Plasma Dielectric Tensor for Non-Maxwellian Distributions in the FLR Limit
International Nuclear Information System (INIS)
Phillips, C.K.; Pletzer, A.; Dumont, R.J.; Smithe, D.N.
2003-01-01
Previous analytical and numerical studies have noted that the presence of fully non-Maxwellian plasma species can significantly alter the dynamics of electromagnetic waves in magnetized plasmas. In this paper, a general form for the hot plasma dielectric tensor for non-Maxwellian distributions is derived that is valid in the finite Larmor radius approximation. This model provides some insight into understanding the limitations on representing non-Maxwellian plasma species with equivalent Maxwellian components in modeling radio-frequency wave propagation and absorption
Electronic oscillations in a hot plasma due the non-Maxwellian velocity distributions
International Nuclear Information System (INIS)
Dias, L.A.V.; Nakamura, Y.
1977-01-01
In a completely ionized hot plasma, with a non-Maxwellian electron velocity distribution, it is shown that, depending on the electron temperature, oscillations may occur at the elctron plasma and gyro frequencies. For three different electron velocity distributions, it is shown the oscillations dependency on the temperature. This situation occurs in the ionospheric plasma when artificially heated by HF radio waves. If the distribution is Maxwellian, the oscillation only occur near the electron plasma frequency [pt
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)
2016-08-15
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it
Directory of Open Access Journals (Sweden)
T. Toncian
2016-01-01
Full Text Available The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
International Nuclear Information System (INIS)
Whitney, K.G.; Pulsifer, P.E.
1993-01-01
Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states
H TO Zn IONIZATION EQUILIBRIUM FOR THE NON-MAXWELLIAN ELECTRON κ-DISTRIBUTIONS: UPDATED CALCULATIONS
International Nuclear Information System (INIS)
Dzifčáková, E.; Dudík, J.
2013-01-01
New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.
International Nuclear Information System (INIS)
Borghi, C.A.; Veefkind, A.; Wetzer, J.M.
1982-03-01
A model, describing the time dependent behaviour of a noble gas MHD generator plasma, has been set up. With this model it is possible to calculate the relaxation for ionization or recombination as a response to a stepwise temperature development, once the initial and final conditions are given. In model radiative transitions and a deviation from Maxwellian electron distribution are included. Radiation causes an enhancement of both the ionization relaxation time and the recombination relaxation time. A non-Maxwellian electron distribution results in an increase of the relaxation time for an ionizing plasma because of an underpopulation of the high energy electrons. A decrease of the relaxation time for a recombining plasma is caused by an overpopulation of high energy electrons. The relaxation time is strongly dependent on the seed ratio and the temperature step. (Auth.)
Dzifčáková, Elena; Zemanová, Alena; Dudík, Jaroslav; Mackovjak, Šimon
2018-02-01
Spectroscopic observations made by the Extreme Ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) during the 2012 March 7 X5.4-class flare (SOL2012-03-07T00:07) are analyzed for signatures of the non-Maxwellian κ-distributions. Observed spectra were averaged over 1 minute to increase photon statistics in weaker lines and the pre-flare spectrum was subtracted. Synthetic line intensities for the κ-distributions are calculated using the KAPPA database. We find strong departures (κ ≲ 2) during the early and impulsive phases of the flare, with subsequent thermalization of the flare plasma during the gradual phase. If the temperatures are diagnosed from a single line ratio, the results are strongly dependent on the value of κ. For κ = 2, we find temperatures about a factor of two higher than the commonly used Maxwellian ones. The non-Maxwellian effects could also cause the temperatures diagnosed from line ratios and from the ratio of GOES X-ray channels to be different. Multithermal analysis reveals the plasma to be strongly multithermal at all times with flat DEMs. For lower κ, the {{DEM}}κ are shifted toward higher temperatures. The only parameter that is nearly independent of κ is electron density, where we find log({n}{{e}} [{{cm}}-3]) ≈ 11.5 almost independently of time. We conclude that the non-Maxwellian effects are important and should be taken into account when analyzing solar flare observations, including spectroscopic and imaging ones.
International Nuclear Information System (INIS)
Schmidt, R.; Stiller, W.
1981-01-01
The effects of electron-attachment collisions on the velocity distribution of electrons is studied on the basis of Boltzmann kinetic equations governing the energetic balance of electrons (e), atoms of a carrier gas (c), and SF 6 -molecules (m) capturing electrons. Under the assumption that 1) the densities of the particles fulfill the conditions nsub(e) << nsub(c), nsub(m), nsub(m) << nsub(c), and that 2) only the electron-attachment process is in competition with the elastic collision process between electrons and the atoms of the carrier gas, the time behaviour of the energetic balance of the electrons is investigated. The calculations lead to non-Maxwellian forms of the electron velocity distribution changing the mean electron energy. (author)
Burgi, A.
1987-01-01
A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.
Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
Directory of Open Access Journals (Sweden)
M. Usman Malik
2018-05-01
Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.
Energy Technology Data Exchange (ETDEWEB)
Mendoza, C. [Permanent address: Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A, Venezuela. (Venezuela, Bolivarian Republic of); Bautista, M. A., E-mail: claudio.mendozaguardia@wmich.edu, E-mail: manuel.bautista@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)
2014-04-20
The classic optical nebular diagnostics [N II], [O II], [O III], [S II], [S III], and [Ar III] are employed to search for evidence of non-Maxwellian electron distributions, namely κ distributions, in a sample of well-observed Galactic H II regions. By computing new effective collision strengths for all these systems and A-values when necessary (e.g., S II), and by comparing with previous collisional and radiative data sets, we have been able to obtain realistic estimates of the electron-temperature dispersion caused by the atomic data, which in most cases are not larger than ∼10%. If the uncertainties due to both observation and atomic data are then taken into account, it is plausible to determine for some nebulae a representative average temperature while in others there are at least two plasma excitation regions. For the latter, it is found that the diagnostic temperature differences in the high-excitation region, e.g., T{sub e} (O III), T{sub e} (S III), and T{sub e} (Ar III), cannot be conciliated by invoking κ distributions. For the low-excitation region, it is possible in some, but not all, cases to arrive at a common, lower temperature for [N II], [O II], and [S II] with κ ≈ 10, which would then lead to significant abundance enhancements for these ions. An analytic formula is proposed to generate accurate κ-averaged excitation rate coefficients (better than 10% for κ ≥ 5) from temperature tabulations of the Maxwell-Boltzmann effective collision strengths.
International Nuclear Information System (INIS)
Zhu Ximing; Pu Yikang
2011-01-01
A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low-temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and krypton atoms. For applications of this approach in reactive gas (CF 4 , O 2 , etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail. (cai awardee's article)
Czech Academy of Sciences Publication Activity Database
de la Varga, A.G.; Velarde, P.; de Gaufridy de Dortan, Francois; Portillo, D.; Cotelo, M.; Barbas, A.; González, A.; Zeitoun, Ph.
2013-01-01
Roč. 9, č. 3 (2013), s. 542-547 ISSN 1574-1818 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : non-Maxwellian electron distribution * time - dependent atomic kinetics Subject RIV: BE - Theoretical Physics Impact factor: 1.519, year: 2013
International Nuclear Information System (INIS)
Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.
2007-01-01
Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties
International Nuclear Information System (INIS)
Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.
2007-01-01
The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions
Plasma sheath in non-Maxwellian plasma
International Nuclear Information System (INIS)
Shimizu, Takuo; Horigome, Takashi
1992-01-01
Reviewing many theoretical and experimental works on the electron-energy distributions (EEDF) of various plasmas, we point out that many plasmas have EEDF of non-Maxwellian in shape. Therefore, the recent treatment of plasma sheath using the Maxwell-Boltzmann distribution approximation should be improved. To do this, we have adopted Rutcher's standard distribution as a generalized form in place of the traditional Maxwellian, and found that the minimum energy of ions entering the sheath edge (Bohm's criterion) varies largely, and have also shown the variation of Debye length with the shape of EEDF. The length is the most important parameter to proceed with more detailed analysis on plasma-sheaths, and also to control them in the future. (author)
Non-Maxwellian and magnetic field effects in complex plasma wakes★
Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander
2018-05-01
In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.
Non-Maxwellian Effects for ICF
Davidovits, Seth; Fisch, Nathaniel
2013-10-01
While in collisional plasma the bulk of the distribution function is driven toward Maxwellian in a few collision times, the high velocity tails can take much longer to form. The fast ions in these tails have much larger fusion cross sections than thermal ions, and contribute substantially to fusion production. We investigate the possibilities for enhancement or depletion of these tails in regimes applicable to ICF capsule implosions, and the corresponding effects on fusion reactivity. There are a number of possible scenarios that might yield such non-Maxwellian tails, including, for example, hydrodynamic flows or Knudsen layer effects. Work supported by DOE under DE-AC02-09CH11466, by DTRA under HDTRA1-11-10037 and by DOE CSGF under DE-FG02- 97ER25308.
Non-Maxwellian fast particle effects in gyrokinetic GENE simulations
Di Siena, A.; Görler, T.; Doerk, H.; Bilato, R.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; JET Contributors
2018-04-01
Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytical, e.g., slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.
International Nuclear Information System (INIS)
Haines, M.G.
1998-01-01
There is much experimental evidence that heat flux to divertor plates or to limiters is very asymmetric. For example, Lowry made measurements on poloidal limiters in JET, Stangeby and McCracken reported asymmetries in several experiments. In 1991 Haines considered the effects on the Child-Langmuir sheaths of having a net current flow. It was found that a sheath that receives more ions than electrons receives more energy flux than a sheath that receives more electrons than ions. We now extend the model to include for the electrons departures from a Maxwellian distribution arising from a net current flow, heat flow and thermoelectric effects in the scrape-off layer (SOL). It is envisaged that a net current flows in the SOL due to applied or induced electric fields, and is of a magnitude similar to that in the adjacent bulk plasma, though reduced due to the lower temperature in the SOL. We employ conventional linear transport theory eg. Braginskii, Epperlein and Haines in which the ions are a stationary Maxwellian. (orig.)
Langmuir wave dispersion relation in non-Maxwellian plasmas
International Nuclear Information System (INIS)
Ouazene, M.; Annou, R.
2010-01-01
The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.
International Nuclear Information System (INIS)
Deeba, F.; Ahmad, Zahoor; Murtaza, G.
2010-01-01
A generalized dielectric constant for the electron Bernstein waves using non-Maxwellian distribution functions is derived in a collisionless, uniform magnetized plasma. Using the Neumann series expansion for the products of Bessel functions, we can derive the dispersion relations for both kappa and the generalized (r,q) distributions in a straightforward manner. The dispersion relations now become dependent upon the spectral indices κ and (r,q) for the kappa and the generalized (r,q) distribution, respectively. Our results show how the non-Maxwellian dispersion curves deviate from the Maxwellian depending upon the values of the spectral indices chosen. It may be noted that the (r,q) dispersion relation is reduced to the kappa distribution for r=0 and q=κ+1, which, in turn, is further reducible to the Maxwellian distribution for κ→∞.
Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity
International Nuclear Information System (INIS)
Garbett, W. J.
2013-01-01
The hotspot ignition conditions in ICF are determined by considering the power balance between fusion energy deposition and energy loss terms. Uncertainty in any of these terms has potential to modify the ignition conditions, changing the optimum ignition capsule design. This paper considers the impact of changes to the DT fusion reaction rate due to non-thermal ion energy distributions. The DT fusion reactivity has been evaluated for a class of non-Maxwellian distributions representing a perturbation to the tail of a thermal distribution. The resulting reactivity has been used to determine hotspot ignition conditions as a function of the characteristic parameter of the modified distribution. (authors)
Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma
International Nuclear Information System (INIS)
Deeba, F.; Ahmad, Zahoor; Murtaza, G.
2011-01-01
Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n d0 /n i0 )) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa (κ), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.
Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Deeba, F. [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Department of Physics, G.C. University, Lahore 54000 (Pakistan); Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G.C. University, Lahore 54000 (Pakistan)
2011-07-15
Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n{sub d0}/n{sub i0})) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa ({kappa}), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.
Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas
Ali, S.; Naeem, Ismat; Mirza, Arshad M.
2017-10-01
The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.
Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas
Energy Technology Data Exchange (ETDEWEB)
Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)
2013-05-15
The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.
BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION
International Nuclear Information System (INIS)
Bertulani, C. A.; Fuqua, J.; Hussein, M. S.
2013-01-01
The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1 - 0.12 +0.05 , indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1) is highly unlikely.
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Energy Technology Data Exchange (ETDEWEB)
Masood, W. [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan); National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); Zahoor, Sara [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan); Gul-e-Ali [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Ali, E-mail: aliahmad79@hotmail.com [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan)
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Dark matter direct detection with non-Maxwellian velocity structure
International Nuclear Information System (INIS)
Kuhlen, Michael; Weiner, Neal; Diemand, Jürg; Moore, Ben; Potter, Doug; Stadel, Joachim; Madau, Piero; Zemp, Marcel
2010-01-01
The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found
Energy Technology Data Exchange (ETDEWEB)
Dudík, Jaroslav; Dzifčáková, Elena [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Polito, Vanessa; Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Zanna, Giulio Del, E-mail: dudik@asu.cas.cz [Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2017-06-10
We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.
Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis
2017-03-01
The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.
Langmuir probe evaluation of the plasma potential in tokamak edge plasma for non-Maxwellian EEDF
Energy Technology Data Exchange (ETDEWEB)
Popov, Ts.K. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Dimitrova, M. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Ivanova, P. [Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Hasan, E. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Horacek, J.; Dejarnac, R.; Stoeckel, J.; Weinzettl, V. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Kovacic, J. [Jozef Stefan Institute, Ljubljana (Slovenia)
2014-04-15
The First derivative probe technique for a correct evaluation of the plasma potential in the case of non-Maxwellian EEDF is presented and used to process experimental data from COMPASS tokamak. Results obtained from classical and first derivative techniques are compared and discussed. The first derivative probe technique provides values for the plasma potential in the scrape-off layer of tokamak plasmas with an accuracy of about ±10%. Classical probe technique can provide values of the plasma potential only, if the electron and ion temperatures are known as well as the coefficient of secondary electron emission. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Directory of Open Access Journals (Sweden)
D. Hubert
Full Text Available New results on the information that can be extracted from simulated non-Maxwellian incoherent radar spectra are presented. The cases of a pure ionosphere and of a composite ionosphere typical of a given altitude of the auroral F region are considered. In the case of a pure ionosphere of NO^{+} or O^{+} ions it has been shown that the electron temperature and the electron density can be derived from a Maxwellian analysis of radar spectra measured at aspect angles of 0° or 21° respectively; the ion temperature and ion temperature anisotropy can be derived from a non- constraining model such as the 1D Raman fitting of a complementary measurement made at an aspect angle larger than 0° for the NO^{+} ions, or at an aspect angle larger than 21° for the O^{+} ions. Moreover with such measurements at large aspect angles, the shape of the velocity ion distribution functions can simultaneously be inferred. The case of a composite ionosphere of atomic O^{+} and molecular NO^{+ }ions is a difficult challenge which requires simultaneously a complementary measurement of the electron temperature to provide the ion composition and the electron density from the incoherent radar spectra at a specific aspect angle of 21°; hence, a model dependent routine is necessary to derive the ion temperatures and ion temperature anisotropies. In the case where the electron temperature is not given, a routine which depends on ion distribution models is required first: the better the ion distribution models are, the more accurately derived the plasma parameters will be. In both cases of a composite ionosphere, the 1D Raman fitting can be used to keep a check on the validity of the results provided by the ion distribution model dependent routine.
International Nuclear Information System (INIS)
Belmont, G.
1981-01-01
Intense natural waves are commonly observed onboard satellites in the outer earth's magnetosphere, inside a narrow frequency range, including the electron plasma and upper hybrid frequencies. In order to progress in the understanding of their emission processes, it is necessary to determine precisely the relationship which exists between their frequencies and the characteristic frequencies of the magnetospheric plasma. For this purpose, it is necessary to take into account the fact that some of these characteristic frequencies, which are provided by active sounding of the plasma, not only depend on the total density, but also on the shape of the distribution function (which has generally been assumed to be Maxwellian). A method providing a fine diagnosis of general non-Maxwellian plasmas is developed. This method of analysis of the experimental data is based on a theoretical study which points out the influence of the shape of the distribution function on the dispersion curves (for wave vectors perpendicular to the static magnetic field)
Energy Technology Data Exchange (ETDEWEB)
Haque, Q. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Zakir, U. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan); Department of Physics, University of Malakand, Khyber Pakhtun Khwa 18800 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan)
2015-12-15
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of η{sub e}-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
Haque, Q.; Zakir, U.; Qamar, A.
2015-12-01
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
Czech Academy of Sciences Publication Activity Database
Dzifčáková, Elena; Dudík, Jaroslav
2015-01-01
Roč. 290, č. 12 (2015), s. 3545-3558 ISSN 0038-0938 R&D Projects: GA ČR GAP209/12/1652 Institutional support: RVO:67985815 Keywords : energetic particles * acceleration * electrons Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.862, year: 2015
Effect of non Maxwellian distribution on the dressed electrostatic wave and energy properties
Directory of Open Access Journals (Sweden)
N.F. Abdo
2017-07-01
Full Text Available The investigation of dressed electrostatic and energy ion acoustic solitary waves in a warm plasma composed fluid of ions, Maxwillian positrons and fast nonthermal electrons are elaborated. The plasma system is reduced to KdV equation that obtained using reductive perturbation method. For enlarged amplitude, the higher order perturbed equation is proposed. The positron parameters and nonthermal electron effects on broadband dressed electric field and energy are discussed.
Slowly moving test charge in two-electron component non-Maxwellian plasma
International Nuclear Information System (INIS)
Ali, S.; Eliasson, B.
2015-01-01
Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed
Potentiality of fast wave current drive in non-maxwellian plasmas
International Nuclear Information System (INIS)
Moreau, D.; O'Brien, M.R.; Cox, M.; Start, D.F.H.
1987-06-01
After a short analysis of the available experimental data on pure fast wave electron current drive we propose a theoretical scaling law for the wave absorption through combined electron Landau damping and transit time magnetic pumping. We then present the result of a fully relativistic calculation which we apply to a bi-Maxwellian electron distribution function and conclude on the requirements to be fulfilled by the energetic tail for obtaining significant damping in Tore-Supra
Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster
Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.
2018-01-01
We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.
Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma
International Nuclear Information System (INIS)
Nouri Kadijani, M.; Zareamoghaddam, H.
2013-01-01
In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically. (physics of gases, plasmas, and electric discharges)
Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves
International Nuclear Information System (INIS)
Rubab, N.; Murtaza, G.; Mushtaq, A.
2006-01-01
The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
Czech Academy of Sciences Publication Activity Database
Dudík, Jaroslav; Mackovjak, Šimon; Dzifčáková, Elena; Del Zanna, G.; Williams, D.R.; Karlický, Marian; Mason, H. E.; Lörinčík, J.; Kotrč, Pavel; Fárník, František; Zemanová, Alena
2015-01-01
Roč. 807, č. 2 (2015), 123/1-123/19 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/1652 Institutional support: RVO:67985815 Keywords : radiation mechanisms * Sun * corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015
International Nuclear Information System (INIS)
Deeba, F.; Ahmad, Zahoor; Murtaza, G.
2006-01-01
The electrostatic potentials (Debye and wake) and energy loss due to a charged projectile propagating through an unmagnetized collisionless dusty plasma are derived employing kappa and generalized (r,q) velocity distributions for the dust acoustic wave. It is found that these quantities in general differ from their Maxwellian counterparts and are sensitive to the values of spectral index, κ in the case of kappa distribution and to r, q in the case of generalized (r,q) distribution. The amplitudes of these quantities are less for small values of the spectral index (κ, r=0, q) but approach the Maxwellian in the limit κ→∞ (for kappa distribution) and for r=0, q→∞ [for generalized (r,q) distribution]. For any nonzero value of r, the potential and the energy loss grow beyond the Maxwellian results. The effect of kappa and generalized (r,q) distributions on potential and energy loss is also studied numerically and the results are compared with those of the Maxwellian distribution
International Nuclear Information System (INIS)
Dumont, R.J.; Phillips, C.K.; Smithe, D.N.
2003-01-01
Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented
International Nuclear Information System (INIS)
Shkarofsky, I.P.
1997-01-01
The relativistic Fokker-Planck collision term in Braams and Karney [Phys. Fluids B 1, 1355 (1989)] is expanded using Cartesian tensors (equivalent to associated Legendre spherical harmonics) retaining all non-linear terms and an arbitrary zeroth order distribution background. Expressions are given for collision terms between all harmonics and the background distribution in terms of the j and y functions in Braams and Karney. The results reduce to Braams and Karney for the first order harmonic term with a Maxwellian background and to those given by Shkarofsky [Can. J. Phys. 41, 1753 (1963)] in the non-relativistic limit. Expressions for the energy and momentum transfer associated with relativistic Coulomb collisions are given. The fast two dimensional Fokker-Planck solver in Shoucri and Shkarofsky [Comput. Phys. Commun. 82, 287 (1994)] has been extended to include the second order harmonic term. copyright 1997 American Institute of Physics
Masood, W.; Mirza, Arshad M.
2014-04-01
A set of nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves is derived for sheared ion flows parallel and perpendicular to the ambient magnetic field in the presence of Cairns and Kappa distributed electrons. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on a scale of the order of ion Larmor radius ρ i which is calculated to be around a Kilometer for the plasma parameters found in the Saturn's E-ring. The relevance of the present investigation in planetary environments is also pointed out.
SIMPLE ESTIMATOR AND CONSISTENT STRONGLY OF STABLE DISTRIBUTIONS
Directory of Open Access Journals (Sweden)
Cira E. Guevara Otiniano
2016-06-01
Full Text Available Stable distributions are extensively used to analyze earnings of financial assets, such as exchange rates and stock prices assets. In this paper we propose a simple and strongly consistent estimator for the scale parameter of a symmetric stable L´evy distribution. The advantage of this estimator is that your computational time is minimum thus it can be used to initialize intensive computational procedure such as maximum likelihood. With random samples of sized n we tested the efficacy of these estimators by Monte Carlo method. We also included applications for three data sets.
Energy Technology Data Exchange (ETDEWEB)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai; Dong, Guang-Xing; Nan, Ya-Gong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in the present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.
Czech Academy of Sciences Publication Activity Database
Dzifčáková, Elena; Dudík, Jaroslav; Kotrč, Pavel; Fárník, František; Zemanová, Alena
2015-01-01
Roč. 217, č. 1 (2015), 14/1-14/14 ISSN 0067-0049 R&D Projects: GA ČR GAP209/12/1652 Institutional support: RVO:67985815 Keywords : numerical method * radiation mechanisms * coronae Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 11.257, year: 2015
Czech Academy of Sciences Publication Activity Database
Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, Elena
2014-01-01
Roč. 570, October (2014), A124/1-A124/23 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/1652 Institutional support: RVO:67985815 Keywords : Sun: UV radiation * X- rays * gamma rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
PVC pipes in gas distribution: still going strong!
Hermkens, Rene; Wolters, Mannes; Weller, Jeroen; Visser, Roy; Davidovski, Z.; Belloir, P.; Fumire, J.
2008-01-01
In the Netherlands (impact-modified) PVC is the preferred material for low-pressure (30 and 100 mbar) gas distribution systems. More than 50% of the total length (about 122,000 km) of this system is rigid PVC or impact-modified PVC. The installation of rigid PVC (uPVC) pipelines started about 50
Electron distribution function in laser heated plasmas
International Nuclear Information System (INIS)
Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.
2001-01-01
A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)
Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena
Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao
2014-08-01
We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.
A Study of Strong Stability of Distributed Systems. Ph.D. Thesis
Cataltepe, Tayfun
1989-01-01
The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.
On the Frequency Distribution of Neutral Particles from Low-Energy Strong Interactions
Directory of Open Access Journals (Sweden)
Federico Colecchia
2017-01-01
Full Text Available The rejection of the contamination, or background, from low-energy strong interactions at hadron collider experiments is a topic that has received significant attention in the field of particle physics. This article builds on a particle-level view of collision events, in line with recently proposed subtraction methods. While conventional techniques in the field usually concentrate on probability distributions, our study is, to our knowledge, the first attempt at estimating the frequency distribution of background particles across the kinematic space inside individual collision events. In fact, while the probability distribution can generally be estimated given a model of low-energy strong interactions, the corresponding frequency distribution inside a single event typically deviates from the average and cannot be predicted a priori. We present preliminary results in this direction and establish a connection between our technique and the particle weighting methods that have been the subject of recent investigation at the Large Hadron Collider.
Institute of Scientific and Technical Information of China (English)
YANGGuo-Sheng; WENCheng-Lin; TANMin
2004-01-01
A new multisensor distributed track fusion algorithm is put forward based on combiningthe feedback integration with the strong tracking Kalman filter. Firstly, an effective tracking gateis constructed by taking the intersection of the tracking gates formed before and after feedback.Secondly, on the basis of the constructed effective tracking gate, probabilistic data association andstrong tracking Kalman filter are combined to form the new multisensor distributed track fusionalgorithm. At last, simulation is performed on the original algorithm and the algorithm presented.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Directory of Open Access Journals (Sweden)
Yue Bin
Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.
Probability distribution of wave packet delay time for strong overlapping of resonance levels
International Nuclear Information System (INIS)
Lyuboshits, V.L.
1983-01-01
Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed
Power-law distributions for a trapped ion interacting with a classical buffer gas.
DeVoe, Ralph G
2009-02-13
Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.
International Nuclear Information System (INIS)
Barabash, R.I.; Krivoglaz, M.A.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)
1981-01-01
The X-ray scattering by strongly distorted heterogeneous alloys containing inclusions of new phase particles is discussed. Two models describing the lamellar structure with various orientation of inclusion axes in different layers are studied. In the first model the dimensions of inclusions are small in comparison with the layer thickness and they are randomly distributed in it, in the second model lamellar inclusions stretch through the whole layer. It is shown that in both models the Debye broadened line intensity distribution consists of overlapping Lorentz curves. A case of inclusions oriented along directions [100] and layers perpendicular to axes [110] is analyzed in detail. The results obtained for this case are compared with experimental results for the Cu-Be alloy
International Nuclear Information System (INIS)
Chang, C.S.; Colestock, P.
1989-05-01
The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs
Energy Technology Data Exchange (ETDEWEB)
McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)
2011-06-15
Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.
International Nuclear Information System (INIS)
McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.
Model of charge-state distributions for electron cyclotron resonance ion source plasmas
Directory of Open Access Journals (Sweden)
D. H. Edgell
1999-12-01
Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.
Directory of Open Access Journals (Sweden)
Chien-Wei Lee
2013-10-01
Full Text Available We derive a statistical physics model of two-dimensional electron gas (2DEG and propose an accurate approximation method for calculating the quantum-mechanical effects of metal-oxide-semiconductor (MOS structure in accumulation and strong inversion regions. We use an exponential surface potential approximation in solving the quantization energy levels and derive the function of density of states in 2D to 3D transition region by applying uncertainty principle and Schrödinger equation in k-space. The simulation results show that our approximation method and theory of density of states solve the two major problems of previous researches: the non-negligible error caused by the linear potential approximation and the inconsistency of density of states and carrier distribution in 2D to 3D transition region.
Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions
International Nuclear Information System (INIS)
Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.
2000-01-01
COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'
Dark matter distributions in early-type galaxies from strong gravitational lensing
International Nuclear Information System (INIS)
Eichner, Thomas Martin
2013-01-01
Dark matter constitutes a large fraction of the mass of early-type galaxies. However, the exact amount and spatial distribution of the dark matter, especially in the galaxies' center is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim of this thesis is to measure the dark matter content in the centers and outskirts of elliptical galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational lensing is well-suited for investigating dark matter, since it is sensitive to all forms of matter, regardless of its dynamical or evolutionary state. We present gravitational lensing studies of the exceptional strong lensing systems SDSS J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses are elliptical galaxies at z l =0.143 and z l =0.285, respectively. For SDSS J1538+5817 we show that both multiple imaged sources are located at the same redshift z s =0.531. Its multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105, the source at redshift z s =0.575 is imaged into a broad Einstein ring, covering radii from 4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately and consistently reproduced with different modeling approaches. We get projected total masses of 8.11 +0.27 -0.59 x 10 10 M s un within the Einstein radius of 2.5 kpc for SDSS J1538+5817 and 5.37±0.06 x 10 11 M s un within 6.5 kpc for SDSS J1430+4105. The luminous and dark matter were traced separately, resulting in dark matter fractions within the Einstein radius of 0.1 +0.2 -0.1 and 0.40 +0.14 -0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We assume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the stellar mass associated with this light, we can explicitly derive a stellar mass-to-light ratio of (M de
Circulating TFH subset distribution is strongly affected in lupus patients with an active disease.
Directory of Open Access Journals (Sweden)
Carole Le Coz
Full Text Available Follicular helper T cells (TFH represent a distinct subset of CD4(+ T cells specialized in providing help to B lymphocytes, which may play a central role in autoimmune diseases having a major B cell component such as systemic lupus erythematosus. Recently, TFH subsets that share common phenotypic and functional characteristics with TFH cells from germinal centers, have been described in the peripheral blood from healthy individuals. The aim of this study was to analyze the distribution of such populations in lupus patients. Circulating TFH cell subsets were defined by multicolor flow cytometry as TFH17 (CXCR3(-CCR6(+, TFH1 (CXCR3 (+ CCR6(- or TFH2 (CXCR3(-CCR6(- cells among CXCR5 (+ CD45RA(-CD4(+ T cells in the peripheral blood of 23 SLE patients and 23 sex and age-matched healthy controls. IL-21 receptor expression by B cells was analyzed by flow cytometry and the serum levels of IL-21 and Igs were determined by ELISA tests. We found that the TFH2 cell subset frequency is strongly and significantly increased in lupus patients with an active disease (SLEDAI score>8, while the TFH1 cell subset percentage is greatly decreased. The TFH2 and TFH1 cell subset frequency alteration is associated with the presence of high Ig levels and autoantibodies in patient's sera. Moreover, the TFH2 cell subset enhancement correlates with an increased frequency of double negative memory B cells (CD27(-IgD(-CD19(+ cells expressing the IL-21R. Finally, we found that IgE levels in lupus patients' sera correlate with disease activity and seem to be associated with high TFH2 cell subset frequency. In conclusion, our study describes for the first time the distribution of circulating TFH cell subsets in lupus patients. Interestingly, we found an increased frequency of TFH2 cells, which correlates with disease activity. Our results suggest that this subset might play a key role in lupus pathogenesis.
Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems
Sprik, R.; Tourin, A.; de Rosny, J.; Fink, M.
2008-01-01
We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a multielement source to a multielement detector through a strongly scattering system of randomly placed vertical rods. Due to the strong scattering, the wave transport in the sample is in the
International Nuclear Information System (INIS)
Deeba, F.; Ahmad, Zahoor; Murtaza, G.
2015-01-01
Sharifi and Parvazian have presented comments on our paper by questioning the validity of the results. The plots of different curves of kappa and (r, q) distributions produced by them are incorrect. They pretended as if we have made claim that our results are valid for large arguments of product of Bessel Function, whereas Neumann's series expansion is valid only for small arguments. In our paper, no claim is made that the results are valid for all values of b. Our results are valid only for b ≪ 1. The results plotted by the commenters are incorrect and in this response we are presenting correct plots of dispersion curves
Energy Technology Data Exchange (ETDEWEB)
Deeba, F.; Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2015-02-15
Sharifi and Parvazian have presented comments on our paper by questioning the validity of the results. The plots of different curves of kappa and (r, q) distributions produced by them are incorrect. They pretended as if we have made claim that our results are valid for large arguments of product of Bessel Function, whereas Neumann's series expansion is valid only for small arguments. In our paper, no claim is made that the results are valid for all values of b. Our results are valid only for b ≪ 1. The results plotted by the commenters are incorrect and in this response we are presenting correct plots of dispersion curves.
Biernaux, J.; Magain, P.; Hauret, C.
2017-08-01
Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin
2014-01-01
The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have...
Jarvis, Susan G.; Woodward, Steve; Taylor, Andy F.S.
2015-01-01
• Changes in species richness and distributions of ectomycorrhizal (ECM) fungal communities along altitudinal gradients have been attributed to changes in both host distributions and abiotic variables. However, few studies have considered altitudinal relationships of ECM fungi associated with a single host to identify the role of abiotic drivers. To address this, ECM fungal communities associated with one host were assessed along five altitudinal transects in Scotland. • Roots of Scots pin...
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2014-08-15
The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.
Accessing the molecular frame through strong-field alignment of distributions of gas phase molecules
Reid, Katharine L.
2018-03-01
A rationale for creating highly aligned distributions of molecules is that it enables vector properties referenced to molecule-fixed axes (the molecular frame) to be determined. In the present work, the degree of alignment that is necessary for this to be achieved in practice is explored. Alignment is commonly parametrized in experiments by a single parameter, ?, which is insufficient to enable predictive calculations to be performed. Here, it is shown that, if the full distribution of molecular axes takes a Gaussian form, this single parameter can be used to determine the complete set of alignment moments needed to characterize the distribution. In order to demonstrate the degree of alignment that is required to approach the molecular frame, the alignment moments corresponding to a few chosen values of ? are used to project a model molecular frame photoelectron angular distribution into the laboratory frame. These calculations show that ? needs to approach 0.9 in order to avoid significant blurring to be caused by averaging. This article is part of the theme issue `Modern theoretical chemistry'.
Raúl Román Fernández, José; Rodríguez-Caballero, Emilio; Chamizo de la Piedra, Sonia; Roncero Ramos, Bea; Cantón Castilla, Yolanda
2017-04-01
Biological soil crusts (biocrusts) are spatially variable components of soil. Whereas biogeographic, climatic or soil properties drive biocrust distribution from regional to global scales, biocrust spatial distribution within the landscape is controlled by topographic forces that create specific microhabitats that promote or difficult biocrust growth. By knowing which are the variables that control biocrust distribution and their individual effect we can establish the abiotic thresholds that limit natural biocrust colonization on different environments, which may be very useful for designing soil restoration programmes. The objective of this study was to analyse the influence of topographic-related variables in the distribution of different types of biocrust within a semiarid catchment where cyanobacteria and lichen dominated biocrust represent the most important surface components, El Cautivo experimental area (SE Spain). To do this, natural coverage of i) bare soil, ii) vegetation, iii) cyanobacteria-dominated soil crust and iv) lichen-dominated soil crust were measured on 70 experimental plots distributed across 23 transect (three 4.5 x 4.5 m plots per transect). Following that, we used a 1m x 1m DEM (Digital Elevation Model) of the study site obtained from a LiDAR point cloud to calculate different topographic variables such as slope gradient, length slope (LS) factor (potential sediment transport index), potential incoming solar radiation, topographic wetness index (WI) and maximum flow accumulation. Canonical Correspondence Analysis was performed to infer the influence of each variable in the coverage of each class and thresholds of biocrust colonization were identified mathematically by means of linear regression analysis describing the relationship between each factor and biocrust cover. Our results show that the spatial distribution of cyanobacteria-dominated biocrust, which showed physiological and morphological adaptation to cope with drought and UVA
Description of charged particle multiplicity distribution in high energy strong interaction
International Nuclear Information System (INIS)
Qin Keyu
1994-01-01
With the assumption that the probability for n-charged particles production in hadron-hadron collision is Pn and proper choice of 1 , 2 , k and x in Pn, the true multiplicity distribution in full phase space can be described successfully at the centre of mass energy √S GeV. Using the experimental data of non singe-diffractive collisions between proton and antiproton at centre of mass energies of 200 and 900 GeV, the supposition has been examined and confirmed: it is very good to describe the facts. The theoretical bases of supposition were discussed
DEFF Research Database (Denmark)
Malis, Charlotte; Rasmussen, Eva L; Poulsen, Pernille
2005-01-01
was to estimate the heritability (h(2)) of total and regional fat distribution in young and elderly Danish twins. RESEARCH METHODS AND PROCEDURES: Monozygotic (108) and dizygotic (88) twins in two age groups (25 to 32 and 58 to 66 years) underwent anthropometric measurements and DXA scans. Intraclass correlations...... and etiologic components of variance were estimated for total and regional fat percentages using biometric modeling. RESULTS: The intraclass correlations demonstrated higher correlations for all fat percentages among monozygotic twins as compared with dizygotic twins. The biometric modeling revealed a major...
International Nuclear Information System (INIS)
Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V
2006-01-01
We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)
Photoelectron angular distributions from strong-field ionization of oriented molecules
DEFF Research Database (Denmark)
Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line
2010-01-01
The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...
International Nuclear Information System (INIS)
Rothe, R.E.
1996-01-01
A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service
Freeman, Benjamin G.; Class Freeman, Alexandra M.
2014-01-01
Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460
International Nuclear Information System (INIS)
Richter-Was, E.; Was, Z.
2016-01-01
Among the physics goals of LHC experiments, precision tests of the Standard Model in the Strong and Electroweak sectors play an important role. Because of nature of the proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of Drell-Yan process leptons, in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We show that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or two high p T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. This remains true when one or two partons accompany the lepton pairs. In this way electroweak effects can be better separated from strong interaction ones for the benefit of the interpretation of the measurements. Our study exploits properties of single gluon emission matrix elements which are clearly visible if a conveniently chosen form of their representation is used. We rely also on distributions obtained from matrix element based Monte Carlo generated samples of events with two leptons and up to two additional partons in test samples. Incoming colliding protons' partons are distributed accordingly to PDFs and are strictly collinear to the corresponding beams. (orig.)
Structural study of liquids with strong short-range correlation in the atomic distribution
International Nuclear Information System (INIS)
Uzuki, Kenji
1976-01-01
Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de
Cheek, Martin; Tsukaya, Hirokazu; Rudall, Paula J; Suetsugu, Kenji
2018-01-01
Oxygyne Schltr. (Thismiaceae) is a rare and little-known genus of achlorophyllous mycoheterotrophic perennial herbs with one of the most remarkable distributions of all angiosperm plant genera globally, being disjunct between Japan and West-Central Africa. Each species is known only from a single location, and in most cases from a single specimen. This monographic study names, describes and maps two new species, Oxygyne duncanii Cheek from cloud forest in SW Region Cameroon and O. frankei Cheek from gallery forest in the Central African Republic , representing the first new Oxygyne species described from Africa in 112 years, and raising the number of described Oxygyne species from four to six. Oxygyne duncanii is remarkable for sharing more morphological characters with two of the three Japanese species ( O. hyodoi C.Abe & Akasawa, O. shinzatoi (H. Ohashi) Tsukaya) than with the geographically much closer type species of the genus, O. triandra from Mt Cameroon. Based mainly on herbarium specimens and field observations made in Cameroon and Japan during a series of botanical surveys, we provide descriptions, synonymy, mapping and extinction risk assessments for each species of Oxygyne , together with keys to the genera of Thismiaceae and the species of Oxygyne . The subterranean structures of African Oxygyne are described for the first time, and found to be consistent with those of the Japanese species. We review and reject an earlier proposal that the Japanese species should be segregated from the African species as a separate genus, Saionia Hatus. The only character that separates the two disjunct species groups is now flower colour: blue or partly-blue in the Japanese species compared with orange-brown in the African species. Studies of the pollination biology and mycorrhizal partners of Oxygyne are still lacking. Two of the six species, O. triandra Schltr. and O. hyodoi , appear to be extinct, and the remaining four are assessed as Critically Endangered using
Directory of Open Access Journals (Sweden)
Martin Cheek
2018-05-01
Full Text Available Oxygyne Schltr. (Thismiaceae is a rare and little-known genus of achlorophyllous mycoheterotrophic perennial herbs with one of the most remarkable distributions of all angiosperm plant genera globally, being disjunct between Japan and West–Central Africa. Each species is known only from a single location, and in most cases from a single specimen. This monographic study names, describes and maps two new species, Oxygyne duncanii Cheek from cloud forest in SW Region Cameroon and O. frankei Cheek from gallery forest in the Central African Republic, representing the first new Oxygyne species described from Africa in 112 years, and raising the number of described Oxygyne species from four to six. Oxygyne duncanii is remarkable for sharing more morphological characters with two of the three Japanese species (O. hyodoi C.Abe & Akasawa, O. shinzatoi (H. Ohashi Tsukaya than with the geographically much closer type species of the genus, O. triandra from Mt Cameroon. Based mainly on herbarium specimens and field observations made in Cameroon and Japan during a series of botanical surveys, we provide descriptions, synonymy, mapping and extinction risk assessments for each species of Oxygyne, together with keys to the genera of Thismiaceae and the species of Oxygyne. The subterranean structures of African Oxygyne are described for the first time, and found to be consistent with those of the Japanese species. We review and reject an earlier proposal that the Japanese species should be segregated from the African species as a separate genus, Saionia Hatus. The only character that separates the two disjunct species groups is now flower colour: blue or partly-blue in the Japanese species compared with orange-brown in the African species. Studies of the pollination biology and mycorrhizal partners of Oxygyne are still lacking. Two of the six species, O. triandra Schltr. and O. hyodoi, appear to be extinct, and the remaining four are assessed as Critically
International Nuclear Information System (INIS)
Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini
2009-01-01
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
International Nuclear Information System (INIS)
Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.
2010-01-01
The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.
A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering
Milder, A. L.; Froula, D. H.
2017-10-01
A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
International Nuclear Information System (INIS)
Fay, D.; Layzer, A.
1975-01-01
The Berk--Schrieffer method of strong-coupling superconductivity for nearly ferromagnetic systems is generalized to arbitrary L-state pairing and realistic (hard-core) potentials. Application to 3 He yields a P-state transition but very low values for T/sub c/ and an unsatisfactory normal-state momentum distribution
Energy Technology Data Exchange (ETDEWEB)
Dopita, Michael A.; Sutherland, Ralph S.; Nicholls, David C.; Kewley, Lisa J.; Vogt, Frédéric P. A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)
2013-09-01
Recently, Nicholls et al., inspired by in situ observations of solar system astrophysical plasmas, suggested that the electrons in H II regions are characterized by a κ-distribution of energies rather than a simple Maxwell-Boltzmann distribution. Here, we have collected together new atomic data within a modified photoionization code to explore the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions. By comparing the recombination temperatures (T {sub rec}) with the forbidden line temperatures (T {sub FL}), we conclude that κ ∼ 20. While representing only a mild deviation from equilibrium, this result is sufficient to strongly influence abundances determined using methods that depend on measurements of the electron temperature from forbidden lines. We present a number of new emission line ratio diagnostics that cleanly separate the two parameters determining the optical spectrum of H II regions—the ionization parameter q or U and the chemical abundance, 12+log(O/H). An automated code to extract these parameters is presented. Using the homogeneous data set from van Zee et al., we find self-consistent results between all of these different diagnostics. The systematic errors between different line ratio diagnostics are much smaller than those found in the earlier strong-line work. Overall, the effect of the κ-distribution on the strong-line abundances derived solely on the basis of theoretical models is rather small.
DEFF Research Database (Denmark)
Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer
2009-01-01
We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...
International Nuclear Information System (INIS)
Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.
2013-01-01
We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.
International Nuclear Information System (INIS)
Matora, I.M.; Merkulov, L.A.
1975-01-01
The effect is considered of two kinds of a dependence of the emission density from the electric field voltage on the emitter surface of a strong-current electron gun (the Schottky law and the ''3/2'' law) upon the choice of a form for the meridional cross section of this emitter at the condition of electron flux laminarity. A calculation example is given for electron gun with close to laminar flow assuming the validity of the Schottky law. The results of calculation of varying the laminar flux character are given which appears when varying parameters of the gun at the voltage 500 kV and current 250 A
International Nuclear Information System (INIS)
Lyuboshitz, V.L.
1982-01-01
The time development of nuclear reactions at a large density of levels is investigated using the theory of overlapping resonances. The analytical expression for the function describing the time delay probability distribution of a wave packet is obtained in the framework of the model of n equi - valent channels. It is shown that a relative fluctuation of the time delay at the stage of the compound nucleus is snall. The possibility is discussed of increasing the duration of nuclear raactions with rising excitation energy
International Nuclear Information System (INIS)
Huijbregtse, J.M.; Klaassen, F.C.; Geest, R.C.F. van der; Dam, B.; Griessen, R.
1999-01-01
Recently, the authors showed that natural linear defects are the origin of the high critical currents in laser ablated YGBa 2 Cu 3 O 7-δ films. Combining wet-chemical etching and Atomic Force Microscopy, they find that these dislocations are created by island coalescence during growth. Consequently, the defect density can be reproducibly varied by manipulating the density of growth islands, which in turn depends on the substrate temperature. Interestingly, the radial defect distribution function approaches zero at small distances, indicating short range order. Therefore, they are now able to study vortex matter in films with a tailored non-random distribution of natural strong pinning sites
Hu, D; Hannah, J; Gray, R S; Jablonski, K A; Henderson, J A; Robbins, D C; Lee, E T; Welty, T K; Howard, B V
2000-09-01
To examine the relationship between obesity and lipoprotein profiles and compare the effects of total obesity and central adiposity on lipids/lipoproteins in American Indians. Participants were 773 nondiabetic American Indian women and 739 men aged 45 to 74 years participating in the Strong Heart Study. Total obesity was estimated using body mass index (BMI). Central obesity was measured as waist circumference. Lipoprotein measures included triglycerides, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, apolipoprotein AI (apoAI), and apolipoprotein B (apoB). Partial and canonical correlation analyses were used to examine the associations between obesity and lipids/ lipoproteins. Women were more obese than men in Arizona (median BMI 32.1 vs. 29.2 kg/m2) and South Dakota and North Dakota (28.3 vs. 28.0 kg/m2), but there was no sex difference in waist circumference. Men had higher apoB and lower apoAI levels than did women. In women, when adjusted for center, gender, and age, BMI was significantly related to HDL cholesterol (r = -0.24, p HDL cholesterol (r = -0.23, p correlated with triglycerides (r = 0.30, p correlated with HDL cholesterol (r = -0.35, p HDL cholesterol decreased with waist circumference (r = -0.36, p correlation analysis, waist circumference received a greater weight (0.86) than did BMI (0.17) in women. However, the canonical weights were similar for waist (0.46) and BMI (0.56) in men. Only HDL cholesterol (-1.02) carried greater weight in women, whereas in men, triglycerides (0.50), and HDL cholesterol (-0.64) carried a large amount of weight. All the correlation coefficients between BMI, waist circumference, and the first canonical variable of lipids/lipoproteins or between the individual lipid/lipoprotein variables and the first canonical variable of obesity were smaller in women than in men. Triglycerides and HDL cholesterol showed clinically meaningful changes with BMI and waist circumference in men. All
Effect of deviations from the Maxwell distribution on neutron production in laser targets
International Nuclear Information System (INIS)
Henderson, D.B.; Petschek, A.G.
1978-11-01
Because of the brief duration of laser implosions and the small size of the pellets, one may be concerned that the ions never reach a Maxwell distribution or that the tail is lost by diffusion. This might have a large effect on , which depends heavily on the tail. We have calculated the ion distribution and the DT . Results are presented for the ratio of for a monoenergetic isotropic distribution to that for a Maxwell distribution, for the rate of approach of to the equilibrium value, and for the decay of due to fast ion losses. The main effect in the last case is due to energy losses, not to non-Maxwellian distribution. The effect is substantially different than previously reported
International Nuclear Information System (INIS)
Bang, Jin Young; Chung, Chin Wook
2009-01-01
In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.
Studying electron distributions using the time-resolved free-bound spectra from coronal plasmas
International Nuclear Information System (INIS)
Matthews, D.L.; Kauffman, R.L.; Kilkenny, J.D.; Lee, R.W.
1982-11-01
Absorption of laser light in a plasma by inverse bremsstrahlung, I.B., can lead to a non-Maxwellian velocity distribution provided the electron-elecron collision frequency is too low to equilibrate the velocity distribution in the coronal plasma region of a laser heated aluminum disk by measuring the radiation recombination continuum. The experiments are performed using lambda/sub L/ = 0.532 μm laser light at intensities of approx. 10 16 W/cm 2 . Such parameters are predicted to produce conditions suitable for a non-thermal electron distribution. The shape of the K-shell recombination radiation has been measured using a time-resolved x-ray spectrograph. The electron distribution can be determined from deconvolution of the recombination continuum shape
Directory of Open Access Journals (Sweden)
Jéssica F Felappi
Full Text Available The Pampas is a biologically rich South American biome, but is poorly represented in phylogeographic studies. While the Pleistocene glacial cycles may have affected the evolutionary history of species distributed in forested biomes, little is known about their effects on the habitats that remained stable through glacial cycles. The South American Pampas have been covered by grasslands during both glacial and interglacial periods and therefore represent an interesting system to test whether the genetic structure in such environments is less pronounced. In this study, we sampled Pampean populations of Homonota uruguayensis from Southern Brazil and Uruguay to assess the tempo and mode of population divergence, using both morphological measurements and molecular markers. Our results indicate that, in spite of its narrow geographic distribution, populations of H. uruguayensis show high levels of genetic structure. We found four major well-supported mtDNA clades with strong geographic associations. Estimates of their divergence times fell between 3.16 and 1.82 million years before the present. Populations from the central portion of the species distribution, on the border between Uruguay and Brazil, have high genetic diversity and may have undergone a population expansion approximately 250,000 years before the present. The high degree of genetic structure is reflected in the analyses of morphological characters, and most individuals could be correctly assigned to their parental population based on morphology alone. Finally, we discuss the biogeographic and conservation implications of these findings.
Directory of Open Access Journals (Sweden)
Alessia Viel
2017-08-01
Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation
Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.
2015-12-01
> ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
DEFF Research Database (Denmark)
Wieland, Kai; Olesen, Hans Jakob; Pedersen, Eva Maria
2011-01-01
The impact of strong winds on catches of cod (Gadus morhua) was studied using different fishing methods during small-scale surveys with commercial fishing vessels in the north-eastern central North Sea. Catch per unit effort of a flyshooter and a trawler were considerably lower in the shallower c...
The Diagnostics of the Shape of the Electron Distribution Function during the Solar Flares
Dzifčáková, E.; Kulinová, A.; Kašparová, J.
2011-12-01
The non-thermal electrons accelerated during the flares interact with surrounding plasma and the electron distribution of the flaring plasma becomes non-Maxwellian. X-ray spectrometers RESIK and RHESSI with high energy resolution give an opportunity to diagnose the presence of the non-thermal electron distribution. RESIK X-line spectra with high fluxes of satellite lines can be explained by presence of the non-thermal n-distribution in a plasma bulk in the 2-2.5 keV range. The RHESSI spectrometer enables us to diagnose the non-thermal high-energy tail of the electron distribution in deka-keV energy range. This high-energy tail can be described by a power-law distribution. We have analyzed three solar flares to get non-thermal characteristics of both non-thermal parts of the electron distribution. The ratios of the intensities of allowed to satellite lines have been used to estimate the parameters of the n-distribution. RHESSI data has been used to obtain the temporal changes of the parameters of Maxwellian and power-law distributions and also for determination of the parameters of n-distribution in two specific cases. The parameters of n-distribution obtained from RHESSI analysis agree within the errors with those derived from RESIK observations. Finally, the synthetic soft X-ray line spectra has been computed for diagnosed parameters of distributions and have been compared with RESIK X-ray observations.
DEFF Research Database (Denmark)
Christiansen, Claus; Karsdal, Morten; Lauze, Francois Bernard
2008-01-01
Background and Purpose: Aortic calcification is a major risk factor for cardiovascular disease (CVD) related deaths. We investigated the relation between mortality and aspects of number, size, morphology and distribution of calcified plaques in the lumbar aorta of postmenopausal women. Methods: 308...... women aged 48 to 76 were followed for 8.3+-0.3 years and cardiovascular, cancer and all-cause deaths were recorded. Several aortic calcification markers were quantified: number, morphology, distribution, from outlines of the calcified plaques in lumbar X-rays at baseline. These markers were compared...... to SCORE card, Framingham score, and the Aortic Calcification Severity score - AC24. Results: AC24 adjusted by age, waist circumference, and triglyceride levels predicted mortality in postmenopausal women (CVD p=0.03, All-cause p=0.006). The SCORE card and the Framingham score resulted in mortality odds...
Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.
2016-01-01
Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.
Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.
2018-01-01
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.
John R. Jones
1985-01-01
Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
International Nuclear Information System (INIS)
Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.
2016-01-01
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q d = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U 0 ) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
Energy Technology Data Exchange (ETDEWEB)
Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)
2016-01-15
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.
ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
International Nuclear Information System (INIS)
Zaheer, S.; Yoon, P. H.
2013-01-01
A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel
2015-06-26
The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7$~\\mathrm{TeV}$ was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0$~\\mathrm{fb}^{-1}$. The measurement covers a phase space up to 2$~\\mathrm{TeV}$ in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass $M_{\\mathrm{Z}}$ is determined to be $\\alpha_S(M_{\\mathrm{Z}}) = 0.1185 \\pm 0.0019\\,(\\mathrm{exp})\\,^{+0.0060}_{-0.0037}\\,(\\mathrm{theo})$, which is in a...
Czech Academy of Sciences Publication Activity Database
Dudík, Jaroslav; Polito, V.; Dzifčáková, Elena; Del Zanna, G.; Testa, P.
2017-01-01
Roč. 842, č. 1 (2017), 1/1-1/18 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-18495S; GA ČR(CZ) GA17-16447S Institutional support: RVO:67985815 Keywords : line profiles * data analysis * radiation mechanisms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016
Energy and Pitch Distribution of Spontaneously-generated High-energy Bulk Ions in the RFP
Kim, Jungha; Anderson, Jay; Reusch, Joshua; Eilerman, Scott; Capecchi, William
2014-10-01
Magnetic reconnection events in the reversed field pinch (RFP) are known to heat bulk and impurity ions. Runaway due to a parallel electric field has recently been confirmed as an important acceleration mechanism for high energy test ions supplied by a neutral beam. This effect does not, however, explain the change in distribution of nearly Maxwellian bulk ions at a reconnection event. By operating MST near maximum current and low electron density, significant fusion neutron flux can be generated without neutral beam injection. The bulk ion distribution created in these plasmas is well-confined, non-Maxwellian, and can be measured by the Advanced Neutral Particle Analyzer (ANPA) placed at a radial or tangential porthole. Data show a high energy tail up to 25 keV with a relatively higher signal in the low energy channels (8-15 keV) at the radial port following a reconnection event. Analysis of the energy dependence of trapped orbits sampled by the ANPA at the radial view implies an abundance of lower energy particles in regions of higher neutral density. This mandates a careful deconvolution of the measured ANPA signal to compute the fast ion distribution. This work is supported by the US DOE and NSF.
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
Bitcoin Meets Strong Consistency
Decker, Christian; Seidel, Jochen; Wattenhofer, Roger
2014-01-01
The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...
Strong gravity and supersymmetry
International Nuclear Information System (INIS)
Chamseddine, Ali H.; Salam, A.; Strathdee, J.
1977-11-01
A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
International Nuclear Information System (INIS)
Marier, D.
1992-01-01
This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
International Nuclear Information System (INIS)
Gorenstein, M. I.; Gazdzicki, M.
2011-01-01
Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
Strongly disordered superconductors
International Nuclear Information System (INIS)
Muttalib, K.A.
1982-01-01
We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Z; Okubo, R [Kawasaki Geological Engineering Co. Ltd., Tokyo (Japan)
1997-10-22
It was intended to elucidate characteristics of distribution of damages caused by an earthquake which occurs directly below an urban area. Therefore, numerical simulation using the pseudo-spectral method was performed on characteristics of seismic wave propagation in non-homogenous media composed of rock beds and sediment beds, and of seismic wave amplitudes on ground surface. The simulation has utilized information on underground structures disclosed by using the latest physical exploration method. The underground structure model assumed a two-dimensional model hypothesizing presence of upper, middle and lower beds in the Osaka bed group on granite, using as reference the information on S-wave velocity underground structure revealed by the microtremor exploration method. With an objective to elucidate characteristics of distribution of collapse ratio in the area from 8-chome, Okamoto, Higashinada Ward, Kobe City to 2-chome of Sakanasaki Minamicho, as damages suffered from the Hyogo-ken Nanbu Earthquake, a simulation has been performed varying the structure model based on the results derived by the microtremor exploration method and the reflection method. As a result, it was shown that the characteristics of the maximum amplitude distribution of displacement of ground surface, velocity and acceleration agree well with those of the collapse ratio distribution, and that the simulation using the pseudo-spectral method is an effective means to analyze the ground surface collapse ratio distribution. 5 refs., 3 figs.
Antonella Del Rosso
2016-01-01
Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO. The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...
Strongly interacting Higgs bosons
International Nuclear Information System (INIS)
Appelquist, T.; Bernard, C.
1980-01-01
The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed
<strong>Anonysense>: privacy-aware people-centric sensingstrong>
DEFF Research Database (Denmark)
Triandopoulos, Nikolaos; Cornelius, Cory; Kapadia, Apu
2008-01-01
applications. For example, users' mobile phones may contribute data to community-oriented information services, from city-wide pollution monitoring to enterprise-wide detection of unauthorized Wi-Fi access points. This people-centric mobile-sensing model introduces a new security challenge in the design...... of mobile systems: protecting the privacy of participants while allowing their devices to reliably contribute high-quality data to these large-scale applications. We describe AnonySense, a privacy-aware architecture for realizing pervasive applications based on collaborative, opportunistic sensing...... by personal mobile devices. AnonySense allows applications to submit sensing tasks that will be distributed across anonymous participating mobile devices, later receiving verified, yet anonymized, sensor data reports back from the field, thus providing the first secure implementation of this participatory...
Strong-interaction nonuniversality
International Nuclear Information System (INIS)
Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.
1989-01-01
The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements
Wickens, F
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
Directory of Open Access Journals (Sweden)
P. Guio
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.
Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Directory of Open Access Journals (Sweden)
P. Guio
1998-10-01
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
DEFF Research Database (Denmark)
Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger
2008-01-01
, depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
Dynamics of total electron content distribution during strong geomagnetic storms
Astafyeva, E. I.; Afraimovich, E. L.; Kosogorov, E. A.
We worked out a new method of mapping of total electron content TEC equal lines displacement velocity The method is based on the technique of global absolute vertical TEC value mapping Global Ionospheric Maps technique GIM GIM with 2-hours time resolution are available from Internet underline ftp cddisa gsfc nasa gov in standard IONEX-files format We determine the displacement velocity absolute value as well as its wave vector orientation from increments of TEC x y derivatives and TEC time derivative for each standard GIM cell 5 in longitude to 2 5 in latitude Thus we observe global traveling of TEC equal lines but we also can estimate the velocity of these line traveling Using the new method we observed anomalous rapid accumulation of the ionosphere plasma at some confined area due to the depletion of the ionization at the other spacious territories During the main phase of the geomagnetic storm on 29-30 October 2003 very large TEC enhancements appeared in the southwest of North America TEC value in that area reached up to 200 TECU 1 TECU 10 16 m -2 It was found that maximal velocity of TEC equal lines motion exceeded 1500 m s and the mean value of the velocity was about 400 m s Azimuth of wave vectors of TEC equal lines were orientated toward the center of region with anomaly high values of TEC the southwest of North America It should be noted that maximal TEC values during geomagnetically quiet conditions is about 60-80 TECU the value of TEC equal lines
Short proofs of strong normalization
Wojdyga, Aleksander
2008-01-01
This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.
International Nuclear Information System (INIS)
DeSantis, G.N.
1995-01-01
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch
Strong Completeness for Markovian Logics
DEFF Research Database (Denmark)
Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash
2013-01-01
In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a log...
Strong anisotropy in the low temperature Compton profiles of ...
Indian Academy of Sciences (India)
able for comparison with theory, the resistivity data in α-Ga at low temperature strongly support this anisotropic ... renormalized free-atom (RFA) model [3], band model [5–7] and quantum Monte Carlo ... probability distribution function.
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012
Waves in strong centrifugal fields: dissipationless gas
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2015-04-01
Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.
Quantum strongly secure ramp secret sharing
DEFF Research Database (Denmark)
Zhang, Paul; Matsumoto, Rytaro Yamashita
2015-01-01
Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together...... however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced....... This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can...
Electrons in a strong magnetic field
International Nuclear Information System (INIS)
Itzykson, C.
1985-05-01
We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
Strong interactions at high energy
International Nuclear Information System (INIS)
Anselmino, M.
1995-01-01
Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics
Strong-field dissociation dynamics
International Nuclear Information System (INIS)
DiMauro, L.F.; Yang, Baorui.
1993-01-01
The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs
Strong Decomposition of Random Variables
DEFF Research Database (Denmark)
Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.
2007-01-01
A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
The colours of strong interaction
International Nuclear Information System (INIS)
1995-01-01
The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)
Strong cosmic censorship and the strong curvature singularities
International Nuclear Information System (INIS)
Krolak, A.
1987-01-01
Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis
Strong eld ionization of naphthalene: angular shifts and molecular potential
DEFF Research Database (Denmark)
Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge
We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...... sensitive to the exact form of the molecular potential....
Fractional Transport in Strongly Turbulent Plasmas
Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana
2017-07-01
We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.
Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
Flavour Democracy in Strong Unification
Abel, S A; Abel, Steven; King, Steven
1998-01-01
We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.
The INGV Real Time Strong Motion Database
Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo
2017-04-01
The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121
String dynamics at strong coupling
International Nuclear Information System (INIS)
Hull, C.M.
1996-01-01
The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
International Nuclear Information System (INIS)
L'Huillier, A.
2002-01-01
When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)
Rydberg atoms in strong fields
International Nuclear Information System (INIS)
Kleppner, D.; Tsimmerman, M.
1985-01-01
Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented
Strong versions of Bell's theorem
International Nuclear Information System (INIS)
Stapp, H.P.
1994-01-01
Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption
Strongly interacting light dark matter
International Nuclear Information System (INIS)
Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo
2016-07-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Weak consistency and strong paraconsistency
Directory of Open Access Journals (Sweden)
Gemma Robles
2009-11-01
Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.
Energy Technology Data Exchange (ETDEWEB)
Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))
1992-07-09
We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Estimation of strong ground motion
International Nuclear Information System (INIS)
Watabe, Makoto
1993-01-01
Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event
Strong Mechanoluminescence from Oxynitridosilicate Phosphors
Energy Technology Data Exchange (ETDEWEB)
Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)
2011-10-29
We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Strong Selective Adsorption of Polymers.
Ge, Ting; Rubinstein, Michael
2015-06-09
A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the
Strong growth for Queensland mining
Energy Technology Data Exchange (ETDEWEB)
1990-10-01
The Queensland mining industry experienced strong growth during 1989-90 as shown in the latest statistics released by the Department of Resource Industries. The total value of Queensland mineral and energy production rose to a new record of $5.1 billion, an increase of 16.5% on 1988-89 production. A major contributing factor was a 20.9 percent increase in the value of coal production. While the quantity of coal produced rose only 1.1 percent, the substantial increase in the value of coal production is attributable to higher coal prices negotiated for export contracts. In Australian dollar terms coal, gold, lead, zinc and crude oil on average experienced higher international prices than in the previous year. Only copper and silver prices declined. 3 tabs.
Strong moduli stabilization and phenomenology
Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A
2013-01-01
We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).
Strongly interacting W's and Z's
International Nuclear Information System (INIS)
Gaillard, M.K.
1984-01-01
The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data
Uniquely Strongly Clean Group Rings
Institute of Scientific and Technical Information of China (English)
WANG XIU-LAN
2012-01-01
A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.
Electrophoresis in strong electric fields.
Barany, Sandor
2009-01-01
Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Functional calculus in strong plasma turbulence
International Nuclear Information System (INIS)
Ahmadi, G.; Hirose, A.
1980-01-01
The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author)
Hypernuclear matter in strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)
2013-01-17
Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.
Strong Ideal Convergence in Probabilistic Metric Spaces
Indian Academy of Sciences (India)
In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...
Strong Statistical Convergence in Probabilistic Metric Spaces
Şençimen, Celaleddin; Pehlivan, Serpil
2008-01-01
In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.
2006-01-01
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Strong seismic ground motion propagation
International Nuclear Information System (INIS)
Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.
1988-10-01
At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials
The effect of the pulse repetition rate on the fast ionization wave discharge
Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang
2018-06-01
The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.
Strongly interacting photons and atoms
International Nuclear Information System (INIS)
Alge, W.
1999-05-01
This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Promoting Strong Written Communication Skills
Narayanan, M.
2015-12-01
The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987
Equation of state of strongly coupled plasma mixtures
International Nuclear Information System (INIS)
DeWitt, H.E.
1984-01-01
Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution
Russia needs a strong counterpart
International Nuclear Information System (INIS)
Slovak, K.; Marcan, P.
2008-01-01
In this paper an interview with the head of OMV, Wolfgang Ruttenstorfer is published. There is extract from this interview: Q: There have been attempts to take over MOL for a quite long time. Do you think you can still succeed? Since the beginning we kept saying that this would not happen from one day to another. But it may take two to three years. But we are positive that it is justified. Q: Resistance from MOL and the Hungarian government is strong. We have tried to persuade the Hungarian government. We offered them a split company management. A part of the management would be in Budapest. We would locate the management of the largest division - the refinery, there. And of course only the best could be part of the management. We would not nominate people according to their nationality, it would not matter whether the person was Austrian, Hungarian or Slovak. We want a Central European company, not Hungarian, Romanian or Slovak company. Q: Would the transaction still be attractive if, because of pressure exercised by Brussels, you had to sell Slovnaft or your refinery in Szazhalobatta? We do not intend to sell any refineries. Q: Rumours are spreading that the Commission may ask you to sell a refinery? We do not want to speculate. Let us wait and see what happens. We do not want to sell refineries. Q: It is said that OMV is coordinating or at least consulting its attempts to acquire MOL with Gazprom. There are many rumours in Central Europe. But I can tell you this is not true. We are interested in this merger because we feel the increasing pressure exercised by Kazakhstan and Russia. We, of course, have a good relationship with Gazprom which we have had enjoyed for over forty years. As indeed Slovakia has. Q: A few weeks ago Austrian daily Wirtschaftsblatt published an article about Gazprom's interest in OMV shares. That is gossip that is more than ten years' old. Similarly to the rumours that Gazprom is a shareholder of MOL. There are no negotiations with Gazprom
Intensities and strong interaction attenuation of kaonic x-rays
Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig
1974-01-01
Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).
Noise Spectroscopy in Strongly Correlated Oxides
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the
Strong plasma turbulence in the earth's electron foreshock
Robinson, P. A.; Newman, D. L.
1991-01-01
A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.
Strong plasma turbulence in the earth's electron foreshock
International Nuclear Information System (INIS)
Robinson, P.A.; Newman, D.L.
1991-01-01
A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the Earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V m -1 . The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted
Strong Bisimilarity of Simple Process Algebras
DEFF Research Database (Denmark)
Srba, Jirí
2003-01-01
We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...
Application of strong phosphoric acid to radiochemistry
International Nuclear Information System (INIS)
Terada, Kikuo
1977-01-01
Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)
Cyclotron radiation by a multi-group method
International Nuclear Information System (INIS)
Chu, T.C.
1980-01-01
A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions
Strong economic growth driving increased electricity consumption
International Nuclear Information System (INIS)
Tiusanen, P.
2000-01-01
The Finnish economy is growing faster today than anyone dared hope only a few years ago. Growth estimates for 2000 have already had to be raised. This strong level of economic growth has been reflected in electricity consumption, which has continued to increase, despite the exceptionally warm winter. A major part of this increased electricity usage has so far been met through imports. The continued growth in electricity imports has largely been a result of the fact that the good water level situation in Sweden and Norway, together with the mild winter, has kept electricity prices exceptionally low on the Nordic electricity exchange. The short period of low temperatures seen at the end of January showed, however, that this type of temperature fluctuation, combined with the restrictions that exist in regard to transfer capacity, can serve to push Nordic exchange electricity prices to record levels. This increase in price also highlights the fact that we are approaching a situation in which capacity will be insufficient to meet demand. A truly tough winter has not been seen since the Nordic region's electricity markets were deregulated. The lesson that needs to be learnt is that Finland needs sufficient capacity of her own to meet demand even during particularly cold winters. Finland used 77.9 billion kWh of electricity last year, up 1.6% or 1.3 billion kWh on 1998. This growth was relatively evenly distributed among different user groups. This year, electricity consumption is forecast to grow by 2-3%
Atomic excitation and acceleration in strong laser fields
International Nuclear Information System (INIS)
Zimmermann, H; Eichmann, U
2016-01-01
Atomic excitation in the tunneling regime of a strong-field laser–matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results. (paper)
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
Strong Anderson localization in cold atom quantum quenches
Micklitz, T.; Müller, C. A.; Altland, A.
2013-01-01
Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...
Precision determination of the strong coupling constant within a global PDF analysis
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria
2018-01-01
We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO
Strong Stationary Duality for Diffusion Processes
Fill, James Allen; Lyzinski, Vince
2014-01-01
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...
Strongly correlating liquids and their isomorphs
Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.
2010-01-01
This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
On the Strong Direct Summand Conjecture
McCullough, Jason
2009-01-01
In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…
Physics challenges in the strong interactions
International Nuclear Information System (INIS)
Ellis, S.D.
1992-01-01
The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D. [Univ. of Washington, Seattle (United States)
1992-12-31
The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Theoretical studies of strongly correlated fermions
Energy Technology Data Exchange (ETDEWEB)
Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).
The strong reflecting property and Harrington's Principle
Cheng, Yong
2015-01-01
In this paper we characterize the strong reflecting property for $L$-cardinals for all $\\omega_n$, characterize Harrington's Principle $HP(L)$ and its generalization and discuss the relationship between the strong reflecting property for $L$-cardinals and Harrington's Principle $HP(L)$.
Strong Nash Equilibria and the Potential Maimizer
van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.
1996-01-01
A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
The lambda sigma calculus and strong normalization
DEFF Research Database (Denmark)
Schack-Nielsen, Anders; Schürmann, Carsten
Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus, ...
Optimization of strong and weak coordinates
Swart, M.; Bickelhaupt, F.M.
2006-01-01
We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation
78 FR 15710 - Strong Sensitizer Guidance
2013-03-12
... the supplemental definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science...'' definition, assist manufacturers in understanding how CPSC staff would assess whether a substance and/or...
International Nuclear Information System (INIS)
Bitter, M.; Gu, M.F.; Vainshtein, L.A.; Beiersdorfer, P.; Bertschinger, G.; Marchuk, O.; Bell, R.; LeBlanc, B.; Hill, K.W.; Johnson, D.; Roquemore, L.
2003-01-01
Dielectronic satellite spectra of helium-like argon, recorded with a high-resolution X-ray crystal spectrometer at the National Spherical Torus Experiment, were found to be inconsistent with existing predictions resulting in unacceptable values for the power balance and suggesting the unlikely existence of non-Maxwellian electron energy distributions. These problems were resolved with calculations from a new atomic code. It is now possible to perform reliable electron temperature measurements and to eliminate the uncertainties associated with determinations of non-Maxwellian distributions
Seismic switch for strong motion measurement
Harben, P.E.; Rodgers, P.W.; Ewert, D.W.
1995-05-30
A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.
Strong-field ionization with twisted laser pulses
Paufler, Willi; Böning, Birger; Fritzsche, Stephan
2018-04-01
We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.
Strong Sporadic E Occurrence Detected by Ground-Based GNSS
Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian
2018-04-01
The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.
Factors driving the spatial layout of distribution channels
Onstein, A.T.C.; Ektesaby, M.; Rezaei, J.; Tavasszy, L.A.; van Damme, D.A.
2017-01-01
Research statement Our study analyses the factors that drive decision-making on distribution structures, including the layout of distribution channels and the locations of distribution centres. Distribution is a primary firm activity, which strongly influences logistics costs and logistics
Dual field theory of strong interactions
International Nuclear Information System (INIS)
Akers, D.
1987-01-01
A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137
Strong and superstrong pulsed magnetic fields generation
Shneerson, German A; Krivosheev, Sergey I
2014-01-01
Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.
Semi-strong split domination in graphs
Directory of Open Access Journals (Sweden)
Anwar Alwardi
2014-06-01
Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.
Strong-force theorists scoop Noble Prize
Durrani, Matin
2004-01-01
Three US theorists have shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic freedom in the theory of the strong interaction". Their theoretical work explains why quarks behave almost as free particles at high energies (½ page)
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
Nuclear physics from strong coupling QCD
Fromm, Michael
2009-01-01
The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.
Modeling and synthesis of strong ground motion
Indian Academy of Sciences (India)
There have been many developments in modeling techniques, and ... damage life and property in a city or region. How- ... quake of 26 January 2001 as a case study. 2. ...... quake derived from a dense strong-motion network; Bull. Seismol.
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Physics challenges in the strong interactions
International Nuclear Information System (INIS)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders
Strong interaction effects in hadronic atoms
International Nuclear Information System (INIS)
Kaufmann, W.B.
1977-01-01
The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data
Perturbation of an exact strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1982-10-01
Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)
Calculating hadronic properties in strong QCD
International Nuclear Information System (INIS)
Pennington, M.R.
1996-01-01
This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
The Charm and Beauty of Strong Interactions
El-Bennich, Bruno
2018-01-01
We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Building strong brands – does it matter?
Aure, Kristin Gaaseide; Nervik, Kristine Dybvik
2014-01-01
Brand equity has proven, through several decades of research, to be a primary source of competitive advantage and future earnings (Yoo & Donthu, 2001). Building strong brands has therefore become a priority for many organizations, with the presumption that building strong brands yields these advantages (Yasin et al., 2007). A quantitative survey was conducted at Sunnmøre in Norway in order to answer the two developed research questions. - Does the brand equity dimensions; brand...
Algebra of strong and electroweak interactions
International Nuclear Information System (INIS)
Bolokhov, S.V.; Vladimirov, Yu.S.
2004-01-01
The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru
Manipulating light with strongly modulated photonic crystals
International Nuclear Information System (INIS)
Notomi, Masaya
2010-01-01
Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
A strongly quasiconvex PAC-Bayesian bound
DEFF Research Database (Denmark)
Thiemann, Niklas; Igel, Christian; Wintenberger, Olivier
2017-01-01
We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Ku...
Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994
National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...
Pervasive Electricity Distribution System
Directory of Open Access Journals (Sweden)
Muhammad Usman Tahir
2017-06-01
Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.
The extended reciprocity: Strong belief outperforms persistence.
Kurokawa, Shun
2017-05-21
The existence of cooperation is a mysterious phenomenon and demands explanation, and direct reciprocity is one key potential explanation for the evolution of cooperation. Direct reciprocity allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior. Here, relevant to direct reciprocity is information deficiency. When the opponent's last move is unknown, how should players behave? One possibility is to choose cooperation with some default probability without using any further information. In fact, our previous paper (Kurokawa, 2016a) examined this strategy. However, there might be beneficial information other than the opponent's last move. A subsequent study of ours (Kurokawa, 2017) examined the strategy which uses the own last move when the opponent's last move is unknown, and revealed that referring to the own move and trying to imitate it when information is absent is beneficial. Is there any other beneficial information else? How about strong belief (i.e., have infinite memory and believe that the opponent's behavior is unchanged)? Here, we examine the evolution of strategies with strong belief. Analyzing the repeated prisoner's dilemma game and using evolutionarily stable strategy (ESS) analysis against an invasion by unconditional defectors, we find the strategy with strong belief is more likely to evolve than the strategy which does not use information other than the opponent player's last move and more likely to evolve than the strategy which uses not only the opponent player's last move but also the own last move. Strong belief produces the extended reciprocity and facilitates the evolution of cooperation. Additionally, we consider the two strategies game between strategies with strong belief and any strategy, and we consider the four strategies game in which unconditional cooperators, unconditional defectors, pessimistic reciprocators with strong belief, and optimistic reciprocators with
Theory of a beam-induced electromagnetic mode in a magnetized plasma
International Nuclear Information System (INIS)
Baumgaertel, K.; Sauer, K.
1985-01-01
The theory of a recently discovered plasma wave mode is presented. In a non-Maxwellian high-beta plasma a new electromagnetic mode was detected containing a group of energetic field-aligned electrons. The theory uses the standard method for derivation of the dispersion relation, allowing non-Maxwellian electron distributions and right-hand polarization. The theoretical dispersion relation is compared with the empirical data. This comparison confirmes the existence of a right-hand circularly polarized mode propagating parallel to the external magnetic field. (D.Gy.)
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
Observation of squeezed states with strong photon-number oscillations
International Nuclear Information System (INIS)
Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman
2010-01-01
Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.
Measurement of the strong coupling constant using τ decays
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.
Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.
2018-03-01
The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
Coherent Vortices in Strongly Coupled Liquids
International Nuclear Information System (INIS)
Ashwin, J.; Ganesh, R.
2011-01-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Coherent Vortices in Strongly Coupled Liquids
Ashwin, J.; Ganesh, R.
2011-04-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Strong Coupling between Plasmons and Organic Semiconductors
Directory of Open Access Journals (Sweden)
Joel Bellessa
2014-05-01
Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.
Institutionalizing Strong Sustainability: A Rawlsian Perspective
Directory of Open Access Journals (Sweden)
Konrad Ott
2014-02-01
Full Text Available The article aims to provide some ethical orientation on how sustainability might be actualized by institutions. Since institutionalization is about rules and organization, it presupposes ideas and concepts by which institutions can be substantiated. After outlining terminology, the article deals with underlying ethical and conceptual problems which are highly relevant for any suggestions concerning institutionalization. These problems are: (a the ethical scope of the sustainability perspective (natural capital, poverty, sentient animals, (b the theory of justice on which ideas about sustainability are built (capability approach, Rawlsianism, and (c the favored concept of sustainability (weak, intermediate, and strong sustainability. These problems are analyzed in turn. As a result, a Rawlsian concept of rule-based strong sustainability is proposed. The specific problems of institutionalization are addressed by applying Rawls’s concept of branches. The article concludes with arguments in favor of three transnational duties which hold for states that have adopted Rawlsian strong sustainability.
A theory of the strong interactions
International Nuclear Information System (INIS)
Gross, D.J.
1979-01-01
The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Strongly interacting matter in magnetic fields
Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung
2013-01-01
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
On the strong crack-microcrack interaction problem
Gorelik, M.; Chudnovsky, A.
1992-07-01
The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.
Microscopic modeling of photoluminescence of strongly disordered semiconductors
International Nuclear Information System (INIS)
Bozsoki, P.; Kira, M.; Hoyer, W.; Meier, T.; Varga, I.; Thomas, P.; Koch, S.W.
2007-01-01
A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution
Strong Anderson localization in cold atom quantum quenches.
Micklitz, T; Müller, C A; Altland, A
2014-03-21
Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...
Analytical solution of strongly nonlinear Duffing oscillators
El-Naggar, A.M.; Ismail, G.M.
2016-01-01
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...
Strong WW scattering at photon linear colliders
International Nuclear Information System (INIS)
Berger, M.S.
1994-06-01
We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Universal behavior of strongly correlated Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)
2007-06-30
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Universal behavior of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G
2007-01-01
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
De Sitter vacua of strongly interacting QFT
Energy Technology Data Exchange (ETDEWEB)
Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)
2017-03-22
We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.
Optical spectral weight anomalies and strong correlation
International Nuclear Information System (INIS)
Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.
2007-01-01
The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value
Strong cosmic censorship in de Sitter space
Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2018-05-01
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
Virtual detector theory for strong-field atomic ionization
Wang, Xu; Tian, Justin; Eberly, J. H.
2018-04-01
A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.
Kroese, A.H.; van der Meulen, E.A.; Poortema, Klaas; Schaafsma, W.
1995-01-01
The making of statistical inferences in distributional form is conceptionally complicated because the epistemic 'probabilities' assigned are mixtures of fact and fiction. In this respect they are essentially different from 'physical' or 'frequency-theoretic' probabilities. The distributional form is
Natural strong CP conservation in flipped physics
Energy Technology Data Exchange (ETDEWEB)
Frampton, P.H. (Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC (USA)); Kephart, T.W. (Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (USA))
1990-08-13
A natural axion-free solution of the strong {ital CP} problem {ital at} {ital tree} {ital level} is noted within an E(6) grand unified theory. Using this as a springboard, it is shown that several flipped SU(5) theories which occur in superstring phenomenology contain within them a mechanism which enforces {bar {theta}}=0 at high accuracy.
Riesz basis for strongly continuous groups.
Zwart, Heiko J.
Given a Hilbert space and the generator of a strongly continuous group on this Hilbert space. If the eigenvalues of the generator have a uniform gap, and if the span of the corresponding eigenvectors is dense, then these eigenvectors form a Riesz basis (or unconditional basis) of the Hilbert space.
Earthquake source model using strong motion displacement
Indian Academy of Sciences (India)
The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...
Cosmological applications of strong gravitational lensing
DEFF Research Database (Denmark)
Paraficz, Danuta
value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...
Discrete symmetries, strong CP problem and gravity
International Nuclear Information System (INIS)
Senjanovic, G.
1993-05-01
Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs
Phase transition from strong-coupling expansion
International Nuclear Information System (INIS)
Polonyi, J.; Szlachanyi, K.
1982-01-01
Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)
The stability of the strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1978-01-01
The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Strong motion duration and earthquake magnitude relationships
International Nuclear Information System (INIS)
Salmon, M.W.; Short, S.A.; Kennedy, R.P.
1992-06-01
Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions
Strong imploding shock, the representative curve
International Nuclear Information System (INIS)
Mishkin, E.A.; Alejaldre, C.
1981-01-01
The representative curve of the ideal gas behind the front of a spherically, or cylindrically, symmetric strong imploding shock is shown to pass through the point where the reduced pressure is maximum, P(xisub(m)) = Psub(m)sub(a)sub(x). (orig.)
Reducing Weak to Strong Bisimilarity in CCP
Directory of Open Access Journals (Sweden)
Andrés Aristizábal
2012-12-01
Full Text Available Concurrent constraint programming (ccp is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes evolve by posting and querying (partial information in a global medium. Bisimilarity is a standard behavioural equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for ccp, and a ccp partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimiliarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence.
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Strongly \\'etale difference algebras and Babbitt's decomposition
Tomašić, Ivan; Wibmer, Michael
2015-01-01
We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.
Strongly coupled semidirect mediation of supersymmetry breaking
International Nuclear Information System (INIS)
Ibe, M.; Izawa, K.-I.; Nakai, Y.
2009-01-01
Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....
Strong industrial base vital for economic revival
2001-01-01
At the inauguration of a 2-day conference on nuclear technology in Islamabad, the chairman of PAEC said that Pakistan needs to develop a strong industrial base and capability to export equipment to improve the economic condition of the country. He descibed how Pakistan has already had a breakthrough with the export of equipment to CERN, Geneva (1 page).
Strong field control of predissociation dynamics.
Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis
2013-01-01
Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.
Bottomonia: open bottom strong decays and spectrum
Directory of Open Access Journals (Sweden)
Santopinto E.
2014-05-01
Full Text Available We present our results for the bottomonium spectrum with self energy corrections. The bare masses used in the calculation are computed within Godfrey and Isgur’s relativized quark model. We also discuss our results for the open bottom strong decay widths of higher bottomonia in the 3P0 pair-creation model.
Strong and Reversible Monovalent Supramolecular Protein Immobilization
Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc
2010-01-01
Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The
Steering neutral atoms in strong laser fields
International Nuclear Information System (INIS)
Eilzer, S; Eichmann, U
2014-01-01
The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)
Rotating compressible fluids under strong stratification
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Lu, Y.; Novotný, A.
2014-01-01
Roč. 19, October (2014), s. 11-18 ISSN 1468-1218 Keywords : rotating fluid * compressible Navier-Stokes * strong stratification Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121814000212#
Spin Wave Theory of Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1977-01-01
A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...
Black holes and the strong cosmic censorship
International Nuclear Information System (INIS)
Krolak, A.
1984-01-01
The theory of black holes developed by Hawking in asymptotically flat space-times is generalized so that black holes in the cosmological situations are included. It is assumed that the strong version of the Penrose cosmic censorship hypothesis holds. (author)
Patterns of strong coupling for LHC searches
Energy Technology Data Exchange (ETDEWEB)
Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland)
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.
Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities
International Nuclear Information System (INIS)
Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.
2008-01-01
A very large low-frequency whistler mode is excited with magnetic loop antennas in a uniform laboratory plasma. The wave magnetic field exceeds the ambient field causing in one polarity a field reversal, and a magnetic topology resembling that of spheromaks in the other polarity. These propagating ''whistler spheromaks'' strongly accelerate the electrons and create non-Maxwellian distributions in their toroidal current ring. It is observed that the locally energized electrons in the current ring excite new electromagnetic instabilities and emit whistler modes with frequencies unrelated to the applied frequency. Emissions are also observed from electrons excited in X-type neutral lines around the antenna. The properties of the excited waves such as amplitudes, frequency spectra, field topologies, propagation, polarization, growth, and damping have been investigated. The waves remain linear (B wave 0 ) and convert a small part of the electron kinetic energy into wave magnetic energy (B wave 2 /2μ 0 e )
International Nuclear Information System (INIS)
Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.
2009-01-01
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
International Nuclear Information System (INIS)
Buechner, J.M.
1989-01-01
For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab
Directory of Open Access Journals (Sweden)
Bertelli Nicola
2017-01-01
Full Text Available A critical question for the use of ion cyclotron range of frequency (ICRF heating in the ITER device and beyond is interaction of fast waves with energetic ion populations from neutral beam injection (NBI, fusion reactions, and minority ions accelerated by the RF waves themselves. Several experiments have demonstrated that the interaction between fast waves and fast ions can indeed be strong enough to significantly modify the NB ion population. To model the RF/fast ion interaction and the resulting fast ion distribution, a recent extension of the full wave solver TORIC v.5 that includes non-Maxwellian effects has been combined with the Monte Carlo NUBEAM code through an RF “kick” operator. In this work, we present an initial verification of the NUBEAM RF “kick” operator for high harmonic fast wave (HHFW heating regime in NSTX plasma.
Strong Convergence Bound of the Pareto Index Estimator under Right Censoring
Directory of Open Access Journals (Sweden)
Peng Zuoxiang
2010-01-01
Full Text Available Let be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function as , where represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.
Strong drifts effects on neoclassical transport
International Nuclear Information System (INIS)
Tessarotto, M.; Gregoratto, D.; White, R.B.
1996-01-01
It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature
Super symmetry in strong and weak interactions
International Nuclear Information System (INIS)
Seshavatharam, U.V.S.; Lakshminarayana, S.
2010-01-01
For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)
Properties of truncated multiplicity distributions
International Nuclear Information System (INIS)
Lupia, S.
1995-01-01
Truncation effects on multiplicity distributions are discussed. Observables sensitive to the tail, like factorial moments, factorial cumulants and their ratio, are shown to be strongly affected by truncation. A possible way to overcome this problem by looking at the head of the distribution is suggested. (author)
Properties of truncated multiplicity distributions
Energy Technology Data Exchange (ETDEWEB)
Lupia, S. [Turin Univ. (Italy). Dipt. di Fisica
1995-12-31
Truncation effects on multiplicity distributions are discussed. Observables sensitive to the tail, like factorial moments, factorial cumulants and their ratio, are shown to be strongly affected by truncation. A possible way to overcome this problem by looking at the head of the distribution is suggested. (author)
Strong dynamics and lattice gauge theory
Schaich, David
In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses
Simulation-based marginal likelihood for cluster strong lensing cosmology
Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.
2018-01-01
Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.
Hydrogen atoms in a strong magnetic field
International Nuclear Information System (INIS)
Santos, R.R. dos.
1975-07-01
The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt
Strongly not relatives Kähler manifolds
Directory of Open Access Journals (Sweden)
Zedda Michela
2017-02-01
Full Text Available In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds.
Strong ground motion prediction using virtual earthquakes.
Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C
2014-01-24
Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.
Analytical solution of strongly nonlinear Duffing oscillators
Directory of Open Access Journals (Sweden)
A.M. El-Naggar
2016-06-01
Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.
Cosmogenic photons strongly constrain UHECR source models
Directory of Open Access Journals (Sweden)
van Vliet Arjen
2017-01-01
Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.
New strong interactions above the electroweak scale
International Nuclear Information System (INIS)
White, A.R.
1994-01-01
Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Equilibrium and stability in strongly inhomogeneous plasmas
International Nuclear Information System (INIS)
Mynick, H.E.
1978-10-01
The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability
Orbits in weak and strong bars
Contopoulos, George
1980-01-01
The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).
Marital Expectations in Strong African American Marriages.
Vaterlaus, J Mitchell; Skogrand, Linda; Chaney, Cassandra; Gahagan, Kassandra
2017-12-01
The current exploratory study utilized a family strengths framework to identify marital expectations in 39 strong African American heterosexual marriages. Couples reflected on their marital expectations over their 10 or more years of marriage. Three themes emerged through qualitative analysis and the participants' own words were used in the presentation of the themes. African Americans indicated that there was growth in marital expectations over time, with marital expectations often beginning with unrealistic expectations that grew into more realistic expectations as their marriages progressed. Participants also indicated that core expectations in strong African American marriages included open communication, congruent values, and positive treatment of spouse. Finally, participants explained there is an "I" in marriage as they discussed the importance of autonomy within their marital relationships. Results are discussed in association with existing research and theory. © 2016 Family Process Institute.
Strong spin-photon coupling in silicon
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Magnetic properties of strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Kutschera, M.; Wojcik, W.
1988-01-01
We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)
Strong coupling analogue of the Born series
International Nuclear Information System (INIS)
Dolinszky, T.
1989-10-01
In a given partial wave, the strength of the centrifugal term to be incorporated into the WKBA solutions in different spatial regions can be adjusted so as to make the first order wave functions everywhere smooth and, in strong coupling, exactly reproduce Quantum Mechanics throughout the space. The relevant higher order approximations supply an absolute convergent series expansion of the exact scattering state. (author) 4 refs.; 2 figs.; 2 tabs
Strong disorder RG approach of random systems
International Nuclear Information System (INIS)
Igloi, Ferenc; Monthus, Cecile
2005-01-01
There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant ro-circumflex le over quantum, thermal, or stochastic fluctuations: these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations
Strong, Ductile Rotor For Cryogenic Flowmeters
Royals, W. T.
1993-01-01
Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.
Hemingway's Scar and His Strong Will
Institute of Scientific and Technical Information of China (English)
许颖
2009-01-01
Hemingway's inner world is not balanced He had a strong will,and on the other hand,he is hurt severely.Based on the analysis of Hemingway's experience and his works,the paper aims to study Hemingway's life attitude:Men,all sooner or later,go down to defeat:it is how they face the ordeal that determines their status.
Strongly stable real infinitesimally symplectic mappings
Cushman, R.; Kelley, A.
We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Strong beam production for some elements
International Nuclear Information System (INIS)
Camplan, J.; Chaumont, J.; Meunier, R.
1974-01-01
Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr
Beta decay and other processes in strong electromagnetic fields
International Nuclear Information System (INIS)
Akhmedov, E. Kh.
2011-01-01
We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.
Towards a large deviation theory for strongly correlated systems
International Nuclear Information System (INIS)
Ruiz, Guiomar; Tsallis, Constantino
2012-01-01
A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.
Simulation of turbulent flows containing strong shocks
International Nuclear Information System (INIS)
Fryxell, Bruce; Menon, Suresh
2008-01-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Transport phenomena in strongly correlated Fermi liquids
International Nuclear Information System (INIS)
Kontani, Hiroshi
2013-01-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
A strong approximation of the shortt process
Einmahl, J.H.J.; Geilen, M.
2000-01-01
A shortt of a one-dimensional probability distribution is defined to be an interval which has at least probability t and minimal length. The length of a shortt, U(t), and its obvious estimator, Un (t), are significant measures of scale of a probability distribu tion and the corresponding random
Strongly at the wind; Hart am Wind
Energy Technology Data Exchange (ETDEWEB)
Petersen, Niels Hendrik
2013-11-01
The company Easywind from North Friesland distributes a certified and stromproof small wind turbine. More than 300 systems have been sold. In Germany especially farmers and small businesses meet their needs so. [German] Die Firma Easywind aus Nordfriesland vertreibt eine zertifizierte und sturmfeste Kleinwindanlage. Mehr als 300 Anlagen sind bereits verkauft. In Deutschland decken vor allem Landwirte und kleine Betriebe so ihren Bedarf.
Prevention of strong earthquakes: Goal or utopia?
Mukhamediev, Sh. A.
2010-11-01
In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic
77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities
2012-03-20
... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and... resources to develop and implement their economic vision and strategies. Sec. 2. White House Council on...
Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction
International Nuclear Information System (INIS)
Sobol, A.; Ellison, J.A.
2003-01-01
We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique
DeVoe, Ellen R.; Paris, Ruth
2015-01-01
Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the…
Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.
Mehta, Sushrut Madhukar
Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.
Hallin, M.; Piegorsch, W.; El Shaarawi, A.
2012-01-01
The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that
Constraints on cosmological models from strong gravitational lensing systems
International Nuclear Information System (INIS)
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz
2012-01-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D ds /D s from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future
Constraints on cosmological models from strong gravitational lensing systems
Energy Technology Data Exchange (ETDEWEB)
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Biesiada, Marek [Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Godlowski, Wlodzimierz, E-mail: baodingcaoshuo@163.com, E-mail: panyu@cqupt.edu.cn, E-mail: biesiada@us.edu.pl, E-mail: godlowski@uni.opole.pl, E-mail: zhuzh@bnu.edu.cn [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)
2012-03-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.
National Aeronautics and Space Administration — Distributed Visualization allows anyone, anywhere, to see any simulation, at any time. Development focuses on algorithms, software, data formats, data systems and...
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Renormalization in theories with strong vector forces
International Nuclear Information System (INIS)
Kocic, A.
1991-01-01
There are not many field theories in four dimensions that have sensible ultraviolet and interesting (non-trivial) infrared behavior. At present, asymptotically free theories seem to have deserved their legitimacy and there is a strong prejudice that they might be the only ones to have such a distinction. This belief stems mostly from the fact that most of the knowledge of field theory in four dimensions comes from perturbation theory. However, nonperturbative studies of the lower dimensional theories reveal a host of interesting phenomena that are perturbative studies of the lower dimensional theories reveal a host of interesting phenomena that perturbatively inaccessible. The lack of asymptotic freedom implies that the coupling constant grows at short distances and perturbation theory breaks down. Thus, in such theories, ultraviolet behavior requires nonperturbative treatment. Recently, the interest in strongly coupled gauge theories has been revived. In particularly, four dimensional quantum electrodynamics has received considerable attention. This was motivated by the discovery of an ultraviolet stable fixed point at strong couplings. If this fixed point would turn out to be non-gaussian, then QED would be the first nontrivial nonasymptotically free theory in four dimensions. The importance of such a result would be twofold. First, the old question of the existence of QED could be settled. Of course, this would be the case provided that the low energy limit of the theory actually describes photons and electrons; apriori, there is no reason to assume this. Second, the discovery of a nontrivial nonasymptotically free theory would be of great paradigmatic value. The theories which quenched QED resembles the most are nonabelian gauge theories with many flavors with beta-function positive or vanishing at weak couplings. These theories are at present considered as viable candidates for technicolor unification schemes
Imaging photoelectrons formed in strong laser fields
International Nuclear Information System (INIS)
Helm, H.; Dyer, M.J.; Saeed, M.; Huestis, D.L.
1993-01-01
An instrument capable of characterizing the angular correlation and energy distribution of products from photoionization of single atoms or molecules will be described. An external electric field is used to project individual charged particles generated in multiphoton ionization from the focal volume onto two-dimensional detectors. Digital images are recorded for each laser shot and summed. These images provide a direct view of the angular nodal plants of the photoelectrons and they can be analyzed to represent the spatial and energy distributions in the form of a polar plot, f(E,Θ). We discuss the application of this instrument to short pulse photoionization of rare gases and molecular hydrogen at visible and UV wavelengths at intensities ranging from 10 13 to 10 15 W/cm 2
Many Body Structure of Strongly Interacting Systems
Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI
2006-01-01
This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.
The Dark Side of Strongly Coupled Theories
DEFF Research Database (Denmark)
Kouvaris, Christoforos
2008-01-01
We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...
Hawking radiation and strong gravity black holes
International Nuclear Information System (INIS)
Qadir, A.; Sayed, W.A.
1979-01-01
It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)
Strong piezoelectricity in bioinspired peptide nanotubes.
Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil
2010-02-23
We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
Strong Interaction Studies with PANDA at FAIR
Schönning, Karin
2016-10-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.
Strong Interaction Studies with PANDA at FAIR
International Nuclear Information System (INIS)
Schönning, Karin
2016-01-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme
Development of a strong electromagnet wiggler
International Nuclear Information System (INIS)
Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.
1987-01-01
The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs
Calorimetric measurement of strong γ emitting sources
International Nuclear Information System (INIS)
Brangier, B.; Herczeg, C.; Henry, R.
1968-01-01
This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr
Unification of electromagnetic, strong and weak interaction
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-09-01
The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs
Gravitational leptogenesis, C, CP and strong equivalence
International Nuclear Information System (INIS)
McDonald, Jamie I.; Shore, Graham M.
2015-01-01
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.
Strongly interacting Higgs sector without technicolor
International Nuclear Information System (INIS)
Liu Chuan; Kuti, J.
1994-12-01
Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)
Strong signatures of right-handed compositeness
Energy Technology Data Exchange (ETDEWEB)
Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-05-15
Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals.
Bright branes for strongly coupled plasmas
International Nuclear Information System (INIS)
Mateos, David; Patino, Leonardo
2007-01-01
We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Strong coupling transmutation of Yukawa theory
International Nuclear Information System (INIS)
Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.
1981-01-01
In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)
Categorization of States Beyond Strong and Weak
Directory of Open Access Journals (Sweden)
Peter Tikuisis
2017-09-01
Full Text Available The discourse on poor state performers has suffered from widely varying definitions on what distinguishes certain weak states from others. Indices that rank states from strong to weak conceal important distinctions that can adversely affect intervention policy. This deficiency is addressed by grouping states according to their performance on three dimensions of statehood: authority, legitimacy, and capacity. The resultant categorization identifies brittle states that are susceptible to regime change, impoverished states often considered as aid darlings, and fragile states that experience disproportionately high levels of violent internal conflict. It also provides a quantifiable means to analyze transitions from one state type to another for more insightful intervention policy.
Strong Interactions Physics at BaBar
Energy Technology Data Exchange (ETDEWEB)
Pioppi, M.
2005-03-14
Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.
Gravitational leptogenesis, C, CP and strong equivalence
Energy Technology Data Exchange (ETDEWEB)
McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)
2015-02-12
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.
International Nuclear Information System (INIS)
Chidume, C.E.
1994-03-01
Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs
The momentum distribution inside nucleus
International Nuclear Information System (INIS)
Fujita, T.
1985-01-01
Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)
A strongly interacting polaritonic quantum dot
Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan
2018-06-01
Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.
Between strong continuity and almost continuity
Directory of Open Access Journals (Sweden)
J.K. Kohli
2010-04-01
Full Text Available As embodied in the title of the paper strong and weak variants of continuity that lie strictly between strong continuity of Levine and almost continuity due to Singal and Singal are considered. Basic properties of almost completely continuous functions (≡ R-maps and δ-continuous functions are studied. Direct and inverse transfer of topological properties under almost completely continuous functions and δ-continuous functions are investigated and their place in the hier- archy of variants of continuity that already exist in the literature is out- lined. The class of almost completely continuous functions lies strictly between the class of completely continuous functions studied by Arya and Gupta (Kyungpook Math. J. 14 (1974, 131-143 and δ-continuous functions defined by Noiri (J. Korean Math. Soc. 16, (1980, 161-166. The class of almost completely continuous functions properly contains each of the classes of (1 completely continuous functions, and (2 al- most perfectly continuous (≡ regular set connected functions defined by Dontchev, Ganster and Reilly (Indian J. Math. 41 (1999, 139-146 and further studied by Singh (Quaestiones Mathematicae 33(2(2010, 1–11 which in turn include all δ-perfectly continuous functions initi- ated by Kohli and Singh (Demonstratio Math. 42(1, (2009, 221-231 and so include all perfectly continuous functions introduced by Noiri (Indian J. Pure Appl. Math. 15(3 (1984, 241-250.
Strong white photoluminescence from annealed zeolites
International Nuclear Information System (INIS)
Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji
2014-01-01
The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies
Caviton dynamics in strong Langmuir turbulence
DuBois, Don; Rose, Harvey A.; Russell, David
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
Caviton dynamics in strong Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.; Rose, H.A.; Russell, D.
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.)
Caviton dynamics in strong Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.; Rose, H.A.; Russell, D.
1989-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs
Radiative properties of strongly magnetized plasmas
International Nuclear Information System (INIS)
Weisheit, J.C.
1993-11-01
The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
Can strong gravitational lensing constrain dark energy?
International Nuclear Information System (INIS)
Lee, Seokcheon; Ng, K.-W.
2007-01-01
We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy
Towards TDDFT for Strongly Correlated Materials
Directory of Open Access Journals (Sweden)
Shree Ram Acharya
2016-09-01
Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
Finite temperature system of strongly interacting baryons
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light
Strong eukaryotic IRESs have weak secondary structure.
Directory of Open Access Journals (Sweden)
Xuhua Xia
Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.
Qubit absorption refrigerator at strong coupling
Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira
2017-12-01
We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.
Finite temperature system of strongly interacting baryons
Energy Technology Data Exchange (ETDEWEB)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.
Strongly coupled models at the LHC
International Nuclear Information System (INIS)
Vries, Maikel de
2014-10-01
In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision
International Nuclear Information System (INIS)
Golubov, B I
2007-01-01
On the basis of the concept of pointwise dyadic derivative dyadic distributions are introduced as continuous linear functionals on the linear space D d (R + ) of infinitely differentiable functions compactly supported by the positive half-axis R + together with all dyadic derivatives. The completeness of the space D' d (R + ) of dyadic distributions is established. It is shown that a locally integrable function on R + generates a dyadic distribution. In addition, the space S d (R + ) of infinitely dyadically differentiable functions on R + rapidly decreasing in the neighbourhood of +∞ is defined. The space S' d (R + ) of dyadic distributions of slow growth is introduced as the space of continuous linear functionals on S d (R + ). The completeness of the space S' d (R + ) is established; it is proved that each integrable function on R + with polynomial growth at +∞ generates a dyadic distribution of slow growth. Bibliography: 25 titles.
A quantum harmonic oscillator and strong chaos
International Nuclear Information System (INIS)
Oprocha, Piotr
2006-01-01
It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models
Thermal equilibrium in strongly damped collisions
International Nuclear Information System (INIS)
Samaddar, S.K.; De, J.N.; Krishan, K.
1985-01-01
Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data
Strongly Correlated Electron Systems: An Operatorial Perspective
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.
Characterization of strong (241)Am sources.
Vesterlund, Anna; Chernikova, Dina; Cartemo, Petty; Axell, Kåre; Nordlund, Anders; Skarnemark, Gunnar; Ekberg, Christian; Ramebäck, Henrik
2015-05-01
Gamma ray spectra of strong (241)Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in (241)Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strongly coupled band in 140Gd
International Nuclear Information System (INIS)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N.
2005-01-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, Kπ = 8 - isomers, with lifetimes ranging from ns to ms, are known in 128 Xe, 130 Ba, 132 Ce, 134 Nd, 136 Sm, and 138 Gd[. In 140 Gd, we have observed for the first time a band also based on an Iπ = 8 - state. This could be the first case of a Kπ = 8 - state observed in an N=76 even-even isotope. The systematics of the Kπ = 8 - isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The 140 Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in 140 Gd
Electromagnetic radiation from strong Langmuir turbulence
International Nuclear Information System (INIS)
Akimoto, K.; Rowland, H.L.; Papadopoulos, K.
1988-01-01
A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons
Diffraction scattering of strongly bound system
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-04-01
The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)
Strong Interactions, (De)coherence and Quarkonia
Bellucci, Stefano; Tiwari, Bhupendra Nath
2011-01-01
Quarkonia are the central objects to explore the non-perturbative nature of non-abelian gauge theories. We describe the confinement-deconfinement phases for heavy quarkonia in a hot QCD medium and thereby the statistical nature of the inter-quark forces. In the sense of one-loop quantum effects, we propose that the "quantum" nature of quark matters follows directly from the thermodynamic consideration of Richardson potential. Thereby we gain an understanding of the formation of hot and dense states of quark gluon plasma matter in heavy ion collisions and the early universe. In the case of the non-abelian theory, the consideration of the Sudhakov form factor turns out to be an efficient tool for soft gluons. In the limit of the Block-Nordsieck resummation, the strong coupling obtained from the Sudhakov form factor yields the statistical nature of hadronic bound states, e.g. kaons and Ds particles.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Investigation of strong motion processing procedures
International Nuclear Information System (INIS)
Rinaldi, D.; Goula, X.; Menu, J.M.
1988-03-01
The work which is described here presents preliminary results of an on-going research relating to the accurate recording and quality processing of earthquake strong ground motions. The work is the product of a tripartite co-operation between three European Centres (ENEA, PAS-ISP Laboratorio Ingengneria dei Siti, Rome/CEA, IPSN, Fontenay-aux-Roses, ICST, Department of Civil Engineering, London), which have carried out independently similar research in the recent past. Other European Institutes joined the three mentioned organizations for discussions during a Workshop (June 1985) held in Casaccia (ENEA Research Centre of Rome). The aim of the research is a thorough analysis of various factors affecting the recovery of true ground accelerations recorded with analogue instruments. The separate and cumulative effects of the type of recording accelerometer, the digitization equipment and the correction routines have been analysed. Global comparisons have been achieved to obtain a general insight into various standard processing procedures
Quantization rules for strongly chaotic systems
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.
1992-09-01
We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.)
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Towards Integrated Marmara Strong Motion Network
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy
Machine Learning Phases of Strongly Correlated Fermions
Directory of Open Access Journals (Sweden)
Kelvin Ch’ng
2017-08-01
Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
Neutrino oscillations in strong magnetic fields
International Nuclear Information System (INIS)
Likhachev, G.G.; Studenikin, A.I.
1994-07-01
Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs
Strong and electromagnetic interactions in hadron systems
International Nuclear Information System (INIS)
Aissat, N.; Amghar, A.; Cano, F.; Gonzalez, F.; Noguera, S.; Carbonell, J.; Desplanques, B.; Silvestre-Brac, B.; Karmanov, V.; Mathiot, J.F.
1997-01-01
The pionic strong decay amplitudes of baryon resonances are studied in a constituent quark model. Particular attention is given to the operator describing the transition. The nucleon form factors are calculated in a non-relativistic approach, with emphasis on the highest momentum transfers. The aim is to determine the ingredients that are essential in getting correct results and are likely to be required for a more realistic estimate in a fully relativistic approach. The deuteron form factors have been calculated in the light-front approach using wave functions determined in a perturbative way. The derivation of the neutron charge form factor from the deuteron structure function, A(q 2 ), is reanalyzed including further mesonic exchange contributions. (authors)
Combinatorial description of space and strong interactions
International Nuclear Information System (INIS)
Zenczykowski, P.
1988-01-01
A reinterpretation is given of a successful phenomenological approach to hadron self-energy effects known as the unitarized quark model. General arguments are given that the proper description of strong interactions may require abandoning the assignment of a primary role to continuous concepts such as position and momentum in favor of discrete ones such as spin or W-spin. The reinterpretation exploits an analogy between the W-spin diagrams occurring in the calculations of hadronic loop effects and the spin network idea of Penrose. A connection between the S-matrix approach to hadron masses and the purely algebraic approach characteristic of the quark model is indicated. Several hadron mass relations generated by a resulting SU(6)/sub w/-group-theoretic expression are presented and discussed. Results of an attempt to generalize the scheme to the description of hadron vertices are reported
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Study on characteristics of vertical strong motions
International Nuclear Information System (INIS)
Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.
1993-01-01
Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)
Strong crystal size effect on deformation twinning
DEFF Research Database (Denmark)
Yu, Qian; Shan, Zhi-Wei; Li, Ju
2010-01-01
plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...
Strong quantum scarring by local impurities
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-11-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
Strong mobility in weakly disordered systems
Energy Technology Data Exchange (ETDEWEB)
Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, Pavel [BOSTON UNIV
2009-01-01
We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle s grows superdiffusively with time t, {sigma}{approx}({epsilon}t){sup 2/3}, where {epsilon} is the disorder strength. Without disorder the particle displacement is subdiffusive, {sigma} {approx}t{sup 1/4}, and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime.
Pentacene Excitons in Strong Electric Fields.
Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus
2018-02-05
Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing asymmetric multiferroics with strong magnetoelectric coupling
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Effective Induction Heating around Strongly Magnetized Stars
Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.
2018-05-01
Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.
Is It Possible to Predict Strong Earthquakes?
Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.
2015-07-01
The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
Cyclotron resonance cooling by strong laser field
International Nuclear Information System (INIS)
Tagcuhi, Toshihiro; Mima, Kunioka
1995-01-01
Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers
Bodrum Strong Motion Network, Mugla, Turkey
Alcik, H. A.; Tanircan, G.; Korkmaz, A.
2015-12-01
The Gulf of Gökova is located in southwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. The Bodrum peninsula with a population of one million in summer season is one of the most populated touristic centers of Turkey. This region is also surrounded by numerous active seismic entities such as Ula-Ören Fault Zone, Gökova Graben etc.. and demonstrates high seismic hazard. In the past, many destructive earthquakes have occurred in southwestern Turkey. One of the destructive historical earthquakes is 1493 Kos event (Mw=6.9) caused heavy damage in Bodrum. In the instrumental period seismic activity in the Gökova region includes the Ms>6.0 earthquakes of 23 April 1933 (Ms=6.4), 23 May 1941 (Ms=6.0), 13 December 1941 (Ms=6.5) events. Intense earthquake activity (Mw5+) occurred in Gulf of Gökova in August 2004 and January 2005. Considering the high seismicity and population of this region, a strong ground motion monitoring system stationed in dense settlements in the Bodrum Peninsula: Bodrum, Turgutreis, Yalıkavak, Çiftlik and Ortakent was deployed on June 2015. The network consists of 5 strong motion recorders, has been set up with the aim of monitoring of regional earthquakes, collecting accurate and reliable data for engineering and scientific research purposes, in particular to provide input for future earthquake rapid reporting and early warning implementation projects on urban environments in the Bodrum peninsula and the surrounding areas. In this poster presentation, we briefly introduce the Bodrum Network and discuss our future plans for further developments.
Analysis tools for discovering strong parity violation at hadron colliders
International Nuclear Information System (INIS)
Backovic, Mihailo; Ralston, John P.
2011-01-01
Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or 'azimuthal flow'. Analysis uses the representations of the orthogonal group O(2) and dihedral groups D N necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single 'reaction plane'. Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of 'event-shape sorting' to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.
Fusion and direct reactions for strongly and weakly bound projectiles
International Nuclear Information System (INIS)
Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.
1981-01-01
The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)
The Potentials of a Strong Social Housing Sector
DEFF Research Database (Denmark)
Nielsen, Rikke Skovgaard
2017-01-01
The paper investigates ethnic minority concentration within social housing and the potentials of a strong social housing sector through an analysis of the housing careers of Somalis and Turks in Copenhagen. In a Danish context, the two ethnic groups differ greatly with respect to migration history......, socio-economic resources and family characteristics as well as distribution between tenures. It is therefore interesting to study whether these differences lead to differences in housing market choices and constraints. The majority of the interviewed Somalis and Turks made their housing careers within...... the social housing sector, which to the interviewees offered good housing options and possibilities for shaping their own housing careers. The majority of the Somalis perceived paying interest as being incompatible with Islam. Renting thus allowed them to adhere to their religious beliefs. The advantages...
Dynamical equilibration in strongly-interacting parton-hadron matter
Directory of Open Access Journals (Sweden)
Gorenstein M.
2011-04-01
Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.
Spectral contents of electron waves under strong Langmuir turbulence
Energy Technology Data Exchange (ETDEWEB)
Alves, Maria Virginia; Dallaqua, Renato Sergio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Prado, Fabio do [Centro Universitario UNIFEI, Itajuba, MG (Brazil); Karfidov, Dmitry Mikhailovich [General Physics Inst., Moscow (Russian Federation)
2003-07-01
Experimental results of electron plasma waves excited in a beam plasma system are presented. Based on our experimental results we determine the transition from the quasi-linear to non-linear regime. We present the space evolution of the electron beam distribution function for both regimes. The spectrum of the electron plasma wave in the non-linear regime shows a component with frequency larger than the plasma frequency besides the plasma frequency itself. We show that the higher frequency component is strongly affected by Landau damping, indicating a dissipation region. The measured experimental power spectrum of this wave shows a dependence on wave number k given by W{sub k} {proportional_to} k{sup -7/2} as theoretically predicted. (author)
Measurement of positron range in matter in strong magnetic fields
International Nuclear Information System (INIS)
Hammer, B.E.; Christensen, N.L.
1995-01-01
Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively
Local condensate depletion at trap center under strong interactions
Yukalov, V. I.; Yukalova, E. P.
2018-04-01
Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.
Homogenization technique for strongly heterogeneous zones in research reactors
International Nuclear Information System (INIS)
Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.
1991-01-01
This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model
Spin and Angular Momentum in Strong-Field Ionization
Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.
2018-01-01
The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.
Highly concentrated zinc oxide nanocrystals sol with strong blue emission
International Nuclear Information System (INIS)
Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.
2011-01-01
Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.
Manipulation of resonant Auger processes with strong optical fields
Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen
2013-05-01
We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
Stabilizing strongly correlated photon fluids with non-Markovian reservoirs
Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo
2017-09-01
We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.
Strong-Field Physics with Mid-IR Fields
Directory of Open Access Journals (Sweden)
Benjamin Wolter
2015-06-01
Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.
Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality
Energy Technology Data Exchange (ETDEWEB)
Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)
2008-08-01
This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.
International Nuclear Information System (INIS)
Gruenemeyer, D.
1991-01-01
This paper reports on a Distribution Automation (DA) System enhances the efficiency and productivity of a utility. It also provides intangible benefits such as improved public image and market advantages. A utility should evaluate the benefits and costs of such a system before committing funds. The expenditure for distribution automation is economical when justified by the deferral of a capacity increase, a decrease in peak power demand, or a reduction in O and M requirements
Strong Motion Seismograph Based On MEMS Accelerometer
Teng, Y.; Hu, X.
2013-12-01
The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The
Smoothing Brascamp-Lieb Inequalities and Strong Converses for Common Randomness Generation
Liu, Jingbo; Courtade, Thomas A.; Cuff, Paul; Verdu, Sergio
2016-01-01
We study the infimum of the best constant in a functional inequality, the Brascamp-Lieb-like inequality, over auxiliary measures within a neighborhood of a product distribution. In the finite alphabet and the Gaussian cases, such an infimum converges to the best constant in a mutual information inequality. Implications for strong converse properties of two common randomness (CR) generation problems are discussed. In particular, we prove the strong converse property of the rate region for the ...
Transmission coefficents in strongly deformed nuclei
International Nuclear Information System (INIS)
Aleshin, V.P.
1996-01-01
By using our semiclassical approach to particle evaporation from deformed nuclei developed earlier, we analyze here the heuristic methods of taking into account the effects of shape deformations on particle emission. These methods are based on the 'local' transmission coefficients in which the effective barrier depends on the angle with respect to the symmetry axis. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions. In A∼160 nuclei with axis ratio in the vicinity of 2:1 at temperatures of 2-3 MeV, the W (90 )/W(0 ) anisotropies of α particles with respect to the nuclear spin are 1.5 to 3 times larger than our approach predicts. The influence of spin alignment on particle energy spectra is discussed shortly. (orig.)
Properties of the distributional finite Fourier transform
Carmichael, Richard D.
2016-01-01
The analytic functions in tubes which obtain the distributional finite Fourier transform as boundary value are shown to have a strong boundedness property and to be recoverable as a Fourier-Laplace transform, a distributional finite Fourier transform, and as a Cauchy integral of a distribution associated with the boundary value.
A semigroup approach to the strong ergodic theorem of the multistate stable population process.
Inaba, H
1988-01-01
"In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt
Grassy Silica Nanoribbons and Strong Blue Luminescence
Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng
2016-09-01
Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.
Strongly coupled band in {sup 140}Gd
Energy Technology Data Exchange (ETDEWEB)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)] (and others)
2005-07-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, K{pi} = 8{sup -} isomers, with lifetimes ranging from ns to ms, are known in {sup 128}Xe, {sup 130}Ba, {sup 132}Ce, {sup 134}Nd, {sup 136}Sm, and {sup 138}Gd[. In {sup 140}Gd, we have observed for the first time a band also based on an I{pi} = 8{sup -} state. This could be the first case of a K{pi} = 8{sup -} state observed in an N=76 even-even isotope. The systematics of the K{pi} = 8{sup -} isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The {sup 140}Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in {sup 140}Gd.
Strong and Electromagnetic Interactions at SPS Energies
Ribicki, Andrzej
2009-01-01
Particle production in peripheral Pb+Pb collisions has been measured at a beam energy of 158 GeV per nucleon, corresponding to psNN 17.3 GeV. The measurements provide full double differential coverage in a wide range of longitudinal and transverse momenta, including the central (“mid-rapidity”) area and extending far into the projectile fragmentation region. The resulting analysis shows the heavy ion reaction as a mixture of different processes. In particular, surprising phenomena, like the presence of large and strongly varying structures in the shape of the double differential cross section d2s /dxFd pT , are induced by the final state electromagnetic interaction between produced particles and the charged spectator system. This effect is largest at low transverse momenta, where it results in a deep valley in the xF -dependence of the produced p+/p− ratio. The basic characteristics of the electromagnetic phenomenon described above agree with the results of a theoretical analysis, performed by means of ...
Conduction properties of strongly interacting Fermions
Brantut, Jean-Philippe; Stadler, David; Krinner, Sebastian; Meineke, Jakob; Esslinger, Tilman
2013-05-01
We experimentally study the transport process of ultracold fermionic atoms through a mesoscopic, quasi two-dimensional channel connecting macroscopic reservoirs. By observing the current response to a bias applied between the reservoirs, we directly access the resistance of the channel in a manner analogous to a solid state conduction measurement. The resistance is further controlled by a gate potential reducing the atomic density in the channel, like in a field effect transistor. In this setup, we study the flow of a strongly interacting Fermi gas, and observe a striking drop of resistance with increasing density in the channel, as expected at the onset of superfluidity. We relate the transport properties to the in-situ evolution of the thermodynamic potential, providing a model independant thermodynamic scale. The resistance is compared to that of an ideal Fermi gas in the same geometry, which shows an order of magnitude larger resistance, originating from the contact resistance between the channel and the reservoirs. The extension of this study to a channel containing a tunable disorder is briefly outlined.
Thermal infrared anomalies of several strong earthquakes.
Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying
2013-01-01
In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.
Demand for Neste's City products grows strongly
International Nuclear Information System (INIS)
Anon.
1994-01-01
Finland's oil, chemicals, and gas company, Neste Corporation, is well on the road to better financial performance after a very difficult year in 1992. Among the factors contributing to this optimism are Neste's pioneering low environmental impact traffic fuels. Neste Corporation's net sales in 1993 rose 9.9 % on 1992 figures to USD 11,011 million. Investments totalled USD 681 million. Profitability also improved during 1993, and the operating margin rose by 57 %, despite the recession affecting the Finnish economy and the instability of the international market. The operational loss for the year before extraordinary items, reserves, and taxes was USD 265 million, one-third less than in 1992. Neste's strategy has been to achieve a strong position in the Baltic Rim region by becoming the quality and cost leader in oil refining, and by expanding Neste's position in its key markets. A total of 3.3 million tonnes of petroleum products were exported from Finland in 1993. Neste's most important export markets were Sweden, Germany, Poland, the Baltic countries, and the St. Petersburg region. Some 20 % of exports went to customers outside Europe. In addition to Finland, Neste has concertedly developed its service station network in Poland and the Baltic countries
Strong gravitational lensing by Sgr A*
International Nuclear Information System (INIS)
Bin-Nun, Amitai Y
2011-01-01
In recent years, there has been increasing recognition of the potential to use the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us to have the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been theoretical research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of, at most, an arc minute, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest are the properties of images formed from the light of S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of S star lensing. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r 2 term in the metric and how this would affect the properties of relativistic images.
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
Large orders in strong-field QED
Energy Technology Data Exchange (ETDEWEB)
Heinzl, Thomas [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Schroeder, Oliver [Science-Computing ag, Hagellocher Weg 73, D-72070 Tuebingen (Germany)
2006-09-15
We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarization tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 82 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarization tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.
Phenomenology of strongly coupled chiral gauge theories
International Nuclear Information System (INIS)
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-01-01
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
Baryon bags in strong coupling QCD
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Strongly correlated electrons on two coupled chains
International Nuclear Information System (INIS)
Weihong, Z.; Oitmaa, J.; Hamer, C.J.
2000-01-01
Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation
Quantum centipedes with strong global constraint
Grange, Pascal
2017-06-01
A centipede made of N quantum walkers on a one-dimensional lattice is considered. The distance between two consecutive legs is either one or two lattice spacings, and a global constraint is imposed: the maximal distance between the first and last leg is N + 1. This is the strongest global constraint compatible with walking. For an initial value of the wave function corresponding to a localized configuration at the origin, the probability law of the first leg of the centipede can be expressed in closed form in terms of Bessel functions. The dispersion relation and the group velocities are worked out exactly. Their maximal group velocity goes to zero when N goes to infinity, which is in contrast with the behaviour of group velocities of quantum centipedes without global constraint, which were recently shown by Krapivsky, Luck and Mallick to give rise to ballistic spreading of extremal wave-front at non-zero velocity in the large-N limit. The corresponding Hamiltonians are implemented numerically, based on a block structure of the space of configurations corresponding to compositions of the integer N. The growth of the maximal group velocity when the strong constraint is gradually relaxed is explored, and observed to be linear in the density of gaps allowed in the configurations. Heuristic arguments are presented to infer that the large-N limit of the globally constrained model can yield finite group velocities provided the allowed number of gaps is a finite fraction of N.
Quantum entanglement in strong-field ionization
Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila
2017-10-01
We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.
Binary Polymer Brushes of Strongly Immiscible Polymers.
Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander
2015-06-17
The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.
Quasinormal Modes and Strong Cosmic Censorship
Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron
2018-01-01
The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.
Toward a Strongly Interacting Scalar Higgs Particle
International Nuclear Information System (INIS)
Shalaby, Abouzeid M.; El-Houssieny, M.
2008-01-01
We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism
Directory of Open Access Journals (Sweden)
Král Pavel
2012-09-01
Full Text Available There are several basic configurations of corporate governance according to the separation of ownership and control (Jensen’s theory. Effective governance is described as a situation whenan owner (or group of owners keeps the right to ratify and monitor strategic decisions while management has the right to initiate and implement those decisions. There are two particular situations how this recommendation is partially broken and both situations are linked to CEO duality. The first case happens when an owner loses or does not exercise the right to monitor management of the organization and is termed as the strong executive. The second case is calledthe strong ownership and is distinguished by an owner taking over implementations of the decisions. The focus of the study was to explore particularly configurations of the strong executive and the strong governance. A mixed method research design was chosen to explore the differences between the basic governance configurations. The sample was chosen by purposive sampling and covered a hundred for-profit organizations of all size and from all sectors of economy.The data were collected through interviews with representatives, mainly members of top management. We revealed that both of these configurations can bear good corporate performance but also bigger risks. The strong executive is typical for organizations with dispersed ownership or a publicly owned organization and the performance of the organization is fully dependent on competencies but also personalities of managers. This configuration contains a high risk of misuse of authority. The strong ownership is effective in small organizations while in a larger organization leads to an overexertion of owners and low performance because they usually faceproblems to keep focus on the strategic issues of the organization.
Saumard, Mélodie
2013-01-01
In 2012, the music industry is showing positive growth for the first time in fifteen years. The same year, Game of Thrones is declared the most pirated TV series with an average of 4.28 million illegal downloads for each episode. Ever since the creation of Napster in 1998, online piracy became a common practice which is weakly reprehended socially-speaking. The starting point for our work was Gabe Newell's idea that piracy is not a matter of price but a problem of service rende...
Distribution of Invasive Plants in Urban Environment Is Strongly Spatially Structured
Czech Academy of Sciences Publication Activity Database
Štajerová, Kateřina; Šmilauer, P.; Brůna, Josef; Pyšek, Petr
2017-01-01
Roč. 32, č. 3 (2017), s. 681-692 ISSN 0921-2973 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : invasive plant s * urban environment * species richness Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.615, year: 2016
Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.
2007-01-01
Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field
Improving experimental phases for strong reflections prior to density modification
International Nuclear Information System (INIS)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.
2013-01-01
A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography
Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase
Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen
2018-03-01
Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.
Strong field interaction of laser radiation
International Nuclear Information System (INIS)
Pukhov, Alexander
2003-01-01
The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI
Strong ground motion spectra for layered media
International Nuclear Information System (INIS)
Askar, A.; Cakmak, A.S.; Engin, H.
1977-01-01
This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy
Transport coefficients of strongly interacting matter
International Nuclear Information System (INIS)
Heckmann, Klaus
2011-01-01
In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.)
The Strong Lensing Time Delay Challenge (2014)
Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.
2014-01-01
Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Strong Convergence Bound of the Pareto Index Estimator under Right Censoring
Directory of Open Access Journals (Sweden)
Bao Tao
2010-01-01
Full Text Available Let {Xn,n≥1} be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function F(x=1−x−1/γlF(x as γ>0, where lF(x represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.
Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma
International Nuclear Information System (INIS)
Leleko, Ya.F.; Stepanov, K.N.
2010-01-01
A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.
DEFF Research Database (Denmark)
Glaveanu, Vlad Petre
This book challenges the standard view that creativity comes only from within an individual by arguing that creativity also exists ‘outside’ of the mind or more precisely, that the human mind extends through the means of action into the world. The notion of ‘distributed creativity’ is not commonly...... used within the literature and yet it has the potential to revolutionise the way we think about creativity, from how we define and measure it to what we can practically do to foster and develop creativity. Drawing on cultural psychology, ecological psychology and advances in cognitive science......, this book offers a basic framework for the study of distributed creativity that considers three main dimensions of creative work: sociality, materiality and temporality. Starting from the premise that creativity is distributed between people, between people and objects and across time, the book reviews...
2012-06-14
... economic need, strong local leadership and collaboration, potential for economic growth, geographic... $1 million that they will use to administer an ``X-prize style'' competition, whereby they will... founding mandate in the 1965 Department of Housing and Urban Development Act to ``Exercise leadership at...
International Nuclear Information System (INIS)
Ichimiya, T.; Narita, T.; Kitao, K.
1994-01-01
The PC diskette containing the ''List of strong gamma-rays emitted from radionuclides'' as published by T. Narita et al. in the report JAERI-M-94-059, March 1994, is described. The diskette is available from the IAEA Nuclear Data Section, costfree, upon request. (author)
Van Steen, Maarten
2017-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.
Ultimate and proximate explanations of strong reciprocity.
Vromen, Jack
2017-08-23
Strong reciprocity (SR) has recently been subject to heated debate. In this debate, the "West camp" (West et al. in Evol Hum Behav 32(4):231-262, 2011), which is critical of the case for SR, and the "Laland camp" (Laland et al. in Science, 334(6062):1512-1516, 2011, Biol Philos 28(5):719-745, 2013), which is sympathetic to the case of SR, seem to take diametrically opposed positions. The West camp criticizes advocates of SR for conflating proximate and ultimate causation. SR is said to be a proximate mechanism that is put forward by its advocates as an ultimate explanation of human cooperation. The West camp thus accuses advocates of SR for not heeding Mayr's original distinction between ultimate and proximate causation. The Laland camp praises advocates of SR for revising Mayr's distinction. Advocates of SR are said to replace Mayr's uni-directional view on the relation between ultimate and proximate causes by the bi-directional one of reciprocal causation. The paper argues that both the West camp and the Laland camp misrepresent what advocates of SR are up to. The West camp is right that SR is a proximate cause of human cooperation. But rather than putting forward SR as an ultimate explanation, as the West camp argues, advocates of SR believe that SR itself is in need of ultimate explanation. Advocates of SR tend to take gene-culture co-evolutionary theory as the correct meta-theoretical framework for advancing ultimate explanations of SR. Appearances notwithstanding, gene-culture coevolutionary theory does not imply Laland et al.'s notion of reciprocal causation. "Reciprocal causation" suggests that proximate and ultimate causes interact simultaneously, while advocates of SR assume that they interact sequentially. I end by arguing that the best way to understand the debate is by disambiguating Mayr's ultimate-proximate distinction. I propose to reserve "ultimate" and "proximate" for different sorts of explanations, and to use other terms for distinguishing
Directory of Open Access Journals (Sweden)
Shin Min Kang
2014-01-01
Full Text Available Let K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i ∑n=1∞βn=∞; (ii limn→∞βn=0. For arbitrary x0∈K, let xn be a sequence iteratively defined by xn=Syn, yn=1-βnxn-1+βnTxn, n≥1. Then the sequence xn converges strongly to a common fixed point p of S and T.
OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC
International Nuclear Information System (INIS)
FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.
2003-01-01
RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far
Light exiting from real photonic band gap crystals is diffuse and strongly directional
Koenderink, A.F.; Vos, Willem L.
2003-01-01
Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:
DEFF Research Database (Denmark)
Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef
1999-01-01
A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Photon and spin dependence of the resonance line shape in the strong coupling regime
Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel
2012-01-01
We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings
Resonance fluorescence spectra of a three-level atom driven by two strong laser fields
International Nuclear Information System (INIS)
Peng Jinsheng.
1986-12-01
The resonance fluorescence of a three-level atom interacted with two high-power laser fields is investigated in strong field approximation. The fluorescence distribution is obtained by means of the theory of dressing transformation. (author). 15 refs, 2 figs
Doubly excited helium. From strong correlation to chaos
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yuhai
2006-03-15
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Doubly excited helium. From strong correlation to chaos
International Nuclear Information System (INIS)
Jiang, Yuhai
2006-03-01
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Lindström, Robin; Rosvall, Tobias
2013-01-01
En prestandaanalys utfördes på en SAAB 2000 som referensobjekt. Olika metoder för att driva flygplan på ett miljövänligare sätt utvärderades tillsammans med distributed propulsion. Efter undersökningar valdes elmotorer tillsammans med Zink-luft batterier för att driva SAAB 2000 med distributed propulsion. En prestandaanalys utfördes på detta plan på samma sätt som för den ursprungliga SAAB 2000. Resultaten jämfördes och slutsatsen blev att räckvidden var för kort för att konfigurationen skull...
Quasihomogeneous distributions
von Grudzinski, O
1991-01-01
This is a systematic exposition of the basics of the theory of quasihomogeneous (in particular, homogeneous) functions and distributions (generalized functions). A major theme is the method of taking quasihomogeneous averages. It serves as the central tool for the study of the solvability of quasihomogeneous multiplication equations and of quasihomogeneous partial differential equations with constant coefficients. Necessary and sufficient conditions for solvability are given. Several examples are treated in detail, among them the heat and the Schrödinger equation. The final chapter is devoted to quasihomogeneous wave front sets and their application to the description of singularities of quasihomogeneous distributions, in particular to quasihomogeneous fundamental solutions of the heat and of the Schrödinger equation.
Enabling distributed petascale science
International Nuclear Information System (INIS)
Baranovski, Andrew; Bharathi, Shishir; Bresnahan, John
2007-01-01
Petascale science is an end-to-end endeavour, involving not only the creation of massive datasets at supercomputers or experimental facilities, but the subsequent analysis of that data by a user community that may be distributed across many laboratories and universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is developing tools to support this end-to-end process. These tools include data placement services for the reliable, high-performance, secure, and policy-driven placement of data within a distributed science environment; tools and techniques for the construction, operation, and provisioning of scalable science services; and tools for the detection and diagnosis of failures in end-to-end data placement and distributed application hosting configurations. In each area, we build on a strong base of existing technology and have made useful progress in the first year of the project. For example, we have recently achieved order-of-magnitude improvements in transfer times (for lots of small files) and implemented asynchronous data staging capabilities; demonstrated dynamic deployment of complex application stacks for the STAR experiment; and designed and deployed end-to-end troubleshooting services. We look forward to working with SciDAC application and technology projects to realize the promise of petascale science
Binns, Lewis A.; Valachis, Dimitris; Anderson, Sean; Gough, David W.; Nicholson, David; Greenway, Phil
2002-07-01
Previously, we have developed techniques for Simultaneous Localization and Map Building based on the augmented state Kalman filter. Here we report the results of experiments conducted over multiple vehicles each equipped with a laser range finder for sensing the external environment, and a laser tracking system to provide highly accurate ground truth. The goal is simultaneously to build a map of an unknown environment and to use that map to navigate a vehicle that otherwise would have no way of knowing its location, and to distribute this process over several vehicles. We have constructed an on-line, distributed implementation to demonstrate the principle. In this paper we describe the system architecture, the nature of the experimental set up, and the results obtained. These are compared with the estimated ground truth. We show that distributed SLAM has a clear advantage in the sense that it offers a potential super-linear speed-up over single vehicle SLAM. In particular, we explore the time taken to achieve a given quality of map, and consider the repeatability and accuracy of the method. Finally, we discuss some practical implementation issues.