Sample records for strongly light absorbing

  1. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: [School of Science, Harbin Institute of Technology, Harbin 150001 (China)


    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  2. Titanium: light, strong, and white (United States)

    Woodruff, Laurel; Bedinger, George


    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  3. Catalog of strong MgII absorbers (Lawther+, 2012)

    DEFF Research Database (Denmark)

    Lawther, D.; Paarup, Troels; Schmidt, Morten L.


    Here we present a catalog of strong (rest equivalent width Wr> intervening Mg II absorbers in the SDSS Data Release 7 quasar catalog (2010AJ....139.2360S, Cat. VII/260). The intervening absorbers were found by a semi-automatic algorithm written in IDL - for details of the algorithm see section 2...... of our paper. A subset of the absorbers have been visually inspected - see the MAN_OK flag in the catalog. The number of sightlines searched, tabulated by absorber redshift, i.e. g(z), is available as an ASCII table (for S/N>8 and S/N>15). All analysis in our paper is based on the SNR>8 coverage......, and considers only sight-lines towards non-BAL quasars. Any questions regarding the catalog should be sent to Daniel Lawther (unclellama(at) (3 data files)....

  4. Improvement of discontinuity factor for strong absorber region

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiong, E-mail:; Li, Fu, E-mail:; Zhang, Han; Zhou, Xiafeng; Fan, Kai; Wang, Lidong; Lu, Jianan


    At Institute of Nuclear and New Energy Technology (INET) the discontinuity factor corrected diffusion method with the homogenization technology was developed and applied in the control rod worth calculation of the pebble bed high temperature gas cooled reactor. But the result with the normal procedure is not accurate enough for a strong absorber. The numerical analysis shows that the strong absorber still has great influence on the flux distribution in the nearby graphite region, so that the flux distribution obtained by the normal diffusion method does not agree with the transport result. Thus, two improvements were proposed in this paper. First, instead of the neutron flux in the middle of the fine mesh, the surface flux of the absorber region was calculated through the net current in the boundary of the region; and then, while the discontinuity factor of the homogenized absorber region should be calculated, the discontinuity factor of the neighboring graphite region on the other side of the interface should also be calculated to eliminate the influence of the strong absorber. The numerical results demonstrate that, based on the improved method, the accuracy of heterogeneous transport calculation can be achieved by a diffusion calculation.

  5. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano


    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  6. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo


    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  7. A transformation technique to treat strong vibrating absorbers

    International Nuclear Information System (INIS)

    Sahni, D.C.; Garis, N.S.; Pazsit, I.


    Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods

  8. Metal–insulator–metal light absorber: a continuous structure

    International Nuclear Information System (INIS)

    Yan, M


    A type of light absorber made of continuous layers of metal and dielectric films is studied. The metal films can have thicknesses close to their skin depths in the wavelength range concerned, which allows for both light transmission and reflection. Resonances induced by multiple reflections in the structure, when combined with the inherent lossy nature of metals, result in strong absorption spectral features. An eigen-mode analysis is carried out for the plasmonic multilayer nanostructures which provides a generic understanding of the absorption features. Experimentally, the calculation is verified by a reflection measurement with a representative structure. Such an absorber is simple to fabricate. The highly efficient absorption characteristics can be potentially deployed for optical filter designs, sensors, accurate photothermal temperature control in a micro-environment and even for backscattering reduction of small particles, etc. (paper)

  9. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya


    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  10. Light Absorbing Aerosols in Mexico City (United States)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.


    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  11. Light-absorbing Components in Lake Superior (United States)


    Table 2 Summary of average minerogenic particle chemistry according to five classes, in the context of contributions to PAV m· Chemical class Clay...based on paired measurements for the 2007 cruise was 0.10 m2 g- 1 ( cv = 37%). Minerogenic particles, aNAP. and am PAV m was a strong predictor of a...and PAV m is presented (Fig. Sc) with a linear least squares regression fit. along with fits for am( 440) calculations for the other n’ values

  12. Analytical modeling of light transport in scattering materials with strong absorption

    NARCIS (Netherlands)

    Meretska, M. L.; Uppu, R.; Vissenberg, Gilles; Lagendijk, A.; Ijzerman, W. L.; Vos, W. L.


    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength

  13. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere. (United States)

    Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick


    Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

  14. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.


    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  15. On the radiative effects of light-absorbing impurities on snowpack evolution (United States)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.


    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  16. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.


    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  17. Light Absorbers and Catalysts for Solar to Fuel Conversion (United States)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous

  18. Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars (United States)

    Christensen, L.; Vergani, S. D.; Schulze, S.; Annau, N.; Selsing, J.; Fynbo, J. P. U.; de Ugarte Postigo, A.; Cañameras, R.; Lopez, S.; Passi, D.; Cortés-Zuleta, P.; Ellison, S. L.; D'Odorico, V.; Becker, G.; Berg, T. A. M.; Cano, Z.; Covino, S.; Cupani, G.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Hammer, F.; Heintz, K. E.; Jakobsson, P.; Japelj, J.; Kaper, L.; Malesani, D.; Møller, P.; Petitjean, P.; Pugliese, V.; Sánchez-Ramírez, R.; Tanvir, N. R.; Thöne, C. C.; Vestergaard, M.; Wiersema, K.; Worseck, G.


    Previous studies have shown that the incidence rate of intervening strong Mg II absorbers towards gamma-ray bursts (GRBs) were a factor of 2-4 higher than towards quasars. Exploring the similar sized and uniformly selected legacy data sets XQ-100 and XSGRB, each consisting of 100 quasar and 81 GRB afterglow spectra obtained with a single instrument (VLT/X-shooter), we demonstrate that there is no disagreement in the number density of strong Mg II absorbers with rest-frame equivalent widths W_rλ2796>1 Å towardsGRBs and quasars in the redshift range 0.1 ≲ z ≲ 5. With large and similar sample sizes, and path length coverages of Δz = 57.8 and 254.4 for GRBs and quasars, respectively, the incidences of intervening absorbers are consistent within 1σ uncertainty levels at all redshifts. For absorbers at z Digital Sky Survey (SDSS) quasar spectra, while for quasar absorbers observed with X-shooter we find an excess factor of 1.4 ± 0.2 relative to SDSS quasars. Conversely, the incidence rates agree at all redshifts with reported high-spectral-resolution quasar data, and no excess is found. The only remaining discrepancy in incidences is between SDSS Mg II catalogues and high-spectral-resolution studies. The rest-frame equivalent-width distribution also agrees to within 1σ uncertainty levels between the GRB and quasar samples. Intervening strong Mg II absorbers towards GRBs are therefore neither unusually frequent, nor unusually strong. Based on observations collected at the European Southern Observatory, Paranal, Chile, Program ID: 098.A-0055, 097.A-0036, 096.A-0079, 095.B-0811(B), 095.A-0045, 094.A-0134, 093.A-0069, 092.A-0124, 0091.C-0934, 090.A-0088, 089.A-0067, 088.A-0051, 087.A-0055, 086.A-0073, 085.A-0009 and 084.A-0260. XQ-100: 189.A-0424.

  19. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)


    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  20. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae


    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  1. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.


    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  2. Rigidly linking cyclometallated Ir(iii) and Pt(ii) centres: an efficient approach to strongly absorbing and highly phosphorescent red emitters. (United States)

    Turnbull, Graeme; Williams, J A Gareth; Kozhevnikov, Valery N


    The synthesis and photophysical properties of an unprecedented tetranuclear complex are described, in which a fac-tris-cyclometallated Ir(iii) centre is rigidly connected to three cyclometallated Pt(ii) centres. The complex absorbs strongly up to ∼600 nm and emits red light with unusually high efficiency.

  3. Meridional gradients of light absorbing carbon over northern Europe

    International Nuclear Information System (INIS)

    Baumgardner, D; Kok, G; Kraemer, M; Weidle, F


    In situ measurements have been made in the upper troposphere of the properties of particles containing light absorbing carbon (LAC). These measurements, made in late November 2006 over northern Europe, show that the average LAC mass concentration varies between 1 and 5 ng m -3 over a latitude range 50 deg. to 70 deg. N, with maxima at 50 deg. and 66 deg. The relative fraction of all particles larger than 0.1 μm that contain LAC decreases at higher latitudes. The derived extinction coefficient, which also increases with latitude, reaches a maximum of 1.4 Mm -1 at 66 deg. The air mass histories associated with the LAC were evaluated with back trajectory analysis using wind field analysis from the European Center for Median-Range Weather Forecast (ECMWF). A positive correlation exists between the fraction of particles containing LAC and the maximum relative humidity (RH), minimum temperature and maximum number of hours of cloud experienced by the air mass in the 5-10 days prior to being sampled by the aircraft. Air masses arriving from lower altitudes and with trajectories over North America also had larger concentration fractions of LAC. The average LAC mass is in good agreement with previous measurements made over North America for the same latitude range, and the span of values fits best with model predictions of LAC distributions that assume that the LAC transported from surface sources is hydrophobic

  4. Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.


    Water suspension of light-absorbing nano-sized particles is an example of a medium in which non-linear effects are present at moderate light intensities favorable for optical treatment of organic and biological objects. We study experimentally the phenomena emerging in a thin layer of such a medium......-diffraction of the incident light, here being strongly sensitive to the medium position with respect to the focus. This technique, based on the complex spatial structure of both the incident and the diffracted fields, can be employed for the detection and measurement of weak non-linearities....

  5. Ultraviolet light absorbers having two different chromophors in the same molecule (United States)

    Vogl, O.; Li, S.


    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  6. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light. (United States)

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting


    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. Copyright © 2015. Published by Elsevier B.V.

  7. Strong light-matter interaction in graphene - Invited talk

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interaction. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range[1]. The hybrid system is further......Graphene has attracted lots of attention due to its remarkable electronic and optical properties, thus providing great promise in photonics and optoelectronics. However, the performance of these devices is generally limited by the weak light-matter interaction in graphene. The combination...

  8. Coherent light absorbing by concrete during its hardening (United States)

    Gorsky, Mykhaylo P.; Maksimyak, Peter P.


    In this work changes of concrete reflection coefficient during its hydration were investigated theoretically and experimentally. Diffuse approximation method for concrete light-scattering description during hydration was used and its results were compared with received experimental data. Calculation of scattered and absorption sections for set of particles is described in details. Introduced optical diagnostics method allows performing earlier hydration stages diagnostics of concrete hardening process in comparison with other methods and predicting mechanical properties of produced concrete.

  9. Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale (United States)

    Matt, Felix N.; Burkhart, John F.; Pietikäinen, Joni-Pekka


    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snowmelt by increasing the absorption of shortwave radiation. The consequences are a shortening of the snow duration due to increased snowmelt and, at the catchment scale, a temporal shift in the discharge generation during the spring melt season. In this study, we present a newly developed snow algorithm for application in hydrological models that allows for an additional class of input variable: the deposition mass flux of various species of light absorbing aerosols. To show the sensitivity of different model parameters, we first use the model as a 1-D point model forced with representative synthetic data and investigate the impact of parameters and variables specific to the algorithm determining the effect of LAISI. We then demonstrate the significance of the radiative forcing by simulating the effect of black carbon (BC) deposited on snow of a remote southern Norwegian catchment over a 6-year period, from September 2006 to August 2012. Our simulations suggest a significant impact of BC in snow on the hydrological cycle. Results show an average increase in discharge of 2.5, 9.9, and 21.4 %, depending on the applied model scenario, over a 2-month period during the spring melt season compared to simulations where radiative forcing from LAISI is not considered. The increase in discharge is followed by a decrease in discharge due to a faster decrease in the catchment's snow-covered fraction and a trend towards earlier melt in the scenarios where radiative forcing from LAISI is applied. Using a reasonable estimate of critical model parameters, the model simulates realistic BC mixing ratios in surface snow with a strong annual cycle, showing increasing surface BC mixing ratios during spring melt as a consequence of melt amplification. However, we further identify large uncertainties in the representation of the surface BC mixing ratio during snowmelt and the subsequent

  10. Isolating Weakly and Strongly-Absorbing Classes of Carbonaceous Aerosol: Optical Properties, Abundance and Lifecycle

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Rood, Mark J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Riemer, Nicole [Univ. of Illinois, Urbana-Champaign, IL (United States)


    absorption. Aging by NH3 produces a mild increase in the hygroscopicity of BrC, and a greater increase in cloud condensation nucleus activity. Therefore, reactions with NH3 form compounds that absorb more light than the original aerosol and act as surfactants, increasing the likelihood that these particles will participate in cloud formation. The particle-resolved model PartMC was enhanced to include additional physical processes. It was calibrated against chamber results, and we needed to account for the non-spherical structure of particle agglomerates, even for ammonium sulfate. We implemented the “volatility basis set” (VBS) framework in the model. The updated PartMC-MOSAIC model was able to simulate gas and aerosol concentrations from the CARES campaign at levels similar to observations. The PartMC model was used to evaluate plume dynamics affecting CCN activity of biomass burning aerosols early in a plume. Coagulation limits emission of CCN to about 1016 per kg of fuel. Co-emitted, semi-volatile organic compounds or emission at small particle sizes can homogenize composition before plume exit, and SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. When externally-mixed, accumulation-mode particles are emitted in the absence of SVOCs, CCN can be overestimated by up to a factor of two. This means that measurements made on aerosol from all phases of combustion gathered into a single chamber may incorrectly estimate CCN properties. Based on the findings here, we make some recommendations for use in large-scale models: (1) inventories should represent “internally” versus “externally” mixed under certain combustion conditions; (2) consideration of non-spherical particles when coagulation is important for climate-relevant properties near sources; (3) designating organic biomass particles as weakly absorbing; (4) “inherent absorption” and hygroscopicity are not altered with aging by ozone

  11. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers. (United States)

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao


    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems.

  12. Structure and properties of visible-light absorbing homodisperse nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Jason


    Broadly, the scientific progress from this award focused in two main areas: developing time-resolved X-ray diffraction methods and the synthesis and characterization of molecular systems relevant to solar energy harvesting. The knowledge of photo‐induced non‐equilibrium states is central to our understanding of processes involved in solar‐energy capture. More specifically, knowledge of the geometry changes on excitation and their relation to lifetimes and variation with adsorption of chromophores on the substrates is of importance for the design of molecular devices used in light capture.

  13. On seeing yellow: the case for, and against, short-wavelength light-absorbing intraocular lenses. (United States)

    Simunovic, Matthew P


    The normal human crystalline lens absorbs UV and short-wavelength visible electromagnetic radiation. Early intraocular lenses (IOLs) permitted the transmission of such radiation to the retina following cataract extraction. Experimental studies of the absorption profile of the crystalline lens and animal studies demonstrating the deleterious effects of short-wavelength radiation on the retina led to the development of UV-absorbing, and later, short-wavelength light-absorbing (SLA) IOLs. Short-wavelength light-absorbing IOLs were designed to mimic the absorption properties of the normal crystalline lens by absorbing some short-wavelength light in addition to UV radiation; however, debate continues regarding the relative merits of such lenses over UV-absorbing IOLs. Advocates of SLA IOLs suggest that they may theoretically offer increased photoprotection and decreased glare sensitivity and draw on in vitro, animal, and limited clinical studies that infer possible benefits. Detractors suggest that there is no direct evidence supporting a role for SLA IOLs in preventing retinal dysfunction in humans and suggest that they may have negative effects on color perception, scotopic vision, and circadian rhythms. This article examines the theoretical and empirical evidence for, and against, such lenses.

  14. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    International Nuclear Information System (INIS)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.


    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach

  15. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.


    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  16. Rigorous modelling of light's intensity angular-profile in Abbe refractometers with absorbing homogeneous fluids

    International Nuclear Information System (INIS)

    García-Valenzuela, A; Contreras-Tello, H; Márquez-Islas, R; Sánchez-Pérez, C


    We derive an optical model for the light intensity distribution around the critical angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model is developed using rigorous electromagnetic optics. The obtained formula is very simple and can be used suitably in the analysis and design of optical sensors relying on Abbe type refractometry.

  17. Exploring Light’s Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, John Colby [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering


    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-­to-­center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-­to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO3 microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-­20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  18. Light-absorbing carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions (United States)

    Carbonaceous aerosols are ubiquitous in the atmosphere and can directly affect Earth’s climate by absorbing and scattering incoming solar radiation. Both field and laboratory measurements have confirmed that biomass burning (BB) is an important primary source of light absor...

  19. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications (United States)

    Mudachathi, Renilkumar; Tanaka, Takuo


    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  20. Source attribution of light-absorbing impurities in seasonal snow across northern China (United States)

    Zhang, R.; Hegg, D. A.; Huang, J.; Fu, Q.


    Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of light-absorbing impurities (LAI), including all particles that absorb light in the 650-700 nm wavelength interval. The LAI, together with 14 other analytes, are used as input to a positive matrix factorization (PMF) receptor model to explore the sources of the LAI in the snow. The PMF analysis for the LAI sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured snow light absorption: a soil dust source, an industrial pollution source, and a biomass and biofuels burning source. Soil dust was the main source of the LAI, accounting for ~ 53% of the LAI on average.

  1. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China (United States)

    Zhang, R.; Hegg, D. A.; Huang, J.; Fu, Q.


    Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP), including all particles that absorb light in the 650-700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF) receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  2. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. (United States)

    Cao, Ziyang; Feng, Liangzhu; Zhang, Guobing; Wang, Junxia; Shen, Song; Li, Dongdong; Yang, Xianzhu


    Near-infrared (NIR) light-induced photothermal therapy (PTT) has attracted much interest in recent years. In the NIR region, tissue penetration ability of the second biological near-infrared window (1000-1350 nm) is recognized to be stronger than that of the first window (650-950 nm). However, NIR light absorbers in the second NIR region (NIR-II) have been scant even though various NIR light absorbers in the first NIR region (NIR-I) have been widely explored. In this work, a thieno-isoindigo derivative-based semiconducting polymer, PBTPBF-BT, were formulated into PEGylated nanoparticles. The obtained nanoparticle NP PBTPBF-BT exhibited strong absorption in NIR-II region, inherent high photothermal conversion efficacy, and excellent photostability. The in vitro and in vivo PTT study employing 1064 nm laser in NIR-II window revealed that NP PBTPBF-BT could efficiently ablate tumor cell at a power density of 0.42 W/cm 2 (the skin tolerance threshold value). Moreover, NP PBTPBF-BT with excellent photostability exhibited enhanced photoacoustic (PA) imaging of tumor in living mice, suggesting the great probability of using NP PBTPBF-BT for in vivo PA imaging-guided PTT in the NIR-II window. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues (United States)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping


    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  4. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.


    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  5. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.


    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  6. Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma (United States)

    Li, Yan; Gobin, Andre M; Dryden, Gerald W; Kang, Xinqin; Xiao, Deyi; Li, Su Ping; Zhang, Guandong; Martin, Robert CG


    Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS. The results indicate that both cancerous tissue and cancer cells took up more gold nanoparticles and were completely ablated after exposure to near infrared light. The benign tissue and noncancerous cells showed less uptake of these nanoparticles, and remained viable after exposure to near infrared light. CS-GGS nanoparticles could provide an optimal endoluminal therapeutic option for near infrared light ablation of esophageal cancer. PMID:23818775

  7. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; Van Campen, Douglas G.; Mehta, Apurva; Gregoire, John M.


    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  8. Triazolobithiophene Light Absorbing Self-Assembled Monolayers: Synthesis and Mass Spectrometry Applications

    Directory of Open Access Journals (Sweden)

    Denis Séraphin


    Full Text Available The synthesis of five light absorbing triazolobithiophenic thiols, which were utilized for producing self-assembled monolayers (SAMs on gold surfaces, is presented. The monolayer formation was monitored by cyclic voltammetry, indicating excellent surface coverage. The new triazolobithiophenic compounds exhibited an absorption maximum around 340 nm, which is close to the emission wavelength of a standard nitrogen laser. Consequently these compounds could be used to aid ionization in laser desorption mass spectrometry (MS.

  9. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.


    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  10. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    Sample, C.R.


    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  11. Optical properties and aging of light-absorbing secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    J. Liu


    Full Text Available The light-absorbing organic aerosol (OA commonly referred to as “brown carbon” (BrC has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC precursors, NOx concentrations, photolysis time, and relative humidity (RH on the light absorption of selected secondary organic aerosols (SOA. Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis and ultraviolet (UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  12. Optical properties and aging of light-absorbing secondary organic aerosol (United States)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.


    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  13. Synthesis of dumbbell-like Au nanostructure and its light-absorbance study

    International Nuclear Information System (INIS)

    Shen Jianlei; Xu Yan; Li Kun; Song Shiping; Fan Chunhai


    Background: By changing the size or the morphology of Au nanostructure, they can absorb different wavelength light due to the localized surface plasmon resonance (LSPR). Because Au nanorods show good ability to transform light into heat (photothermal effect), they have been wildly used to deliver the drugs and release them controllably. However, when applying such nanostructure for in vivo treatments, Au nanorods must have long aspect ratio which often make it hard to prepare heterogeneous nanostructure. Purpose: A new method to synthesize Au nanostructure with uniform size and to achieve long wavelength light absorbance is needed. This work attempts to synthesize such Au nanostructure by using bio-nano techniques. Methods: New nanostructures are prepared by growing Au nanoparticles on the surface of Au nanorods modified with DNA molecules. Results: Dumbbell-Ikea Au nanostructures were prepared firstly. Its maximum absorbance locates at near ultraviolet region, which means that it can be used as a potential tool for the deep-skin photothermal treatment. Moreover, other two kinds of nanostructures, i.e. Au nanorods with Au splinter at two ends and sea urchin-like nanostructures, are also studied. Conclusions: We successfully fabricated novel Au nanostructures which can be used for drug delivery, surface-enhanced Raman spectroscopy and catalysis. (authors)

  14. Black carbon and other light-absorbing impurities in the Andes of Northern Chile (United States)

    Rowe, P. M.; Cordero, R.; Warren, S. G.; Pankow, A.; Jorquera, J.; Schrempf, M.; Doherty, S. J.; Cabellero, M.; Carrasco, J. F.; Neshyba, S.


    Black carbon (BC) and other light-absorbing impurities in snow absorb solar radiation and thus have the potential to accelerate glacial retreat and snowmelt. In Chile, glaciers and seasonal snow are important sources of water for irrigation and domestic uses. In July 2015 (Austral winter) we sampled snow in the western Andes in a north-south transect of Chile from 18 S to 34 S. Most of the sampled snow had fallen during a single synoptic event, during 11-13 July. The snow was melted and passed through 0.4 micrometer nuclepore filters. Preliminary estimates indicate that (1) the ratio of BC to dust in snow increases going south from Northern to Central Chile, and (2) in snow sampled during the two weeks following the snowstorm, the impurities were concentrated in the upper 5 cm of snow, indicating that the surface layer became polluted over time by dry deposition.

  15. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign (United States)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.


    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  16. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China

    Directory of Open Access Journals (Sweden)

    R. Zhang


    Full Text Available Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP, including all particles that absorb light in the 650–700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  17. Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces (United States)

    Huang, Zhenping; Chen, Jian; Liu, Yi; Tang, Li; Liu, Guiqiang; Liu, Xiaoshan; Liu, Zhengqi


    It is desirable for optoelectronic devices to have the capability to simultaneously achieve excellent optical and electric features. Nevertheless, most investigations were performed separately for photon and electron management. In this work, we numerically propose and demonstrate a hybrid metal-semiconductor interface, which offers multi-band perfect light absorption and simultaneously retains the naturally perfect electrical conductivity of a flat metal film. Multi-band anti-reflection and near-unity light absorption is observed in this hybrid metal-semiconductor cavity based absorber (HMSA). Our results show that, the maximal absorption above 97% and the naturally perfect electric conductivity are realizable, suggesting the capability of providing both excellent optical and electric properties. Optical Mie-like resonances in the semiconductor cavities and the hybrid coupling with plasmonic resonances by the metal resonators cooperatively support strong optical field confinement effects, which eventually create the light trapped in the HMSA. These features indicate a platform wherein excellent electrical conducting and multispectral light absorption are designed for potential optoelectronic applications.

  18. Peculiarities of light propagation in optically active absorbing crystals of the orthorhombic system (United States)

    Konstantinova, A. F.; Golovina, T. G.; Nabatov, B. V.; Evdishchenko, E. A.; Konstantinov, K. K.


    Peculiarities of the manifestation of optical activity and absorption in crystals of the orthorhombic system of the 222 class are considered. The influence of each effect on the ellipticities of eigenwaves is analyzed. The dependences of the azimuth, ellipticity, and intensity of transmitted light in directions slightly and significantly deviating from the optical axes are considered in detail. Cases are indicated where the approximate relations obtained disregarding multiple reflections and nonorthogonality of eigenwaves in crystal hold true. The differences of the simulated conoscopic patterns of the biaxial absorbing optically active crystals from the patterns of inactive or nonabsorbing crystals are analyzed.

  19. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities


    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin


    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows ?grey? surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look ?grey?? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black ...

  20. Measurements of strong correlations in the transport of light through strongly scattering materials

    NARCIS (Netherlands)

    Akbulut, D.


    In this thesis, we study light transport through multiple scattering random photonic materials. Light incident on such materials undergoes many scattering events before exiting the material. The relation between the incident and the transmitted fields is determined by the optical transmission matrix

  1. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. (United States)

    Li, Xiaofei; Kang, Shichang; He, Xiaobo; Qu, Bin; Tripathee, Lekhendra; Jing, Zhefan; Paudyal, Rukumesh; Li, Yang; Zhang, Yulan; Yan, Fangping; Li, Gang; Li, Chaoliu


    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm -2 and 21.23±22.08Wm -2 , respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Impacts of light-absorbing impurities on snow and their quantification with bidirectional reflectance measurements (United States)

    Gritsevich, Maria; Peltoniemi, Jouni; Meinander, Outi; Dagsson-Waldhauserová, Pavla; Zubko, Nataliya; Hakala, Teemu; Virkkula, Aki; Svensson, Jonas; de Leeuw, Gerrit


    In order to quantify the effects of absorbing impurities on snow and define their contribution to the climate change, we have conducted a series of dedicated bidirectional reflectance measurements. Chimney soot, volcanic sand, and glaciogenic silt have been deposited on the snow in the controlled way. The bidirectional reflectance factors of these targets and untouched snow have been measured using the Finnish Geodetic Institute's field goniospectrometer FIGIFIGO, see, e.g., [1, 2] and references therein. It has been found that the contaminants darken the snow, and modify its appearance mostly as expected, with clear directional signal and modest spectral signal. A remarkable feature is the fact that any absorbing contaminant on snow enhances the metamorphosis under strong sunlight [3, 4]. Immediately after deposition, the contaminated snow surface appears darker than the pure snow in all viewing directions, but the heated soot particles start sinking down deeply into the snow in minutes. The nadir measurement remains darkest, but at larger zenith angles the surface of the soot-contaminated snow changes back to almost as white as clean snow. Thus, for on ground observer the darkening by impurities can be completely invisible, overestimating the albedo, but a nadir looking satellite sees the darkest points, now underestimating the albedo. After more time, also the nadir view brightens, and the remaining impurities may be biased towards more shadowed locations or less absorbing orientations by natural selection. This suggests that at noon the albedo should be lower than in the morning or afternoon. When sunlight stimulates more sinking than melting, albedo should be higher in the afternoon than in the morning, and vice versa when melting is dominating. Thus to estimate the effects caused by black carbon (BC) deposited on snow on climate changes may one need to take into account possible rapid diffusion of the BC inside the snow from its surface. When the snow melt

  3. Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau (United States)

    Niu, Hewen; Kang, Shichang; Zhang, Yulan; Shi, Xiaoyi; Shi, Xiaofei; Wang, Shijin; Li, Gang; Yan, Xingguo; Pu, Tao; He, Yuanqing


    Insoluble light-absorbing impurities (ILAIs) in surface snow of glacier reduce snow albedo and accelerate glacier melt. In order to assess effects of ILAIs on glacier melt, we present the first results from field measurements of ILAIs, including black carbon (BC) and dust in snowpacks of glacier on Mt. Yulong, southeastern Tibetan Plateau (TP). Amplification factors because of snow melt were calculated for BC and dust concentrations in surface snow, and melt scavenging rates, effects of ILAIs on snow spectral albedo, and associated radiative forcing (RF) were estimated. Melt amplification generally appeared to be confined to the top few centimeters of the snowpack, and our results indicated that BC was more efficiently scavenged with meltwater than the other insoluble light-absorbers (e.g., dust). Absorbing impurities reduced snow spectral albedo more with larger particulate grain radius (re). Spectral albedo reduction was investigated using the SNow ICe Aerosol Radiative (SNICAR) model. Albedo reduction for 1200 ng g- 1 of BC in Mt. Yulong snow was 0.075 for snow with re = 500 compared with re = 200 μm. If dust (51.37 ppm) was the only impurity in the snowpack, the spectral albedo reduction would be only 0.03, and the associated RF was 42.76 W m- 2. For a BC and dust mixed scenario, the spectral albedo was substantially reduced (0.11 ± 0.03), and the associated RF (145.23 W m- 2) was more than three times larger than that for the dust-only scenario. BC in snow is an active factor controlling snow albedo and snow-ice RF. Further observational studies are needed to quantify the contribution of BC and dust to albedo reduction and glacier melt and to characterize the variation of glacier RF.

  4. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    E. L. Shapiro


    Full Text Available Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4 aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500–600 amu products were observed when ammonium sulfate ((NH42SO4 or sodium chloride (NaCl was present in the aqueous phase. The products formed in (NH42SO4 or ammonium nitrate (NH4NO3 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300–400 nm develops within two hours, and absorption between 400–600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest a mechanism involving the participation of the ammonium ion. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  5. Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    Directory of Open Access Journals (Sweden)

    Dean A. Hegg


    Full Text Available Two data sets consisting of measurements of light absorbing aerosols (LAA in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF model. Four sources were found for each data set (crop and grass burning, boreal biomass burning, pollution and marine. For both data sets, the crops and grass biomass burning was the main source of both LAA species, suggesting the non-BC LAA was brown carbon. Depth profiles at most of the sites allowed assessment of the seasonal variation in the source strengths. The biomass burning sources dominated in the spring but pollution played a more significant (though rarely dominant role in the fall, winter and, for Greenland, summer. The PMF analysis is consistent with trajectory analysis and satellite fire maps.

  6. Multi Source Remote Sensing for Monitoring Light-Absorbing Impurities on Snow and Ice in the European Alps (United States)

    Colombo, R.; Baccolo, G.; Garzonio, R.; Massabò, D.; Julitta, T.; Rossini, M.; Ferrero, L.; Delmonte, B.; Maggi, V.; Mattavelli, M.; Panigada, C.; Cogliati, S.; Cremonese, E.; Di Mauro, B.


    The European Alps are located close to one of the most industrialized areas of the planet and they are 3.000 km from the largest desert of the Earth. Light-absorbing impurities (LAI) emitted from these sources can reach the Alpine chain and deposit on snow covered areas and mountain glaciers. Although several studies show that LAI have important impacts on the optical properties of snow and ice, reducing the albedo and promoting the melt, this impact has been poorly characterized in the Alps. In this contribution, we present the results of a multisource remote sensing approach aimed to study the LAI impact on snow and ice properties in the Alpine area. This process has been observed by means of remote and proximal sensing methods, using satellite (Landsat 8, Hyperion and MODIS data), field spectroscopy (ASD measurements), Automatic Weather Stations, aerial surveys (Unmanned Aerial Vehicle), radiative transfer modeling (SNICAR and TARTES) and laboratory analysis (hyperspectral imaging system). Furthermore, particle size (Coulter Counter), geochemical (Instrumental Neutron Activation Analysis, INAA) and optical (Multi-Wavelength Absorbance Analyzer, MWAA) analyses have been applied to determine the nature and radiative properties of particulate material deposited on snow and ice or aggregated into cryoconite holes. Our results demonstrate that LAI can be monitored from remote sensing at different scale. LAI showed to have a strong impact on the Alpine cryosphere, paving the way for the assessment of their role in melting processes.

  7. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.


    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  8. Light-absorbing particulates in seasonal snow in western North America (United States)

    Dang, Cheng

    Commonly found light-absorbing particulates (LAPs) in snow are black carbon (BC), organic carbon (OC), and mineral dust (MD). These LAPs can reduce the very high albedo of snowpack and trigger positive feedback processes, eventually accelerate the snowmelt and hence influence the climate and hydrology. From the January to March of 2013, a field campaign was conducted to study the LAPs in seasonal snow across 13 American states and 3 Canadian Provinces in western North America. We collected and filtered more than 600 snow samples from 67 sites to extract the water-insoluble LAPs in snow, and saved melted snow samples. More than 500 LAP nuclepore samples were analyzed in a spectrophotometer to estimate the light absorption due to LAP samples. This optical analysis also allow us to calculate the absorption Angstrom exponent (A) of LAPs, estimate the BC mixing ratio, and partition the light absorption by BC and non-BC LAPs. About 100 LAP GHP samples were extracted by a serial of chemical solvents to remove OC; then measured in the spectrophotometer to estimate the light absorption changes. The iron concentration was derived from ICP-MS (Inductively Coupled Plasma - Mass Spectroscopy), and was used to estimate the light absorption due to MD. The BC mixing ratio varies from 4--510 ng/g (ng of BC/g of snow), with regional medians vary from 14 ng/g in the Pacific Northwest to 65 ng/g in the Northern Plains. This amount of BC is lower than that found in China, and the LAP in the cleanest sites is as low as that found in the Arctic snow. The regional medians of A vary from 1.6 to 2.6, indicating that BC is not the only LAP in snow. Chemical extractions suggest that methanol-soluble OC (polar OC) and base-soluble HULIS are responsible for 3% and 8% of light absorption by all LAP respectively. They are likely generated from biomass burning or soil. The fractional light absorption produced by OC and HULIS in the Northern Plains is a factor of two higher than that of the other

  9. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.


    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  10. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V


    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  11. Strong-field-ionization suppression by light-field control

    DEFF Research Database (Denmark)

    Räsänen, Esa; Madsen, Lars Bojer


    in the intensity and thus preventing tunneling. In contrast, at high frequencies in the extreme ultraviolet regime the optimized pulses strongly couple with the (de)-excitations of the system, which leads to different pulse characteristics. Finally, we show that the applied target functional works, to some extent...

  12. Modeling of light absorbing particles in atmosphere, snow and ice in the Arctic (United States)

    Sobhani, N.; Kulkarni, S.; Carmichael, G. R.


    Long-range transport of atmospheric particles from mid-latitude sources to the Arctic is the main contributor to the Arctic aerosol loadings and deposition. Black Carbon (BC), Brown Carbon (BrC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Furthermore, wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo. There are high uncertainties in estimating radiative forcing of LAPs. We studied the potential effect of LAPs from different emission source regions and sectors on snow albedo in the Arctic. The transport pathway of LAPs to the Arctic is studies for different high pollution episodes. In this study a modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model(STEM) is used to predict the transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. For assessing the effect of LAP deposition on snow single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online) model was used to derive snow albedo values for snow albedo reduction causes by BC deposition. To evaluate the simulated values we compared the BC concentration in snow with observed values from previous studies including Doherty et al. 2010.

  13. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    Directory of Open Access Journals (Sweden)

    M. Gyawali


    Full Text Available Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA versus single scattering albedo (SSA of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.

  14. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light

    DEFF Research Database (Denmark)

    Middelboe, Anne Lise; Sand-Jensen, Kaj; Binzer, Thomas


    Photosynthesis-irradiance relationships of macroalgal communities and thalli of dominant species in shallow coastal Danish waters were measured over a full year to test how well community production can be predicted from environmental (incident irradiance and temperature) and community variables...... and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy...... (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year...

  15. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.


    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  16. Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes. (United States)

    Fakhari, Ali Reza; Breadmore, Michael C; Macka, Miroslav; Haddad, Paul R


    Non-aqueous capillary electrophoresis was evaluated for the separation of five hydrophobic basic blue dyes for application in forensic dye analysis. The use of a red light emitting diode as a high intensity, low-noise light source provided sensitive detection of the blue dyes while also allowing the evaluation of solvents that absorb strongly in the UV region. Excellent peak shapes and separation selectivity were obtained in methanol, ethanol, acetonitrile and dimethylsulfoxide, however water, tetrahydrofuran, dimethylformamide and acetone were unsuitable as solvents due to poor peak shapes and a lack of sensitivity, most likely due to adsorption onto the capillary wall. Due to the known compatibility of methanol with capillary electrophoresis-mass spectrometry, this solvent was examined further with the relative acidity/basicity of the electrolyte being optimised with an artificial neural network. The optimised method was examined for the separation of ink samples from 6 fibre tip and 2 ball point blue or black pens and showed that a unique migration time for the main dye component in seven of the eight pens could be obtained.

  17. Strong-field physics with singular light beams (United States)

    Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, Ch.


    Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.

  18. Optical design of a reaction chamber for weakly absorbed light. II. Parallel mirrors, multitravel

    International Nuclear Information System (INIS)

    Devaney, J.J.; Finch, F.T.


    This report outlines the possibilities to be found using one or more diffraction-limited high-quality light beams to activate a weakly absorbing gas in a regime where the diffraction spread can be controlled by converging optical devices to within a ratio of √2 of the minimum at the beam waist (corresponding lengths between converging elements are within twice the Rayleigh range). Our designs use plane or cylindrical parallel mirrors down which a light beam is repeatedly reflected. In the first design variation, the beam is re-reflected up the parallel mirrors to the entrance aperture where it can be returned repeatedly for a number of multiply reflecting ''travels'' up and down the parallel mirror reaction chamber. In the second variation, the return of the beam after each multiply reflecting ''travel'' down the chamber is external to the chamber and is achieved by two mirror reflections. For diffraction control the return mirrors can be made converging. For multiple laser excitation, any of the external return mirrors can be replaced by a laser. The advantage of these designs is a high degree of uniformity of chamber illumination with a reasonably high number of passes. Drawbacks of the designs are the large space needed for beam return (many tens of meters for some parameters) and (common to all high optical quality chambers) the figuring and reflectivity demands on the mirrors. (U.S.)

  19. Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications (United States)

    Ansari, Azizurrahaman; Jaleel Akhtar, Mohammad


    The magnetic, thermal, thermo-mechanical, electromagnetic and microwave absorption properties of Co/graphite loaded polystyrene composites prepared by melt blending and injection molding techniques are studied in X-band (8.4-12.4 GHz) for seeking their usage as efficient light weight microwave absorbers. For profound understanding of electromagnetic absorption process at micro level, the advanced SEM and x-ray diffraction testing of the composites are carried out. The magnetic properties of the prepared Co/graphite loaded polystyrene composites are studied using the vibrating sample magnetometer. The thermal stability and thermo-mechanical properties of the prepared composites are analyzed by thermo gravimetric analysis and dynamic mechanical and thermal analysis, respectively. The complex permittivity and permeability values of the prepared composite samples in X-band of microwave frequency are extracted from the scattering data recorded during the vector network analyzer measurements. The minimum reflection loss (maximum absorption loss) of  -32.02 dB (99.94%) is achieved at 10.13 GHz for Co/graphite loaded polystyrene composite with the excess loading of graphite flakes for sample thickness of 1.8 mm. High absorption loss, light weight and low thickness of the proposed multicomponent Co/graphite loaded polystyrene composites make them promising candidates for electromagnetic shielding and stealth applications.

  20. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. (United States)

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J


    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs. Copyright © Physiologia Plantarum 2010.

  1. Light-absorbing Particles in Snow in the context of climate, snowpack & glaciers: Where do we stand? (United States)

    Doherty, S. J.


    This talk will review recent progress and challenges in quantifying the effects of light-absorbing particles in snow on climate and on snow and glacier melt. In addition to black carbon (BC), field measurements have revealed that brown carbon (BrC) from combustion, mineral dust, soil organics and, in some cases, algae can also play important roles in determining snow albedo. I will review the strengths and limitations of the techniques used to quantify each. I will also overview what we know about how light-absorbing particles in snow compare to other factors affecting snow and glacier albedo and melt, and emphasize the need for such a wholistic view.

  2. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong


    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  3. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities. (United States)

    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin


    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows "grey" surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look "grey"? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black carbon (BC) and dust, and number concentrations and sizes of the insoluble particles (IPs) in the samples were measured in the laboratory. High temperatures in summer probably enhanced the snow ageing. During the snow ageing process, the snow density varied from 243 to 458 kg m(-3), associated with the snow grain size varying from 290 to 2500 μm. The concentrations of LAIs in aged snow were significantly higher than those in fresh snow. Dust and BC varied from 16 ppm and 25 ppb in fresh snow to 1507 ppm and 1738 ppb in aged snow, respectively. Large albedo difference between the fresh and aged snow suggests a consequent forcing of 180 W m(-2). Simulations under scenarios show that snow ageing, BC, and dust were responsible for 44, 25, and 7 % of the albedo reduction in the accumulation zone, respectively.

  4. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Directory of Open Access Journals (Sweden)

    Q. Wang


    Full Text Available We use a global chemical transport model (GEOS-Chem to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January–April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and  ∼  11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50 % of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %. The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE suggests more influence from fossil fuel combustion in the southern part of the basin (AAE  ∼  1 but more

  5. Partitioning of absorbed light energy differed between the sun-exposed side and the shaded side of apple fruits under high light conditions. (United States)

    Chen, Changsheng; Zhang, Di; Li, Pengmin; Ma, Fengwang


    Fractions of absorbed light energy consumed via photochemistry and different thermal dissipation processes was quantified and compared between the sun-exposed peel and the shaded peel of apple fruits at different developmental stages. During fruit development, the fraction of absorbed light consumed via photochemistry was no more than 7% in the sun-exposed peel and no more than 5% in the shaded peel under high light conditions. Under high light, the fraction of absorbed light energy consumed via light dependent thermal dissipation was higher whereas that via constitutive thermal dissipation was lower in the sun-exposed peel. The light dependent thermal dissipation in the sun-exposed peel mainly depended on the xanthophyll cycle, and the xanthophyll cycle pool size was significantly larger in the sun-exposed peel than in the shaded peel. The light dependent thermal dissipation in the shaded peel was dependent on both the xanthophyll cycle and the presence of inactivated reaction centers. Under high light conditions, the densities of both Q(A)-reducing reaction centers and Q(B)-reducing reaction centers decreased faster in the shaded peel than in the sun-exposed peel. The thermal dissipation related to photoinhibition increased and then kept unchanged in the sun-exposed peel but decreased in the shaded peel during fruit development. We conclude that under high light intensities, fruit peel looses the excess energy in order of predominance: first by the xanthophyll cycle, then the thermal dissipation related to photoinhibition, next through inactivated reaction centers, and finally by constitutive thermal dissipation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. (United States)

    Yan, Xin; Cui, Xiao; Li, Binsong; Li, Liang-shi


    Graphenes have very attractive properties for photovoltaics. Their tunable bandgap and large optical absorptivity are desirable for efficient light harvesting. Their electronic levels and interfacing with other materials for charge transfer processes can both be tuned with well-developed carbon chemistry. Graphenes have also been shown to have very large charge mobilities, which could be useful for charge collection in solar cells. In addition, they consist of elements abundant on Earth and are environmentally friendly. However, these important properties have not been taken advantage of because graphenes that are large enough to be useful for photovoltaics have extremely poor solubility and have a strong tendency to aggregate into graphite. Here we present a novel solubilization strategy for large graphene nanostructures. It has enabled us to synthesize solution-processable, black graphene quantum dots with uniform size through solution chemistry, and we show that they can be used as sensitizers for solar cells.

  7. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow (United States)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel


    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the

  8. Wavelength dependence of light diffusion in strongly scattering macroporous gallium phosphide

    NARCIS (Netherlands)

    Peeters, W.H.; Vellekoop, Ivo Micha; Mosk, Allard; Lagendijk, Aart


    We present time-resolved measurements of light transport through strongly scattering macroporous gallium phosphide at various vacuum wavelengths between 705 nm and 855 nm. Within this range the transport mean free path is strongly wavelength dependent, whereas the observed energy velocity is shown

  9. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Lee, Taekoon, E-mail:, E-mail: [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)


    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  10. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)


    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  11. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution. (United States)

    Drozd, Greg T; McNeill, V Faye


    Aqueous-phase reactions of organic compounds are of general importance in environmental systems. Reactions of α-dicarbonyl compounds in the aqueous phase of atmospheric aerosols can impact their climate-relevant physical properties including hygroscopicity and absorption of light. Less-reactive water-soluble organic compounds may contribute an organic matrix component to the aqueous environment, potentially impacting the reaction kinetics. In this work we demonstrate the effects of organic matrices on the self-reactions of glyoxal (Gly) and methylglyoxal (mGly) in aqueous solutions containing ammonium sulfate. At an organic-to-sulfate mass ratio of 2 : 1, carbohydrate-like matrices resembling oxidized organic aerosol material reduce the rate of formation of light-absorbing products by up to an order of magnitude. The greatest decreases in the reaction rates were observed for organic matrices with smaller, more linear molecular structures. Initial UV-Vis spectra, product studies, relative rate data, acidity changes, and viscosity measurements suggest that shifts in carbonyl equilibria, due in part to (hemi)acetal formation with the matrix, reduce the rate of formation of light-absorbing imidazole and oligomer species.

  12. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination (United States)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao


    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (∼80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  13. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry. (United States)

    Nedosekin, D A; Faubel, W; Proskurnin, M A; Pyell, U


    A thermal-lens spectrometric unit suitable for selective quantitative measurements of light-absorbing layers adsorbed onto the inner surface of a quartz glass capillary is described. The quantitative description of the thermal-lens signal generated in a quartz glass capillary with a light-absorbing layer at the inner surface of capillary is developed, which is based on the description for the thermal-lens experiment in the layered solids presented elsewhere. The accuracy of calculations is demonstrated by the comparison of predicted results with the experimental data and those predicted by the conventional theory. The data achieved prove the accuracy of calculations both for the time dependent thermal-lens signal and for the lock-in amplifier signal under variation of the spectrometer configuration for capillaries having an adsorbed layer. The proposed technique is used for the investigation of chromate/2,10-ionene and 4-aminoazobenzene adsorption at capillary walls. The estimates of the minimum light absorption detectable at capillary walls are at a level of 1 x 10(-5) abs. units; the linear range of the thermal-lens signal from the inner surface layer no less than three orders of magnitude is predicted.

  14. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

    Directory of Open Access Journals (Sweden)

    N. Goldenson


    Full Text Available The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1 now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4, run to equilibrium for year 2000 levels of CO2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO2. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.

  15. Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms

    Energy Technology Data Exchange (ETDEWEB)

    Paulillo, B., E-mail:; Manceau, J.-M., E-mail:; Colombelli, R., E-mail: [Institut d' Electronique Fondamentale, Univ. Paris Sud, UMR8622 CNRS, 91405 Orsay (France); Li, L. H.; Davies, A. G.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)


    We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice the Rabi frequency (2Ω{sub Rabi}), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperature.

  16. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Roberts, Alexander Sylvester; Ding, Fei


    Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed...

  17. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort


    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  18. Combining model and satellite data to investigate the effect of light absorbing impurities on snow melt and discharge generation (United States)

    Matt, F.; Burkhart, J. F.


    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.

  19. Modeling and simulation of experimentally fabricated QDSSC using ZnS as light absorbing and blocking layer (United States)

    Mehrabian, Masood; Dalir, Sina


    Abstract—Two main factors which limit the power conversion efficiency of solar cells are light absorption and recombination processes. In photovoltaic (PV) devices, low energy photons cannot be absorbed and excite electrons from valance band to conduction band, hence do not contribute to the current. On the other hand, high energy photons cannot be efficiently used due to a poor match to the energy gap. Existence of charge recombination in PV devices causes the low conversion performance, which is indicated by the low open-circuit voltage ( V OC ). Using a blocking layer in system could effectively reduce the recombination of charge carriers. In this study, we simulated a solar cell with ITO/ZnO/P3HT&PCBM/Ag structure. To prevent the charge recombination, a ZnS QD layer was used which acts as a light absorbing and a recombination blocking layer in the ITO/ZnO film/ZnS QD/P3HT&PCBM/Ag structure. The simulated J- V characteristics of solar cells showed a close match with the experimental results. Simulate data showed an increase of conversion efficiency in ZnS QDSSC from 1.71 to 3.10%, which is relatively 81.28% increase.

  20. Effect of elevated manganese on the ultraviolet- and blue light-absorbing compounds of cucumber cotyledons and leaf tissues

    International Nuclear Information System (INIS)

    Caldwell, C.R.


    The effect of manganese [Mn(II)] on the pigments of cucumber (Cucumis sativus L., cv Poinsett 76) leaf and cotyledon tissues was investigated. Tissue disks (7 mm) were exposed to increasing Mn(II) concentrations from 100 micromolar to 2.5 mM. Acetone (carotenoid-rich fraction) and acidified methanol (flavonoid-rich fraction) extracts were analyzed by high performance liquid chromatography. Although none of the Mn(II)-treated tissues showed visible damage, Mn(II) at concentrations of 250 micromolar and above significantly reduced (60%) the beta-carotene levels of light-incubated leaf tissues. A major Mn(II)-induced, UV-absorbing compound was observed in methanol extracts of cotyledonary tissues exposed to Mn(II) in the dark. In leaf tissues, Mn(II) reduced the levels of certain UV-absorbing compounds under both light conditions. These results demonstrate that excess leaf Mn(II) can rapidly impair isoprenoid metabolism, altering tissue carotenoid composition. Furthermore, Mn(II) may also modify phenylpropanoid metabolism, changing the tissue flavonoid composition. Both situations could sensitize plant tissues to oxidative stresses, particularly enhanced solar UV-B radiation, and may reduce the nutritional quality of leafy vegetables

  1. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate. (United States)

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D


    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  2. Room temperature strong light-matter coupling in 3D THz meta-atoms (Conference Presentation) (United States)

    Paulillo, Bruno; Manceau, Jean-Michel; Li, Lianhe; Linfield, Edmund; Colombelli, Raffaele


    We demonstrate strong light-matter coupling at room temperature in the terahertz (THz) spectral region using 3D meta-atoms with extremely sub-wavelength volumes. Using an air-bridge fabrication scheme, we have implemented sub-wavelength 3D THz micro-resonators that rely on suspended loop antennas connected to semiconductor-filled patch cavities. We have experimentally shown that they possess the functionalities of lumped LC resonators: their frequency response can be adjusted by independently tuning the inductance associated the antenna element or the capacitance provided by the metal-semiconductor-metal cavity. Moreover, the radiation coupling and efficiency can be engineered acting on the design of the loop antenna, similarly to conventional RF antennas. Here we take advantage of this rich playground in the context of cavity electrodynamics/intersubband polaritonics. In the strong light-matter coupling regime, a cavity and a two-level system exchange energy coherently at a characteristic rate called the vacuum Rabi frequency ΩR which is dominant with respect to all other loss mechanisms involved. The signature, in the frequency domain, is the appearance of a splitting between the bare cavity and material system resonances: the new states are called upper and a lower polariton branches. So far, most experimental demonstrations of strong light-matter interaction between an intersubband transition and a deeply sub-wavelength mode in the THz or mid-infrared ranges rely on wavelength-scale or larger resonators such as photonic crystals, diffractive gratings, dielectric micro-cavities or patch cavities. Lately, planar metamaterials have been used to enhance the light-matter interaction and strongly reduce the interaction volume by engineering the electric and magnetic resonances of the individual subwavelength constituents. In this contribution we provide evidence of strong coupling between a THz intersubband transition and an extremely sub-wavelength mode (≈λ/10

  3. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. (United States)

    Gan, Xuetao; Mak, Kin Fai; Gao, Yuanda; You, Yumeng; Hatami, Fariba; Hone, James; Heinz, Tony F; Englund, Dirk


    We demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample. A coupled-mode theory model matches experimental observations and indicates significantly increased light absorption in the graphene layer. The coupled graphene-cavity system also enables precise measurements of graphene's complex refractive index.

  4. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server


    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  5. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport

    NARCIS (Netherlands)

    Liew, S.F.; Popoff, S.M.; Mosk, Allard; Vos, Willem L.; Cao, H.


    While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption modifies the transmission channels in random media. We present a numerical study on the effects of optical absorption on the maximal transmission and minimal reflection channels in a

  6. a-Si/SiN{sub x} multilayered light absorber for solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, A. K., E-mail:; Rai, D. K.; Mathew, Meril; Solanki, C. S. [Indian Institute of Technology Bombay, Department of Energy Science and Engineering (India)


    40 alternate a-Si/SiN{sub x} multilayer are incorporated as an absorber layer in a p-i-n solar cell. The device is fabricated using hot-wire chemical vapor deposition (HWCVD) technique. The structure of the multilayer film is examined by high resolution transmission electron microscopy (HR-TEM) which shows distinct formation of alternate a-Si and SiN{sub x} layers. The a-Si and SiN{sub x} layers have thickness of {approx}3.5 and 4 nm, respectively. The photoluminescence (PL) of multilayer film shows bandgap energy of {approx}2.52 eV, is larger than that of the c-Si and a-Si. Dark and illuminated current-voltage (I-V) characterization of the ML films shows that these ML are photosensitive. In the present work, it is seen that the p-i-n structure with i-layer as ML quantum well (QW) structures show photovoltaic effect with relatively high open-circuit voltage (V{sub OC}). The increment of bandgap energy in PL and high V{sub OC} of the device is attributed to the quantum confinement effect (QCE).

  7. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.


    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  8. Diurnal and developmental changes in energy allocation of absorbed light at PSII in field-grown rice. (United States)

    Ishida, Satoshi; Uebayashi, Nozomu; Tazoe, Youshi; Ikeuchi, Masahiro; Homma, Koki; Sato, Fumihiko; Endo, Tsuyoshi


    The allocation of absorbed light energy in PSII to electron transport and heat dissipation processes in rice grown under waterlogged conditions was estimated with the lake model of energy transfer. With regard to diurnal changes in energy allocation, the peak of the energy flux to electron transport, J(PSII), occurred in the morning and the peak of the energy flux to heat dissipation associated with non-photochemical quenching of Chl fluorescence, J(NPQ), occurred in the afternoon. With regard to seasonal changes in energy allocation, J(PSII) in the rapidly growing phase was greater than that in the ripening phase, even though the leaves of rice receive less light in the growing phase than in the ripening period in Japan. This seasonal decrease in J(PSII) was accompanied by an increase in J(NPQ). One of the reasons for the lower J(PSII) in the ripening phase might be a more sever afternoon suppression of J(PSII). To estimate energy dissipation due to photoinhibition of PSII, J(NPQ) was divided into J(fast), which is associated with fast-recovering NPQ mainly due to qE, and J(slow), which is mainly due to photoinhibition. The integrated daily energy loss by photoinhibiton was calculated to be about 3-8% of light energy absorption in PSII. Strategies for the utilization of light energy adopted by rice are discussed. For example, very efficient photosynthesis under non-saturating light in the rapidly growing phase is proposed.

  9. Allocation of absorbed light energy in PSII to thermal dissipations in the presence or absence of PsbS subunits of rice. (United States)

    Ishida, Satoshi; Morita, Ken-ichi; Kishine, Masahiro; Takabayashi, Atsushi; Murakami, Reiko; Takeda, Satomi; Shimamoto, Ko; Sato, Fumihiko; Endo, Tsuyoshi


    The thermal dissipation (TD) of absorbed light energy in PSII is considered to be an important photoprotection process in photosynthesis. A major portion of TD has been visualized through the analysis of Chl fluorescence as energy quenching (qE) which depends on the presence of the PsbS subunit. Although the physiological importance of qE-associated TD (qE-TD) has been widely accepted, it is not yet clear how much of the absorbed light energy is dissipated through a qE-associated mechanism. In this study, the fates of absorbed light energy in PSII with regard to different TD processes, including qE-TD, were quantitatively estimated by the typical energy allocation models using transgenic rice in which psbS genes were silenced by RNA interference (RNAi). The silencing of psbS genes resulted in a decrease in the light-inducible portion of TD, whereas the allocation of energy to electron transport did not change over a wide range of light intensities. The allocation models indicate that the energy allocated to qE-TD under saturating light is 30-50%. We also showed that a large portion of absorbed light energy is thermally dissipated in manners that are independent of qE. The nature of such dissipations is discussed.

  10. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis. (United States)

    Ikeuchi, Masahiro; Sato, Fumihiko; Endo, Tsuyoshi


    To analyze changes of energy allocation in PSII at non-steady state photosynthesis, the induction and relaxation of non-photochemical quenching of Chl fluorescence was re-evaluated with the use of Arabidopsis thaliana mutants in which the ability to induce non-photochemical quenching was either enhanced (npq2) or suppressed (npq1 and npq4). When dark-treated leaves of the wild type (WT) were illuminated, very high Φ f,D , which represents the loss of excitation energy via non-regulated dissipation, at the beginning of light illumination was gradually decreased to the steady-state level. In contrast, Φ NPQ , representing regulated energy dissipation in PSII, was relatively constant after a significant change in the first 10 min. In npq1 and npq4 mutants, lower Φ NPQ resulted in much higher Φ f,D than in the WT. Comparison of npq1 and npq4 mutants showed a kinetic difference of two types of non-photochemical quenching. Because non-photochemical quenching calculated as NPQ = F m - F m ')/F m ' was determined by the interplay between Φ NPQ and Φ f,D , NPQ and Φ NPQ , both of which represent regulatory heat dissipation, were not linearly correlated. We showed that the kinetics of NPQ formation in the light and relaxation in the dark were affected by drastic changes in Φ f,D We discuss the nature of a high level of Φ f,D at the dark-light transition. We also point out an unavoidable problem of applying the energy allocation model when the F v /F m value changes during a photoinhibiotry illumination. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email:

  11. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming


    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate (United States)

    Tang, Enling; Zhang, Lijiao; Zhang, Qingming; Shi, Xiaohan; Wang, Meng; Wang, Di; Xiang, Shenghai; Xia, Jin; Han, Yafei; Xu, Mingyang; Wu, Jin; Zhang, Shuang; Yuan, Jianfei


    In order to study the light flash radiant intensity produced by strong shock on a 2A12 aluminum target at the same projectile incidence angles and different shock velocities, experimental measurements were conducted for light flash phenomena of a 2A12 aluminum projectile impacting a 2A12 aluminum target under the conditions of different impact velocity and the same projectile incidence angles of 45° by using an optical pyrometer measurement system and a two-stage light gas gun loading system. Experimental results show that the peak values of the light flash radiant intensity for the wavelength of 550 nm are largest in the wavelength ranges of 600 nm, 650 nm and 700 nm when a 2A12 aluminum projectile impacts a double-layer 2A12 aluminum plate in the present experimental conditions. supported by National Natural Science Foundation of China (Nos. 10972145, 11272218, 11472178), State Key Program of National Natural Science of China (No. 11032003), Program for Liaoning Excellent Talents in University, China (No. LR2013008)

  13. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca


    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  14. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water (United States)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho


    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  15. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet


    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  16. Characterization of organic/organic' and organic/inorganic heterojunctions and their light-absorbing and light-emitting properties (United States)

    Anderson, Michele Lynn

    Increasing the efficiency and durability of organic light-emitting diodes (OLEDs) has attracted attention recently due to their prospective wide-spread use as flat-panel displays. The performance and efficiency of OLEDs is understood to be critically dependent on the quality of the device heterojunctions, and on matching the ionization potentials (IP) and the electron affinities (EA) of the luminescent material (LM) with those of the hole (HTA) and electron (ETA) transport agents, respectively. The color and bandwidth of OLED emission color is thought to reflect the packing of the molecules in the luminescent layer. Finally, materials stability under OLED operating conditions is a significant concern. LM, HTA, and ETA thin films were grown in ultra-high vacuum using the molecular beam epitaxy technique. Thin film structure was determined in situ using reflection high energy electron diffraction (RHEED) and ex situ using UV-Vis spectroscopy. LM, HTA, and ETA occupied frontier orbitals (IP) were characterized by ultraviolet photoelectron spectroscopy (UPS), and their unoccupied frontier orbitals (EA) estimated from UV-Vis and fluorescence spectroscopies in combination with the UPS results. The stability of the molecules toward vacuum deposition was verified by compositional analysis of thin film X-ray photoelectron spectra. The stability of these materials toward redox processes was evaluated by cyclic voltammetry in nonaqueous media. Electrochemical data provide a more accurate estimation of the EA since the energetics for addition of an electron to a neutral molecule can be probed directly. The energetic barriers to charge injection into each layer of the device has been correlated to OLED turn-on voltage, indicating that these measurements may be used to screen potential combinations of materials for OLEDs. The chemical reversibility of LM voltammetry appears to limit the performance and lifetimes of solid-state OLEDs due to degradation of the organic layers. The

  17. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China (United States)

    Pu, Wei; Wang, Xin; Wei, Hailun; Zhou, Yue; Shi, Jinsen; Hu, Zhiyuan; Jin, Hongchun; Chen, Quanliang


    A large field campaign was conducted and 284 snow samples were collected at 38 sites in Xinjiang Province and 6 sites in Qinghai Province across northwestern China from January to February 2012. A spectrophotometer combined with chemical analysis was used to measure the insoluble light-absorbing particles (ILAPs) and chemical components in seasonal snow. The results indicate that the cleanest snow was found in northeastern Xinjiang along the border of China, and it presented an estimated black carbon (CBCest) of approximately 5 ng g-1. The dirtiest snow presented a CBCest of approximately 450 ng g-1 near industrial cities in Xinjiang. Overall, the CBCest of most of the snow samples collected in this campaign was in the range of 10-150 ng g-1. Vertical variations in the snowpack ILAPs indicated a probable shift in emission sources with the progression of winter. An analysis of the fractional contributions to absorption implied that organic carbon (OC) dominated the 450 nm absorption in Qinghai, while the contributions from BC and OC were comparable in Xinjiang. Finally, a positive matrix factorization (PMF) model was run to explore the sources of particulate light absorption, and the results indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.

  18. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level (United States)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia


    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of

  19. Radiative Absorption by Light Absorbing Carbon: Uncertainty, Temporal and Spatial Variation in a Typical Polluted City in Yangtze River Delta (United States)

    Chen, D.; Zhao, Y.; Lyu, R.


    The optical properties of light absorbing carbon (LAC) in atmospheric aerosols, including their uncertainties, temporal change and spatial pattern were studied at suburban, urban and industrial sites in Nanjing, a typical polluted city in Yangtze River Delta (YRD). The optical properties of black carbon (BC) and the uncertainty in radiative absorption of BC were quantified combining cavity attenuated phase shift (CAPS) and thermal-optical techniques. It was found that applying a constant value from previous studies for multiple scattering factor could not well represent the actual absorption characteristics of aerosols in Nanjing. The relative deviation between calculated and measured absorption coefficient of BC was up to 56 ± 34%. A significant positive correlation (R2=0.95) was found between multiple scattering factor (C*) and the mixing state of EC (ECopt/EC) within the ECopt/EC ranged 0.43 0.92 (C*=1.64(ECopt/EC)+1.47, 0.43opt/ECbiogenic volatile organic compounds (BVOCs) was higher in summer (5.8%) than that in autumn (0.5%). Brown carbon (BrC) associated with anthropogenic precursors was stronger in light absorption than that from biogenic sources, thus precursors of secondary organic aerosol (SOA) was probably the main reason for seasonal variation in MAE of BrC. At industrial site, linear positive correlation (R=0.87) was found between measured MSOC and secondary organic carbon (SOC), suggesting SOA formation was the major source of MSOC in this area. The lower MAE values of MSOC indicated that BrC generated from secondary sources might demonstrate weaker light absorbing ability than that from primary emissions. Furthermore, quantitative analysis showed that MAE BrC, 365 reduced by 0.26 m2/g when SOC increased by 1μgC/m3. This study provided insights into a more comprehensive understanding of LAC aerosol in cities with heavy particle pollution, since MSOC served as a surrogate for BrC and EC was measured with reliable and effective methods.

  20. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant (United States)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun


    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  1. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine. (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J


    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  2. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  3. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells (United States)


    porphyrin and induction of apoptosis. Journal of Photochemistry and Photobiology B: Biology 2006, 85, 155-162. 4. You, Y .; Daniels, T. S.; Dominiak, P. M...Cells were loaded with 0.4% trypan blue on a hematocytometer slide at the ratio 1:1 (v/v) and analyzed by light microscopy. The percentage of dead...Modified Porphyrins Absorbing Long- Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells PRINCIPAL INVESTIGATOR: Michael R

  4. Laser based imaging of time depending microscopic scenes with strong light emission (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik


    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  5. Voltage-Controlled Switching of Strong Light-Matter Interactions using Liquid Crystals. (United States)

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A; George, Jino; Ebbesen, Thomas W; Börjesson, Karl


    We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-N str vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)


    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  7. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting. (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su


    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  8. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing (United States)

    Li, Xiaofei; Kang, Shichang; Zhang, Guoshuai; Qu, Bin; Tripathee, Lekhendra; Paudyal, Rukumesh; Jing, Zhefan; Zhang, Yulan; Yan, Fangping; Li, Gang; Cui, Xiaoqing; Xu, Rui; Hu, Zhaofu; Li, Chaoliu


    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non-monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% ± 3% and 46% ± 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m- 2 and 7-64 W m- 2, respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.

  9. Measurements of light-absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo (United States)

    Dang, Cheng; Warren, Stephen G.; Fu, Qiang; Doherty, Sarah J.; Sturm, Matthew; Su, Jing


    Using field observations, we perform radiative transfer calculations on snowpacks in the Arctic, China, and North America to quantify the impact of light-absorbing particles (LAPs) on snow albedo and its sensitivity to different factors. For new snow, the regional-averaged albedo reductions caused by all LAPs in the Arctic, North America, and China are 0.009, 0.012, and 0.077, respectively, of which the albedo reductions caused by black carbon (BC) alone are 0.005, 0.005, and 0.031, corresponding to a positive radiative forcing of 0.06, 0.3, and 3 W m-2. For the same particulate concentrations, the albedo reduction for old melting snow is larger than that of new snow by a factor of 2; this leads to 3-8 times larger radiative forcing, in part due to higher solar irradiance in the melting season. These calculations used ambient snowpack properties; if all snowpacks were instead assumed to be optically thick, the albedo reduction would be 20-50% larger for new snow in the Arctic and North America and 120-300% larger for old snow. Accounting for non-BC LAPs reduces the albedo reduction by BC in the Arctic, North America, and China by 32%, 29%, and 70%, respectively, for new snow and 11%, 7%, and 51% for old snow. BC-in-snow albedo reduction computed using a two-layer model agrees reasonably with that computed using a multilayer model. Biases in BC concentration or snow depth often lead to nonlinear biases in BC-induced albedo reduction.

  10. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III) (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon


    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  11. Spectral Analysis of the Light Flash Produced by a Natural Dolomite Plate Under Strong Shock

    International Nuclear Information System (INIS)

    Tang Enling; Xu Mingyang; Shi Xiaohan; Wang Meng; Wang Di; Xiang Shenghai; Xia Jin; Han Yafei; Zhang Lijiao; Wu Jin; Zhang Shuang; Yuan Jianfei; Zhang Qingming


    In order to obtain the elemental compositions of the projectile and target materials during 2A12 aluminum projectile shot on a natural dolomite plate, three kinds of experiments have been conducted using a spectral acquirement system established on a two-stage light gas gun for impact velocities ranging from 2.20 km/s to 4.20 km/s, at the same projectile incidence angle of 30°. Experimental results show that the elemental compositions of the projectile and target materials in the strong shock experiments have a good agreement with the original elemental compositions of the projectile and target. In addition, the relations between spectral radiant intensity and elemental compositions of the projectile and target materials have been obtained for different impact velocities, in which the spectral radiant intensity of the main elements in the material increases with increasing impact velocity, and more elements appear with increasing impact velocity since more energy would result from a higher velocity impact. (paper)

  12. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    Directory of Open Access Journals (Sweden)

    Saeid Nikafshar


    Full Text Available Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM imaging. Additionally, the glass transition temperatures (Tg before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light.

  13. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber. (United States)

    Hwang, Chi-Young; Yi, Yoonsik; Choi, Choon-Gi


    We present a method for reflection-type spatial amplitude modulation using a sub-wavelength plasmonic absorber structure that can operate in the visible region. We utilize a pixelated array of absorbing elements based on a two-dimensional sub-wavelength metal grating, and the reflectance of each pixel is controlled by simple structural modification. For the purpose of validation, numerical simulations were performed on an amplitude modulation hologram fabricated using our method.

  14. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine


    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  15. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations (United States)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.


    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  16. Light absorbing impurity deposition over the Himalayan-Karakoram-Hindu Kush-Tibetan cryosphere: a review and satellite-based characterization (United States)

    Kodamana, Rithwik; Gautam, Ritesh


    Light absorbing impurities such as black carbon and dust reduce the reflectance of snow/ice surface. The impurities absorb the incoming solar radiation thereby accelerating snow aging and melting. This further accelerates the processes of snow albedo reduction and melting. A recently-conducted ice core study in Mera Peak shows that annual dust mass fluxes (10.4+/-2.8 g m-2 yr-1) are a few orders of magnitude higher than black carbon (7.9+/-2.8 g m-2 yr-1). A similar study conducted in the Tibetan Plateau showed a decrease in the amount of mineral dust deposition since 1940s indicating that the increased glacier melt can be attributed to increased black carbon emission than dust. The concentrations of black carbon and dust peak during the pre-monsoon season. Spectral reflectance curves derived from satellite imagery for the Himalayan Tibetan Plateau showed domination of dust-induced solar absorption during the pre-monsoon season. Spatial distribution of reflectance also depends on the transport pathway of impurities, with the south western Hindu Kush and Himalaya experiencing greater dust influx, deposition and snow albedo reduction than northern regions of Karakoram. In this study, we characterize the light absorbing impurities deposited in Himalayan regions using multi spectral data from MODIS and LANDSAT. On comparing the spectral reflectance curves derived from MODIS rand LANDSAT for the overlapping periods and areas and by observing the VIS-NIR gradient of spectral reflectance, determination of the type of light absorbing impurity, mainly mineral dust, and its relation to snow properties are derived.

  17. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. (United States)

    Shiraishi, Yasuhiro; Kofuji, Yusuke; Kanazawa, Shunsuke; Sakamoto, Hirokatsu; Ichikawa, Satoshi; Tanaka, Shunsuke; Hirai, Takayuki


    Platinum (Pt) nanoparticles with C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to Pt particles.

  18. Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. (United States)

    Wang, Hao; Liu, Pu; Ke, Yanlin; Su, Yunkun; Zhang, Lei; Xu, Ningsheng; Deng, Shaozhi; Chen, Huanjun


    Steering incident light into specific directions at the nanoscale is very important for future nanophotonics applications of signal transmission and detection. A prerequisite for such a purpose is the development of nanostructures with high-efficiency unidirectional light scattering properties. Here, from both theoretical and experimental sides, we conceived and demonstrated the unidirectional visible light scattering behaviors of a heterostructure, Janus dimer composed of gold and silicon nanospheres. By carefully adjusting the sizes and spacings of the two nanospheres, the Janus dimer can support both electric and magnetic dipole modes with spectral overlaps and comparable strengths. The interference of these two modes gives rise to the narrow-band unidirectional scattering behaviors with enhanced forward scattering and suppressed backward scattering. The directionality can further be improved by arranging the dimers into one-dimensional chain structures. In addition, the dimers also show remarkable electromagnetic field enhancements. These results will be important not only for applications of light emitting devices, solar cells, optical filters, and various surface enhanced spectroscopies but also for furthering our understanding on the light-matter interactions at the nanoscale.

  19. Investigating the effect and uncertainties of light absorbing impurities in snow and ice on snow melt and discharge generation using a hydrologic catchment model and satellite data (United States)

    Matt, Felix; Burkhart, John F.


    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.

  20. Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire (United States)

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.


    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. We report here detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates and utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.

  1. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server


    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  2. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik


    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  3. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.


    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  4. Versatile spectrophotometer for photosynthesis (light-induced changes in absorbance and fluorescence yield, circular and linear dichroism) and other biophysical measurements (United States)

    Ke, Bacon; Breeze, Robert H.; Dolan, Edward; Vore, Duane


    The construction of a versatile, single-beam spectrophotometer expanded from a previously reported circular dichrometer utilizing an elasto-optic modulator (EOM) for producing circular polarization, is described. The new spectrophotometer is capable of measuring circular dichroism as well as linear dichroism and light-induced changes in absorbance and fluorescence yield, the latter being two of the most commonly measured properties in photosynthesis research. The use of an EOM, along with a phase-sensitive detector, affords high sensitivity and at the same time, in conjuction with a mechanical phosphoroscopic device, a high degree of immunity from artifacts in studies employing actinic light. A description is given of the generation and use of timing signals essential for control and signal processing. Its performance is illustrated by examples drawn from light-induced absorbance and fluorescence-yield changes associated with photosynthetic electron transport and changes in redox state of electron carriers. This photometer, with very little modification, may also be used to perform a host of other types of measurements.

  5. Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673 (United States)

    Wang, Haimin; Yurchyshyn, Vasyl; Liu, Chang; Ahn, Kwangsu; Toriumi, Shin; Cao, Wenda


    Solar Active Region (AR) 12673 is the most flare productive AR in the solar cycle 24. It produced four X-class flares including the X9.3 flare on 06 September 2017 and the X8.2 limb event on 10 September. Sun and Norton (2017) reported that this region had an unusual high rate of flux emergence, while Huang et al. (2018) reported that the X9.3 flare had extremely strong white-light flare emissions. Yang at al. (2017) described the detailed morphological evolution of this AR. In this report, we focus on usual behaviors of the light bridge (LB) dividing the delta configuration of this AR, namely the strong magnetic fields (above 5500 G) in the LB and apparent photospheric twist as shown in observations with a 0.1 arcsec spatial resolution obtained by the 1.6m telescope at Big Bear Solar Observatory.

  6. Spatial Evolution of a Strong Field of Few-cycle Light Beam in Dielectric Media with Induced Plasma Nonlinearity

    International Nuclear Information System (INIS)

    Stumpf, S A; Korolev, A A; Kozlov, S A


    The paper reports results of computer simulation of strong light beam propagation in dielectric media in case of plasma generation. We investigate an extra-broadening of radiation spectrum to a 'violet' wing of visible range. We show that the resulting pulse spectrum is represented by sequence of well-separated maximums, broadening as propagation distance increases. Experimental data are compared with simulation results, showing a good mutual correspondence of spectral representations

  7. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.


    We demonstrate theoretically that a strong high-frequency circularly polarized electromagnetic field can turn a two-dimensional periodic array of interconnected quantum rings into a topological insulator. The elaborated approach is applicable to calculate and analyze the electron energy spectrum of the array, the energy spectrum of the edge states, and the corresponding electronic densities. As a result, the present theory paves the way to optical control of the topological phases in ring-based mesoscopic structures.

  8. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit. (United States)

    Sperdouli, Ilektra; Moustakas, Michael


    Water deficit stress promotes excitation pressure and photooxidative damage due to an imbalance between light capture and energy use. Young leaves (YL) of Arabidopsis thaliana plants acclimate better to the onset of water deficit (OnsWD) than do mature leaves (ML). To obtain a better understanding of this differential response, we evaluated whether YL and ML of A. thaliana exposed to the OnsWD, mild water deficit (MiWD) and moderate water deficit (MoWD), show differences in their photosynthetic performance, and whether photosynthetic acclimation correlates with leaf developmental stage. Water deficit (WD) resulted in greater photooxidative damage in ML compared to YL, but the latter could not be protected under the OnsWD or MiWD, but only under MoWD. YL of A. thaliana with signs of photosynthetic acclimation under MoWD retained higher maximum quantum yield (Fv/Fm) and decreased reactive oxygen species (ROS) formation. YL under MoWD, show a reduced excitation pressure and a better balance between light capture and photochemical energy use, which contributed to their photoprotection, but only under low light intensity (LL, 130μmolphotonsm(-2)s(-1)) and not under high light (HL, 1200μmolphotonsm(-2)s(-1)). In conclusion, leaf developmental stage was correlated with photo-oxidative damage and a differential allocation of absorbed light energy in photosystem II (PSII) of Arabidopsis leaves under WD. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Strong light-extraction enhancement in GaInN light-emitting diodes patterned with TiO2 micro-pillars with tapered sidewalls (United States)

    Ma, Ming; Cho, Jaehee; Fred Schubert, E.; Park, Yongjo; Bum Kim, Gi; Sone, Cheolsoo


    An effective method to enhance the light extraction for GaInN light-emitting diodes (LEDs) is reported. The method employs TiO2 micro-pillars with tapered sidewalls, which are refractive-index-matched to the underlying GaN. The tapered micro-pillars are fabricated by using reflowed photoresist as mask during CHF3-based dry etch, with O2 added in order to precisely control the taper angle. LEDs patterned with TiO2 micro-pillars with tapered sidewalls show a 100% enhancement in light-output power over planar reference LEDs. The measured results are in good agreement with ray-tracing simulations, showing strong potential of optical surfaces that are controlled in terms of refractive index and lateral structure.

  10. Elastic removal self-shielding factors for light and medium nuclides with strong-resonance scattering

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Ishiguro, Yukio; Tokuno, Yukio.


    The self-shielding factors for elastic removal cross sections of light and medium weight nuclides were calculated for the parameter, σ 0 within the conventional concept of the group constant sets. The numerical study were performed for obtaining a simple and accurate method. The present results were compared with the exact values and the conventional ones, and shown to be remarkably improved. It became apparent that the anisotropy of the elastic scattering did not affect to the self-shielding factors though it did to the infinite dilution cross sections. With use of the present revised set, the neutron flux were calculated in an iron medium and in a prototype FBR and compared with those by the fine spectrum calculations and the conventional set. The present set showed the considerable improvement in the vicinity of the large resonance regions of sodium, iron and oxygen. (auth.)

  11. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide (United States)

    Wang, Jigang


    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  12. Strong enhancement of emission efficiency in GaN light-emitting diodes by plasmon-coupled light amplification of graphene (United States)

    Kim, Jong Min; Kim, Sung; Hwang, Sung Won; Kim, Chang Oh; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kang, Soo Seok; Hwang, Euyheon; Choi, Suk-Ho; El-Gohary, Sherif H.; Byun, Kyung Min


    Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ∼1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2–1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.

  13. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen


    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  14. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. (United States)

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J


    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  15. Properties of light-absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect (United States)

    Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Setoguchi, Yoshitaka; Ogawa, Shuhei; Kawana, Kaori; Mochida, Michihiro; Ikemori, Fumikazu; Matsumoto, Kiyoshi; Matsumi, Yutaka


    The optical properties of aerosols at 405 and 781 nm were measured in an urban site in Nagoya, Japan, in August 2011 and in January 2012 using a photoacoustic spectrometer. Comparison of the absorption coefficient at 781 nm of aerosols that did and did not pass through a thermo-denuder showed that an increase in black carbon (BC) light absorption due to the coating of non-refractory materials (i.e., the lensing effect) was small (on average, 10%) in August and negligible in January. The effective density distributions for the particles that did and did not pass through the thermo-denuder, which were measured simultaneously in August, suggested that the majority of BC particles sampled had a minimal coating. The small lensing effect observed can be explained partly by assuming that a large portion of non-refractory materials was mixed externally with BC. The contribution of direct light absorption by organic matter (OM) that vaporized at temperatures below 300°C to the total light absorption at 405 nm was negligible in August, but those by OM that vaporized below 300 and 400°C averaged 11 and 17%, respectively, in January. The larger contribution of light-absorbing OM in January is likely due to the greater contribution of OM originating from the burning of biomass, including biofuel and agricultural residue, in Japan, northern China, or Siberia, during the winter.

  16. Inelastic light scattering to probe strongly correlated bosons in optical lattices

    International Nuclear Information System (INIS)

    Fort, Chiara; Fabbri, Nicole; Fallani, Leonardo; Clement, David; Inguscio, Massimo


    We have used inelastic light scattering to study correlated phases of an array of one-dimensional interacting Bose gases. In the linear response regime, the observed spectra are proportional to the dynamic structure factor. In particular we have investigated the superfluid to Mott insulator crossover loading the one-dimensional gases in an optical lattice and monitoring the appearance of an energy gap due to finite particle-hole excitation energy. We attribute the low frequency side of the spectra to the presence of some superfluid and normal phase fraction between the Mott insulator regions with different fillings produced in the inhomogeneous systems. In the Mott phase we also investigated excitations to higher excited bands of the optical lattice, the spectra obtained in this case being connected to the single particle spectral function. In one-dimensional systems the effect of thermal fluctuations and interactions is enhanced by the reduced dimensionality showing up in the dynamic structure factor. We measured the dynamic structure factor of an array of one-dimensional bosonic gases pointing out the effect of temperature-induced phase fluctuations in reducing the coherence length of the system.

  17. Studies on the independence of the strong interactions on the flavor quantum numbers with bottom, charm, strange, and light quarks

    International Nuclear Information System (INIS)

    Biebel, O.


    A study of possible flavour dependence of the strong interaction is presented using data collected with the OPAL detector at the e + e - collider LEP. Four subsamples of events, highly enriched in bottom, charm, strange and light quarks are obtained from high momentum electrons and muons, D *± mesons, K s 0 mesons, and highly energetic stable charged particles, respectively. From the jet production rates of each of these four samples a strong coupling constant α s f for the dominant quark flavour is derived. The ratios of α s for a specific quark flavour f and its complementary flavours are determined to be α s b /α s udsc =1.017±0.036, α s c /α s udsb =0.918±0.115, α s s /α s udcb =1.158±0.164, α s uds /α s cb =1.038 ± 0.221, where the errors are combinations of statistical and systematic uncertainties. In combining the relevant data samples, a systematic study of possible dependence of the strong interaction on quark mass, weak isospin, and generation is performed. No evidence for any such dependence of the strong coupling constant α s is observed. Finally all samples are combined to determine the strong coupling constant of each flavour individually. Again the results are well consistent with the flavour independence of QCD. (orig.)

  18. Comparative studies of density-functional approximations for light atoms in strong magnetic fields (United States)

    Zhu, Wuming; Zhang, Liang; Trickey, S. B.


    For a wide range of magnetic fields, 0≤B≤2000 a.u., we present a systematic comparative study of the performance of different types of density-functional approximations in light atoms (2≤Z≤6). Local, generalized-gradient approximation (GGA; semilocal), and meta-GGA ground-state exchange-correlation (xc) functionals are compared on an equal footing with exact-exchange, Hartree-Fock (HF), and current-density-functional-theory (CDFT) approximations. Comparison also is made with published quantum Monte Carlo data. Though all approximations give qualitatively reasonable results, the exchange energies from local and GGA functionals are too negative for large B. Results from the Perdew-Burke-Ernzerhof ground-state GGA and Tao-Perdew-Staroverov-Scuseria (TPSS) ground-state meta-GGA functionals are very close. Because of confinement, self-interaction error in such functionals is more severe at large B than at B =0, hence self-interaction correction is crucial. Exact exchange combined with the TPSS correlation functional results in a self-interaction-free (xc) functional, from which we obtain atomic energies of comparable accuracy to those from correlated wave-function methods. Specifically for the B and C atoms, we provide beyond-HF energies in a wide range of B fields. Fully self-consistent CDFT calculations were done with the Vignale-Rasolt-Geldart (VRG) functional in conjunction with the PW92 xc functional. Current effects turn out to be small, and the vorticity variable in the VRG functional diverges in some low-density regions. This part of the study suggests that nonlocal, self-interaction-free functionals may be better than local approximations as a starting point for CDFT functional construction and that some basic variable other than the vorticity could be helpful in making CDFT calculations practical.

  19. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine. (United States)

    Sommer, Andrei P; Zhu, Dan; Mester, Adam R; Försterling, Horst-Dieter


    Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.

  20. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures. (United States)

    Radaelli, P G; Dhesi, S S


    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai


    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  2. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector (United States)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration


    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  3. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg


    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  4. Artificial biomelanin: highly light-absorbing nano-sized eumelanin by biomimetic synthesis in chicken egg white. (United States)

    della Vecchia, Nicola Fyodor; Cerruti, Pierfrancesco; Gentile, Gennaro; Errico, Maria Emanuela; Ambrogi, Veronica; D'Errico, Gerardino; Longobardi, Sara; Napolitano, Alessandra; Paduano, Luigi; Carfagna, Cosimo; d'Ischia, Marco


    The spontaneous oxidative polymerization of 0.01-1% w/w 5,6-dihydroxyindole (DHI) in chicken egg white (CEW) in the absence of added solvents leads to a black, water-soluble, and processable artificial biomelanin (ABM) with robust and 1 order of magnitude stronger broadband light absorption compared to natural and synthetic eumelanin suspensions. Small angle neutron scattering (SANS) and transmission electron microscopy (TEM) analysis indicated the presence in the ABM matrix of isolated eumelanin nanoparticles (≤100 nm) differing in shape from pure DHI melanin nanoparticles (SANS evidence). Electron paramagnetic resonance (EPR) spectra showed a slightly asymmetric signal (g ∼ 2.0035) similar to that of solid DHI melanin but with a smaller amplitude (ΔB), suggesting hindered spin delocalization in biomatrix. Enhanced light absorption, altered nanoparticle morphology and decreased free radical delocalization in ABM would reflect CEW-induced inhibition of eumelanin aggregation during polymerization accompanied in part by covalent binding of growing polymer to the proteins (SDS-PAGE evidence). The technological potential of eumelanin nanosizing by biomimetic synthesis within a CEW biomatrix is demonstrated by the preparation of an ABM-based black flexible film with characteristics comparable to those of commercially available polymers typically used in electronics and biomedical applications.

  5. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail:; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)


    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  6. Scattered-Field FDTD and PSTD Algorithms with CPML Absorbing Boundary Conditions for Light Scattering by Aerosols (United States)


    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-CIE-S 2800 Powder Mill Road Adelphi, MD 20783-1197 8. PERFORMING ORGANIZATION...article.)bu ¼ eΔtððsu=εoκuÞþðau=ε0ÞÞ; ð6aÞ cu ¼ ðbu1Þsu suκu þ κ2uau ð6bÞ The CPML properties (ax,κx,sx), (ay,κy,sy), and (az,κz,sz) are scaled tensor ...House; 1995. [12] Yang P, Liou KN. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J Opt Soc

  7. Quantum-Kinetic Approach to Deriving Optical Bloch Equations for Light Emitters in a Weakly Absorbing Dielectric

    Directory of Open Access Journals (Sweden)

    Gladush M.G.


    Full Text Available We obtained the system of Maxwell-Bloch equations (MB that describe the interaction of cw laser with optically active impurity centers (particles embedded in a dielectric material. The dielectric material is considered as a continuous medium with sufficient laser detuning from its absorption lines. The model takes into account the effects associated with both the real and the imaginary part of the dielectric constant of the material. MB equations were derived within a many-particle quantum-kinetic formalism, which is based on Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY hierarchy for reduced density matrices and correlation operators of material particles and the quantized radiation field modes. It is shown that this method is beneficial to describe the effects of individual and collective behavior of the light emitters and requires no phenomenological procedures. It automatically takes into account the characteristics associated with the presence of non-resonant and resonant particles filling the space between the optical centers.

  8. Method of absorbance correction in a spectroscopic heating value sensor (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John


    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  9. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells. (United States)

    Ishii, Ayumi; Miyasaka, Tsutomu


    A thin solid-state dye-sensitized photovoltaic cell is fabricated by composing organic and inorganic heterojunctions in which the visible-light sensitizers are cyclopentadiene derivatives (Cp*) coordinated to a metal oxide, typically TiO2. The coordination bonds of the metallocene molecular complex (Ti-Cp*) create a new LMCT (ligand-to-metal charge transfer) absorption band and induce a rectified charge transfer from the organic ligands to TiO2, leading to photocurrent generation. Photovoltaic junctions are completed by coating crystalline organic molecules (perylene) as a hole-transport layer on the Cp*-coordinated TiO2 surface by using the vapor deposition method. The molecular plane of Cp* on the TiO2 surfaces seems to help the hole-transport layer to form ordered structures, which effectively improve carrier conductivities and minimize interfacial resistance. The organic-inorganic hybrid thin-film photocell with metallocene molecular complexes is capable of generating high open-circuit voltages exceeding 1.2 V. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber. (United States)

    Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei


    Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Parameterization of light scattering for solving the inverse problem of determining the concentrations of the principal light scattering and absorbing admixtures in shelf waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin


    Full Text Available A method for estimating the water backscattering coefficient was put forward on the basis of experimental data of diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance. Calculations were carried out for open sea waters of different types and the spectral dependencies were found ("anomalous" spectra and explained. On this basis, a new model of light backscattering on particles in the sea is proposed. This model may be useful for modelling remote sensing reflectance spectra in order to solve the inverse problems of estimating the concentration of natural admixtures in shelf waters.

  12. High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide. (United States)

    Zhu, Huimin; Pan, Mingao; Johansson, Malin B; Johansson, Erik M J


    Here, a lead-free silver bismuth iodide (AgI/BiI 3 ) with a crystal structure with space group R3‾ m is investigated for use in solar cells. Devices based on the silver bismuth iodide deposited from solution on top of TiO 2 and the conducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole-transport layer are prepared and the photovoltaic performance is very promising with a power conversion efficiency over 2 %, which is higher than the performance of previously reported bismuth-halide materials for solar cells. Photocurrent generation is observed between 350 and 700 nm, and the maximum external quantum efficiency is around 45 %. The results are compared to solar cells based on the previously reported material AgBi 2 I 7 , and we observe a clearly higher performance for the devices with the new silver and bismuth iodides composition and different crystal structure. The X-ray diffraction spectrum of the most efficient silver bismuth iodide material shows a hexagonal crystal structure with space group R3‾ m, and from the light absorption spectrum we obtain an indirect band gap energy of 1.62 eV and a direct band gap energy of 1.85 eV. This report shows the possibility for finding new structures of metal-halides efficient in solar cells and points out new directions for further exploration of lead-free metal-halide solar cells. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Electrically tunable strong light-matter coupling in a transition metal dichalcogenide monolayer embedded in a plasmonic crystal cavity (United States)

    Scuri, Giovanni; Zhou, You; High, Alexander; Dibos, Alan; de Greve, Kristiaan; Polking, Mark; Juaregui, Luis; Wild, Dominik; Joe, Andrew; Pistunova, Kateryna; Lukin, Mikhail; Kim, Philip; Park, Hongkun

    Two-dimensional transition-metal dichalcogenide (TMDC) monolayers exhibit direct bandgap excitons with large binding energy. The optical response of TMDCs is electrically tunable over a broad wavelength range, making these 2D materials promising candidates for optoelectronic devices. In this work, we enhance exciton-plasmon coupling by embedding a single layer of tungsten diselenide (WSe2) into a plasmonic crystal cavity, which confines surface plasmon polaritons in an analogous manner to photonic crystal cavities. We observe strong light-matter interactions and the formation of microcavity polaritons when the cavity mode is on resonance with the exciton absorption in WSe2. Using the electrostatically controllable response of such excitons, we also demonstrate tunable vacuum Rabi splitting in such a system.

  14. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Directory of Open Access Journals (Sweden)

    N. Ma


    Full Text Available In this paper, the mixing state of light absorbing carbonaceous (LAC was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP. A closure study between the hemispheric backscattering fraction (HBF measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer.

  15. Sound Absorbers (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  16. Low Absorbance Measurements (United States)

    Harris, T. D.; Williams, A. M.


    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  17. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands (United States)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong


    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  18. The electrical properties of a strongly disordered system based on lightly doped germanium compensated by disordered regions

    International Nuclear Information System (INIS)

    Evseev, V.A.; Konopleva, R.F.; Yuferev, A.A.


    A study was made of lightly doped (Nsub(Sb) approximately 10 15 cm -3 ) n-Ge, heavily compensated (K = Nsub(A)/N sub(D) approximately 1) by fast neutrons from a reactor. Irradiation is shown to produce, near n-p conversion (annealing has the same effect near p-n conversion), a random relief of electrostatic potential which is caused by the overlap of the space-charge regions surrounding disordered regions (DR). the random potential field results in a spatial 'bending' of the whole band spectrum of germanium, similar to the way it is observed in amorphous semiconductors because of their disorder. Experiments show the conduction in the DR overlap region to be of an activated nature, associated with the ejection of carriers to the corresponding 'percolation' levels. The activation energy of such conduction varies with the degree of compensation. The shift of the Fermi level depends on the degree of compensation here in a much more sensitive way than in the case of compensation by chemical impurities. The properties of Ge obtained by DR overlap and by compensation with chemical impurities are compared. A superlinear I-V characteristic producing the switching effect is observed in strong electric fields (E approximately 10 3 V cm -1 ). A suggestion is made that a study of disordered systems, based on lightly doped germanium which is compensated with DRs produced by high-energy particles, should both help to obtain new information on the parameters of the DRs proper and help to simulate the properties of the amorphous semiconductors. (author)

  19. A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina. (United States)

    Kasulin, Luciana; Rowan, Beth A; León, Rolando J C; Schuenemann, Verena J; Weigel, Detlef; Botto, Javier F


    The growing collection of sequenced or genotyped Arabidopsis thaliana accessions includes mostly individuals from the native Eurasian and N. African range and introduced North American populations. Here, we describe the genetic and phenotypic diversity, along with habitats and life history, of A. thaliana plants collected at the southernmost end of its worldwide distribution. Seed samples were harvested from plants growing in four sites within a ~3500-km 2 -area in Patagonia, Argentina, and represent the first germplasm to be collected in South America for this species. Whole-genome resequencing revealed that plants from the four sites and a Patagonia herbarium specimen collected in 1967 formed a single haplogroup (Pat), indicating that the phenotypic variation observed in the field reflected plastic responses to the environment. admixture and principal components analyses suggest that the ancestor of the Pat haplogroup either came from Italy or the Balkan/Caucasus regions of Eurasia. In the laboratory, plants from the Pat haplogroup were hyposensitive to continuous red (Rc) and shade light, with corresponding changes in the expression of phytochrome signalling genes. Pat had higher PIF3 and PIF5 and lower HY5 expression under Rc light; and lower expression of PIL1, ATHB2 and HFR1 under shade compared to Col-0. In addition, Pat plants had a strong vernalization requirement associated with high levels of FLC expression. We conclude that including Pat in studies of natural variation and in comparison with other introduced populations will provide additional information for association studies and allow for a more detailed assessment of the demographic events following colonization. © 2017 John Wiley & Sons Ltd.

  20. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Meevasana, Warawat


    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO{sub 3} (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La{sub 2}CuO{sub 4} by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO{sub 3}. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a {lambda}{prime} {approx} 0.3 and an overall bandwidth renormalization suggesting an overall {lambda}{prime} {approx} 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  1. Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System. (United States)

    Suram, Santosh K; Xue, Yexiang; Bai, Junwen; Le Bras, Ronan; Rappazzo, Brendan; Bernstein, Richard; Bjorck, Johan; Zhou, Lan; van Dover, R Bruce; Gomes, Carla P; Gregoire, John M


    Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs' phase rule into the algorithm, physically meaningful phase maps are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V-Mn-Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2 O 6 . The open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.

  2. Multiple-band light absorber via combining the fundamental mode and multiple splitting modes of the 3-order response of metamaterial resonator (United States)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing


    We present a rather simple metamaterial design consisted of only a rectangle-shape patch structure with a very small air strip on it to realize triple-band absorption at terahertz frequency. Results prove that three narrow-band absorption peaks are obtained at frequencies of 0.94 THz, 2.44 THz, and 2.85 THz, and the average absorption rates of the three peaks are 97.00%. The resonance at 0.94 THz is attributed to the fundamental mode (or 1-order) response of the metamaterial, while the last two modes are due to the two splitting modes of the 3-order response. The parameter changes of the small air strip in the rectangle-shape patch structure have large influence on the absorption performance of the metamaterial, in particular of the last two modes. Importantly, quad-band absorption can be obtained by introducing one more air strip in the rectangle-shape patch structure. It is found that the first resonance peak is derived from the 1-order response, whereas the last three modes stem from the three splitting modes of the 3-order response of the metamaterial. The combination of the 1-order resonance and multiple splitting modes of the 3-order response provides new design method to realize multiple-band light absorbers.

  3. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates. (United States)

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; Paudyal, Rukumesh; He, Yuanqing; Li, Gang; Wang, Shijin; Pu, Tao; Shi, Xiaoyi


    The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiative forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894ngg -1 in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96Wm -2 . Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Analysis of Light Absorbing Aerosols in Northern Pakistan: Concentration on Snow/Ice, their Source Regions and Impacts on Snow Albedo (United States)

    Gul, C.; Praveen, P. S.; Shichang, K.; Adhikary, B.; Zhang, Y.; Ali, S.


    Elemental carbon (EC) and light absorbing organic carbon (OC) are important particulate impurities in snow and ice which significantly reduce the albedo of glaciers and accelerate their melting. Snow and ice samples were collected from Karakorum-Himalayan region of North Pakistan during the summer campaign (May-Jun) 2015 and only snow samples were collected during winter (Dec 2015- Jan 2016). Total 41 surface snow/ice samples were collected during summer campaign along different elevation ranges (2569 to 3895 a.m.s.l) from six glaciers: Sachin, Henarche, Barpu, Mear, Gulkin and Passu. Similarly 18 snow samples were collected from Sust, Hoper, Tawas, Astore, Shangla, and Kalam regions during the winter campaign. Quartz filters were used for filtering of melted snow and ice samples which were then analyzed by thermal optical reflectance (TOR) method to determine the concentration of EC and OC. The average concentration of EC (ng/g), OC (ng/g) and dust (ppm) were found as follows: Passu (249.5, 536.8, 475), Barpu (1190, 397.6, 1288), Gulkin (412, 793, 761), Sachin (911, 2130, 358), Mear (678, 2067, 83) and Henarche (755, 1868, 241) respectively during summer campaign. Similarly, average concentration of EC (ng/g), OC (ng/g) and dust (ppm) was found in the samples of Sust (2506, 1039, 131), Hoper (646, 1153, 76), Tawas (650, 1320, 16), Astore (1305, 2161, 97), Shangla (739, 2079, 31) and Kalam (107, 347, 5) respectively during winter campaign. Two methods were adopted to identify the source regions: one coupled emissions inventory with back trajectories, second with a simple region tagged chemical transport modeling analysis. In addition, CALIPSO subtype aerosol composition indicated that frequency of smoke in the atmosphere over the region was highest followed by dust and then polluted dust. SNICAR model was used to estimate the snow albedo reduction from our in-situ measurements. Snow albedo reduction was observed to be 0.3% to 27.6%. The derived results were used

  5. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern.

    Directory of Open Access Journals (Sweden)

    Anne Jungandreas

    Full Text Available Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL to blue light (BL and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.

  6. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg


    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  7. Light-induced changes of cubic and uniaxial magnetic aniosotropy in a magnet doped by strongly anisotropic ions

    Czech Academy of Sciences Publication Activity Database

    Zaytseva, I.; Stupakiewicz, A.; Maziewski, A.; Zablotskyy, Vitaliy A.

    254-255, - (2003), s. 118-120 ISSN 0304-8853. [Soft Magnetic Material Conference ( SMM 15). Bilbao, 05.09.2001-07.09.2001] Institutional research plan: CEZ:AV0Z1010914 Keywords : photomagnetic effects * light-induced anisotropy * garnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  8. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields (United States)

    Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.


    We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.

  9. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors. (United States)

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw


    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  10. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.


    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  11. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)


    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  12. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail:; Vinnichenko, M. Ya., E-mail:; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)


    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  13. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.


    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  14. Forbidden singlet exciton transitions induced by localization in polymer light-emitting diodes in a strong electric field. (United States)

    Sun, Zheng; Xu, Yuan-Ping; Li, Sheng; George, Thomas F


    Through combining the electron transition process and dipole moment evolution as well as electron-phonon coupling, molecular dynamics calculations show that the radiative decay of singlet excitons in a conjugated polymer, such as a polymer light-emitting diode (PLED), is largely determined by the evolution of the dipole moment. Without an electric field, the decay life of a singlet exciton is about 1 ns. Once an electric field is applied and exceeds a critical value, with electron-phonon coupling, the original lattice structure evolves into two new localized lattice distortions, consistent with the experimental results. Owing to the new lattice structure and self-trapping, the dipole moment rapidly decreases to zero within 5 fs, eliminating the radiative decay of the singlet exciton.

  15. Strong Visible Light Photocatalytic Activity of Magnetically Recyclable Sol-Gel-Synthesized ZnFe2O4 for Rhodamine B Degradation (United States)

    Xu, Xiaoli; Xiao, Lingbo; Jia, Yanmin; Hong, Yuantign; Ma, Jiangping; Wu, Zheng


    Visible light-responsive ZnFe2O4 photocatalyst with a spinel structure was synthesized via a sol-gel method. The visible light photocatalysis of ZnFe2O4 was investigated by decomposing Rhodamine B (RhB) solution. Under ˜30 min of visible light irradiation, the decomposition ratio of RhB is up to ˜97.4%. The excellent photocatalytic performance of ZnFe2O4 photocatalyst is attributed to the high effective oxidation-reduction reaction caused by light irradiation excitation. With the increase of decomposition time, the wavelength of the maximum absorption peak of RhB solutions shifts from 557 nm to 498 nm ("blue shift"), which is because of the N-deethylation and cleavage of the conjugated chromophore structure of RhB. ZnFe2O4 photocatalyst also exhibits a weak ferromagnetism performance. The decomposition ratio of RhB for the magnetically recycled ZnFe2O4 is ˜94.6%. Strong visible light photocatalysis and convenience of magnetic recycling make ZnFe2O4 promising for photocatalytic applications in dye wastewater treatment.

  16. Importance of strong-correlation on the lattice dynamics of light-actinides Th-Pa alloy (United States)

    de La Peã+/-A Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter

    We have studied the structural, electronic, and lattice dynamics of the Th1-xPax actinide alloy. This system have been analyzed within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the virtual crystal approximation (VCA) for modeling the alloy. In particular, the energetics is analyzed as the ground-state crystal structure is changed form fcc to bct, as well as the electronic density of states (DOS), and the phonon frequencies. Such properties have been calculated with and without strong correlations effects through the LDA+U formalism. Although the strong-correlation does not influence on a great manner the Th properties, such effects are more important as the content increases towards Pa, affecting even the definition of the ground-state crystal structure for Pa (experimentally determined as bct). The evolution of the density of states at the Fermi level (N (EF)) and the phonon frequencies as a function of Pa-content are presented and discussed in detail, aiming to understand their influence on the electron-phonon coupling for the Th-Pa alloy. This research was supported by Conacyt-México under project No. CB2013-221807-F.


    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.


    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  18. Lighting (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  19. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.H. [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); De la Rosa, E., E-mail: [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Velazquez-Salazar, J.J. [Department of Physics and Astronomy, The University of Texas at San Antonio One UTSA Circle, San Antonio TX 78249 (United States)


    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  20. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light. (United States)

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe


    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  1. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.


    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  2. Magnetic field effects on microwave absorbing materials (United States)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.


    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  3. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo


    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  4. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng


    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  5. Bend-absorbing clamp (United States)

    Abbott, J. R.; Valencia, B., Jr.


    Compact, inexpensive clamp for flexible cables or rigid tubes absorbs vibrations and other motion. It accomodates wide range of dimensions, and saves space by eliminating pigtails or bellows commonly used to absorb linear movement or vibrations

  6. Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest? (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew


    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.

  7. Recoverable neutron absorbers

    International Nuclear Information System (INIS)

    Keay, R.T.; Williams, J.A.


    In the reprocessing of irradiated nuclear fuel elements the nuclear fuel material is separated from the material which forms the remainder of the elements by dissolving the nuclear fuel material in nitric acid. Neutron absorbers are added to control criticality. The neutron absorbers comprise pellets each having a core of neutron absorbing material encased in a sheath of a material which is resistant to attack by acid, the core or sheath being magnetic. The sheath protects the core of neutron absorbing material from attack by the acid and the magnetic content of the core or sheath enables the absorbers to be recovered for reuse by magnetic separation techniques. (author)

  8. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng


    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  9. Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, W; Chen, C-C; He, R H; Mo, S-K; Shen, Z-X; Zhou, X J; Moritz, B; Lu, D H; Moore, R G; Devereaux, T P; Fujimori, S-I; Baumberger, F; Van der Marel, D; Nagaosa, N; Zaanen, J


    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle-resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises as to how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is that of perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10 000 at low temperatures, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped STO. In comparison to lightly doped Mott insulators, we find the signatures of only moderate el-ph coupling; a dispersion anomaly associated with the low-frequency optical phonon with a λ ' ∼0.3 and an overall bandwidth renormalization suggesting an overall λ ' ∼0.7 coming from the higher frequency phonons. Furthermore, we find no clear signatures of the large pseudogap or small-polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  10. Light

    CERN Document Server

    Robertson, William C


    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  11. Light

    CERN Document Server

    Rivera, Andrea


    Light is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind light, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  12. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China]. (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan


    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  13. Light

    CERN Document Server

    Ditchburn, R W


    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  14. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry


    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...... states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse...

  15. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк


    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  16. Safety evaluation report related to the Department of Energy's proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    International Nuclear Information System (INIS)


    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor

  17. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling. (United States)

    Yudovsky, Dmitry; Durkin, Anthony J


    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer. © 2011 Optical Society of America

  18. Identification and quantification of (polymeric) hindered-amine light stabilizers in polymers using pyrolysis-gas chromatography-mass spectrometry and liquid chromatography-ultraviolet absorbance detection-evaporative light scattering detection. (United States)

    Coulier, L; Kaal, E R; Tienstra, M; Hankemeier, Th


    Direct analysis of polymers containing polymeric hindered amine light stabilizers (HALS) by using pyrolysis coupled to GC-MS is applied successfully for fast and straightforward identification of these HALS additives. Each of the HALS additives shows different pyrolysis gas chromatograms containing characteristic pyrolysis products. As a result, HALS additives with very similar chemical structures, e.g. Chimassorb 944 and Chimassorb 2020, can be distinguished. A HPLC method with both ultraviolet (UV) and evaporative light scattering detection (ELSD) is developed to quantify the various HALS additives in extracts of polymers. The critical factor of the HPLC method is the use of a basic amine, like n-hexylamine, as a solvent additive to facilitate the elution of HALS additives. The various HALS additives can be distinguished according to retention time and peak shape and by using different detection methods. The suitability of the developed methods is demonstrated by the analytical performance of the HPLC method and the identification and determination of the actual content of HALS additives in polyolefines using pyrolysis GC-MS and HPLC. The HPLC method can also be used for the determination of the specific migration of HALS additives from food contact materials.

  19. Absorber manufacturing made easy

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim


    Whether by means of a laser source or an ultrasound head - automation technology is making progress in the solar thermal sector. S and WE presents news developments in welding technology in absorber manufacture. (orig.)

  20. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.


    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  1. TOMS Absorbing Aerosol Index (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  2. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold


    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  3. Absorbance and fluorescence studies on porphyrin Nanostructures ...

    African Journals Online (AJOL)

    The aim of this work was to study some photophysical properties of PNR for application as light harvester in dye sensitized solar cells. These properties included absorbance, fluorescence, and fluorescence quantum yield and lifetime. The results of Transmission Electron Microscope (TEM) images showed the formation of ...

  4. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.


    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  5. Reduction of the Thompson scattering cross section in a strong circularly polarized light field in a plasma with the change of its spectrum. “quantum-classical” electron (United States)

    Korobkin, V. V.; Romanovsky, M. Yu.


    It is shown that in a strong circularly polarized laser field a classical electron motion around ions can occur. The scattering of these electrons in a plasma has the Thompson cross section in the limit of strongs field only and for a subrelativistic motion of the electrons. There are non-ion satellites apart from the basic frequency in the scattering spectrum.

  6. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.


    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  7. Spectral radiation balance of absorbing aerosols over clouds (United States)

    Stammes, Piet; de Graaf, Martin; Deneke, Hartwig


    Absorption by aerosols, like smoke and desert dust, may lead to strong atmospheric warming, surface cooling, and cloud dynamical responses. Therefore, detection of absorbing aerosols and assessment of their radiative effects is important. However, absorbing aerosols are difficult to detect, especially in cloudy scenes. Here we use a satellite detection technique which can be used to determine the spectral absorption effects of smoke aerosols over clouds, using the fact that aerosols have a much stronger effect at UV and visible wavelengths than at longer wavelengths. We also analyse the shortwave radiative balance of absorbing aerosols over clouds. We have developed a technique of measuring aerosols from their absorption effect using multi-spectral satellite data (De Graaf et al., JGR, 2012). Using a wide spectral range, from the UV (300-400 nm) up to the shortwave (SW) IR (1000-1750 nm), it is possible to distinguish the absorption by aerosols from the scattering by clouds. No microphysical assumptions are needed for the aerosols, except that their absorption must vanish at long wavelengths. With this method, called the Differential Aerosol Absorption (DAA) technique, which was applied to SCIAMACHY satellite data, we measured the direct radiative effect of absorbing biomass burning aerosols over clouds in the South-East Atlantic. We measured instantaneous direct radiative effects by the aerosols of the order of 100 W/m2 at top-of-atmosphere. The spectral radiation balance at both top-of-atmosphere and surface is needed to estimate the amount of absorption inside the aerosol layer. We therefore perform a simulation study, using accurate spectral RT modelling, in which we compute the profile of absorption in the aerosol layer. We find that the atmospheric absorption characteristics cannot be measured only from satellite by using reflected light, also the transmission at the surface has to be measured. Therefore, field campaigns are needed in addition to satellite

  8. Strong Evidence of Variable Micro-meteor Flux from Apollo 17 Samples Obtained at Shorty Crater and on the Light Mantle Avalanche at Taurus-Littrow (United States)

    Schmitt, H. H.; Petro, N. E.


    Light-gray regolith overlying the orange and black pyroclastic ash (Schmitt, 2017) at Shorty Crater protected the ash from incorporation into surrounding basaltic regolith for 3.5 billion years (Tera and Wasserburg, 1976; Saito and Alexander, 1979). Inspection of LROC images indicate this regolith probably came from a 350 m diameter, degraded impact crater (Fitzgibbon Crater), about 1 km NNE of Shorty. This regolith was derived largely from basalt and spread over the ash deposit about 24 Myr (Eugster, et al., 1979, corrected for post-Shorty exposure) after the last ash eruption. Maturity indexes for light gray regolith samples 74441 and 74461 are about 8 (Morris, 1978) and agglutinate concentrations are 8% and 7.7% (Heiken and McKay, 1974), respectively. These values are inconsistent with the exposure and cycling of the light-gray regolith during 3.5 billion years in the lunar surface impact environment (i.e., the time between ash deposition and the light mantle avalanche). If agglutinate content and Is/FeO indexes largely reflect the cumulative effect of micro-meteor impacts, as generally concluded, the light-gray regolith formed in an environment with significantly less micro-meteor flux than that which has prevailed more recently. 14-18% of fragile, ropy glass in the light-gray regolith, as compared with meteor flux during development. The high recent micro-meteor flux appears to have existed for at least for the last 75 million years (Schmitt, et al., 2017), the estimated time using LROC-based crater frequency analysis (van der Bogert, et al., 2012) since the light mantle avalanche of South Massif regolith covered the light-gray regolith. New regolith on the light mantle appears to be developing a higher concentration of agglutinates and a higher maturity index relative to regolith in deeper portions of the unit. Light mantle avalanche samples 73141 (subsurface) and 73121 (near surface), have agglutinates at 32% and 42% and Is/FeO indexes of 48 and 78

  9. Absorber for nuclear radiations

    International Nuclear Information System (INIS)

    Planchamp, C.


    Neutrons, gamma and x radiations are highly absorbed by an alloy of gadolinium and aluminium. Workability, thermal conductivity, mechanical properties, corrosion resistance of the alloy are good. Possible applications are transport or storage of radioactive wastes or nuclear fuels, fuel racks, shelters, etc [fr

  10. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh


    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  11. Reduction of the Thomson scattering cross-section in a strong circularly polarized light field in plasma with the change of its spectrum (United States)

    Korobkin, Vladlen V.; Romanovsky, Michael Y.


    It is shown that in a strong circularly polarized laser field, classical electron motion around the ions can occur. The non-relativistic scattering by these electrons in plasma has a certain (Thomson) cross-section only in the limit of a very strong field (it is practically the case of relativistic motion of electrons). In a circularly polarized field with an amplitude on the order of the inneratomic one, the cross section of this process is less. In the spectrum that the scattering of this field gives in plasma, there are non-ion satellites along with the basic frequency.

  12. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.


    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  13. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W


    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  14. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye. (United States)

    Kałużny, Jakub J; Grzanka, Dariusz; Wiśniewska, Halina; Niewińska, Alicja; Kałużny, Bartłomiej J; Grzanka, Alina


    The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits' eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 eyes). All the animals were euthanized 1 year after surgery. Twenty-one eyeballs were prepared for light microscopy and 3 were prepared for transmission electron microscope (TEM) analysis. Aqueous humour pathways were stained with ferritin in 6 eyeballs. By light microscopy, small vessels adjacent to the areas of scarring were the most common abnormality. Vessel density was significantly higher in operated sclera compared to normal, healthy tissue, regardless of the type of implant used. The average vessel densities were 2.18±1.48 vessels/mm2 in non-implanted sclera, 2.34±1.69 vessels/mm2 in eyes with absorbable implants, and 3.64±1.78 vessels/mm2 in eyes with non-absorbable implants. Analysis of iron distribution in ferritin-injected eyes showed a positive reaction inside new aqueous draining vessels in all groups. TEM analysis showed that the ultrastructure of new vessels matched the features of the small veins. Aqueous outflow after NPDS can be achieved through the newly formed network of small intrascleral veins. Use of non-absorbable implants significantly increases vessel density in the sclera adjacent to implanted material compared to eyes in which absorbable implants or no implants were used.

  15. PREFACE: Strongly correlated electron systems Strongly correlated electron systems (United States)

    Saxena, Siddharth S.; Littlewood, P. B.


    make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic

  16. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.


    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  17. Effect of Bilirubin concentration on radiation absorbed dose ...

    African Journals Online (AJOL)

    Results indicate that at low concentrations (25 mol/L to 76 mol/L) absorbed doses decreased with increase in bilirubin concentration. At higher bilirubin concentrations (76 mol/L to 460 mol/L) and beyond, there was an increase in absorption with a strong positive correlation (r = 0.92) between dose absorbed and ...

  18. Distributed Absorber for Noise and Vibration Control

    Directory of Open Access Journals (Sweden)

    Michel Azoulay


    Full Text Available An approach to a wide-band frequency passive vibration attenuation is introduced in this paper. This aims to suppress noise and vibration of extended multimode objects like plates, panels and shells. The absorber is arranged in the form of a single-layer assembly of small inertial bodies (balls being distributed and moulded within the light visco-elastic media (e.g. silicone resin. The absorber as a whole is embedded into object face covering the critical patches of the system surface. For the purpose of characterization, the authors introduced the complex frequency response function relating the volume velocity produced by the vibrating object surface (response stimulated by a point-wise force (stimulus applied to a particular point. The simulation and optimization of the main frequency characteristics has been performed using a full scale 3-dimensional Finite Element model. These revealed some new dynamic features of absorber's structures, which can contribute to vibration attenuation. A full-scale physical experimentation with synthesised absorber's structures confirmed the main results of simulation and has shown significant noise reduction over a staggering 0–20 kHz frequency band. This was achieved with a negligible weight and volume penalty due to the addition of the absorber. The results can find multiple applications in noise and vibration control of different structures. Some examples of such applications are presented.

  19. Simulation on photoacoustic conversion efficiency of optical fiber-based ultrasound generator using different absorbing film materials (United States)

    Sun, Kai; Wu, Nan; Tian, Ye; Wang, Xingwei


    The low energy-conversion efficiency in photoacoustic generation is the most critical hurdle preventing its wide applications. In recent studies, it was found that the selection of the energy-absorbing layer material and design of the acoustic generator structure both determine the photoacoustic conversion efficiency. The selection of the absorbing material is based on its optical, thermal, and mechanical properties. In this research, we calculated and compared the conversion efficiencies of six different absorbing film materials: bulk aluminum, bulk gold, graphite foil, graphite powder-resin mixture, gold nanospheres, and gold nanorods. The calculations were carried out by a finite element modeling (FEM) software, COMSOL Multiphysics. A 2D-axisymmetric model in COMSOL was built up to simulate a 3-layer structure: optical fiber tip, light absorbing film, and surrounding water. Three equations governed the thermo-elastic generation of ultrasonic waves: the heat conduction, thermal expansion and acoustic wave equations. In "thick-film" generation regime, majority of the laser energy is absorbed by the film and converted to high-frequency film vibration, and the vibration excites the ultrasound wave in the adjacent water, while the water would not be heated directly by the laser. From the results of this FEM simulation, the acoustic signal generated by gold nanosphere (or nanorod) film is over two times stronger than that generated by graphite powder-resin film of the same thickness. This simulation provides a strong support to the absorbing material selection for our proposed fiber ultrasound generator.

  20. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati


    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  1. Review of Plasmonic Nanocomposite Metamaterial Absorber (United States)

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady


    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  2. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation) (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun


    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  3. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. (United States)

    Fainstein, A; Lanzillotti-Kimura, N D; Jusserand, B; Perrin, B


    We show that distributed Bragg reflector GaAs/AlAs vertical cavities designed to confine photons are automatically optimal to confine phonons of the same wavelength, strongly enhancing their interaction. We study the impulsive generation of intense coherent and monochromatic acoustic phonons by following the time evolution of the elastic strain in picosecond-laser experiments. Efficient optical detection is assured by the strong phonon backaction on the high-Q optical cavity mode. Large optomechanical factors are reported (~THz/nm range). Pillar cavities based in these structures are predicted to display picogram effective masses, almost perfect sound extraction, and threshold powers for the stimulated emission of phonons in the range μW-mW, opening the way for the demonstration of phonon "lasing" by parametric instability in these devices.

  4. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    International Nuclear Information System (INIS)

    Lewins, C. J.; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E.; Edwards, P. R.; Martin, R. W.


    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  5. Absorber for terahertz radiation management (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.


    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  6. The CP-violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production (United States)

    Basler, P.; Mühlleitner, M.; Wittbrodt, J.


    We investigate the strength of the electroweak phase transition (EWPT) within the CP-violating 2-Higgs-Doublet Model (C2HDM). The 2HDM is a simple and well-studied model, which can feature CP violation at tree level in its extended scalar sector. This makes it, in contrast to the Standard Model (SM), a promising candidate for explaining the baryon asymmetry of the universe through electroweak baryogenesis. We apply a renormalisation scheme which allows efficient scans of the C2HDM parameter space by using the loop-corrected masses and mixing matrix as input parameters. This procedure enables us to investigate the possibility of a strong first order EWPT required for baryogenesis and study its phenomenological implications for the LHC. Like in the CP-conserving (real) 2HDM (R2HDM) we find that a strong EWPT favours mass gaps between the non-SM-like Higgs bosons. These lead to prominent final states comprised of gauge+Higgs bosons or pairs of Higgs bosons. In contrast to the R2HDM, the CP-mixing of the C2HDM also favours approximately mass degenerate spectra with dominant decays into SM particles. The requirement of a strong EWPT further allows us to distinguish the C2HDM from the R2HDM using the signal strengths of the SM-like Higgs boson. We additionally find that a strong EWPT requires an enhancement of the SM-like trilinear Higgs coupling at next-to-leading order (NLO) by up to a factor of 2.4 compared to the NLO SM coupling, establishing another link between cosmology and collider phenomenology. We provide several C2HDM benchmark scenarios compatible with a strong EWPT and all experimental and theoretical constraints. We include the dominant branching ratios of the non-SM-like Higgs bosons as well as the Higgs pair production cross section of the SM-like Higgs boson for every benchmark point. The pair production cross sections can be substantially enhanced compared to the SM and could be observable at the high-luminosity LHC, allowing access to the trilinear

  7. Theoretical interpretations of enhanced laser light absorption

    International Nuclear Information System (INIS)

    Kruer, W.L.


    Intense laser light is not efficiently absorbed classically but can be absorbed by its conversion to electron plasma waves near the critical density. The physical mechanisms for this conversion are discussed, and some simple estimates for heating by plasma waves are applied to some recent experiments. Several effects which strongly influence the absorption of high intensity light are emphasized, including a nonlinear steepening of the plasma density profile which is demonstrated in computer simulations. Finally the possibility of an induced reflection of laser light due to instabilities in the underdense plasma before the critical density is also discussed. Such stimulated reflection can be particularly important in plasmas with very long density gradients. (U.S.)

  8. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM. (United States)

    Rhinow, Daniel; Hampp, Norbert A


    Bacteriorhodopsin (BR) undergoes a conformational change during the photocycle and the proton transport through the membrane. For the first time, we could demonstrate by direct imaging of freely suspended native purple membranes (PMs) that the flat disk-like shape of PMs changes dramatically as soon as most of the BRs are in a state characterized by a deprotonated Schiff base. Light-induced shape changes are easily observed with mutated BRs of the BR-D96N type, i.e., all variants which show an increased M 2 lifetime. On the other hand, large-scale shape changes are induced by pH changes with PM containing mutated BRs of the BR-D85T type, where Asp85 is replaced for a neutral amino acid. In such PMs, all BRs are titrated simultaneously and the resulting shape of the membranes depends on the initial shape only. As the majority of PMs in the "flat" state are more or less round disks, the bent membranes often comprise bowl-like and tube-like bent structures. The method presented here enables one to derive size changes of membrane-embedded BRs on the single molecule level from "macroscopic", easily accessible data like the curvature radii observed in cryo-SEM. The potential of BR as a pH-controlled and/or light-controlled microscaled biological actuator needs further consideration.

  9. Corrosion resistant neutron absorbing coatings (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA


    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Solar radiation absorbing material (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.


    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  11. Impedance matched thin metamaterials make metals absorbing. (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G


    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  12. Absorbing Aerosols Workshop, January 20-21, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Shaima [Brookhaven National Lab. (BNL), Upton, NY (United States); Williamson, Ashley [Brookhaven National Lab. (BNL), Upton, NY (United States); Cappa, Christopher D. [Univ. of California, Berkeley, CA (United States); Kotamarthi, Davis Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Flynn, Conner [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Ernie [Brookhaven National Lab. (BNL), Upton, NY (United States); McComiskey, Allison [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Riemer, Nicole [Univ. of Illinois, Chicago, IL (United States)


    A workshop was held at DOE Headquarters on January 20-21, 2016 during which experts within and outside DOE were brought together to identify knowledge gaps in modeling and measurement of the contribution of absorbing aerosols (AA) to radiative forcing. Absorbing aerosols refer to those aerosols that absorb light, whereby they both reduce the amount of sunlight reaching the surface (direct effect) and heat their surroundings. By doing so, they modify the vertical distribution of heat in the atmosphere and affect atmospheric thermodynamics and stability, possibly hastening cloud drop evaporation, and thereby affecting cloud amount, formation, dissipation and, ultimately, precipitation. Deposition of AA on snow and ice reduces surface albedo leading to accelerated melt. The most abundant AA type is black carbon (BC), which results from combustion of fossil fuel and biofuel. The other key AA types are brown carbon (BrC), which also results from combustion of fossil fuel and biofuel, and dust (crustal material). Each of these sources may result from, and be strongly influenced by, anthropogenic activities. The properties and amounts of AA depend upon various factors, primarily fuel source and burn conditions (e.g., internal combustion engine, flaming or smoldering wildfire), vegetation type (in the case of BC and BrC), and in the case of dust, soil type and ground cover (i.e., vegetation, snow, etc.). After emission, AA undergo chemical processing in the atmosphere that affects their physical and chemical properties. Thus, attribution of sources of AA, and understanding processes AA undergo during their atmospheric lifetimes, are necessary to understand how they will behave in a changing climate.

  13. Mg II-Absorbing Galaxies in the UltraVISTA Survey (United States)

    Stroupe, Darren; Lundgren, Britt


    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  14. Photochemical generation of strong one-electron reductants via light-induced electron transfer with reversible donors followed by cross reaction with sacrificial donors. (United States)

    Shan, Bing; Schmehl, Russell


    This work illustrates a modified approach for employing photoinduced electron transfer reactions coupled to secondary irreversible electron transfer processes for the generation of strongly reducing equivalents in solution. Through irradiation of [Ru(LL)3](2+) (LL= diimine ligands) with tritolylamine (TTA) as quencher and various alkyl amines as sacrificial electron donors, yields in excess of 50% can be achieved for generation of reductants with E(0)(2+/1+) values between -1.0 and -1.2 V vs NHE. The key to the system is the fact that the TTA cation radical, formed in high yield in reaction with the photoexcited [Ru(LL)3](2+) complex, reacts irreversibly with various sacrificial electron donating amines that are kinetically unable to directly react with the photoexcited complex. The electron transfer between the TTA(+) and the sacrificial amine is an energetically uphill process. Kinetic analysis of these parallel competing reactions, consisting of bimolecular and pseudo first-order reactions, allows determination of electron transfer rate constants for the cross electron transfer reaction between the sacrificial donor and the TTA(+). A variety of amines were examined as potential sacrificial electron donors, and it was found that tertiary 1,2-diamines are most efficient among these amines for trapping the intermediate TTA(+). This electron-donating combination is capable of supplying a persistent reducing flux of electrons to catalysts used for hydrogen production.


    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan


    Full Text Available Absorbency of textiles is defined as the ability of taking in a fluid in the manner of a sponge. Absorbency is required for comfort properties in so me clothes such as sportswear and underwear clothing, for drying properties in napkins, towels and bathrobes, for health concerns in some medical textiles such as bandages, gauze and absorbent cotton, and for cleaning properties in washclothes and mops. In this study five different fabric samples (three woven 100% cotton fabrics A, B and P respectively at plain, twill, and peshtamal weaving patterns and two 100% cotton terry towels T1 and T2 were tested. The absorbency properties of the samples were evaluated according to the droplet test, sinking time test and wicking height tests (pottasium chromate test. Peshtamal samples showed better absorbency results than plain and twill weaves and lower but close results to towel samples according to the droplet test, sinking time test and wicking height tests. The absorbency properties of peshtamals showed results close to towel samples. The void content of peshtamals is higher than plain and twill samples but closer and lower than towel samples. The good absorbency results of peshtamals might be due to the void content of peshtamals which is higher than plain and twill samples but closer and lower than towel samples. Peshtamals which are good in absorbency and light in weight might be used widespreadly in daily life for their high absorbency, and on travel for weight saving purposes.

  16. The Flexible Bass Absorber

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian


    Multi-purpose concert halls face a dilemma. They host different performance types that require significantly different acoustic conditions in order to provide the best sound quality to both the performers, sound engineers and the audience. Pop and rock music often contain high levels of bass sound...... energy but still require high definition for good sound quality. The mid- and high-frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. A practical solution to this dilemma...... has been developed. Measurements were made on a variable and mobile low-frequency absorber. The paper presents the results of prototype sound absorption measurements as well as elements of the design....

  17. The Flexible Bass Absorber

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian


    Multi-purpose concert halls face a dilemma. They host different performance types that require significantly different acoustic conditions in order to provide the best sound quality to both the performers, sound engineers and the audience. Pop and rock music often contains high levels of bass sound...... energy but still require high definition for good sound quality. The mid- and high-frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. A practical solution to this dilemma...... has been developed. Measurements were made on a variable and mobile low-frequency absorber. The paper presents the results of prototype sound absorption measurements as well as elements of the design....

  18. Metamaterial electromagnetic wave absorbers. (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J


    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Control system design for the deethanizer absorber tower pressure in the light end unit of the Nico Lopez refinery; Diseno del sistema de control para la presion en la torre absorvedora deetanizadora de la unidad de finales ligeros de la refineria Nico Lopez

    Energy Technology Data Exchange (ETDEWEB)

    Morales Corral, Camilo [Refineria Nico Lopez, Ciudad Habana (Cuba)]. E-mail:; Pedre Mendoza, Isabel [DAISA, Ciudad Habana (Cuba)]. E-mail:; Garcini Leal, Hector J. [Instituto Superior Politecnico Jose A. Echeverria, La Habana (Cuba)]. E-mail: garcini,; Fernandez, Luis M. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba)]. E-mail:; Benitez Gonzalez, Ivon Oristela [Instituto Superior Politecnico Jose A. Echeverria, La Habana (Cuba)


    This paper is about pressure feed forward control. It is for an absorber tower of the Light End Unit. This one is in the Havana Oil Refinery. Control loop was designed using identification technic and simulation software. Moreover the design control loop has been validated and his quality has been determined. [Spanish] En el presente trabajo se aborda un control anticipatorio de presion. Fue desarrollado para la torre absorvedora de la Unidad de Finales Ligeros. La cual pertenece a la refineria de La Habana. Fue disenado un lazo de control empleando tecnicas de identificacion y programas de simulacion. Ademas el lazo disenado es validado y se determina su calidad.

  20. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang


    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  1. Report on the evaluation of the tritium producing burnable absorber rod lead test assembly. Revision 1

    International Nuclear Information System (INIS)


    This report describes the design and fabrication requirements for a tritium-producing burnable absorber rod lead test assembly and evaluates the safety issues associated with tritium-producing burnable absorber rod irradiation on the operation of a commercial light water reactor. The report provides an evaluation of the tritium-producing burnable absorber rod design and concludes that irradiation can be performed within U.S. Nuclear Regulatory Commission regulations applicable to a commercial pressurized light water reactor

  2. Report on the evaluation of the tritium producing burnable absorber rod lead test assembly. Revision 1

    Energy Technology Data Exchange (ETDEWEB)



    This report describes the design and fabrication requirements for a tritium-producing burnable absorber rod lead test assembly and evaluates the safety issues associated with tritium-producing burnable absorber rod irradiation on the operation of a commercial light water reactor. The report provides an evaluation of the tritium-producing burnable absorber rod design and concludes that irradiation can be performed within U.S. Nuclear Regulatory Commission regulations applicable to a commercial pressurized light water reactor.

  3. Analysis of periodically patterned metallic nanostructures for infrared absorber (United States)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng


    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  4. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.


    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  5. Metal-shearing energy absorber (United States)

    Fay, R. J.; Wittrock, E. P.


    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  6. Leaf absorbance and photosynthesis (United States)

    Schurer, Kees


    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  7. Extra Strong Super Light / Magdalena Lewoc

    Index Scriptorium Estoniae

    Lewoc, Magdalena


    2003. a. Szczecini Rahvusmuuseumis toimunud 5. rahvusvahelisest kunstinäitusest võtsid osa poola, saksa, rootsi, soome, leedu, läti, ukraina ja eesti kunstnikud. Pikemalt Ene-Liis Semperi ja Jaan Toomiku loomingust

  8. The enhancement of photo-thermo-electric conversion in tilted Bi2Sr2Co2O(y) thin films through coating a layer of single-wall carbon nanotubes light absorber. (United States)

    Wang, Shufang; Bai, Zilong; Yan, Guoying; Zhang, Hongrui; Wang, Jianglong; Yu, Wei; Fu, Guangsheng


    Light-induced transverse thermoelectric effect has been investigated in c-axis tilted Bi(2)Sr(2)Co(2)O(y) thin films coated with a single-wall carbon nanotubes light absorption layer. Open-circuit voltage signals were detected when the sample surface was irradiated by different lasers with wavelengths ranging from ultraviolet to near-infrared and the voltage sensitivity was enhanced as a result of the increased light absorption at the carbon nanotubes layer. Moreover, the enhancement degree was found to be dependent on the laser wavelength as well as the absorption coating size. This work opens up new strategy toward the practical applications of layered cobaltites in photo-thermo-electric conversion devices.

  9. Optical Pulsing in an Absorbing Liquid (United States)

    Barnes, Jacob; Evans, Dean; Guha, Shekhar


    A continuous-wave laser can be converted into a series of repetitive pulses by focusing the laser beam into an absorbing liquid (e.g. nigrosine dissolved in a solvent), where the mechanism responsible for the pulses is the scattering of light off of photo-generated bubbles. The dependence of the pulsation frequency on the solvent, power, and cell thickness will be shown. The authors would like to acknowledge the contributions made by Prof. Daniel Lathrop (University of Maryland, Department of Physics) at the APS March 2002 meeting.

  10. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin


    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  11. Solar Synthesis: Prospects in Visible Light Photocatalysis (United States)

    Schultz, Danielle M.; Yoon, Tehshik P.


    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  12. Inferring absorbing organic carbon content from AERONET data (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.


    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  13. Experimental investigation of control absorber blade effects in a modern 10x10 BWR assembly

    International Nuclear Information System (INIS)

    Jatuff, F.; Grimm, P.; Murphy, M.; Luethi, A.; Seiler, R.; Joneja, O.; Meister, A.; Geemert, R. van; Brogli, R.; Chawla, R.; Williams, T.; Helmersson, S.


    The accurate estimation of reactor physics parameters related to the presence of cruciform absorber blades. In Boiling Water Reactors (BWR) is important for safety assessment, and for achieving a flexible operation during the cycle. Characteristics which are affected strongly include the power distribution for controlled core regions and its impact on linear heat generation rate margins, as well as the build-up of plutonium, and its influence on core excess reactivity and the reactivity worth of the shutdown system. PSI and the Swiss Nuclear Utilities (UAK) are conducting an experimental reactor physics programme related to modern Light Water Reactor (LWR) fuel assemblies, as employed in the Swiss nuclear power plants: the so-called. LWR-PROTEUS Phase I project. A significant part of this project has been devoted to the characterization of highly heterogeneous BWR fuel elements in the presence of absorber blades. The paper presents typical results for the performance of modern lattice codes in the estimation of controlled assembly reaction rate distributions, the sensitivity to the geometrical and material characterization, and a preliminary comparison of reflected-test-zone calculations with experimental reaction rate distributions measured in a Westinghouse SVEA-96+ assembly under full-density water moderation conditions in the presence of Westinghouse boron-carbide absorber blades. (author)

  14. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption

    NARCIS (Netherlands)

    Jose, Jithin; Jose, J.; Willemink, Rene; Willemink, Rene G.H.; Resink, Steffen; Piras, D.; van Hespen, Johannes C.G.; van Hespen, J.C.G.; Slump, Cornelis H.; Steenbergen, Wiendelt; van Leeuwen, Ton; Manohar, Srirang


    We present a ‘hybrid’ imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of

  15. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption

    NARCIS (Netherlands)

    Jose, Jithin; Willemink, Rene G. H.; Resink, Steffen; Piras, Daniele; van Hespen, J. C. G.; Slump, Cornelis H.; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang


    We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of

  16. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.


    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  17. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting


    . The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected...

  18. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A., E-mail:; Pilch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland)


    Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.

  19. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)


    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  20. Additive manufacturing of RF absorbers (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Water fugacity in absorbing polymers. (United States)

    Burg, K J; Shalaby, S W


    Absorbable biomaterials, as dynamic systems, require special handling, processing, and characterization techniques beyond those of the traditional nonabsorbable materials. As the material degrades or absorbs, in vitro or in vivo, it undergoes structural, physical, and chemical changes. These changes in the base material may significantly impact the performance of a particular biomedical device; hence, it is important that the investigator consider the full range of properties that constitute the lifetime of a given absorbable material. The long term degradation study presented here sought to identify one such property, the change in water retention of a degrading oriented polylactide film. The investigation found through differential scanning calorimetry that later stages of degradation are often characterized by a stronger retention of water, potentially due to a higher number of polar carboxyl groups within the relatively hydrophobic polymer matrix.

  2. Transmittance of semitransparent windows with absorbing cap-shaped droplets condensed on their backside (United States)

    Zhu, Keyong; Pilon, Laurent


    This study aims to investigate systematically light transfer through semitransparent windows with absorbing cap-shaped droplets condensed on their backside as encountered in greenhouses, solar desalination plants, photobioreactors and covered raceway ponds. The Monte Carlo ray-tracing method was used to predict the normal-hemispherical transmittance, reflectance, and normal absorptance accounting for reflection and refraction at the air/droplet, droplet/window, and window/air interfaces and absorption in both the droplets and the window. The droplets were monodisperse or polydisperse and arranged either in an ordered hexagonal pattern or randomly distributed on the backside with droplet contact angle θc ranging between 0 and 180° The normal-hemispherical transmittance was found to be independent of the spatial distribution of droplets. However, it decreased with increasing droplet diameter and polydispersity. The normal-hemispherical transmittance featured four distinct optical regimes for semitransparent window supporting nonabsorbing droplets. These optical regimes were defined based on contact angle and critical angle for internal reflection at the droplet/air interface. However, for strongly absorbing droplets, the normal-hemispherical transmittance (i) decreased monotonously with increasing contact angle for θc 90° Finally, the spectral normal-hemispherical transmittance of a 3 mm-thick glass window supporting condensed water droplets for wavelength between 0.4 and 5 μm was predicted and discussed in light of the earlier parametric study and asymptotic behavior.

  3. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED. (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried


    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  4. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola


    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  5. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław


    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  6. Brown carbon: a significant atmospheric absorber of solar radiation?

    Directory of Open Access Journals (Sweden)

    Y. Feng


    Full Text Available Several recent observational studies have shown organic carbon aerosols to be a significant source of absorption of solar radiation. The absorbing part of organic aerosols is referred to as "brown" carbon (BrC. Using a global chemical transport model and a radiative transfer model, we estimate for the first time the enhanced absorption of solar radiation due to BrC in a global model. The simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE, increases from 0.9 for non-absorbing organic carbon to 1.2 (1.0 for strongly (moderately absorbing BrC. The calculated AAE for the strongly absorbing BrC agrees with AERONET spectral observations at 440–870 nm over most regions but overpredicts for the biomass burning-dominated South America and southern Africa, in which the inclusion of moderately absorbing BrC has better agreement. The resulting aerosol absorption optical depth increases by 18% (3% at 550 nm and 56% (38% at 380 nm for strongly (moderately absorbing BrC. The global simulations suggest that the strongly absorbing BrC contributes up to +0.25 W m−2 or 19% of the absorption by anthropogenic aerosols, while 72% is attributed to black carbon, and 9% is due to sulfate and non-absorbing organic aerosols coated on black carbon. Like black carbon, the absorption of BrC (moderately to strongly inserts a warming effect at the top of the atmosphere (TOA (0.04 to 0.11 W m−2, while the effect at the surface is a reduction (−0.06 to −0.14 W m−2. Inclusion of the strongly absorption of BrC in our model causes the direct radiative forcing (global mean of organic carbon aerosols at the TOA to change from cooling (−0.08 W m−2 to warming (+0.025 W m−2. Over source regions and above clouds, the absorption of BrC is higher and thus can play an important role in photochemistry and the hydrologic cycle.

  7. Absorbing-and-diffusing coating


    Tkalich, N. V.; Mokeev, Yu. G.; Onipko, A. F.; Vashchenko, V. F.; Topchev, M. D.; Glebov, V. V.; Ivanchenko, Dmitrij D.; Kolchigin, Nikolay N.; Yevdokimov, V. V.


    The paper presents the results of complex experimental research of the absorbing-and-diffusing material "Contrast". It is shown to be an efficient wideband-camouflage material in the radiolocation and the video bands. Ways for improving the material characteristics are outlined.

  8. Shining light on radiation detection and energy transfer : Triazole ligands used for detection of radiation and lanthanide binding

    NARCIS (Netherlands)

    Dijkstra, Peter


    Some substances, fluorophores, absorb light and then emit that light again as fluorescence. Apart from absorption of light, some of these substances can also emit light after having absorbed energy from radiation. A substance which can absorb radiation and emit the energy as light is called a

  9. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.


    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  10. Selective solar absorber emittance measurement at elevated temperature (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier


    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  11. Secure data storage by three-dimensional absorbers in highly scattering volume medium

    International Nuclear Information System (INIS)

    Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi


    A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.

  12. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.


    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  13. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.


    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  14. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE: emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Directory of Open Access Journals (Sweden)

    C. E. Stockwell


    Full Text Available The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning, crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR spectroscopy, whole-air sampling (WAS, and photoacoustic extinctiometers (PAX; 405 and 870 nm based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg−1 fuel burned, single scattering albedos (SSAs, and absorption Ångström exponents (AAEs. From these data we estimate black and brown carbon (BC, BrC emission factors (g kg−1 fuel burned. The trace gas measurements provide EFs (g kg−1 for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all. The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68 was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10. Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg−1, organic acids (7.66 ± 6.90 g kg−1, and HCN

  15. Ultrathin microwave metamaterial absorber utilizing embedded resistors (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak


    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  16. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik


    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  17. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C


    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  18. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices (United States)

    Repins, Ingrid L.; Kuciauskas, Darius


    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  19. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel


    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  20. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.


    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  1. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  2. Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials. (United States)

    Wang, Jiao; Jiang, Yannan; Hu, Zhirun


    Two-dimensional (2D) black phosphorus (BP) with direct band gap, bridges the characteristics of graphene with a zero or near-zero band gap and transition metal dichalcogenides with a wide band gap. In the infrared (IR) regime, 2D BP materials can attenuate electromagnetic energy due to losses derived from its surface conductivity. This paper proposes an IR absorber based on 2D BP metamaterials. It consists of multi-layer BP-based nano-ribbon pairs, each formed by two orthogonally stacked nano-ribbons. The multi-layer BP metamaterials and bottom gold mirror together form a Fabry-Perot resonator that could completely inhibit light transmission to create strong absorption through the BP metamaterials. Unlike previously reported BP metamaterial absorbers, this new structure can operate at two frequency bands with absorption > 90% in each owning to the first-order and second-order Fabry-Perot resonant frequencies. It is also polarization independent due to the fourfold rotational structural symmetry. To our best knowledge, this is the first report on using BP metamaterials in an absorber that operates independent of polarization and in dual bands.

  3. Light Trapping with Silicon Light Funnel Arrays. (United States)

    Prajapati, Ashish; Nissan, Yuval; Gabay, Tamir; Shalev, Gil


    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  4. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati


    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  5. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping


    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  6. Graphene based salisbury screen for terahertz absorber (United States)

    Min Woo, Jeong; Kim, Min-Sik; Woong Kim, Hyun; Jang, Jae-Hyung


    A graphene-based, multiband absorber operating in terahertz (THz) frequency range was demonstrated. Graphene film was transferred onto the top of a flexible polymer substrate backed with a gold reflector. The graphene acts as a resistive film that partially attenuates and reflects THz waves. The destructive interference between THz waves reflected from graphene and backside reflector gives rise to perfect absorbance at multiple frequencies. To enhance the absorbance on/off ratio (AR), the conductivity of graphene was varied using a chemical doping method. The resulting p-doped, graphene-based THz absorber exhibited absorbance at maxima and AR higher than 0.95 and 25 dB, respectively.

  7. Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica, Version 1 (United States)

    National Aeronautics and Space Administration — This data set contains light absorption coefficients for soluble chromophores (light-absorbing chemicals) and concentrations of hydrogen peroxide (HOOH) and nitrate...

  8. The impact of absorbed photons on antimicrobial photodynamic efficacy

    Directory of Open Access Journals (Sweden)

    Fabian eCieplik


    Full Text Available Due to increasing resistance of pathogens towards standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively.Consequently, in the present study two strategies for adjustment of irradiation parameters are evaluated: (i matching energy doses applied by respective light sources (common practice and (ii by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule.In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies.PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii, or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a

  9. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.


    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small...... frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. (C)2011 Optical Society of America...

  10. Light at work

    CERN Document Server

    Kukla, Lauren


    From color to reflecting to absorbing, science is at work all around us! Light at Workintroduces young readers to a physical science concept. A high-impact design and engaging visuals help bring this important concept to life as readers learn all about light in the real world. Aligned to Common Core Standards and correlated to state standards. Applied to STEM Concepts of Learning Principles. Sandcastle is an imprint of Abdo Publishing, a division of ABDO.

  11. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.


    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  12. OLED lighting devices having multi element light extraction and luminescence conversion layer (United States)

    Krummacher, Benjamin Claus; Antoniadis, Homer


    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.


    International Nuclear Information System (INIS)

    Maitra, Dipankar; Miller, Jon M.


    A recent observation of the nearby (z = 0.042) narrow-line Seyfert 1 galaxy RE J1034+396 on 2007 May 31 showed strong quasi-periodic oscillations (QPOs) in the 0.3-10 keV X-ray flux. We present phase-resolved spectroscopy of this observation, using data obtained by the EPIC PN detector on board XMM-Newton. The 'low' phase spectrum, associated with the troughs in the light curve, shows (at >4σ confidence level) an absorption edge at 0.86 ± 0.05 keV with an absorption depth of 0.3 ± 0.1. Ionized oxygen edges are hallmarks of X-ray warm absorbers in Seyfert active galactic nuclei; the observed edge is consistent with H-like O VIII and implies a column density of N OVIII ∼ 3 x 10 18 cm -2 . The edge is not seen in the 'high' phase spectrum associated with the crests in the light curve, suggesting the presence of a warm absorber in the immediate vicinity of the supermassive black hole that periodically obscures the continuum emission. If the QPO arises due to Keplerian orbital motion around the central black hole, the periodic appearance of the O VIII edge would imply a radius of ∼9.4(M/[4x10 6 M sun ]) -2/3 (P/[1 hr]) 2/3 r g for the size of the warm absorber.

  14. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations (United States)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo


    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  15. Fabrication and Characterization of Plasmonic Nanophotonic Absorbers and Waveguides


    Chen, Yiting


    Plasmonics is a promising field of nanophotonics dealing with light interaction with metallic nanostructures. In such material systems, hybridizationof photons and collective free-electron oscillation can result in sub-wavelength light confinement. The strong light-matter interaction can be harnessed for,among many applications, high-density photonic integration, metamaterial design, enhanced nonlinear optics, sensing etc. In the current thesis work, we focus on experimental fabrication and c...

  16. Direct phase-shift measurement of an EUV mask with gradient absorber thickness (United States)

    Tanabe, Hiroyoshi; Murachi, Tetsunori; Park, Seh-Jin; Gullikson, Eric M.; Abe, Tsukasa; Hayashi, Naoya


    We directly extracted the phase-shift values of an EUV mask by measuring the reflectance of the mask. The mask had gradient absorber thickness along vertical direction. We measured the reflectance of the open multilayer areas and the absorber areas by using an EUV reflectometer at various absorber thicknesses. We also measured the diffracted 0th order light intensities of grating patterns having several sizes of lines or holes. The phase-shift values were derived from these data assuming a flat mask interference model of the diffracted lights. This model was corrected by including the scattering amplitude from the pattern edges. We recalculated the phase-shift values which was free from the mask topological effect. The extracted phase-shift value was close to 180 degrees at 67 nm and 71 nm absorber thicknesses. The phase measurement error around 180 degree phase shift was 5 degrees (3σ).

  17. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.


    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  18. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian


    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  19. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.


    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  20. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.


    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  1. Laser pushing or pulling of absorbing airborne particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuji, E-mail:; Gong, Zhiyong [Mississippi State University, Starkville, Mississippi 39759 (United States); Pan, Yong-Le; Videen, Gorden [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)


    A single absorbing particle formed by carbon nanotubes in the size range of 10–50 μm is trapped in air by a laser trapping beam and concurrently illuminated by another laser manipulating beam. When the trapping beam is terminated, the movement of the particle controlled by the manipulating beam is investigated. We report our observations of light-controlled pushing and pulling motions. We show that the movement direction has little relationship with the particle size and manipulating beam's parameters but is dominated by the particle's orientation and morphology. With this observation, the controllable optical manipulation is now able to be generalized to arbitrary particles, including irregularly shaped absorbing particles that are shown in this work.

  2. <strong>Confusion on tonguesstrong>

    DEFF Research Database (Denmark)

    Zeuthen, Katrine Egede; Gammelgård, Judy


    followed by theories that have the infant's development as their object. The concept of attachment and the empirical research tradition has created a new focus for the studies of the infant that seems to block our vision of the sexual. Following a short historical outline from Balint's concept of primary...... love to Bowlby's concept of attachment we examine the theories that, inspired by Laplanche, once more have taken up the discussion of infantile sexuality. In the light of these discussions and through clinical examples we argue that the concept of infantile sexuality could be clarified by combining......  What is the origin and character of infantile sexuality? At the time of its announcement, Freud's theory of infantile sexuality was a scandal. Not only did it shock by its claim that the small child sucking at the mother's breast experiences a kind of pleasure that Freud without hesitation named...

  3. Device for absorbing mechanical shock (United States)

    Newlon, C.E.


    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  4. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.


    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  5. Light sheet microscopy reveals more gradual light attenuation in light green versus dark green soybean leaves (United States)

    Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...

  6. Characterization of Compton camera LaBr{sub 3} absorber detector

    Energy Technology Data Exchange (ETDEWEB)

    Marinsek, T.; Liprandi, S.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)


    Detection of prompt γ rays from nuclear interactions between a particle beam and organic tissue using a Compton camera to determine the Bragg peak position is a promising way of ion-beam range verification in hadron therapy. The Compton camera consists of a stack of six double-sided Si-strip detectors acting as scatterers, while the other essential part - the absorber - is made of a LaBr{sub 3} monolithic scintillator crystal (50 x 50 x 30 mm{sup 3}) with reflective side-surface wrapping, offering excellent time and energy resolution. Scintillation light induced in the crystal is detected by a 256-fold segmented multi-anode PMT. Prerequisite to reconstruct the γ source position is the determination of the photon interaction position in the crystal by applying ''k-nearest neighbors'' algorithm (van Dam et al., Nuclear Science (2011)) using the reference library of light distributions, obtained by performing a 2D scan of the detector using a strong collimated {sup 137}Cs source. The status of the spatial resolution characterization is presented.

  7. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye


    Ka?u?ny, Jakub J.; Grzanka, Dariusz; Wi?niewska, Halina; Niewi?ska, Alicja; Ka?u?ny, Bart?omiej J.; Grzanka, Alina


    Summary Background The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits? eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. Material/Methods NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 ...

  8. Absorbencies of six different rodent beddings: commercially advertised absorbencies are potentially misleading. (United States)

    Burn, C C; Mason, G J


    Moisture absorbency is one of the most important characteristics of rodent beddings for controlling bacterial growth and ammonia production. However, bedding manufacturers rarely provide information on the absorbencies of available materials, and even when they do, absorption values are usually expressed per unit mass of bedding. Since beddings are usually placed into cages to reach a required depth rather than a particular mass, their volumetric absorbencies are far more relevant. This study therefore compared the saline absorbencies of sawdust, aspen woodchips, two virgin loose pulp beddings (Alpha-Dri and Omega-Dri), reclaimed wood pulp (Tek-Fresh), and corncob, calculated both by volume and by mass. Absorbency per unit volume correlated positively with bedding density, while absorbency per unit mass correlated negatively. Therefore, the relative absorbencies of the beddings were almost completely reversed depending on how absorbency was calculated. By volume, corncob was the most absorbent bedding, absorbing about twice as much saline as Tek-Fresh, the least absorbent bedding. Conversely, when calculated by mass, Tek-Fresh appeared to absorb almost three times as much saline as the corncob. Thus, in practical terms the most absorbent bedding here was corncob, followed by the loose pulp beddings; and this is generally supported by their relatively low ammonia production as seen in previous studies. Many factors other than absorbency determine whether a material is suitable as a rodent bedding, and they are briefly mentioned here. However, manufacturers should provide details of bedding absorbencies in terms of volume, in order to help predict the relative absorbencies of the beddings in practical situations.

  9. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department


    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  10. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.


    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  11. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.


    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  12. Metamaterial Resonant Absorbers for Terahertz Sensing (United States)


    process was completed in the NPS clean room for an Al/SiOx/Al metamaterial absorber . After fabrication, FTIR testing was employed to determine unlimited METAMATERIAL RESONANT ABSORBERS FOR TERAHERTZ SENSING by Eric A. Stinson December 2015 Thesis Advisor: Gamani Karunasiri...

  13. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.


    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  14. Dynamic light scattering microscope: accessing opaque samples with high spatial resolution. (United States)

    Hiroi, Takashi; Shibayama, Mitsuhiro


    We developed a new technique that conducts dynamic light scattering (DLS) under a microscope with high spatial resolution. This technique dramatically extends the range of DLS application from transparent to opaque samples. The total scattered electric field contains both electric field generated from the samples and time-independent reflected electric field. These two components are decomposed by applying a partial heterodyne method. By using this technique, we successfully calculate the characteristic size distribution of both multiple-scattering samples and strong light-absorbing samples. This is the first study to observe the collective motion of particles in a highly concentrated solution by using DLS.

  15. Constructing multilayers with absorbing materials


    Larruquert, Juan Ignacio; Vidal-Dasilva, M.; García-Cortés, S.; Fernández Perea, Mónica; Méndez, José Antonio; Aznárez, José Antonio


    The strong absorption of materials in the extreme ultraviolet (EUV) above ~50 nm has precluded the development of efficient coatings. The development of novel coatings with improved EUV performance is presented. An extensive research was performed on the search and characterization of materials with moderate absorption, such as various lanthanides. Based on this research, novel multilayers based on Yb, Al, and SiO have been developed with a narrowband performance in the 50-92 nm range. Furthe...

  16. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten


    are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain......The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...

  17. Compound A and carbon monoxide production from sevoflurane and seven different types of carbon dioxide absorbent in a patient model

    NARCIS (Netherlands)

    Keijzer, C.; Perez, R. S. G. M.; de Lange, J. J.


    BACKGROUND: The degradation of sevoflurane can lead to the production of compound A (CA) and carbon monoxide (CO) and an increase in temperature of the absorbent. CA is known to be nephrotoxic in rats. These reactions depend on the strong base and water contents of the carbon dioxide absorbent used.

  18. Tungsten based anisotropic metamaterial as an ultra-broadband absorber

    DEFF Research Database (Denmark)

    Lin, Yinyue; Cui, Yanxia; Ding, Fei


    : We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 μm to 9 μm with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow...... of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters....

  19. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    International Nuclear Information System (INIS)

    Chevalier, Paul; Bouchon, Patrick; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain; Bardou, Nathalie; Pardo, Fabrice; Haïdar, Riad


    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material

  20. Framing Light Rail Projects

    DEFF Research Database (Denmark)

    Olesen, Mette


    In Europe, there has been a strong political will to implement light rail. This article contributes to the knowledge concerning policies around light rail by analysing how local actors frame light rail projects and which rationalities and arguments are present in this decision-making process...

  1. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.


    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  2. In-line phase-contrast imaging for strong absorbing objects

    Energy Technology Data Exchange (ETDEWEB)

    De Caro, Liberato; Giannini, Cinzia [Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70125 Bari (Italy); Cedola, Alessia; Bukreeva, Inna; Lagomarsino, Stefano [Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cinto Romano 42, I-00156 Roma (Italy)


    Phase-contrast imaging is one of the most important emerging x-ray imaging techniques. In this work we analyse, from a theoretical point of view, the in-line phase-contrast image formation under general assumptions. The approach is based on wave-optical theory (Fresnel/Kirchoff diffraction integrals) and on the formalism of the mutual coherence function for the evolution of the coherence wavefield properties. Our theoretical model can be applied to phase-contrast imaging realized both by using highly coherent synchrotron radiation and micro-focus x-ray laboratory sources. Thus, the model is suitable for widespread applications, ranging from material science to medical imaging of human body parts. However, it cannot be applied to polychromatic sources, although the validity of the model does not require particularly demanding characteristics of monochromaticity. In addition, for moderate phase gradients, a useful analytical formula of the phase-contrast visibility is derived, based on the a priori knowledge of source size and distance, pixel detector size, defocus distance, material/tissue dielectric susceptibility and characteristic scales of transversal and longitudinal non-uniformities of the material/tissue dielectric susceptibility. Comparisons both with experimental results published by other authors and with simulations based on a Fourier optics approach have been reported, to confirm the validity of the proposed analytical formula.

  3. Strongly Correlated Topological Insulators (United States)


    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  4. Vibration analysis on compact car shock absorber (United States)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.


    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  5. Strong Cosmic Censorship (United States)

    Isenberg, James


    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  6. Plant Growth Absorption Spectrum Mimicking Light Sources


    Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Thomas, K.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar


    Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an ...

  7. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim


    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  8. Spacesuit Evaporator-Absorber-Radiator (SEAR) (United States)

    National Aeronautics and Space Administration — The primary goal is to build and test a rigid Lithium Chloride Absorber Radiator (LCAR) coupon based on honeycomb geometry that would be applicable for EVA and...

  9. Absorbed dose uncertainty estimation for proton therapy

    Directory of Open Access Journals (Sweden)

    Spasić-Jokić Vesna


    Full Text Available Successful radiotherapy treatment depends on the absorbed dose evaluation and the possibility to define metrological characteristics of the therapy beam. Radiotherapy requires tumor dose delivery with expanded uncertainty less than ±5 %. It is particularly important to reduce uncertainty during therapy beam calibration as well as to apply all necessary ionization chamber correction factors. Absorbed dose to water was determined using ionometric method. Calibration was performed in reference cobalt beam. Combined standard uncertainty of the calculated absorbed dose to water in 65 MeV proton beam was ±1.97% while the obtained expanded uncertainty of absorbed dose for the same beam quality was ±5.02%. The uncertainty estimation method has been developed within the project TESLA.

  10. Energy absorber uses expanded coiled tube (United States)

    Johnson, E. F.


    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  11. Space Compatible Radar Absorbing Materials Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  12. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.


    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  13. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad


    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  14. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue


    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  15. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper


    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  16. Attosecond control of electron beams at dielectric and absorbing membranes (United States)

    Morimoto, Yuya; Baum, Peter


    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  17. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances (United States)

    Zhu, Hai; Yi, Fei; Cubukcu, Ertugrul


    Metamaterials are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications. For instance, resonant light absorption in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light. In this metamaterial absorber with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations based on a plasmomechanical parametric gain mechanism over an ∼4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.

  18. Strong Arcwise Connectedness


    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana


    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  19. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio


    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  20. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš


    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002

  1. Multilayer Radar Absorbing Non-Woven Material (United States)

    Dedov, A. V.; Nazarov, V. G.


    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  2. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.


    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  3. Energy-Absorbing Passenger Seat for Aircraft (United States)

    Eichelberger, C. P.; Alfaro-Bou, E.; Fasanella, E. L.


    Development of energy-absorbing passenger seat, designed to minimize injury in commercial-aircraft crash, part of joint FAA/NASA controlledimpact flight test of transport-category commercial aircraft. Modified seat mechanism collapses under heavy load to absorb impact energy and thereby protect passenger. Results of simulation tests indicate probability of passenger survival high. Proposed seat mechanism mitigates passenger injuries by reducing impact forces in crash.

  4. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  5. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  6. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.


    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  7. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures. (United States)

    Biswas, Rana; Timmons, Erik


    A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

  8. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings. (United States)

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A


    A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

  9. Effectiveness of Nivea Sunscreen under Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Piset Virachunya


    Full Text Available The relationship between a sunscreen’s SPF and its absorbance for UV light of wavelength 240 to 320 was investigated. The investigation was conducted by diluting sunscreens with SPFs of 20, 30 and 50 and placing the solution in a spectrophotometer where the absorbance was measured under UVA, UVB and UVC light. It was shown that the sunscreen was effective over the whole range of wavelengths, with increased effectiveness at wavelengths 240 and 300. The results also show that as the SPF increased, the absorbance increased proportionally.

  10. Effectiveness of Nivea Sunscreen under Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Piset Virachunya


    Full Text Available The relationship between a sunscreen’s SPF and its absorbance for UV light of wavelength 240 to 320 was investigated. The investigation was conducted by diluting sunscreens with SPF's of 20, 30 and 50 and placing the solution in a spectrophotometer where the absorbance was measured under UVA, UVB and UVC light. It was shown that the sunscreen was effective over the whole range of wavelengths, with increased effectiveness at wavelengths 240 and 300. The results also show that as the SPF increased, the absorbance increased proportionally.

  11. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.


    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  12. Light in Architecture as an Inspired Theme (United States)

    Dębowska, Danuta


    The theme of the article is to highlight the important role of natural light in architecture. Natural light, or solar radiation absorbed by our sense of sight was a strong inspiration from ancient times. Originally constituted as a link between heaven and earth. It played a major role in shaping the places of worship, such as even Stonehenge. In the church architecture it was and still is the guiding element, the main matrix around builds an architecture narrative. Over the centuries, the study of the role of light in architecture, and in fact chiaroscuro, led to the culmination of solutions full of fantasy and “quirks” in the Baroque era (Baroque with Italian barocco: strange, exaggerated). Enamored of carved body and the use of multipurpose ornament topped was the discovery of a concave-convex façade parete ondulata created by Francesca Borrromini. Conscious manipulation of light developed, at the time, to a maximum of the art illusion and optical illusions in architectural buildings. Changing the perception of privilege in detail and introduce the principle of “beauty comes from functionality” in times of modernism meant that architects started to look for the most extreme simplicity. Sincerity of forms, and thus the lack of ornamentation, however, did not result in a lack of interest in light. On the contrary, the light became detail, eye-catching element against a smooth surface of the wall. The continuation of this concept of creating a strong password exposing Mies van der Rohe’s „less is more” took over the architecture created in the current minimalism. To minimize the detail with the introduction of large glazing resulted in strengthening the effect of opening the flow of light and penetrating the interior to the exterior. The principle of deep reflection on the light is certainly used in the design of monumental buildings, such as galleries, museums. It could be used more widely in the common architecture, noting the heritage and

  13. Warm Absorber Diagnostics of AGN Dynamics (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  14. Identifying the perfect absorption of metamaterial absorbers (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.


    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  15. Innovative energy absorbing devices based on composite tubes (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  16. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.


    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  17. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.


    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  18. Absorbed dose determination in water. I

    International Nuclear Information System (INIS)

    Novotny, J.


    The use of new values of physical parameters as recommended by international organizations has consequences in radiotherapy, e.g. in the determination of absorbed doses in water based on ionometric measurements. A procedure is proposed for the determination of the conversion factor K w,u between kerma in air and absorbed dose in water, and of the factor C w,u between exposure measured and absorbed dose in water, for ionization chambers and high-energy photon beams. The conversion factors depend not only on the radiation quality but also on the dimensions and composition of the chamber and of the cup used in the calibrations. Numerical values are given for conventional kinds of ionization chambers. (author). 3 tabs., 16 refs

  19. Absorbed dose determination in water. II

    International Nuclear Information System (INIS)

    Novotny, J.; Hobzova, L.; Kindlova, A.


    The use of new values of physical parameters as recommended by international organizations has consequences in radiotherapy, e.g. in the determination of absorbed doses in water based on ionometric measurements. A procedure is proposed for the determination of the conversion factor K w,e from kerma in air to absorbed dose in water, and of the conversion factor C w,e from exposure measured to dose absorbed in water, this for ionization chambers and high-energy electron beams. The conversion factors depend not only on the radiation quality and measurement depth in the phantom but also on the dimensions and composition of the chamber and of the cup used in the calibrations. Numerical values are given for two conventional kinds of ionization chambers. (author). 3 tabs., 9 refs

  20. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.


    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  1. Properties of CGM-Absorbing Galaxies (United States)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer


    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  2. Quantum walk with one variable absorbing boundary

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feiran [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Pei, E-mail: [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China)


    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  3. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić


    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  4. Neutron absorbing materials for reactors control; Materiaux absorbants neutroniques pour le pilotage des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), 91 - Gif sur Yvette (France); Herter, P. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France)


    The different reactivity control systems allow to keep the mastery of the fission reaction inside the reactor core at any time: power control, safe shutdown, compensation of fuel burnup. These systems can be of different type: gaseous (like {sup 3}He in some experimental reactors), liquid (borated water in PWRs), and in most cases solid and combined or not with the previous types. In all cases, the constituents comprise neutron absorbing nuclides. The absorbing materials are contained in elementary absorbing elements, named control rods. This article describes the absorbing materials used in the control rods of the main nuclear power plants and also in the burnable poison rods of water cooled reactors. Content: 1 - general considerations about absorbing materials: neutron absorption cross sections, selection criteria of absorbing materials, main uses of absorbers in reactors, supply sources, wastes; 2 - description of the absorbing materials used: silver-indium-cadmium alloy (ICA), boron carbide (B{sub 4}C), dysprosium titanate, hafnium, burnable poisons and rare earths; 3 - conclusion and perspectives. (J.S.)

  5. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D


    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  6. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia


    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  7. UV absorbance of a bioengineered corneal stroma substitute in the 240-400 nm range. (United States)

    Ionescu, Ana-Maria; de la Cruz Cardona, Juan; González-Andrades, Miguel; Alaminos, Miguel; Campos, Antonio; Hita, Enrique; del Mar Pérez, María


    To determine the UV absorbance of a bioengineered human corneal stroma construct based on fibrin and fibrin-agarose scaffolds in the 240-400 nm range. Three types of artificial substitutes of the human corneal stroma were developed by tissue engineering using fibrin and fibrin with 0.1% and 0.2% agarose scaffolds with human keratocytes immersed within. After 28 days of culture, the UV absorbance of each sample was determined using a spectrophotometer. The thickness of corneal stroma samples was determined by light microscope. For all the 3 types of corneal stroma substitutes studied, the range of the UV absorbance values was similar to that of the native human corneal stroma, although the fibrin with 0.1% agarose stroma substitute had the best UV filtering properties. The higher UV absorbance of the artificial substitute of the human corneal stroma was in the UV-B and -A ranges, suggesting that these artificial tissues could have potential clinical usefulness and proper UV light-absorption capabilities. Our data suggest that the bioengineered human corneal substitute of fibrin with 0.1% agarose is an effective absorber of harmful UV radiation and could therefore be potentially useful.


    Energy Technology Data Exchange (ETDEWEB)



    Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.

  9. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.


    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  10. Device for absorbing seismic effects on buildings

    International Nuclear Information System (INIS)

    Xercavins, Pierre; Pompei, Michel.


    Device for absorbing seismic effects. The construction or structure to be protected rests on its foundations through at least one footing formed of a stack of metal plates interlinked by layers of adhesive material, over at least a part of their extent, this material being an elastomer that can distort, characterized in that at least part of the area of some metal plates works in association with components which are able to absorb at least some of the energy resulting from friction during the relative movements of the metal plates against the distortion of the elastomer [fr

  11. Optimization of Perfect Absorbers with Multilayer Structures (United States)

    Li Voti, Roberto


    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  12. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. (United States)

    Jose, Jithin; Willemink, Rene G H; Resink, Steffen; Piras, Daniele; van Hespen, J C G; Slump, Cornelis H; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang


    We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.

  13. Taking Light For a Walk

    Indian Academy of Sciences (India)

    IAS Admin

    Consider a three-level system being probed by a resonant probe beam with its wavelength corresponding to the energy difference between transitions involving two of these levels. Light from the probe beam is absorbed at this wavelength and an optical transmission spectrum would show a dip in a wavelength region close ...

  14. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso


    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  15. Light Sources and Lighting Circuits (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  16. On generalized fuzzy strongly semiclosed sets in fuzzy topological spaces

    Directory of Open Access Journals (Sweden)

    Oya Bedre Ozbakir


    semiclosed, generalized fuzzy almost-strongly semiclosed, generalized fuzzy strongly closed, and generalized fuzzy almost-strongly closed sets. In the light of these definitions, we also define some generalizations of fuzzy continuous functions and discuss the relations between these new classes of functions and other fuzzy continuous functions.

  17. Strong water absorption in the dayside emission spectrum of the planet HD 189733b. (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah


    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  18. Carbon monoxide production from desflurane and six types of carbon dioxide absorbents in a patient model

    NARCIS (Netherlands)

    Keijzer, C.; Perez, R. S. G. M.; de Lange, J. J.


    BACKGROUND: Desflurane is known to produce high concentrations of carbon monoxide (CO) in desiccated sodalime or Baralyme (Allied Healthcare Products, St. Louis, MO). Desiccated absorbents without strong bases like potassium hydroxide or sodium hydroxide are reported to produce less or no CO at all.

  19. Electrophoresis microchip with integrated waveguides for simultaneous native UV fluorescence and absorbance detection

    DEFF Research Database (Denmark)

    Ohlsson, Pelle Daniel; Sala, Olga Ordeig; Mogensen, Klaus Bo


    Simultaneous label-free detection of UV absorbance and native UV-excited fluorescence in an electrophoresis microchip is presented. UV transparent integrated waveguides launch light at a wavelength of 254 nm from a mercury lamp along the length of a 1-mm. long detection cell. Transmitted UV light...... lid and by choosing a PMT insensitive to the excitation light. This way, the need for a fluorescence filter is eliminated. Calibration curves were measured for serotonin, tryptophan, propranolol and acetaminophen, and separations of the four compounds were demonstrated by electrophoresis and MEKC. All...... compounds could be detected in the micromolar range by absorbance detection, but fluorescence detection improved detection limits for compounds displaying native UV fluorescence up to ten times. The simultaneous detection also proved useful for the identification of compounds with similar retention times...

  20. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process


    Huang, Tsung-Yu; Tseng, Ching-Wei; Yeh, Ting-Tso; Yeh, Tien-Tien; Luo, Chih-Wei; Akalin, Tahsin; Yen, Ta-Jen


    We design and demonstrate a flexible, ultrathin and double-sided metamaterial perfect absorber (MPA) at 2.39 terahertz (THz), which enables excellent light absorbance under incidences from two opposite sides. Herein, the MPA is fabricated on a ?0/10.1-thick flexible polyethylene terephthalate substrate of ?r?=?2.75???(1?+?0.12i), sandwiched by two identical randomized metallic patterns by our stochastic design process. Such an MPA provides tailored permittivity and permeability to approach th...

  1. Selective mass transfer in a membrane absorber (United States)

    Okunev, A. Yu.; Laguntsov, N. I.


    A theoretical study of selective mass transfer in a plane-frame membrane absorber (contactor) has been made. A mathematical model of the process has been developed and the process of purification of a gas mixture depending on the flow parameters, the membrane, and the feeding-mixture composition has been studied with its help.

  2. Moving core beam energy absorber and converter (United States)

    Degtiarenko, Pavel V.


    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.


    NARCIS (Netherlands)



    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  4. Electromagnetic and microwave absorbing properties of hollow ...

    Indian Academy of Sciences (India)

    bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites. Keywords. Nanomaterials; nanospheres; CVD; electric; magnetic; microwave absorption properties. 1. Introduction. In recent years, microwave absorbing materials have attracted considerable attention because it ...

  5. Can polar bear hairs absorb environmental energy?


    He Ji-Huan; Wang Qing-Li; Sun Jie


    A polar bear (Ursus maritimus) has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  6. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan


    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  7. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    Kelly, B.T.; Murgatroyd, R.A.


    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  8. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.


    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  9. Development of optical tools for the characterization of selective solar absorber at elevated temperature (United States)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier


    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  10. Light asymmetric dark matter from new strong dynamics

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai


    A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...

  11. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  12. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim


    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  13. Strong signatures of right-handed compositeness

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals.

  14. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.


    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  15. Neutron absorbers and methods of forming at least a portion of a neutron absorber (United States)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W


    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  16. Detecting damped Ly α absorbers with Gaussian processes (United States)

    Garnett, Roman; Ho, Shirley; Bird, Simeon; Schneider, Jeff


    We develop an automated technique for detecting damped Ly α absorbers (DLAs) along spectroscopic lines of sight to quasi-stellar objects (QSOs or quasars). The detection of DLAs in large-scale spectroscopic surveys such as SDSS III sheds light on galaxy formation at high redshift, showing the nucleation of galaxies from diffuse gas. We use nearly 50 000 QSO spectra to learn a novel tailored Gaussian process model for quasar emission spectra, which we apply to the DLA detection problem via Bayesian model selection. We propose models for identifying an arbitrary number of DLAs along a given line of sight. We demonstrate our method's effectiveness using a large-scale validation experiment, with excellent performance. We also provide a catalogue of our results applied to 162 858 spectra from SDSS-III data release 12.

  17. Organic photovoltaic cell using near-infrared absorbing nickel complex (United States)

    Enokido, Fuka; Katayama, Mikimasa; Kaji, Toshihiko


    Bis(dithiobenzil)nickel (BDBN) is well known as a stable material that absorbs long-wavelength light. However, there are no reports, to the best of our knowledge, about photovoltaic cells fabricated with this material. The purpose of this paper is to examine the reason for this. Although the charge separation between C60 and BDBN was confirmed by the analysis of photoluminescence spectra, the short-circuit current density (J SC) of the C60/BDBN cells was very low. By investigating charge transport, we found that BDBN is an ambipolar material. In order to reduce the ambipolarity, a MoO3 layer was added to the BDBN layer. The resultant changes in J SC and photoluminescence spectra confirmed that the ambipolarity of BDBN caused low efficiency.

  18. Conversion of light energy in algal culture

    NARCIS (Netherlands)

    Oorschot, van J.L.P.


    The conversion of light energy in algal culture was quantitatively studied under various growth conditions. Absorbed light energy during growth and energy fixed in organic material were estimated. The efficiency of the conversion was expressed as percentage of fixed energy (calculated from estimates

  19. A novel FRET pair for detection of parallel DNA triplexes by the LightCycler

    DEFF Research Database (Denmark)

    Schneider, Uffe V; Severinsen, Jette K; Géci, Imrich


    BACKGROUND: Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic...... pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.Hoogsteen based parallel triplex helix formation requires protonation of cytosines in the triplex forming strand. Therefore, nucleic acid triplexes show strong pH dependence...... reproducibility. Validation of Tm showed low intra- and inter-assay coefficient of variation; 0.11% and 0.14% for parallel triplex and 0.19% and 0.12% for antiparallel duplex. Measurements of Tm and fluorescence intensity over time and multiple runs showed great time and light stability of the ATTO fluorophores...

  20. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.


    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  1. Effects of light quality and nutrient availability on accumulation of mycosporine-like amino acids in Gymnodinium catenatum (Dinophycea). (United States)

    Vale, Paulo


    A Portuguese Gymnodinium catenatum Graham strain was studied for its ultraviolet (UV) photoprotective pigments. This strain presented high absorption in the UVA region, in particular in the near UVA region around 370nm, followed by the far-UVA region around 340nm. Absorption in the near-UVA increased when grown under fluorescent when compared to halogen light. This was even more relevant when grown under nutrient-limiting conditions, which even surpassed absorption in the blue region, closely resembling absorption in natural plankton assemblages reported in the literature. HPLC analysis for mycosporine-like amino acids (MAAs), revealed several UV photoprotective pigments common in other marine microalgae from the northwest Atlantic. Amongst the compounds absorbing in the far-UVA region, three were identified by spectra and retention time characteristics: shinorine, porphyra-334, and mycosporine-glycine. In the near-UVA region, the unknown M-370 was usually the most abundant, followed by palythene. The proportional and absolute cellular concentrations of MAAs absorbing in the near-UVA region increased with fluorescent light when compared to halogen light. Additional experiments with light filtration suggest the set of MAAs absorbing in the near-UVA region seem to be regulated separately from the other set of MAAs absorbing in the far-UVA region, and those from the near-UVA region might be stimulated not only by UV but by blue light also. Nutrient availability affected profile: a shift towards MAAs with low nitrogen:carbon ratio (e.g.: mycosporine-glycine) was observed. As G. catenatum requires extensive UV-photoprotection over the entire UVA range, nitrogen availability might strongly restrict blooming, as MAAs are nitrogen-based. This UV sensitivity might help explaining its pronounced autumnal seasonality, tied to a reduced solar exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.


    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  3. Stable high-power saturable absorber based on polymer-black-phosphorus films (United States)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin


    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  4. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail:; Cai, Jun; Yuan, Liming; Zhang, Deyuan


    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  5. Disposable Diaper Absorbency: Improvements via Advanced Designs. (United States)

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon


    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. © The Author(s) 2014.

  6. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)


    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  7. Absorbing Software Testing into the Scrum Method (United States)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  8. Theory of metasurface based perfect absorbers (United States)

    Alaee, Rasoul; Albooyeh, Mohammad; Rockstuhl, Carsten


    Based on an analytic approach, we present a theoretical review on the absorption, scattering, and extinction of both dipole scatterers and regular arrays composed of such scatterers i.e. metasurfaces. Besides offering a tutorial by outlining the maximum absorption limit for electrically/magnetically resonant dipole particles/metasurfaces, we give an educative analytical approach to their analysis. Moreover, we put forward the analysis of two known alternatives in providing perfect absorbers out of electrically and or magnetically resonant metasurfaces; one is based on the simultaneous presence of both electric and magnetic responses in so called Huygens metasurfaces while the other is established upon the presence of a back reflector in so called Salisbury absorbers. Our work is supported by several numerical examples to clarify the discussions in each stage.

  9. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C


    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...... by pressing a silicon stamp containing a mu m size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm(2)). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole...

  10. Room Modal Equalisation with Electroacoustic Absorbers


    Rivet, Etienne Thierry Jean-Luc


    The sound quality in a room is of fundamental importance for both recording and reproducing processes. Because of the room modes, the distributions in space and frequency of the sound field are largely altered. Excessive rise and decay times caused by the resonances might even mask some details at higher frequencies, and these irregularities may be heard as a coloration of the sound. To address this problem, passive absorbers are bulky and too inefficient to significantly improve the listen...

  11. Absorbed Doses to Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil; Johansson, Lennart


    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: 11 C- acetate, 11 C- methionine, 18 F-DOPA, whole antibody labelled with either 99m Tc, 111 In, 123 I or 131 I, fragment of antibody, F(ab') 2 labelled with either 99m Tc, 111 In, 123 I or 131 I and fragment of antibody, Fab' labelled with either 99m Tc, 111 In, 123 I or 131 I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. 14 C-urea (children age 3-6 years), 14 C-glycocholic acid, 14 C-xylose and 14 C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested

  12. On the comparison of absorbing regions methods


    Ke , Weina; Yaacoubi , Slah; Mckeon , Peter


    International audience; Numerical simulation methods are very useful in Non Destructive Testing because they save time, lower cost and allow for the investigation of diverse experimental configurations. However, these methods consume relatively long CPU time and system memory. Different solutions exist to minimize these limitations. Absorbing region methods are among them when it’s possible. These kinds of regions are also made to minimize or eliminate the spurious reflections at the boundari...

  13. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward


    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  14. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias


    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... higher than graphene. Using a firstprinciples k.p Hamiltonian, incorporating all symmetry-allowed terms to second order in the wave vector k, first order in the strain c, and of order ck, we demonstrate a significantly improved optoelectronic performance due to strain. For Bi2Se3 films of variable...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  15. Heaving buoys, point absorbers and arrays. (United States)

    Falnes, Johannes; Hals, Jørgen


    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  16. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.


    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  17. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.


    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  18. CO2 Absorbing Capacity of MEA

    Directory of Open Access Journals (Sweden)

    José I. Huertas


    Full Text Available We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac at several aqueous MEA (β and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA at very low β levels, increasing from 447.9±18.1 to 581.3±32.3 g CO2/kg MEA as β was reduced from 30 to 2.5% (w/w. Ac did not depend on the CO2 concentration in the inlet gas stream as long as the gas stream did not include other amine sensitive components. During the bubbling tests the outlet CO2 concentration profiles exhibited a sigmoidal shape that could be described by an exponential equation characterized by an efficiency factor (a and a form factor (n. Statistical analysis based on correlation analysis indicated that in all cases the experimental data fit the equation well when a was 6.1±0.35 and n was 2.5±0.12. The results of these experiments may be used to optimize scrubber designs for CO2 sequestration from fossil fuel derived flue gases.

  19. Wide band cryogenic ultra-high vacuum microwave absorber (United States)

    Campisi, I.E.


    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  20. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang


    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  1. A novel wideband optical absorber based on all-metal 2D gradient nanostructures (United States)

    Gong, Jianhao; Yang, Fulong; Zhang, Xiaoping


    Recently, all-metal nanostructures for perfect absorption of light have attracted much attention due to their excellent plasmonic and photonic properties, but only narrow absorption bands were obtained in previous studies. In this paper, a new kind of metallic metasurface with wideband absorption of visible light is designed, which consists only of a gold nanotriangle array on the opaque metal substrate. By combining different resonant modes in the gradual-changed triangular nanostructure, the wide absorption waveband in visible region from 378 to 626 nm is achieved with more than 90% absorptivity. We demonstrate that the absorption property of the nanostructure can be controlled by tuning the cell size and incident angle. In addition, a metallic trapezoidal grating structure is proposed which can also realize wideband light absorption. This research provides a novel strategy in designing wideband metamaterial absorbers for visible light based on all-metal nanostructures which have great potential applications in light energy harvesting and photoelectric conversion.

  2. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers (United States)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.


    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  3. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers. (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen


    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  4. Effect of inclusions' distribution on microwave absorbing properties of composites

    International Nuclear Information System (INIS)

    Qin, Siliang; Wang, Qingguo; Qu, Zhaoming


    Effect of inclusions' spatial distributions on the permeability and permittivity of composites is studied using the generalized Maxwell-Garnett equations. The result indicates that inclusions' orientation distribution can increase the longitudinal electromagnetic parameters. For inclusions' random and orientation distribution, single and three-layer absorbers are designed and optimized using genetic algorithm. The result shows that under a given absorbing requirement, absorber with inclusions' orientation distribution is lighter and thinner than absorber with inclusions' random distribution.

  5. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.


    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  6. On (m, n)-absorbing ideals of commutative rings

    Indian Academy of Sciences (India)

    with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost. Dedekind domain every (m, n)-absorbing ideal is a product of at ...

  7. Light Pollution (United States)

    Riegel, Kurt W.


    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  8. 21 CFR 880.5300 - Medical absorbent fiber. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  9. 21 CFR 868.5310 - Carbon dioxide absorber. (United States)


    ... breathing circuit as a container for carbon dioxide absorbent. It may include a canister and water drain. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a...

  10. 21 CFR 886.3300 - Absorbable implant (scleral buckling method). (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a device...

  11. Organ absorbed doses in intraoral dental radiography. (United States)

    Lecomber, A R; Faulkner, K


    A dental radiography unit operating at 70 kV (nominal) and 20 cm focus-skin distance was used to irradiate an anthropomorphic phantom loaded with lithium fluoride thermoluminescent dosemeters, in order to assess the variation in organ absorbed dose with intraoral periapical radiographic view. 14 views using the bisecting-angle technique and four views using the paralleling technique were studied. The results are presented and the doses and dose distributions examined. Doses for the paralleling and bisecting-angle techniques are compared, and the effects of focus-skin distance and beam collimation upon patient dosimetry discussed. Sources of uncertainty in dental dosimetry studies using phantoms are also considered.

  12. Acoustical model of a Shoddy fibre absorber (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  13. Liquid holdup in turbulent contact absorber

    International Nuclear Information System (INIS)

    Haq, A.; Zaman, M.; Inayat, M.H.; Chughtai, I.R.


    Dynamic liquid holdup in a turbulent contact absorber was obtained through quick shut off valves technique. Experiments were carried out in a Perspex column. Effects of liquid velocity, gas velocity, packing diameter packing density and packing height on dynamic liquid holdup were studied. Hollow spherical high density polyethylene (HDPE) balls were used as inert fluidized packing. Experiments were performed at practical range of liquid and gas velocities. Holdup was calculated on the basis of static bed height. Liquid holdup increases with increasing both liquid and gas velocities both for type 1 and type 2 modes of fluidization. Liquid holdup increases with packing density. No effect of dia was observed on liquid holdup. (author)

  14. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N


    Full Text Available Peer-Reviewed Journal Papers: K.T. Roro, N. Tile, B.W. Mwakikunga, B. Yalisi, A. Forbes (2012). Solar absorption and thermal emission properties of Multiwall carbonnanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process..., Materials Science and Engineering B 177,581? 587. K.T. Roro, N. Tile, A. Forbes (2012), Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications, Applied Surface Science 258, 7174? 7180. K.T. Roro...

  15. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.


    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  16. DHCAL with minimal absorber: measurements with positrons

    International Nuclear Information System (INIS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J. Berenguer; Alamillo, E. Calvo; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.


    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  17. An electromechanical low frequency panel sound absorber. (United States)

    Chang, Daoqing; Liu, Bilong; Li, Xiaodong


    The sound absorbing properties of a thin micro-perforated plate (MPP) coated with piezoelectric material with shunt damping technology is investigated. First a theoretical model is presented to predict the sound absorption coefficients of a thin plate attached with a piezoelectric patch and electrical circuits. Then the model is extended to analyze the sound absorption for a thin plate with micro perforations and piezoelectric material. Measurements are also carried out in an impedance tube and found to be in good agreements with the theoretical model. The sound absorption of the constructions can be much improved by tuning the electrical circuits.

  18. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.


    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  19. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede


    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  20. Exposure testing of solar absorber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.W.


    The Los Alamos National Laboratory has been involved in supporting, monitoring and conducting exposure testing of solar materials for approximately ten years. The Laboratory has provided technical monitoring of the IITRI, DSET, Lockheed, and Berry contracts and has operated the Los Alamos exposure Facility for over five years. This report will outline some of the past exposure testing, the testing still in progress, and describe some of the major findings. While this report will primarily emphasize solar absorber surfaces, some of the significant findings relative to advanced glazing will be discussed.

  1. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming


    Minorsky's well-known empirical formula, which relates the absorbed energy to the destroyed material volume, has been widely used in analyses of high energy collision and grounding accidents for nearly 40 years. The advantage of the method is its apparent simplcity. Obviously, its drawback...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  2. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young


    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  3. Average [O II]nebular emission associated with Mg II absorbers: Dependence on Fe II absorption (United States)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier


    We investigate the effect of Fe II equivalent width (W2600) and fibre size on the average luminosity of [O II]λλ3727,3729 nebular emission associated with Mg II absorbers (at 0.55 ≤ z ≤ 1.3) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L_{[O II]}) and equivalent width (W2796) and redshift of Mg II absorbers. However, we show L_{[O II]} and average luminosity surface density suffers from fibre size effects. More importantly, for a given fibre size the average L_{[O II]} strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with R ≡W2600/W2796 ≥0.5. In fact, we show the observed strong correlations of L_{[O II]} with W2796 and z of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L_{[O II]} and R. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on W2600 before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e., detections ≥3σ significant level). On an average the systems with R ≥0.5 and W2796 ≥2Å are more reddened, showing colour excess E(B - V) ˜ 0.02, with respect to the systems with R <0.5 and most likely traces the high H I column density systems.

  4. Aligned metal absorbers and the ultraviolet background at the end of reionization (United States)

    Doughty, Caitlin; Finlator, Kristian; Oppenheimer, Benjamin D.; Davé, Romeel; Zackrisson, Erik


    We use observations of spatially aligned C II, C IV, Si II, Si IV, and O I absorbers to probe the slope and intensity of the ultraviolet background (UVB) at z ˜ 6. We accomplish this by comparing observations with predictions from a cosmological hydrodynamic simulation using three trial UVBs applied in post-processing: a spectrally soft, fluctuating UVB calculated using multifrequency radiative transfer; a soft, spatially uniform UVB; and a hard, spatially uniform `quasars-only' model. When considering our paired high-ionization absorbers (C IV/Si IV), the observed statistics strongly prefer the hard, spatially uniform UVB. This echoes recent findings that cosmological simulations generically underproduce strong C IV absorbers at z > 5. A single low/high ionization pair (Si II/Si IV), by contrast, shows a preference for the HM12 UVB, whereas two more (C II/C IV and O I/C IV) show no preference for any of the three UVBs. Despite this, future observations of specific absorbers, particularly Si IV/C IV, with next-generation telescopes probing to lower column densities should yield tighter constraints on the UVB.

  5. Advancing the adaptive capacity of social-ecological systems to absorb climate extremes (United States)

    Thonicke, Kirsten; Bahn, Michael; Bardgett, Richard; Bloemen, Jasper; Chabay, Ilan; Erb, Karlheinz; Giamberini, Mariasilvia; Gingrich, Simone; Lavorel, Sandra; Liehr, Stefan; Rammig, Anja


    The recent and projected increases in climate variability and the frequency of climate extremes are posing a profound challenge to society and the biosphere (IPCC 2012, IPCC 2013). Climate extremes can affect natural and managed ecosystems more severely than gradual warming. The ability of ecosystems to resist and recover from climate extremes is therefore of fundamental importance for society, which strongly relies on their ability to supply provisioning, regulating, supporting and cultural services. Society in turn triggers land-use and management decisions that affect ecosystem properties. Thus, ecological and socio-economic conditions are tightly coupled in what has been referred to as the social-ecological system. For ensuring human well-being in the light of climate extremes it is crucial to enhance the resilience of the social-ecological system (SES) across spatial, temporal and institutional scales. Stakeholders, such as resource managers, urban, landscape and conservation planners, decision-makers in agriculture and forestry, as well as natural hazards managers, require an improved knowledge base for better-informed decision making. To date the vulnerability and adaptive capacity of SESs to climate extremes is not well understood and large uncertainties exist as to the legacies of climate extremes on ecosystems and on related societal structures and processes. Moreover, we lack empirical evidence and incorporation of simulated future ecosystem and societal responses to support pro-active management and enhance social-ecological resilience. In our presentation, we outline the major research gaps and challenges to be addressed for understanding and enhancing the adaptive capacity of SES to absorb and adapt to climate extremes, including acquisition and elaboration of long-term monitoring data and improvement of ecological models to better project climate extreme effects and provide model uncertainties. We highlight scientific challenges and discuss

  6. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)


    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  7. Wave energy extraction by coupled resonant absorbers. (United States)

    Evans, D V; Porter, R


    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  8. Fuel with burnable absorber for RBMK-1500

    International Nuclear Information System (INIS)

    Krivosein, G.


    Following the accident at the Chernobyl Unit 4, the priority measures to improve RBMK's safety were developed. Under this program, the measures to reduce the void reactivity coefficient were executed on the stage-by-stage terms: As a result of these measures, the void reactivity coefficient was reduced below +1.0β. But there was decrease in fuel burnup to 14.0/14.5 MW.d/kg (design value ∼21/22 MW.d/kg). High power level of a fresh fuel assembly did not allow to employ fuel with higher enrichment without any compensatory measures. The different types of burnable absorbers were considered to be used. From the results of the anticipated calculations, it was specified that the most efficient power neutron flax flattening between fuel channels could be achieved when erbium was used. Ignalina NPP has used 2.4 % enriched fuel assemblies with burnable absorber since 1995. The fuel burnup has been increased by 60 %. The obtained experimental results are analyzed. (author)

  9. Pregnant woman mode for absorbed fraction calculations

    International Nuclear Information System (INIS)

    Cloutier, R.J.; Snyder, W.S.; Watson, E.E.


    The most radiation-sensitive segment of our population is the developing fetus. Until recently, methods available for calculating the dose to the fetus were inadequate because a model for the pregnant woman was not available. Instead, the Snyder and Fisher model of Reference Man, which includes a uterus, was frequently used to calculate absorbed fractions when the source was in various organs of the body and the nongravid uterus was the target. These values would be representative of the dose to the embryo during the early stages of pregnancy. Unfortunately, Reference Man is considerable larger than Reference Woman. The authors recently reported on the design of a Reference Woman phantom that has dimensions quite similar to the ICRP Reference Woman. This phantom was suitable for calculating the dose to the embryo during early stages of pregnancy (0 to 3 mo.), but was not suitable for the later stages of pregnancy because of the changing shape of the mother and the displacement of several abdominal organs brought about by the growth of the uterus and fetus. The models of Reference Woman that were subsequently developed for each month of pregnancy are described. The models take into account the growth of the uterus and fetus and the repositioning of the various abdominal organs. These models have been used to calculate absorbed fractions for the fetus as a target and the gastrointestinal tract as a source of radiation for twelve photon energies ranging from 10 keV to 4 MeV

  10. High-efficiency ventilated metamaterial absorber at low frequency (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia


    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  11. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei


    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.......In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...

  12. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.


    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  13. Spectral Absorbing Capacity of Brown Carbon Aerosols Over Indo-Gangetic Plain (United States)

    Tripathi, S. N.; Moosakutty, S. P.; Satish, R. V.; Thamban, N. M.; Rastogi, N.


    Organic carbon dominates in atmospheric particulate matter concentration all over the world. A part of organic carbon is known to absorb light in ultra-violet and mid visible wavelengths. Such absorbing organics are collectively called brown carbon (BrC). We present spectral BrC imaginary refractive indices of water soluble organic carbon (WSOC) and total organic carbon (OC) during the winter-spring season of 2015-16. Measurements were made from the city of Kanpur, India located inside the Indo-Gangetic Plain (IGP). Winter-spring season in the IGP is known for its high aerosol loading due to frequent wood and trash burning. Absorption and mass concentration of WSOC is measured using a combination of Particles in to Liquid (PILS), Liquid Waveguide Capillary Cell (LWCC) and Total Organic Carbon (TOC) analyzer system. Same for OC is measured using an offline method, where samples were collected over quartz filter and then analyzed in LWCC and OC-EC analyzer. Our results show that BrC in the IGP is highly absorbing when compared to other parts of the world. The WSOC shows more absorbing capacity compared to OC. Spectral nature of the refractive indices shows WSOC with a higher wavelength dependence compared to OC. Above 470 nm wavelength absorption capacity of WSOC is negligible but absorbance from OC is visible till 565 nm. Incorporating these measured values, a modeling approach is derived to identify the percentage contribution of different absorbing species to total aerosol absorption. Our results show the special characteristics of organics in IGP.

  14. "Tangible Lights"

    DEFF Research Database (Denmark)

    Sørensen, Tor; Merritt, Timothy; Andersen, Oskar


    interaction with lighting technology beyond the smartphone and physical controllers. We examine the usefulness of the in-air gestural interaction style for lighting control. We bring forward "Tangible Lights", which serves as a novel interface for in-air interaction with lighting, drawing on existing...

  15. Light contamination

    International Nuclear Information System (INIS)

    Cepeda Pena, William Enrique


    The article tries on the wrong use of the artificial light, of the main problems of the light contamination, dispersion of the light, noxious effects of the light contamination, ecological effects, effects on the man's biological rhythm, economic effects and effects about the civic and vial security, among other topics

  16. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu


    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al 27 , C 12 , B 11 , B 10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B 10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B 10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B 10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B 10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10 10 order, however, usual neutron flux from spent fuel is 10 8 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B 10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  17. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)


    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  18. Investigations of the optical properties of thin, highly absorbing films under attenuated total reflection conditions: Leaky waveguide mode distortions. (United States)

    Piruska, Aigars; Zudans, Imants; Heineman, William R; Seliskar, Carl J


    Spectra of thin highly absorbing Nafion films doped with Ru(bpy)(3)(2+) on SF11 glass substrates were studied by internal reflection spectroscopy using a single reflection configuration. For the system under study, two modes of light interaction with the film are available: attenuation due to evanescent wave penetration and light propagation within the absorbing film. Unlike evanescent wave spectroscopy, light propagation within the film causes distortions in the measured spectra due to leaky waveguide propagation modes. Upon light propagation in a film doped with Ru(bpy)(3)(2+) spectral shifts up to 50nm to longer wavelengths can occur and additional absorbance peaks can appear in the spectra. These film-based distortions depend on the complex refractive index, the thickness of the film and the angle of incidence. These effects become significant for an extinction coefficient above 0.01 and a film thickness above 200nm. It is shown that spectral distortions can lead to quite complex dynamics in the internal reflection spectra upon analyte preconcentration in the film. Ru(bpy)(3)(2+) partitioning into the Nafion film causes significant refractive index changes that in turn alter leaky waveguide mode conditions in the film and, can even lead to a reduction of measured absorbance despite the increase in the extinction coefficient of the film.

  19. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations (United States)

    Santos, Willy G.; Cavalheiro, E´der T. G.


    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  20. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)


    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  1. Light recycling in solid state devices (United States)

    Fu, Ling; Leutz, Ralf; Ries, Harald


    The idea of light recycling is rather simple. Assume that part of the light emitted by a light source is returned to the light source itself. If the light source does not completely absorb this light then the part which is not absorbed, is still available for further use. The hidden virtue of light recycling is that the recycled light is superposed in the same phase space (etendue) as the original radiation. Thus the average radiance of the source is increased albeit at the price of a reduction of total radiant power. This seems to violate the Second Law of Thermodynamics because the temperature of the radiation is related to the spectral radiance. Increasing the radiance amounts to reducing the entropy. However, radiating into free space is an irreversible process in which entropy is created. Light recycling reduces the entropy carried by the radiation by reducing the entropy production rate in the emission process itself. We show that the maximum radiance which can be achieved by light recycling is marked by the equilibrium radiance. The equilibrium luminescent spectrum diverges as photon energies approach the splitting of the quasi Fermi levels. The familiar spectrum of LEDs clearly does not diverge because the absorptivity/emissivity approaches zero in this regime. These features render light recycling particularly attractive. We report on preliminary laboratory measurements which show encouraging results.

  2. Modelling of neutron absorbers in high temperature reactors by combined transport diffusion methods


    Fen, V.; Lebedev, M.; Sarytchev, V.; Scherer, W.


    Today, the neutron-physical description of strong neutron absorbing materials for control and shut-down of nuclear power plants is performed using combined transport and diffusion methods. Two of these approaches are described and compared in this paper. The method of equivalent cross-sections has been developed at the KFA-Jülich Institute for Safety Research and Reactor Technology (ISR) and was widely used for all german HTR reactor concepts. The Obninsk Institute for Nuclear Power Engineeri...

  3. Blue light screening reduce blue light photosynthesis effeciency of cyanolichens compared with chlorolichens


    Xie, Li


    Cyanolichens have phycobiliproteins that mainly absorb light in the green part of the spectrum. Thereby, phycobiliproteins enhance the utilization of light transmitted through a canopy. The combination of phycobiliproteins and chl a may thus improve photosynthesis in shaded forest sites. We compared the chlorolichens Lobaria pulmonaria and Peltigera leucophlebia with the cyanolichens Lobaria hallii and Peltigera praetextata by measuring light response curves for photosynthetic CO2 up...

  4. Strong Interaction Studies with PANDA at FAIR

    International Nuclear Information System (INIS)

    Schönning, Karin


    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme

  5. Strong Interaction Studies with PANDA at FAIR (United States)

    Schönning, Karin


    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  6. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.


    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  7. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo


    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  8. Electromagnetic radiation absorbers and modulators comprising polyaniline (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid


    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  9. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen


    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  10. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  11. X-band microwave absorbing characteristics of multicomponent composites with magnetodielectric fillers

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, Seyyed Salman Seyyed [Department of Materials Science and Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of); Jafarian, Mojtaba, E-mail: [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Stergiou, Charalampos A. [Lab. of Inorganic Materials, Centre for Research and Technology Hellas, 57001 Thermi (Greece)


    We have studied the microwave absorbing performance in the X-band (8–12.4 GHz) of epoxy composites filled with magnetic and dielectric oxides and multiwalled carbon nanotubes. To this end, pure cobalt-substituted Ba-hexaferrite and calcium titanate were synthesized with the hydrothermal method in the form of nanosized powder. Moreover, the produced powders were characterized in regard of their structural, morphological and static magnetic properties. For the electromagnetic investigation, composite samples were also prepared with various thicknesses up to 4 mm and two basic filler compositions; namely 30 wt% of BaCoFe{sub 11}O{sub 19} and 30 wt% of the mixture BaCoFe{sub 11}O{sub 19}/CaTiO{sub 3}/carbon nanotubes. The magnetic composites show strong but narrowband reflection losses up to 27.5 dB, whereas the magnetodielectric composites with maximum losses of 15.8 dB possess wider bandwidth of operation, due to improved impedance matching. Furthermore, the characteristic frequency of the maximum losses for these quarter-wavelength absorbers was verified to be in inverse proportion to the layer thickness. These findings are supported by reflectance measurements of the samples both in waveguide and free-space. - Highlights: • Single and multi-component composite absorbers with magnetodielectric fillers were synthesized. • The prepared absorbers are lightweight with 30 wt% filler content in epoxy matrix. • The microwave absorption characteristics of composites were measured by waveguide and free-space methods in the X-band. • Composites with a combination of magnetic and dielectric fillers exhibit wider reflection loss peaks. • Composite absorbers have a realistic potential as microwave absorbers in the X-band.

  12. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications. (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min


    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  13. Super-strong Magnetic Field in Sunspots (United States)

    Okamoto, Takenori J.; Sakurai, Takashi


    Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

  14. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin


    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  15. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R


    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  16. Photophosphorylation after Chilling in the Light 1 (United States)

    Wise, Robert R.; Ort, Donald R.


    The response of in situ photophosphorylation in attached cucumber (Cucumis sativus L. cv Ashley) leaves to chilling under strong illumination was investigated. A single-beam kinetic spectrophotometer fitted with a clamp-on, whole leaf cuvette was used to measure the flash-induced electrochromic absorbance change at 518 minus 540 nanometers (ΔA518−540) in attached leaves. The relaxation kinetics of the electric field-indicating ΔA518−540 measures the rate of depolarization of the thylakoid membrane. Since this depolarization process is normally dominated by proton efflux through the coupling factor during ATP synthesis, this technique can be used, in conjuction with careful controls, as a monitor of in situ ATP formation competence. Whole, attached leaves were chilled at 5°C and 1000 microeinsteins per square meter per second for up to 6 hours then rewarmed in the dark at room temperature for 30 minutes and 100% relative humidity. Leaf water potential, chlorophyll content, and the effective optical pathlength for the absorption measurements were not affected by the treatment. Light- and CO2-saturated leaf disc oxygen evolution and the quantum efficiency of photosynthesis were inhibited by approximately 50% after 3 hours of light chilling and by approximately 75% after 6 hours. Despite the large inhibition to net photosynthesis, the measurements of ΔA518−540 relaxation kinetics showed photophosphorylation to be largely unaffected by the chilling and light exposure. The amplitude of the ΔA518-540 measures the degree of energization of the photosynthetic membranes and was reduced significantly by chilling in the light. The cause of the decreased energization was traced to impaired turnover of photosystem II. Our measurements showed that the chilling of whole leaves in the light caused neither an uncoupling of photophosphorylation from photosynthetic electron transport nor any irreversible inhibition of the chloroplast coupling factor in situ. The sizeable

  17. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  18. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  19. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.


    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  20. Shaft shock absorber tests for a spent fuel canister

    International Nuclear Information System (INIS)

    Kukkola, T.; Toermaelae, V.P.


    The disposal canister for spent nuclear fuel will be transferred by a lift to the repository, which is 500 m deep in the bedrock. Model tests were carried out with the objective to estimate weather feasible shock absorber can be developed against the design accident case where the canister should survive a free fall to the lift shaft. If the velocity of the canister is not controlled by air drag or by any other deceleration means, the impact velocity may reach ultimate speed of 100m/s. The canister would retain its integrity in impact on water when the bottom pit of the lift well is filled with groundwater. However, the canister would hit the pit bottom with high velocity since the water hardly slows down the canister. The impact to the bottom of the pit should be dampened mechanically. The tests demonstrated that 20 m high filling to the bottom pit of the lift well by Light Expanded Clay Aggregate (LECA), gives fair impact absorption to protect the fuel canister. Presence of ground water is not harmful for impact absorption system provided that the ceramic gravel is not floating too high from the pit bottom. Almost ideal impact absorption conditions are met if the water high level does not exceed two thirds of the height of the gravel. Shaping of the bottom head of the cylindrical canister does not give meaningful advantages to the impact absorption system. The flat nose bottom head of the fuel canister gives adequate deceleration properties. (orig.)