution of nanocrystallites and undergo significant morphological and structural changes during annealing. Interestingly, spin coated films of low and high molecular weight fractions behavior differently as a function of temperature. Crystalline domains of the low molecular weight fractions have been decreased, and, in contrast, we found an improvement of crystallinity of high molecular weight fraction with increase of the temperature.

  16. Temperature-dependent structural properties of P3HT films

    International Nuclear Information System (INIS)

    Grigorian, S; Joshi, S; Pietsch, U

    2010-01-01

    Structural investigations of spin coated and drop cast poly(3-hexylthiophene) P3HT films have been performed under x-ray grazing incidence geometry. Drop cast films revealed to be highly oriented and crystalline and only slightly modify with the temperature. In contrast, spin coated films provided random orientational distribution of nanocrystallites and undergo significant morphological and structural changes during annealing. Interestingly, spin coated films of low and high molecular weight fractions behavior differently as a function of temperature. Crystalline domains of the low molecular weight fractions have been decreased, and, in contrast, we found an improvement of crystallinity of high molecular weight fraction with increase of the temperature.

  17. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    Science.gov (United States)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  18. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  19. Temperature dependence of the fundamental band gap parameters ...

    Indian Academy of Sciences (India)

    the energy and broadening of the fundamental band gap have been evaluated using various models including the ... other crucial parameters including the operating temperatures of these devices. ... refrigeration system (Air Product Displex).

  20. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... have been made to see this trade-off relation at relatively higher temperature. It is found that selectivity ... acceptable due to low capital cost, less energy requirement ... in solubility, with increased permeability due to interac-.

  1. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus

    OpenAIRE

    Villegas, Cesar E. P.; Rocha, A. R.; Marini, Andrea

    2016-01-01

    Black Phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is, indeed, the BP temperature-induced band-gap opening: when ...

  2. The dependence on temperature and salinity of dissolved

    NARCIS (Netherlands)

    Bakker, Dorothee C.E.; Baar, Hein J.W. de; Jong, Edwin de

    1999-01-01

    Recurring latitudinal patterns of the dissolved inorganic carbon (DIC) content and the fugacity of CO2 (fCO2) were observed in East Atlantic surface waters with strong gradients at hydrographic fronts. The dissolved inorganic carbon chemistry clearly displayed the effects of oceanic circulation and

  3. Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite

    NARCIS (Netherlands)

    Gelvez Rueda, M.C.; Renaud, N.; Grozema, F.C.

    2017-01-01

    The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite

  4. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  5. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  6. Temperature dependence of nonsteady radiation conductivity of polymers

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Saenko, V.S.; Dunaev, A.F.; Sichkar', V.P.; Vannikov, A.V.

    1984-01-01

    Influence of temperature on non-steady radiation conductivity (NRC) of polymeric dielectrics is investigated. It is revealed that the temperature effects first of all delayed NRC constituent. Temperature increase up to 100 deg C is followed by certain slowing down the rate of current drop of induced conductivity, in this case the nature of the volt-ampere characteristic of delayed NRC constituent does not essentially change, as a rule. The obtained experimental results interpreted in the frames of the band model permitted to make conclusions on the effect of chemical structure of the polymer on its NRC. Presence of carbazole or phenylic groups in the elementary chain is shown to increase the delayed constituent of induced conductivity and to ensure prevailing yield of free charges. Appearance of methyl groups in the composition of the chain essentially suppresses the delayed constituent and results in high values of activation energy and rather slowed down current drop

  7. Temperature dependence of damage accumulation in α-zirconium

    International Nuclear Information System (INIS)

    Arevalo, C.; Caturla, M.J.; Perlado, J.M.

    2007-01-01

    Using the input data obtained from molecular dynamics (MD) simulations on defect energetics and cascade damage, we present results obtained on irradiation of hexagonal-close-packed (hcp) α-zirconium under different conditions with a kinetic Monte Carlo (kMC) model. We used three 25 keV cascade databases at temperatures of 100 K, 300 K and 600 K respectively. The evolution of the microstructure during irradiation for a dose rate of 10 -6 dpa/s, at temperatures of 100 K, 300 K and 600 K until a final dose of 0.1 dpa has been studied. We have considered isotropic motion for vacancies and one dimensional movement for interstitials and we have studied how the accumulation of damage is affected considering different temperatures. We present preliminary comparisons with experimental data

  8. Temperature-dependent shock initiation of LX-17 explosive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.S.; Chau, H.H.; Druce, R.L.; Moua, K.

    1995-02-01

    LX-17 samples, heated to temperatures up to 250 C, were impacted by 3 to 10-mm-wide, 50.8-mm-long strips of 0.13-mm-thick Kapton polyimide film at velocities up to 7.7 km/s. The Kapton strips were laminated onto a thin aluminum bridge foil and were launched to the desired velocity by discharging a capacitor bank through the foil, causing the foil to explode. The LX-17 samples were confined in a steel holder and heated in an oven to the desired temperature. After the capacitor bank was charged, the LX-17 sample in its steel holder was remotely drawn out of the oven on rails and positioned over the bridge-foil/Kapton-strip laminate. When the sample was in position, the bank was discharged, launching the Kapton strip against the LX-17 surface. The shock initiation threshold was measured for 3, 7, and 10-mm-wide strips at room temperature, 200 C and 250 C. The authors found a significant reduction in the velocity threshold and in the critical area for initiation when the samples were heated. The authors compare the results with the earlier data of Bloom, who measured the initiation threshold of LX-17 over the density range 1.8--1.91 g/cm{sup 3} at room temperature and {minus}54 C. LX-17 has a large coefficient of thermal expansion, as reported by Urtiew, et al., which reduces its density significantly t elevated temperatures. They find that the change of shock initiation threshold with temperature is consistent with the change in sample density, using the relation between threshold and density reported by Bloom.

  9. Temperature dependence of current–voltage characteristics of Au/n ...

    Indian Academy of Sciences (India)

    Unknown

    2000-05-05

    May 5, 2000 ... factor with temperature has been explained considering lateral inhomogeneities in the Schottky barrier height ... The dependence of SBH on temperature can give ... effect in MS contacts, Tung has modeled the influence.

  10. Temperature dependence of lattice parameters of alpha-zirconium

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, M.

    1991-01-01

    This work presents a brief review of X-ray and thermal expansion determination of lattice parameters for α-Zirconium. Data reported by different authors cover almost all the field of existence of the hexagonal phase of Zirconium, from temperatures as low as 4.2 K up to about 1130 K, near the α→β transformation temperature. Polynomial expressions based on a least squares fitting of experimental data are also presented. The expressions obtained by Goldak et al. are considered to be the most complete. The influence of impurities on the lattice parameters is also discussed. (Author) [es

  11. On the frequency dependence of the high temperature background

    International Nuclear Information System (INIS)

    Povolo, F.; Hermida, E.B.

    1996-01-01

    The high temperature background (HTB) damping in metals and alloys has been measured mostly as a function of temperature. These data were described by several empirical expressions proposed in the literature. In the present work, HTB in pure Mg and in two alloys (Zry-4 and Cu-5 at.%Au), measured with a torsion pendulum with variable moment of inertia, are analyzed on considering a new treatment of the data. This analysis provides an useful tool to determine whether a damping process is linear or not. (orig.)

  12. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  13. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther

    2008-01-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift

  14. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Andersen, Claus Erik

    2007-01-01

    is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals...... and detection wavelengths. The reported temperature dependence seems to be a general property of Al2O3:C. (C) 2006 Elsevier Ltd. All rights reserved....

  15. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  16. Temperature dependence of transport coefficients of 'simple liquid ...

    African Journals Online (AJOL)

    ... has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: 403-406] ...

  17. Le Chatelier's Principle Applied to the Temperature Dependence of Solubility.

    Science.gov (United States)

    Treptow, Richard S.

    1984-01-01

    One effect of temperature is its influence on solubility, and that effect is used as a common example when teaching Le Chatelier's principle. Attempts to clarify the question of whether the principle holds in the case of the solubility of ionic compounds in water by investigating the literature data in detail. (JN)

  18. Temperature dependence of twinning activity in random textured cast magnesium

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Farkas, G.; Pilch, Jan; Máthis, K.

    2015-01-01

    Roč. 627, MAR (2015), s. 333-335 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning * high temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  19. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-01-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures

  20. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  1. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Katherine P.; Russek, Stephen E., E-mail: stephen.russek@nist.gov; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Geiss, Roy H. [Colorado State University, Fort Collins, Colorado 80523 (United States); Arenholz, Elke [Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, California 94720 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  2. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  3. Temperature-dependent reactions of phthalic acid on Ag(100)

    Czech Academy of Sciences Publication Activity Database

    Franke, M.; Marchini, M.; Zhang, L.; Tariq, Q.; Tsud, N.; Vorokhta, M.; Vondráček, Martin; Prince, K.; Röckert, M.; Williams, F.J.; Steinrück, H.-P.; Lytken, O.

    2015-01-01

    Roč. 119, č. 41 (2015), 23580-23585 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : phthalic acid * NEXAFS * photoemission spectroscopy * temperature - programmed desoprtion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.509, year: 2015

  4. Empirical temperature dependence of the refractive index of semiconductors

    NARCIS (Netherlands)

    Herve, P.J.L.; Vandamme, L.K.J.

    1995-01-01

    Values of the temperature coefficient of the refractive index were obtained from the derivation of a simple relation between energy band-gap and refractive index in semiconductors. These values, (dn/dT)/n, were compared to the experimental data found in literature. Our model, with only one fitting

  5. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  6. Temperature dependence of deuterium retention mechanisms in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Roszell, J.P. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada)

    2012-10-15

    The retention of 500 eV D{sup +} was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of {approx}2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  7. Temperature dependence of deuterium retention mechanisms in tungsten

    International Nuclear Information System (INIS)

    Roszell, J.P.; Davis, J.W.; Haasz, A.A.

    2012-01-01

    The retention of 500 eV D + was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ∼2 orders of magnitude over the temperature range of 350–550 K in SCW and a decrease of an order of magnitude over the temperature range of 600–700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  8. Temperature dependence of deuterium retention mechanisms in tungsten

    Science.gov (United States)

    Roszell, J. P.; Davis, J. W.; Haasz, A. A.

    2012-10-01

    The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  9. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  10. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  11. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. On the gauge dependence of vacuum transitions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2012-05-15

    In principle, observables as for example the sphaleron rate or the tunneling rate in a first-order phase transition are gauge-independent. However, in practice a gauge dependence is introduced in explicit perturbative calculations due to the breakdown of the gradient expansion of the effective action in the symmetric phase. We exemplify the situation using the effective potential of the Abelian Higgs model in the general renormalizable gauge. Still, we find that the quantitative dependence on the gauge choice is small for gauges that are consistent with the perturbative expansion.

  13. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  14. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  15. Substrate bias voltage and deposition temperature dependence on ...

    Indian Academy of Sciences (India)

    Thin films or a coating of any sort prior to its application into real world has to be studied for the dependence of ..... For line focusing, incident beam mask was employed with ..... org/content/avs/journal/jvst/11/4/10.1116/1.1312732. Thornton J A ...

  16. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  17. The temperature dependence of the friction in the fission

    International Nuclear Information System (INIS)

    Yamaji, Shuhei

    1996-01-01

    We study the slow collective motion at finite excitation on the basis of the linear response theory. The transport coefficients such as friction γ, inertia M and local stiffness C formulated within a locally harmonic approximation are computed along the fission path of 224 Th. It is found that the effective damping rate η = γ/=2√(M|C|)= increases with the temperature T in accord with the fission experiment with the emission of γ-rays. (author)

  18. Temperature Dependence of Short-Range Order in β-Brass

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1967-01-01

    Critical scattering of neutrons around the superlattice reflections (1, 0, 0) and (1, 1, 1) from a single crystal of beta-brass has been measured at temperatures from 2 to 25deg C above the transition temperature. The temperature dependence of the critical peak intensity, proportional to the susc......Critical scattering of neutrons around the superlattice reflections (1, 0, 0) and (1, 1, 1) from a single crystal of beta-brass has been measured at temperatures from 2 to 25deg C above the transition temperature. The temperature dependence of the critical peak intensity, proportional...

  19. Frequency and temperature dependence of high damping elastomers

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1993-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping

  20. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  1. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  2. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  3. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions.

    Directory of Open Access Journals (Sweden)

    Joy Ogbechi

    2015-07-01

    Full Text Available A well-known histopathological feature of diseased skin in Buruli ulcer (BU is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM expression on the surface of human dermal microvascular endothelial cells (HDMVEC at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this

  4. Anomalous temperature dependence of H{sub c2} in BiSrCuO

    Energy Technology Data Exchange (ETDEWEB)

    Broto, J.M. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Rakoto, H. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Ousset, J.C. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Coffe, G. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Askenazy, S. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Osofsky, M.S. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Soulen, R.J. Jr. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Wolf, S.A. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Pari, P. [Centre d`Etudes de Saclay, Service de Physique de l`Etat Condense, Laboratoire des Basses Temperatures, 91191 Gif-sur-Yvette (France); Bozovic, I. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Eckstein, J.N. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Virshup, G.F. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States)

    1995-05-01

    H{sub c2}(T) has been measured for thin BSCO films at temperatures down to 65 mK and pulsed fields up to 35 T. H{sub c2}(T) diverged anomalously as the temperature decreased: at the lowest temperature, it was five times that expected for a conventional superconductor. Although deviations from the conventional behavior have been observed in other superconductors, such strong divergence over such a large range of reduced temperature has not been seen before. (orig.).

  5. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    Science.gov (United States)

    Zhang, Caiyun; Zhu, Xiaohong; Wang, Zhongxing; Sun, Ping; Ren, Yinjuan; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2014-09-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles.

  6. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    Science.gov (United States)

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS 81.05.ue; 78.67.Sc; 88.80.fh PMID:25258609

  7. Processing methods for temperature-dependent MCNP libraries

    International Nuclear Information System (INIS)

    Li Songyang; Wang Kan; Yu Ganglin

    2008-01-01

    In this paper,the processing method of NJOY which transfers ENDF files to ACE (A Compact ENDF) files (point-wise cross-Section file used for MCNP program) is discussed. Temperatures that cover the range for reactor design and operation are considered. Three benchmarks are used for testing the method: Jezebel Benchmark, 28 cm-thick Slab Core Benchmark and LWR Benchmark with Burnable Absorbers. The calculation results showed the precision of the neutron cross-section library and verified the correct processing methods in usage of NJOY. (authors)

  8. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.

    Science.gov (United States)

    Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing

    2018-01-10

    Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

  9. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  10. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  11. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  12. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  13. Temperature Dependence on The Synthesis of Jatropha Biolubricant

    International Nuclear Information System (INIS)

    Resul, Muhammad Faiz M Gunam; Ghazi, Tinia Idaty Mohd; Idris, Azni

    2011-01-01

    Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha biolubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 deg. C and 200 deg. C with pressure kept at 10mbar. The conversion of JME to jatropha biolubricant was found to be the highest (47%) at 200 deg. C. However, it was suggested that the optimum temperature of the reaction is at 150 deg. C due to insignificant improvement in biolubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (%wt/wt.min.deg. C)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha biolubricant was at -3 deg. C and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha biolubricant, pour point and viscosities are found comparable to other plant based biolubricant, namely palm oil and soybean based biolubricant.

  14. Temperature dependence on the synthesis of Jatropha bio lubricant

    International Nuclear Information System (INIS)

    Gunam Resul, M.F.M.; Tinia Idaty Mohd Ghazi; Idris, A.

    2009-01-01

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH 3 ) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10 -1 (% wt/ wt.min.degree Celsius) -1 . The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  15. On the spectral dependence of the critical temperature of superconductors

    International Nuclear Information System (INIS)

    Combescot, R.

    1989-01-01

    The authors have solved analytically the linearized Eliashberg equations for T c in the weak coupling limit. The corrections to their result go to zero in this limit. Their calculation is valid for any spectral shape. They find a smooth dependence of T c on the spectral shape. Only the gross features of the spectrum are relevant. The authors propose for T c an interpolation formula valid for any coupling strength and any spectral shape. This formula is in good agreement with known numerical results. It agrees with all the qualitative behavior obtained from computer work

  16. Inclusion of temperature dependence of fission barriers in statistical model calculations

    International Nuclear Information System (INIS)

    Newton, J.O.; Popescu, D.G.; Leigh, J.R.

    1990-08-01

    The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs

  17. Temperature dependence of the magnetization of disc shaped NiO nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lindgard, P.A.; Lefmann, Kim

    2002-01-01

    as a temperature dependent contribution of a structural peak in contrast to bulk NiO. The two magnetic signals vanish at the same temperature. The data are interpreted on the basis of an extended mean field model on disc shaped NiO particles. This model includes the finite size dependence of the effective field...

  18. Study on the effect of testing machine rigidity on strength and ductility temperature dependences obtained

    International Nuclear Information System (INIS)

    Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.

    1984-01-01

    Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application

  19. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

    Science.gov (United States)

    Tsiovkin, Yu. Yu.; Povzner, A. A.; Tsiovkina, L. Yu.; Dremov, V. V.; Kabirova, L. R.; Dyachenko, A. A.; Bystrushkin, V. B.; Ryabukhina, M. V.; Lukoyanov, A. V.; Shorikov, A. O.

    2010-01-01

    The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures ( T > ΘD, ΘD is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

  20. Dependence of electric strength on the ambient temperature

    International Nuclear Information System (INIS)

    Čaja, Alexander; Nemec, Patrik; Malcho, Milan

    2014-01-01

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling

  1. On the temperature dependence of the excess resistivity in dilute volatile alloys

    International Nuclear Information System (INIS)

    Uray, L.; Vicsek, T.

    1978-01-01

    In recrystallized wires of many important refractory alloys, an appreciable part of the temperature dependence of the measured excess resistivity is related to the radial distribution of the volatile solutes (extrinsic temperature dependence). Both the extrinsic and the intrinsic part of the temperature dependence of the excess resistivity have been determined for dilute WFe, WCo and WRe alloys, by measuring the resistance as a function of temperature and the thickness of layers removed by electrothinning. In this way the parameters of the evaporation profiles were also determined. In the surface region at low temperatures the length scale of the inhomogeneity is comparable to the mean-free path. Therefore, the observed extrinsic temperature dependence of the excess resistivity was calculated directly from the Boltzmann equation. The WCo alloy is a Kondo system, since its resistivity shows a minimum a 20 K. (author)

  2. Temperature dependence and hysteresis of the initial permeability of the 50%Ni - 50%Fe alloy

    International Nuclear Information System (INIS)

    Kekalo, I.B.; Stolyarov, V.L.; Patsionov, V.A.

    1979-01-01

    Studied has been a temperature dependence of the initial permeability of the 50% Ni - 50% Fe alloy after primary and secondary recrystallization and effect of thermomagnetic treatment upon the dependence. For all the alloys with the structure of primary recrystallization a monotonous increase of initial permeability with temperature and the presence of slight temperature hysteresis are typical. Thermomagnetic treatment, not affecting considerably the temperature dependence of permeability for all the primarily recrystallized alloys, changes to a great extent the character of the dependence in the secondary recrystallized alloys. For 20-200-20 deg C temperature cycle of the alloys with secondary recrystallized structure are characterized after thermomagnetic treatment by the presence of gigantic hysteresis of initial permeability and a maximum on the heating branch of the curve in the vicinity of 130 deg C which are accounted for by peculiarities of temperature hysteresis of domain structure in the given alloy

  3. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  4. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sö nke; Banguera Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  5. Development of strong-sense validation benchmarks for the fluoride salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E. D.

    2012-01-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) is a class of reactor concepts currently under development for the U. S. Dept. of Energy. The FHR is defined as a Generation IV reactor that features low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. Recent experimental work using simulant fluids have been performed to demonstrate key 'proof of principle' FHR concepts and have helped inform the reactor design process. An important element of developing FHR technology is to sufficiently validate the predictive accuracy of the computer codes used to model system response. This paper presents a set of thermal-hydraulics experiments, defined as Strong-Sense Benchmarks (SSB's), which will help establish the FHR validation domain for simulant fluid suitability. These SSB's are more specifically designed to investigate single-phase natural circulation which is the dominant mode of FHR decay heat removal during off-normal conditions. SSB s should be viewed as engineering reference standards and differ from traditional confirmatory experiments in the sense that they are more focused on fundamental physics as opposed to reproducing high levels of physical similarity with the prototypical design. (authors)

  6. Wall temperature measurements using a thermal imaging camera with temperature-dependent emissivity corrections

    International Nuclear Information System (INIS)

    McDaid, Chloe; Zhang, Yang

    2011-01-01

    A methodology is presented whereby the relationship between temperature and emissivity for fused quartz has been used to correct the temperature values of a quartz impingement plate detected by an SC3000 thermal imaging camera. The methodology uses an iterative method using the initial temperature (obtained by assuming a constant emissivity) to find the emissivity values which are then put into the thermal imaging software and used to find the subsequent temperatures, which are used to find the emissivities, and so on until converged. This method is used for a quartz impingement plate that has been heated under various flame conditions, and the results are compared. Radiation losses from the plate are also calculated, and it is shown that even a slight change in temperature greatly affects the radiation loss. It is a general methodology that can be used for any wall material whose emissivity is a function of temperature

  7. Temperature-Dependent Effects of Cutaneous Bacteria on a Frog’s Tolerance of Fungal Infection

    Directory of Open Access Journals (Sweden)

    Matthew J. Robak

    2018-03-01

    Full Text Available Defense against pathogens is one of many benefits that bacteria provide to animal hosts. A clearer understanding of how changes in the environment affect the interactions between animals and their microbial benefactors is needed in order to predict the impact and dynamics of emerging animal diseases. Due to its dramatic effects on the physiology of animals and their pathogens, temperature may be a key variable modulating the level of protection that beneficial bacteria provide to their animal hosts. Here we investigate how temperature and the makeup of the skin microbial community affect the susceptibility of amphibian hosts to infection by Batrachochytrium dendrobatidis (Bd, one of two fungal pathogens known to cause the disease chytridiomycosis. To do this, we manipulated the skin bacterial communities of susceptible hosts, northern cricket frogs (Acris crepitans, prior to exposing these animals to Bd under two different ecologically relevant temperatures. Our manipulations included one treatment where antibiotics were used to reduce the skin bacterial community, one where the bacterial community was augmented with the antifungal bacterium, Stenotrophomonas maltophilia, and one in which the frog’s skin bacterial community was left intact. We predicted that frogs with reduced skin bacterial communities would be more susceptible (i.e., less resistant to and/or tolerant of Bd infection, and frogs with skin bacterial communities augmented with the known antifungal bacterium would be less susceptible to Bd infection and chytridiomycosis. However, we also predicted that this interaction would be temperature dependent. We found a strong effect of temperature but not of skin microbial treatment on the probability and intensity of infection in Bd-exposed frogs. Whether temperature affected survival; however, it differed among our skin microbial treatment groups, with animals having more S. maltophilia on their skin surviving longer at 14 but not at

  8. Measured Temperature Dependence of the cos-phi Conductance in Josephson Tunnel Junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1977-01-01

    The temperature dependence of the cosϕ conductance in Sn-O-Sn Josephson tunnel junctions has been measured just below the critical temperature, Tc. From the resonant microwave response at the junction plasma frequency as the temperature is decreased from Tc it is deduced that the amplitude of the...

  9. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  10. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  11. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  12. Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathi Bai J. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)], E-mail: bharathi@css.nal.res.in; Vasantharajan, N. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)

    2008-10-15

    The temperature dependence of the luminescence lifetime of temperature sensor films based on europium (III) thenoyltrifluoroacetonate (EuTTA) as sensor dye in various polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA), polyurethane (PU) and model airplane dope was studied and compared. The luminescence lifetime of EuTTA was found to depend on the polymer matrix. The temperature sensitivity of lifetime was maximum for EuTTA-PS coating in the temperature range of 10-60 deg. C. The effect of concentration of the sensor dye in the polymer on the lifetime and temperature sensitivity was also studied.

  13. Analysis of microwave heating of materials with temperature-dependent properties

    International Nuclear Information System (INIS)

    Ayappa, K.G.; Davis, H.T.; Davis, E.A.; Gordon, J.

    1991-01-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model

  14. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  15. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  16. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-09-15

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/{+-}45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

  17. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    International Nuclear Information System (INIS)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang

    2012-01-01

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/±45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature

  18. Experimental determination of monoethanolamine protonation constant and its temperature dependency

    Directory of Open Access Journals (Sweden)

    Ma’mun Sholeh

    2017-01-01

    Full Text Available Carbon dioxide as one of the major contributors to the global warming problem is produced in large quantities by many important industries and its emission seems to rise from year to year. Aminebased absorption is one of the methods to capture CO2 from its sources. As a reactive system, mass transfer and chemical reaction take place simultaneously. In a vapor-liquid equilibrium model for the CO2-amine-water system, some parameters such as mass transfer coefficients and chemical equilibrium constants need to be known. However, some parameters could be determined experimentally and the rests could be regressed from the model. The protonation constant (pKa, as one of the model parameters, could then be measured experimentally. The purpose of this study is to measure the pKa of monoethanolamine (MEA at a range of temperatures from 303 to 330K by a potentiometric titration method. The experimental data obtained were in a good agreement with the literature data. The pKa data from this work together with those from the literature were then correlated in an empirical correlation to be used for future research.

  19. Temperature dependence on shock response of stainless steel

    International Nuclear Information System (INIS)

    Gu Zhuowei; Jin Xiaogang

    1998-01-01

    Free surface velocity measurements were reported for HR-2(Cr-Ni-Mn-N) stainless steel, initially heated to 300K∼1000K and shock-compressed to about 8GPa. The corresponding spall strength σ f and Hugoniot elastic limit σ HEL were determined from the wave profiles. It is demonstrated that σ f and σ HEL decrease linearly with increasing temperature T in the range from 300K to 806K, i.e., σ f =5.63-4.32x10 -3 T and σ HEL =2.08-1.54x10 -3 T, and in the range of 806K∼980K, σ HEL increases from 0.84GPa at 806K to 0.93GPa at 980K, σ f has a negligible increase to 2.15GPa from 2.14GPa. Primary TEM test on recovery samples identified the existence of intermatallic compound Ni 3 Ti in the sample of 980K

  20. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  1. Temperature and boron dependencies of buckling and radial reflector saving for VVER lattices

    International Nuclear Information System (INIS)

    Alvarez, C.

    1990-01-01

    The temperature and boron dependencies of buckling and radial reflectors savings are analyzed in this paper on the basis of the results from the calculations ZR-6M critical assembly. These dependencies are related to the physical behavior of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the parameter was also investigated and its dependence on water density was determined

  2. Temperature and boron dependencies of buckling and radial reflector savings for VVER lattices

    International Nuclear Information System (INIS)

    Alvarez, C.

    1990-01-01

    The temperature and boron dependencies of buckling and radial reflector savings are analyzed in this paper on the basis of the results from the calculations for the ZR-6M critical assembly. These dependencies are related to he physical behaviour of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the dp/dBg 2 parameter was also investigated and its dependence on water density was determined

  3. Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Moscow Institute of Physics and Technology,9 Institutskii per., 141700, Dolgoprudny (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,1 Pobedy St., Protvino, 142281 (Russian Federation); School of Biomedicine, Far Eastern Federal University,8 Sukhanova St., 690950, Vladivostok (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation)

    2017-04-18

    In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T/T{sub c}∈[0.9,1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T/T{sub c}∈[0.9,1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N=4 Supersymmetric Yang-Mills theory.

  4. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  5. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  6. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  7. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.

    1992-01-01

    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h

  8. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  9. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P greenness by 3.6% relative to the mean greenness during 2000-2004 (P green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon. © 2016 John Wiley & Sons Ltd.

  10. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    Science.gov (United States)

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  11. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shulumba, Nina [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Functional Materials, Saarland University, D-66123 Saarbrücken (Germany); Hellman, Olle [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Modeling and Development Laboratory, NUST “MISIS,” 119049 Moscow (Russian Federation); LACOMAS Laboratory, Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  12. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  13. Temperature-dependent gate-swing hysteresis of pentacene thin film transistors

    Directory of Open Access Journals (Sweden)

    Yow-Jon Lin

    2014-10-01

    Full Text Available The temperature-dependent hysteresis-type transfer characteristics of pentacene-based organic thin film transistors (OTFTs were researched. The temperature-dependent transfer characteristics exhibit hopping conduction behavior. The fitting data for the temperature-dependent off-to-on and on-to-off transfer characteristics of OTFTs demonstrate that the hopping distance (ah and the barrier height for hopping (qϕt control the carrier flow, resulting in the hysteresis-type transfer characteristics of OTFTs. The hopping model gives an explanation of the gate-swing hysteresis and the roles played by qϕt and ah.

  14. The Temperature Dependence of the Debye-Waller Factor of Magnesium

    DEFF Research Database (Denmark)

    Sledziewska-Blocka, D.; Lebech, Bente

    1976-01-01

    The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi-harmonic appro......The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi......-harmonic approximations and results of previous experiments....

  15. Tunneling magnetoresistance dependence on the temperature in a ferromagnetic Zener diode

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; GarcIa-Loureiro, A, E-mail: enrique.comesana@usc.e [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2009-11-15

    In the present work we focus on the study of the temperature dependence of the tunnelling current in a ferromagnetic Zener diode. We predict the tunneling magnetoresistance dependence on the temperature. Large doping concentrations lead to magnetic semiconductors with Curie temperature T{sub C} near or over room temperature and this will facilitate the introduction of new devices that make use of the ferromagnetism effects. According to our calculations the tunneling magnetoresistance has the form TMR {proportional_to} (T{sup n}{sub C}-T{sup n}).

  16. Yolk-albumen testosterone in a lizard with temperature-dependent sex determination: relation with development.

    Science.gov (United States)

    Huang, Victoria; Bowden, Rachel M; Crews, David

    2013-06-01

    The leopard gecko (Eublepharis macularius) exhibits temperature-dependent sex determination as well as temperature-influenced polymorphisms. Research suggests that in oviparous reptiles with temperature-dependent sex determination, steroid hormones in the yolk might influence sex determination and sexual differentiation. From captive leopard geckos that were all from the same incubation temperature regime, we gathered freshly laid eggs, incubated them at one of two female-biased incubation temperatures (26 or 34°C), and measured testosterone content in the yolk-albumen at early or late development. No differences in the concentration of testosterone were detected in eggs from different incubation temperatures. We report testosterone concentrations in the yolk-albumen were higher in eggs of late development than early development at 26°C incubation temperatures, a finding opposite that reported in other TSD reptiles studied to date. Copyright © 2013. Published by Elsevier Inc.

  17. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  18. Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO{sub 4} rod-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Validzic, Ivana Lj., E-mail: validzic@vinca.rs [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Savic, Tatjana D.; Krsmanovic, Radenka M.; Jovanovic, Dragana J.; Novakovic, Mirjana M.; Popovic, Maja C.; Comor, Mirjana I. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Novel low temperature method for the synthesis of ZnO/ZnWO{sub 4} rod-like nanoparticles. Black-Right-Pointing-Pointer PL showed strong UV band peaked at 3.30 eV and a visible band at 2.71 and 2.53 eV. Black-Right-Pointing-Pointer Variations of the two PL bands were observed for different excitation wavelengths. Black-Right-Pointing-Pointer Band-gap energies of ZnO/ZnWO{sub 4} nanoparticles were found to be 3.62 and 3.21 eV. Black-Right-Pointing-Pointer Photocatalytic behaviour of ZnO is dependent on the formation of ZnWO{sub 4} phase. - Abstract: Zinc oxide (ZnO)/zinc tungstate (ZnWO{sub 4}) rod-like nanoparticles with diameters in the range of 6-11 nm and length of about 30 nm were synthesized by a low temperature soft solution method at 95 Degree-Sign C in the presence of non-ionic copolymer surfactant. It was found that their crystallinity was enhanced with the increase of heating time from 1 h up to 120 h. The photoluminescence (PL) measurements showed very strong, narrow UV band peaked at 3.30 eV and a broad visible band peaking at 2.71 eV with a shoulder at about 2.53 eV, for {lambda}{sub exc} < 300 nm. Quite large variations in the intensities of the two PL bands were observed for different excitation wavelengths. The intensity of the main visible band decreases with decreasing excitation energy and disappears when samples are excited {lambda} = 320 nm (E{sub exc} = 3.875 eV). We found that observed optical properties originate from ZnO phase. UV band gap PL had high intensity for all applied excitations, probably induced by ZnWO{sub 4} phase presence on the surface. In addition, two values were found for direct band-gap energy of ZnO/ZnWO{sub 4} rod-like nanoparticles 3.62 and 3.21 eV, determined from reflectance spectrum. The photocatalytic behaviour of ZnO is strongly dependent on the formation of ZnWO{sub 4} phase, of the obtained rod-like nanoparticles.

  19. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  20. Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters

    International Nuclear Information System (INIS)

    Lannig, Gisela; Flores, Jason F.; Sokolova, Inna M.

    2006-01-01

    Combined effects of temperature and a toxic metal, cadmium (Cd), on energy metabolism were studied in a model marine bivalve, the eastern oyster Crassostrea virginica, acclimated at 20, 24 and 28 deg. C and exposed to 50 μg l -1 of Cd. Both increasing temperature and Cd exposure led to a rise in standard metabolic rates, and combined stressors appeared to override the capability for aerobic energy production resulting in impaired stress tolerance. Oysters exposed to elevated temperature but not Cd showed no significant change in condition, survival rate and lipid peroxidation, whereas those exposed to both Cd and temperature stress suffered high mortality accompanied by low condition index and elevated lipid peroxidation. Furthermore, RNA/DNA ratios indicative of protein synthesis rate, and levels of glutathione, which is involved in metal detoxification, increased in Cd-exposed oysters at 20 deg. C but not at 28 deg. C. Implications of the synergism between elevated temperatures and cadmium stress on energy metabolism of oysters are discussed in the light of the potential effects of climate change on oyster populations in polluted areas

  1. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  2. Temperature-dependent cross sections for meson-meson nonresonant reactions in hadronic matter

    International Nuclear Information System (INIS)

    Zhang Yiping; Xu Xiaoming; Ge Huijun

    2010-01-01

    We present a potential of which the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections and of which the large-distance part exhibits a temperature-dependent constant value. The Schroedinger equation with this temperature-dependent potential yields a temperature dependence of the mesonic quark-antiquark relative-motion wave function and of meson masses. The temperature dependence of the potential, the wave function and the meson masses brings about temperature dependence of cross sections for the nonresonant reactions ππ→ρρ for I=2, KK→K*K* for I=1, KK*→K*K* for I=1, πK→ρK* for I=3/2, πK*→ρK* for I=3/2, ρK→ρK* for I=3/2 and πK*→ρK for I=3/2. As the temperature increases, the rise or fall of peak cross sections is determined by the increased radii of initial mesons, the loosened bound states of final mesons, and the total-mass difference of the initial and final mesons. The temperature-dependent cross sections and meson masses are parametrized.

  3. Peculiarities of the temperature dependences of trapped magnetic field in Y-HTSC ceramics

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omel'chenko, V.I.

    2001-01-01

    The temperature dependence H t (T) of trapped magnetic field (TMF) in Y-HTSC ceramics are studied. For the fields-cooled trapping the H t (T) dependences coincide with the dependences of H t on trapping temperature T t . Both dependences fall off monotonously with increasing temperature, and for low fields they reach saturation as temperature is decreased. When the trapping is induced by the field pulse after zero cooling the H t (T t ) dependences show a maximum while the H t (T) curves drop monotonously with increase in temperature. In this case the rate of their dropping increases with decrease in pulse magnitude and the temperature of TMF vanishing decreases with T t and H. The results are discussed and it is shown that contrast to the Been model the theory based on the model of TMF in superconductive loops gives an adequate analytical description of the observed features of the temperature dependences of trapped magnetic field in the Y-HTSC ceramics

  4. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  5. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  6. Study of the temperature dependence of the bainitic transformation rate in a multiphase TRIP-assisted steel

    International Nuclear Information System (INIS)

    Girault, E.; Ratchev, P.; Van Humbeeck, J.; Verlinden, B.; Aernoudt, E.

    1999-01-01

    A prerequisite to the development of multiphase TRIP-assisted steels is a good understanding of the bainitic transformation that takes place during the related thermo-mechanical processing. In this framework, the present paper proposes to investigate the formation of bainite when originating from intercritical austenite in a Si bearing steel. The experimental results suggest the contribution of a martensitic type mechanism to the transformation process. Yet, the overall bainitic reaction rates are found to strongly depend on the holding temperature. This original kinetics is correlated with the typical microstructure the steel exhibits after the intercritical annealing stage. To this extent, the crucial role of the adjacent development of bainitic ferrite for the observed temperature dependence is discussed. (orig.)

  7. Transient and temperature-dependent phenomena in Ge:Be and Ge:Zn far infrared photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.

    1985-11-01

    An experimental study of the transient and temperature-dependent behavior of Ge:Be and Ge:Zn photoconductors has been performed under the low background photon flux conditions (p dot approx. = 10 8 photons/second) typical of astronomy and astrophysics applications. The responsivity of Ge:Be and Ge:Zn detectors is strongly temperature-dependent in closely compensated material, and the effect of compensation on free carrier lifetime in Ge:Be has been measured using the photo-Hall effect technique. Closely compensated material has been obtained by controlling the concentration of novel hydrogen-related shallow acceptor complexes, A(Be,H) and A(Zn,H), which exist in doped crystals grown under a H 2 atmosphere. A review of selection criteria for multilevel materials for optimum photoconductor performance is included. 55 refs., 47 figs

  8. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  9. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  10. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  11. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  12. Bistable impurity centers in silicon. Temperature dependent characteristics of electro- and thermophysical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Musaeva, L F; Igamberdiev, Kh T; Mamadalimov, A T; Khabibullaev, P K [AS RU, Heat Physics Department, Tashkent (Uzbekistan)

    2003-09-01

    On the basis of experimental data covering temperature dependencies of photoelectric and thermodynamic properties of silicon containing defects the possible physical mechanisms of defect center transformation in the silicon lattice and of phase transitions are discussed. (author)

  13. Bistable impurity centers in silicon. Temperature dependent characteristics of electro- and thermophysical parameters

    International Nuclear Information System (INIS)

    Musaeva, L.F.; Igamberdiev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    2003-01-01

    On the basis of experimental data covering temperature dependencies of photoelectric and thermodynamic properties of silicon containing defects the possible physical mechanisms of defect center transformation in the silicon lattice and of phase transitions are discussed. (author)

  14. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    Science.gov (United States)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  15. The rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation

    International Nuclear Information System (INIS)

    Bobodzhanov, P.Kh.; Yusupov, I.Kh.; Marupov, R.

    2001-01-01

    Present article is devoted to study of rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation. The experimental data of study of structure and molecular mobility of wool creatine modified by spin labels was considered.

  16. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  17. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  18. Temperature dependence of thermal expansion of cadmium sulfide in the temperature range 20 - 820 K

    International Nuclear Information System (INIS)

    Oskotskij, V.S.; Kobyakov, I.B.; Solodukhin, A.V.

    1980-01-01

    The linear thermal expansion of cadmium sulfide is measured perpendicularly (α 1 ) and parallelly (α 2 ) to the hexagonal axis in the temperature range from 20 to 820 K. Anisotropy is low at up to 80 K; rises at higher temperatures; at 3OO K α 1 /α 3 ratio is 1.8; at 820 K, 2.4. Heat expansion is negative at temperatures lower than 104.5 K(α 1 ) and 126.0 K(α 2 ). It achieves the minimum at 43.6 K (α 1 ) and 52.5K (α 3 ). The theory of heat expansion is plotted in the Debue, approximation and cadmium sulfide is considered as an isotope crystal with average elastic constants. Two parameters of the theory are determined by the position and value of the minimum of volumetric thermal expansion of the model isotope crystal. The theoretic curve agrees well with the experimental one at temperatures up to 160 K, i.e in the range of applicability of the Debue approximation and the isotropic model

  19. Relationship between coal and coke microstructure and the high temperature properties of coke. [Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyuguchi, K; Yamaji, M; Sugimoto, Y

    1980-02-01

    This paper considers the relationship of the properties of coke and parent coal with the high temperature properties, including reactivity, of coke. Aspects considered include coke texture and grade, and the optical reflectivity of coal and coke. (8 refs.) (In Japanese)

  20. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, A.G. [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2017-02-15

    Highlights: • Electronic properties of Cs/GaAs surface are studied at elevated temperatures. • Heating to ∼100 °C strongly affects photoemission current and surface band bending. • For θ < 0.4 ML photoemission current relaxation is due to band bending. • A spectral proof of the PETE process is obtained at Cs/GaAs thermal cycling. - Abstract: The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °C leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  1. The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances

    International Nuclear Information System (INIS)

    Barukčić, M.; Ćorluka, V.; Miklošević, K.

    2015-01-01

    Highlights: • The temperature and irradiance dependent model for the I–V curve estimation is presented. • The purely mathematical model based on the analysis of the I–V curve shape is presented. • The model includes the Gompertz function with temperature and irradiance dependent parameters. • The input data are extracted from the data sheet I–V curves. - Abstract: The temperature and irradiance dependent mathematical model for photovoltaic panel performances estimation is proposed in the paper. The base of the model is the mathematical function of the photovoltaic panel current–voltage curve. The model of the current–voltage curve is based on the sigmoid function with temperature and irradiance dependent parameters. The temperature and irradiance dependencies of the parameters are proposed in the form of analytic functions. The constant parameters are involved in the analytical functions. The constant parameters need to be estimated to get the temperature and irradiance dependent current–voltage curve. The mathematical model contains 12 constant parameters and they are estimated by using the evolutionary algorithm. The optimization problem is defined for this purpose. The optimization problem objective function is based on estimated and extracted (measured) current and voltage values. The current and voltage values are extracted from current–voltage curves given in datasheet of the photovoltaic panels. The new procedure for estimation of open circuit voltage value at any temperature and irradiance is proposed in the model. The performance of the proposed mathematical model is presented for three different photovoltaic panel technologies. The simulation results indicate that the proposed mathematical model is acceptable for estimation of temperature and irradiance dependent current–voltage curve and photovoltaic panel performances within temperature and irradiance ranges

  2. Study of the temperature dependence of giant magnetoresistance in metallic granular composite

    International Nuclear Information System (INIS)

    Ju Sheng; Li, Z.-Y.

    2002-01-01

    The temperature dependence of the giant magnetoresistance of metallic granular composite is studied. It is considered that the composite contains both large magnetic grains with surface spin S' and small magnetic impurities. It is found that the decrease of surface spin S' of grain is the main cause of an almost linear decrease of giant magnetoresistance with the increase of temperature in high temperature range. The magnetic impurities, composed of several atoms, lead to an almost linear increase of the giant magnetoresistance with the decrease of temperature in low temperature range. Our calculations are in good agreement with recent experimental data for metallic nanogranular composites

  3. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Ma, Ke

    2014-01-01

    Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....

  4. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  5. On the nature and temperature dependence of the fundamental band gap of In{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irmscher, K.; Naumann, M.; Pietsch, M.; Galazka, Z.; Uecker, R.; Schulz, T.; Schewski, R.; Albrecht, M.; Fornari, R. [Leibniz-Institut fuer Kristallzuechtung, Berlin (Germany)

    2014-01-15

    The onset of optical absorption in In{sub 2}O{sub 3} at about 2.7 eV is investigated by transmission spectroscopy of single crystals grown from the melt. This absorption is not defect related but is due to the fundamental band gap of In{sub 2}O{sub 3}. The corresponding spectral dependence of the absorption coefficient is determined up to α = 2500 cm{sup -1} at a photon energy hν = 3.05 eV at room temperature without indication of saturation. A detailed analysis of the hν dependence of α including low-temperature absorption data shows that the absorption process can be well approximated by indirect allowed transitions. It is suggested that the fundamental band gap of In{sub 2}O{sub 3} is of indirect nature. The temperature dependence of the fundamental band gap is measured over a wide range from 9 to 1273 K and can be well fitted by a single-oscillator model. Compared to other semiconductors the reduction of the gap with increasing temperature is exceptionally strong in In{sub 2}O{sub 3}. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  7. Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-12-01

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1 H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10 -4  ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1 H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  8. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  9. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  10. Temperature dependence of electron mean free path in molybdenum from ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Almond, D P; Detwiler, D A; Rayne, J A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-09-08

    The temperature dependence of the electronic mean free path in molybdenum has been obtained from ultrasonic attenuation measurements.For temperature up to 30 K a T/sup -2/ law is followed suggesting the importance of electron-electron scattering in the attenuation mechanism.

  11. A simple equation for describing the temperature dependent growth of free-floating macrophytes

    NARCIS (Netherlands)

    Heide, van Tj.; Roijackers, R.M.M.; Nes, van E.H.; Peeters, E.T.H.M.

    2006-01-01

    Temperature is one of the most important factors determining growth rates of free-floating macrophytes in the field. To analyse and predict temperature dependent growth rates of these pleustophytes, modelling may play an important role. Several equations have been published for describing

  12. Temperature dependence of the cosphi conductance in Josephson tunnel junctions determined from plasma resonance experiments

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper

    1978-01-01

    The microwave response at 9 GHz of Sn-O-Sn tunnel-junction current biased at zero dc voltage has been measured just below the critical temperature Tc of the Sn films. The temperature dependence of the cosφ conductance is determined from the resonant response at the junction plasma frequency fp...

  13. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  14. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  15. On the temperature dependence of spin pumping in ferromagnet–topological insulator–ferromagnet spin valves

    Directory of Open Access Journals (Sweden)

    A.A. Baker

    Full Text Available Topological insulators (TIs have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet–TI–ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature. Keywords: Topological insulator, Spin pumping, Spintronics, Ferromagnetic resonance

  16. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  17. Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane

    Science.gov (United States)

    Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.

    1988-01-01

    Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.

  18. Frequency and temperature dependent mobility of a charged carrier and randomly interrupted strand

    International Nuclear Information System (INIS)

    Kumar, N.; Jayannavar, A.M.

    1981-05-01

    Randomly interrupted strand model of a one-dimensional conductor is considered. Exact analytical expression is obtained for the temperature dependent as mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and tempeature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies). (author)

  19. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  20. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.