WorldWideScience

Sample records for strongly layered heterogeneous

  1. Evolution of deformation heterogeneity at multiple length scales in a strongly textured zinc layer on galvanized steel

    International Nuclear Information System (INIS)

    Ghosh, A; Gurao, N P

    2015-01-01

    The evolution of heterogeneity of plastic deformation in a zinc layer has been probed at multiple length scales using a battery of characterization tools like X-ray diffraction, electron back scatter diffraction (EBSD) and digital image correlation. The experimental results indicate that plastic deformation is heterogeneous at different length scales and the value of micro, meso and macro strain by different characterization techniques shows a different value. The value of strain determined at the meso and micro length scale from EBSD and X-ray diffraction was negligible, however, the macro-strain as determined from X-ray peak shift was significant. EBSD results showed evidence of profuse {101-bar2} <101-bar1> contraction twinning in the zinc layer with higher intragranular misorientation in the twin compared to the matrix. It is therefore, inferred that the evolution of higher intergranular (between matrix and twin) strain due to prolific contraction twinning contributes to the failure of zinc layer on galvanized steel. (paper)

  2. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    Science.gov (United States)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a

  3. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  4. Strong ground motion spectra for layered media

    International Nuclear Information System (INIS)

    Askar, A.; Cakmak, A.S.; Engin, H.

    1977-01-01

    This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy

  5. Homogenization technique for strongly heterogeneous zones in research reactors

    International Nuclear Information System (INIS)

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  6. Strong double layer in the downward current region.

    Science.gov (United States)

    Andersson, L.; Ergun, R. E.; Newman, D.; McFadden, J. P.; Carlson, C. W.

    2001-12-01

    A direct observation of a strong double layer has been recorded in detail by the FAST satellite in the downward current region of the aurora. This presentation concentrates on a particular compelling example in which both the electric field and particle measurements clearly illustrate the detail characteristics of the double layer. Electrons with initial energies of about 50 eV are observed to be accelerated through the double layer into a beam of more than 750 eV. This beam is rapidly plateaued by intense wave turbulence into a extended power law distribution. This process forms accelerated `flat-top' electron distributions, which are represented of energized distributions in the downward current region. Ions are also observed to be accelerated by the double layer in the opposite direction of the electron beam. Ion conics on the low potential side of the double layer are trapped between the double layer and their mirror points. The double layer is observed to move up the magnetic field line, in the direction of the electron beam. In front of it, an ion population moves with the speed of the double layer suggesting an overshoot in the potential ramp. The intense wave turbulence on the high potential side is seen to transform into electron phase-space holes far away from the double layer.

  7. Responses of boundary layers to strong external disturbances

    Science.gov (United States)

    Asai, Masahito

    1990-10-01

    The transition from laminar flow to turbulent flow of the boundary layer is an important phenomenon for various problems in astronautical engineering. When the turbulence in the flow is weak, the boundary layer transition starts from the spatial amplification of a viscous T-S (Tollmien Schlichting) wave. The initial wave starts as a two dimensional wave and grows rapidly to a three dimensional wave with amplification. Finally, it corrupts to small scale hairpin eddies. The transitions starting from these wave amplifications are studied, and instability mechanisms are analyzed. In order to analyze the mechanism, the strength of turbulence (eddies) in the air flow that develops a transitional structure in the boundary layer and leads to a turbulent flow transition is analyzed. The responses of the boundary layers to the strong external disturbances are studied experimentally by introducing sonic wave which simulates hairpin eddies in the lower part of the front edge of a flat plate.

  8. Increased Versatility of Modular Robots through Layered Heterogeneity

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper; Garcia, Ricardo Franco Mendoza

    2011-01-01

    it possible to create dynamic, power-efficient and robust locomotive modular robots, extending the usability of modular robots. Early tests show that the system is able to perform dynamic locomotion with speeds up to 11.8cm/sec with a specific resistance of 9.65. Also static structures have been constructed......, forming a tower that is able to withstand a load of 29 times its own weight placed on top of the tower, without any power consumption. These tests show that the system is comparable in performance to those of non-modular robots.......This paper introduces a new class of modular robots, called: “layered heterogeneous modular robots”, which is a type of modular robot, where the functionality of a robot is modularized into three layers of heterogeneous modules: mechanics, actuation and electronics. This novel approach may make...

  9. Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

    OpenAIRE

    M. H. Sedaghat; A. Zamani; S. Morshedi; R. Janamiri; M. Safdari; I. Mahdavi; A. Hosseini; A. Hatampour

    2013-01-01

    Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different mi...

  10. Cross-Layer Optimal Rate Allocation for Heterogeneous Wireless Multicast

    Directory of Open Access Journals (Sweden)

    Amr Mohamed

    2009-01-01

    Full Text Available Heterogeneous multicast is an efficient communication scheme especially for multimedia applications running over multihop networks. The term heterogeneous refers to the phenomenon when multicast receivers in the same session require service at different rates commensurate with their capabilities. In this paper, we address the problem of resource allocation for a set of heterogeneous multicast sessions over multihop wireless networks. We propose an iterative algorithm that achieves the optimal rates for a set of heterogeneous multicast sessions such that the aggregate utility for all sessions is maximized. We present the formulation of the multicast resource allocation problem as a nonlinear optimization model and highlight the cross-layer framework that can solve this problem in a distributed ad hoc network environment with asynchronous computations. Our simulations show that the algorithm achieves optimal resource utilization, guarantees fairness among multicast sessions, provides flexibility in allocating rates over different parts of the multicast sessions, and adapts to changing conditions such as dynamic channel capacity and node mobility. Our results show that the proposed algorithm not only provides flexibility in allocating resources across multicast sessions, but also increases the aggregate system utility and improves the overall system throughput by almost 30% compared to homogeneous multicast.

  11. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    International Nuclear Information System (INIS)

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  12. High resolution field study of sediment dynamics on a strongly heterogeneous bed

    Science.gov (United States)

    Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.

    2010-12-01

    Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current

  13. Multigrid Solution of the 3D stress field in strongly heterogeneous materials

    NARCIS (Netherlands)

    Boffy, Hugo; Venner, Cornelis H.

    2014-01-01

    Technology allows the production of advanced (heterogeneous) materials controlling properties on an increasingly local scale, e.g. layered, graded, granular and fiber-reinforced. In this paper the efficiency of the Multigrid method for 3D stress calculation involving such materials is investigated.

  14. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  15. Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models

    International Nuclear Information System (INIS)

    Leonard, Sebastien; Berthier, Ludovic

    2005-01-01

    Kinetically constrained spin models are schematic coarse-grained models for the glass transition which represent an efficient theoretical tool to study detailed spatio-temporal aspects of dynamic heterogeneity in supercooled liquids. Here, we study how spatially correlated dynamic domains evolve with time and compare our results to various experimental and numerical investigations. We find that strong and fragile models yield different results. In particular, the lifetime of dynamic heterogeneity remains constant and roughly equal to the alpha relaxation time in strong models, while it increases more rapidly in fragile models when the glass transition is approached

  16. Boundary layer structure over areas of heterogeneous heat fluxes

    International Nuclear Information System (INIS)

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns

  17. [Transmural heterogeneity of the left ventricular wall: subendocardial layer and subepicardial layer].

    Science.gov (United States)

    Kuwada, Y; Takenaka, K

    2000-03-01

    The myocardium of the left ventricular wall is not homogeneous, but demonstrates transmural heterogeneity in myocardial blood flow, myocardial metabolism, and contraction and relaxation dynamics. Reimer and colleagues recognized that irreversible injury of the ischemic myocardium develops as a transmural wavefront, occurring first in the subendocardial myocardium, and with longer periods of ischemia, the wavefront of necrosis moves from the subendocardial zone across the wall to progressively involve more of the transmural thickness of the ventricular wall, ultimately becoming nearly transmural. This phenomenon was named the "wavefront phenomenon", and is the morphological counterpart of the transmural heterogeneity of the metabolism and blood flow. Autoregulation of myocardial blood flow is accomplished by changes in intramyocardial vascular resistance and intramyocardial pressure. It is more difficult to maintain the autoregulation in the subendocardial myocardium because contraction is greater, oxygen demand is greater, and myocardial pressure is higher in the subendocardium than in the subepicardial layer. In the normal myocardium, contraction is greater in the subendocardial layer, as is wall stress, accounting for the higher subendocardial energy requirements. Consistent with these findings, higher rates of metabolic activity and greater oxygen extraction are found in this region. As a consequence, ischemia becomes more severe and myocardial cells undergo necrosis first in the subendocardium. Under normal conditions, production and utilization of high-energy phosphates [adenosine triphosphate(ATP) and creatine phosphate] in the subendocardial myocardium are more active than in the subepicardial myocardium, but decline more easily in the subendocardium during ischemia, which induces the subendocardial ischemic injury. Lower production of Ca(2+)-ATPase in the subendocardium might also contribute to the subendocardial injury. Wavefront necrosis starts from the

  18. A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media

    KAUST Repository

    Duru, Kenneth

    2014-01-01

    A mathematical analysis of the perfectly matched layer (PML) for the time-dependent wave equation in heterogeneous and layered media is presented. We prove the stability of the PML for discontinuous media with piecewise constant coefficients, and derive energy estimates for discontinuous media with piecewise smooth coefficients. We consider a computational setup consisting of smaller structured subdomains that are discretized using high order accurate finite difference operators for approximating spatial derivatives. The subdomains are then patched together into a global domain by a weak enforcement of interface conditions using penalties. In order to ensure the stability of the discrete PML, it is necessary to transform the interface conditions to include the auxiliary variables. In the discrete setting, the transformed interface conditions are crucial in deriving discrete energy estimates analogous to the continuous energy estimates, thus proving stability and convergence of the numerical method. Finally, we present numerical experiments demonstrating the stability of the PML in a layered medium and high order accuracy of the proposed interface conditions. © 2013 Elsevier Inc.

  19. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene

    OpenAIRE

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-01-01

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (2 to 5 layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us ...

  20. A new approach to tracer transport analysis: From fracture systems to strongly heterogeneous porous media

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu.

    1989-02-01

    Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional strongly heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs

  1. Cross-layer Modelling for Heterogeneous MPSoCs

    DEFF Research Database (Denmark)

    Madsen, Jan

    2005-01-01

    One of the challenges of designing a heterogeneous multiprocessor SoC is to find the right partitioning of the application onto the platform architecture. The right partitioning is dependent on the characteristics of the processors and the network connecting them, as well as the application. We p...

  2. Heterogeneous firing rate response of mouse layer V pyramidal neurons in the fluctuation-driven regime.

    Science.gov (United States)

    Zerlaut, Y; Teleńczuk, B; Deleuze, C; Bal, T; Ouanounou, G; Destexhe, A

    2016-07-01

    We recreated in vitro the fluctuation-driven regime observed at the soma during asynchronous network activity in vivo and we studied the firing rate response as a function of the properties of the membrane potential fluctuations. We provide a simple analytical template that captures the firing response of both pyramidal neurons and various theoretical models. We found a strong heterogeneity in the firing rate response of layer V pyramidal neurons: in particular, individual neurons differ not only in their mean excitability level, but also in their sensitivity to fluctuations. Theoretical modelling suggest that this observed heterogeneity might arise from various expression levels of the following biophysical properties: sodium inactivation, density of sodium channels and spike frequency adaptation. Characterizing the input-output properties of neocortical neurons is of crucial importance for understanding the properties emerging at the network level. In the regime of low-rate irregular firing (such as in the awake state), determining those properties for neocortical cells remains, however, both experimentally and theoretically challenging. Here, we studied this problem using a combination of theoretical modelling and in vitro experiments. We first identified, theoretically, three somatic variables that describe the dynamical state at the soma in this fluctuation-driven regime: the mean, standard deviation and time constant of the membrane potential fluctuations. Next, we characterized the firing rate response of individual layer V pyramidal cells in this three-dimensional space by means of perforated-patch recordings and dynamic clamp in the visual cortex of juvenile mice in vitro. We found that individual neurons strongly differ not only in terms of their excitability, but also, and unexpectedly, in their sensitivities to fluctuations. Finally, using theoretical modelling, we attempted to reproduce these results. The model predicts that heterogeneous levels of

  3. Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment

    Science.gov (United States)

    2017-05-21

    Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment Colin McGinty*, Valerie Finnemeyer**, Robert Reich**, Harry Clark...vertical alignment on these substrates. For the thinner BY layers, we do not see this strong evidence of out of plane reorientation. The out of...In this report we show the surprising effect that thin azodye layers demonstrate improved stability over those that are thicker. Figure 6

  4. Full-waveform Inversion of Crosshole GPR Data Collected in Strongly Heterogeneous Chalk

    DEFF Research Database (Denmark)

    Keskinen, Johanna; Zibar, Majken Caroline Looms; Nielsen, Lars

    2015-01-01

    Chalk is an important reservoir rock for hydrocarbons and for groundwater resources for many major cities. Therefore, this rock type has been extensively investigated using both geological and geophysical methods. Many applications of crosshole GPR tomography rely on the ray approximation...... all the information contained in the data and is able to provide significantly improved images. Here, we apply full-waveform inversion to crosshole GPR data to image strong heterogeneity of the chalk related to changes in lithology and porosity. We have collected a crosshole tomography dataset...... address the importance of (i) adequate starting models, both in terms of the dielectric permittivity and the electrical conductivity, (ii) the estimation of the source wavelet, (iii) and the effects of data sampling density when imaging this rock type. Moreover, we discuss the resolution of the bedding...

  5. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    Science.gov (United States)

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  6. Strong modification of the reflection from birefringent layers of semiconductor nanowires by nanoshells

    NARCIS (Netherlands)

    Diedenhofen, S.L.; Algra, R.E.; Bakkers, E.P.A.M.; Gómez Rivas, J.

    2011-01-01

    The propagation of light in layers of vertically aligned nanowires is determined by their unique and extreme optical properties. Depending on the nanowire filling fraction and their diameter, layers of nanowires form strongly birefringent media. This large birefringence gives rise to sharp angle

  7. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer

    Science.gov (United States)

    Sarris, Theo S.; Close, Murray; Abraham, Phillip

    2018-03-01

    A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.

  8. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    International Nuclear Information System (INIS)

    Ishihara, Takashi; Kaneda, Yukio; Hunt, Julian C R

    2011-01-01

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R λ = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10η, where η is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, κ) from scales larger than 1/κ to scales smaller than 1/κ at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  9. Object localization in the presence of a strong heterogeneous background in fluorescent tomography.

    Science.gov (United States)

    Mohajerani, Pouyan; Eftekhar, Ali A; Adibi, Ali

    2008-06-01

    We propose a method for object localization in fluorescent tomography (FT) in the presence of a highly heterogeneous background. Existing approaches typically assume a homogeneous background distribution; thus, they are incapable of accurately accounting for the more general case of an unconstrained, possibly heterogeneous, background. The proposed method iteratively solves the inverse problem over a solution space partitioned into a background subspace and an object subspace to simultaneously estimate the background and localize the target fluorescent objects. Simulation results of this algorithm applied to continuous-wave FT demonstrate effective localization of target objects in the presence of highly heterogeneous background distributions.

  10. Experimental observations of strong double layers. [in triple plasma device for lower magnetospheric simulation

    Science.gov (United States)

    Coakley, P.; Hershkowitz, N.; Hubbard, R.; Joyce, G.

    1978-01-01

    A computer simulation is applied to the production of strong electric potential double layers (DL) in a triple plasma device. The simulation is intended to represent DL in the low magnetosphere above the auroral zones. The DL are described as standing electrostatic shocks with different energy coefficients in their strong and weak forms. The strong DL was generally found to be unstable, but stability could be imparted if a population of trapped electrons was presented. Stability increased with the length of the system. A schematic for the system is presented, and a phase-space plot of electrons (indicating system stability) is graphed.

  11. Influence of confining layers' heterogeneity on the barometric response functions in semi-confined aquifers

    Science.gov (United States)

    Redaelli, Marco; Perulero Serrano, Raul

    2017-04-01

    It has been shown that Barometric Response Functions (BRFs) can provide a useful tool for detecting the occurrence of highly conducive bodies which span across aquifer confining layers and can potentially give rise to pathways for pollutant migration (Hussein et al 2013, Odling et al 2015). Analytical models employed to estimate BRFs from geological system properties assume homogeneity within the aquifer and its confining layer. These assumptions are rarely satisfied in practice. Our study focusses on the impact on predicted BRFs of heterogeneous distribution of high conductivity geomaterials within the confining layer. The work is grounded on a suite of three-dimensional, transient numerical computations of groundwater flow in a confining layer-aquifer system for i) a perfectly homogeneous two-layer setting where a single highly conducive block is fully penetrating the confining layer and ii) a heterogeneous two-layer system where hydraulic conductivity in the confining layer is modelled as a stochastic process. Our numerical results are interpreted through a comparison against those associated with an analytical model which assumes system homogeneity. Monitoring points located in the middle of the modelled aquifer domain, mimicking screened boreholes in field conditions, are used to extract water level records. The output is used to obtain the corresponding BRFs (in terms of gain and phase components) and compared vis-a-vis the selected analytical solution. The results show a wide variety of BRF responses, especially in the gain component, which vary from almost confined to unconfined scenarios. Our simulations show that the BRFs are a viable tool to improve understanding of the degree of spatial continuity within low permeability heterogeneous geological materials such as glacial till which is frequently found overlying water bearing units across the UK and other localities worldwide. As such, it has the potential to improve groundwater vulnerability assessment

  12. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  14. Heterogeneities in illite/smectite mixed/layers clays: some comments and recollections

    International Nuclear Information System (INIS)

    Johns, W.D.

    1995-01-01

    A review of some studies of heterogeneities, structure and surface in illite/smectite mixed-layer clays of Vienna Basin using X-ray diffraction, high resolution-transmission electron microscopy, infra-red spectroscopy, laser microprobe mass analysis, Auger electron spectroscopy, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy is given. The models of hexyl ammonium ion configuration complexed between silica sheets is discussed. 1 tab., 10 figs., 6 refs

  15. Physical-layer Network Coding in Two-Way Heterogeneous Cellular Networks with Power Imbalance

    OpenAIRE

    Thampi, Ajay; Liew, Soung Chang; Armour, Simon; Fan, Zhong; You, Lizhao; Kaleshi, Dritan

    2014-01-01

    The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays assuming the decode...

  16. A procedure for the upscaling of longitudinal dispersivity in strongly heterogeneous formations

    Science.gov (United States)

    Fiori, A.; Jankovic, I.

    2009-04-01

    Quantification of solute transport in heterogeneous aquifers is usually carried out by the spatial or temporal moments of the local concentration C. The heterogeneous medium is characterized by a spatially variable logpermeability Y (x)=ln K(x), which is often modeled as a space random function where Y is characterized by the mean =lnKG, variance σY 2 and linear integral scale IY . As a consequence, local concentration and its moments are also random. Transport is solved generally numerically by discretization of space by elements of scale L, usually much smaller than IY . The latter requirement may lead to considerable computational resources for three-dimensional problems, and for that reason larger values for L are often adopted. The upscaling problem consists in analyzing the relation between the small-scale and grid-scale logconductivities in order to obtain a reasonable approximation for C or its moments in the numerical grid. We solve the upscaling problem for the longitudinal macrodispersivity and the case of mean uniform flow and a thin planar plume of size much larger than IY . The model we adopt is based on the representation of the heterogeneous medium as a collection of independent blocks of random conductivity. Flow and transport are solved in a semi-analytical form by the embedding matrix approximation. Our results indicate that upscaling causes smoothing of conductivity spatial variations at scales smaller than that of discretization blocks. This results in a reduction of rate of spreading of solutes as quantified by the longitudinal equivalent macrodispersivity. In order to correct for this loss, a fictitious upscaling induced macrodispersivity is introduced. It is determined quantitatively for mean uniform flow, simplified formation structure and approximate solutions of flow and transport obtained in the past. It is found that the value of the induced longitudinal macrodispersivity is enhanced by high degree of heterogeneity.

  17. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  18. Characterization and modeling tools for light management in heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, J.; Duché, D.; Ruiz, C. M.; Thierry, F.; Carlberg, M.; Berginc, G.; Pasquinelli, M.; Simon, J.-J.; Escoubas, L.; Flory, F.

    2016-09-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the opto-geometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on CIGS, Perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles and colored solar cells.

  19. Specific tools for studying the optical response of heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, Judikael; Duché, David; Ruiz, Carmen M.; Thierry, Francois; Carlberg, Miriam; Berginc, Gerard; Pasquinelli, Marcel; Simon, Jean Jacques; Escoubas, Ludovic; Flory, Francois

    2017-01-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the optogeometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on copper indium gallium selenide, perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles, and colored solar cells.

  20. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  1. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    Science.gov (United States)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with

  2. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  3. A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Delussu

    Full Text Available This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.

  4. A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.

    Science.gov (United States)

    Delussu, Giovanni; Lianas, Luca; Frexia, Francesca; Zanetti, Gianluigi

    2016-01-01

    This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.

  5. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow

    Science.gov (United States)

    Gerloff, Sascha; Klapp, Sabine H. L.

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  6. Strong Genomic and Phenotypic Heterogeneity in the Aeromonas sobria Species Complex

    Directory of Open Access Journals (Sweden)

    Jeff Gauthier

    2017-12-01

    Full Text Available Aeromonas sobria is a mesophilic motile aeromonad currently depicted as an opportunistic pathogen, despite increasing evidence of mutualistic interactions in salmonid fish. However, the determinants of its host-microbe associations, either mutualistic or pathogenic, remain less understood than for other aeromonad species. On one side, there is an over-representation of pathogenic interactions in the A. sobria literature, of which only three articles to date report mutualistic interactions; on the other side, genomic characterization of this species is still fairly incomplete as only two draft genomes were published prior to the present work. Consequently, no study specifically investigated the biodiversity of A. sobria. In fact, the investigation of A. sobria as a species complex may have been clouded by: (i confusion with A. veronii biovar sobria because of their similar biochemical profiles, and (ii the intrinsic low resolution of previous studies based on 16S rRNA gene sequences and multilocus sequence typing. So far, the only high-resolution, phylogenomic studies of the genus Aeromonas included one A. sobria strain (CECT 4245 / Popoff 208, making it impossible to robustly conclude on the phylogenetic intra-species diversity and the positioning among other Aeromonas species. To further understand the biodiversity and the spectrum of host-microbe interactions in A. sobria as well as its potential genomic diversity, we assessed the genomic and phenotypic heterogeneity among five A. sobria strains: two clinical isolates recovered from infected fish (JF2635 and CECT 4245, one from an infected amphibian (08005 and two recently isolated brook charr probionts (TM12 and TM18 which inhibit in vitro growth of A. salmonicida subsp. salmonicida (a salmonid fish pathogen. A phylogenomic assessment including 2,154 softcore genes corresponding to 946,687 variable sites from 33 Aeromonas genomes confirms the status of A. sobria as a distinct species divided

  7. Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahim Pouran, Shima, E-mail: rahimpooran@yahoo.com [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abdul Aziz, A.R., E-mail: azizraman@um.edu.my [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wan Daud, Wan Mohd Ashri, E-mail: ashri@um.edu.my [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Embong, Zaidi, E-mail: zembong@gmail.com [Faculty of Science, Technology and Human Development, University Tun Hussein Onn Malaysia, 86400 Johor (Malaysia)

    2015-10-01

    decrease in their catalytic efficiency. The results proved that incorporation of niobium into magnetite significantly improved the characteristics and effectiveness of the heterogeneous catalyst for Fenton treatment of recalcitrant effluents.

  8. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    Science.gov (United States)

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  9. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    Science.gov (United States)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  10. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.

    1992-01-01

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  11. Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Kristin Pfeiffer

    2017-08-01

    Full Text Available Antireflection (AR coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD, which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and Al2O3/Ta2O5/SiO2 AR coatings were successfully applied in the 400–750 nm and 400–700 nm spectral range, respectively. Less than 0.6% reflectance with an average of 0.3% has been measured on a fused silica hemispherical (half-ball lens with 4 mm diameter along the entire lens surface at 0° angle of incidence. The reflectance on a large B270 aspherical lens with height of 25 mm and diameter of 50 mm decreased to less than 1% with an average reflectance < 0.3%. The results demonstrate that ALD is a promising technology for deposition of uniform optical layers on strongly curved lenses without complex in situ thickness monitoring.

  12. High Hole-Mobility Molecular Layer Made from Strong Electron Acceptor Molecules with Metal Adatoms.

    Science.gov (United States)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2017-11-02

    The electronic structure of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-TCNQ (F 4 TCNQ) monolayers on Au(111) has been investigated by means of angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. In contrast to the physisorbed TCNQ/Au(111) interface, the high-resolution core-level photoemission spectra and the low-energy electron diffraction at the F 4 TCNQ/Au(111) interface show evidence for the strong charge transfer (CT) from Au to F 4 TCNQ and for the Au atom segregation from the underlying Au(111) surface, suggesting a possible origin of the spontaneous formation of the two-dimensional F 4 TCNQ-Au network. The ARPES experiment reveals a low hole-injection barrier and large band dispersion in the CT-induced topmost valence level of the F 4 TCNQ-Au network with 260 meV bandwidth due to the adatom-mediated intermolecular interaction. These results indicate that strong electron acceptor molecules with metal adatoms can form high hole-mobility molecular layers by controlling the molecule-metal ordered structure and their CT interaction.

  13. Heterogeneous photocatalytic degradation of pesticides using decatungstate intercalated macroporous layered double hydroxides.

    Science.gov (United States)

    Da Silva, Eliana S; Prevot, Vanessa; Forano, Claude; Wong-Wah-Chung, Pascal; Burrows, Hugh D; Sarakha, Mohamed

    2014-10-01

    Decatungstate W10O32(4-) was efficiently intercalated between the layers of three-dimensionally ordered macroporous Mg2Al-layered double hydroxide. The structural and textural properties of as-prepared intercalated compound were characterized using different solid-state characterization techniques such as X-ray powder diffraction, FTIR and Raman spectroscopies and electronic microscopy. The photocatalytic properties of immobilized W10O32 (4-) within Mg2Al structure were investigated using 2-(1-naphthyl) acetamide (NAD) as a model of pesticide. The influence of different parameters such as amount of catalyst, pH and oxygen concentration were investigated. An optimal NAD degradation was obtained for a photocatalyst concentration of 60 mg l(-1). Under our experimental conditions, this heterogeneous photocatalyst induces photodegradation of 60 % of NAD after 17 h of irradiation at 365 nm and at pH 6.6. Interestingly, pesticide photodegradation leads to the mineralization of substrates to H2O and CO2 and the photocatalyst can be recycled and reused without any loss of activity over four cycles.

  14. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  15. Complex confining layers : a physical and geochemical characterization of heterogeneous unconsolidated fluvial deposits using a facies-based approach

    NARCIS (Netherlands)

    Helvoort, Pieter-Jan van

    2003-01-01

    A proper characterization of physical and chemical heterogeneities in the subsoil is an important condition for successful modeling of groundwater flow and solute transport. This study focuses on the physical and chemical characterization of a complex confining layer in the Rhine–Meuse deltaic plain

  16. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    Science.gov (United States)

    Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.

    2013-12-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.

  17. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    International Nuclear Information System (INIS)

    Anwar, Farhat; Masud, Mosharrof H; Latif, Suhaimi A

    2013-01-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6

  18. Cross-Layer Scheduling and Resource Allocation for Heterogeneous Traffic in 3G LTE

    Directory of Open Access Journals (Sweden)

    Richard Musabe

    2014-01-01

    Full Text Available 3G long term evolution (LTE introduces stringent needs in order to provide different kinds of traffic with Quality of Service (QoS characteristics. The major problem with this nature of LTE is that it does not have any paradigm scheduling algorithm that will ideally control the assignment of resources which in turn will improve the user satisfaction. This has become an open subject and different scheduling algorithms have been proposed which are quite challenging and complex. To address this issue, in this paper, we investigate how our proposed algorithm improves the user satisfaction for heterogeneous traffic, that is, best-effort traffic such as file transfer protocol (FTP and real-time traffic such as voice over internet protocol (VoIP. Our proposed algorithm is formulated using the cross-layer technique. The goal of our proposed algorithm is to maximize the expected total user satisfaction (total-utility under different constraints. We compared our proposed algorithm with proportional fair (PF, exponential proportional fair (EXP-PF, and U-delay. Using simulations, our proposed algorithm improved the performance of real-time traffic based on throughput, VoIP delay, and VoIP packet loss ratio metrics while PF improved the performance of best-effort traffic based on FTP traffic received, FTP packet loss ratio, and FTP throughput metrics.

  19. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction

    Science.gov (United States)

    Textor, Torsten; Fouda, Moustafa M. G.; Mahltig, Boris

    2010-02-01

    Tollens' reaction is a well-known reaction employed in chemical analyses to detect reducing groups—basically aldehydes. If aldehydes are available in a solution these will reduce silver(I) ions to silver(0). The present paper describes an approach to use a heterogeneous Tollens' reaction to establish thin layers of silver on polyamide surfaces. The polyamide surface is modified with aldehyde functions in a first step employing glutaraldehyde. The resulting polymer material is therefore equipped with reducing groups necessary for the reduction of silver in a next step. The polymer is subsequently treated with Tollens' reagent yielding a yellow/brownish colour typical for the surface plasmon resonance of silver. The extend of the colouring - indicating the amount of silver deposited - varies with both the concentration of the Tollens' reagent and the concentration of the glutaraldehyde solution used for the pre-treatment. The as-prepared samples not only show an excellent antimicrobial activity but also an enormous durability. Polyamide textiles that were treated with the described approach showed unchanged efficiency even after 30 laundry cycles.

  20. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials

    Science.gov (United States)

    Xiao, Shuyuan; Wang, Tao; Jiang, Xiaoyun; Yan, Xicheng; Cheng, Le; Wang, Boyun; Xu, Chen

    2017-05-01

    Graphene has emerged as a promising building block in modern optics and optoelectronics due to its novel optical and electrical properties. In the mid-infrared and terahertz (THz) regime, graphene behaves like metals and supports surface plasmon resonances (SPRs). Moreover, the continuously tunable conductivity of graphene enables active SPRs and gives rise to a range of active applications. However, the interaction between graphene and metal-based resonant metamaterials has not been fully understood. In this work, a simulation investigation on the interaction between the graphene layer and THz resonances supported by the two-gap split ring metamaterials is systematically conducted. The simulation results show that the graphene layer can substantially reduce the Fano resonance and even switch it off, while leaving the dipole resonance nearly unaffected, which is well explained with the high conductivity of graphene. With the manipulation of graphene conductivity via altering its Fermi energy or layer number, the amplitude of the Fano resonance can be modulated. The tunable Fano resonance here together with the underlying physical mechanism can be strategically important in designing active metal-graphene hybrid metamaterials. In addition, the ‘sensitivity’ to the graphene layer of the Fano resonance is also highly appreciated in the field of ultrasensitive sensing, where the novel physical mechanism can be employed in sensing other graphene-like two-dimensional materials or biomolecules with the high conductivity.

  2. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    Science.gov (United States)

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  3. Mathematical Simulation of Heat Transfer in Heterogenous Forest Fuel Layer Influenced by Heated Up to High Temperatures Steel Particle

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2014-01-01

    Full Text Available Heterogeneity of forest fuel layer renders the important influence on forest fire occurrence processes. One of sources of the raised temperature on forested territories is metal particles heated up to high temperatures. Such particles can be formed as a result of welding of metals on forested territories. The present paper represents the heat transfer research in forest fuel at the influence of metal particle heated up to high temperatures. The heterogonous forest fuel layer with inclusions of small wooden branches and chips is considered. Such object research is urgent especially at fire forecasting on forest cutting. The technology of mathematical simulation is used. The two-dimensional problem of heat transfer in forest fuel layer structure with wood inclusions is solved.

  4. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  5. Strong perpendicular magnetic anisotropy at FeCoB/MgO interface with an ultrathin HfOx insertion layer

    Science.gov (United States)

    Ou, Yongxi; Ralph, Daniel; Buhrman, Robert

    The realization of robust perpendicular magnetic anisotropy (PMA) in heavy metal(HM)/FeCoB/MgO thin-film heterostructures has enabled a pathway for the implementation of high density memory elements based on perpendicularly magnetized tunnel junctions, and also provides a platform for the study and control of domain walls and of novel magnetic chiral structures such as skyrmions in nanowire structures. Here we report on the achievement of more robust PMA in Ta/FeCoB/MgO heterostructures by the insertion of an ultrathin HfOx passivation layer at the FeCoB/MgO interface. This is accomplished by depositing one to two atomic layers of Hf onto the FeCoB before the subsequent rf sputter deposition of the MgO layer, which fully oxidizes the Hf layer as confirmed by X-ray photoelectron spectroscopy measurements. The result is a strong interfacial perpendicular anisotropy energy density as large as 1.7 erg/cm-2 without any post-fabrication annealing treatment. Similar results have been achieved with the use of W and Pt HM base layers. This work broadens the class and enhances the capabilities of PMA HM/FM heterostructures for spintronics research and applications.

  6. Using PKiKP coda to study heterogeneity in the top layer of the inner core's western hemisphere

    Science.gov (United States)

    Wu, Wenbo; Irving, Jessica C. E.

    2017-05-01

    Significant lateral and depth variations of the inner core's properties, such as the large-scale hemispherical pattern, have been confirmed by a variety of seismological observations. However it is still unclear which dynamic processes in the core are responsible for these variations. Small-scale volumetric heterogeneity has been detected in the top layer of the inner core by PKiKP coda observations. Studies of these small-scale heterogeneities can provide critical information, such as the degree of alignment of iron crystals, the presence of possible partial melt and the grain size of iron crystals, all of which can be used to constrain the dynamic processes of the inner core. However, most previous observations sampled the inner core beneath the Pacific Ocean and Asia, often in the inner core's 'eastern hemisphere'. We use seismic stations in the North America, including the Earthscope Transportable Array, to look at PKiKP and its coda waves. We find 21 events with clear signals. In agreement with previous studies, inner core scattering (ICS), resulting in clear PKiKP coda, is found at epicentral distances of 60°-95°. However, the ICS we observe in these 21 western hemisphere events is weaker than previously reported for the eastern hemisphere. Comparing our observations with numerical simulations, we conclude that this relatively weak ICS indicates small-scale heterogeneity in at least the top layer of the inner core beneath Central America. Combining our clear observations with previous studies suggests either a hemispherical difference, or a regional variation, of small-scale heterogeneity in the inner core.

  7. Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

    Science.gov (United States)

    Gaume, J.; Chambon, G.; Eckert, N.; Naaim, M.; Schweizer, J.

    2015-04-01

    Dry-snow slab avalanches are generally caused by a sequence of fracture processes, including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually increased our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically based statistical model of the slab-WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by slab elasticity and possible tensile failure of the slab. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and trigger a tensile failure within the slab; (2) partial-slope release if fracture arrest and slab tensile failure occur due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as often claimed in the literature.

  8. High resolution speckle tracking dobutamine stress echocardiography reveals heterogeneous responses in different myocardial layers: implication for viability assessments.

    Science.gov (United States)

    Rösner, Assami; How, Ole Jakob; Aarsaether, Erling; Stenberg, Thor Allan; Andreasen, Thomas; Kondratiev, Timofei V; Larsen, Terje S; Myrmel, Truls

    2010-04-01

    Speckle-tracking echocardiography (STE) can be used to quantify wall strain in 3 dimensions and thus has the potential to improve the identification of hypokinetic but viable myocardium on dobutamine stress echocardiography (DSE). However, if different myocardial layers respond heterogeneously, STE-DSE will have to be standardized according to strain dimension and the positioning of the region of interest. Therefore, the aim of this study was to create a high-resolution model for ejection time (ET) strain and tissue flow in 4 myocardial layers at rest, during hypoperfusion, and during dobutamine challenge to assess the ability of STE-DSE to detect deformation and functional improvement in various layers of the myocardium. In 10 open chest pigs, the left anterior descending coronary artery was constricted to a constant stenosis, resulting in 35% initial flow reduction. Fluorescent microspheres were used to measure tissue flow. High-resolution echocardiography was performed epicardially to calculate ET strain in 4 myocardial layers in the radial, longitudinal, and circumferential directions using speckle-tracking software. Images were obtained at rest, during left anterior descending coronary artery constriction (hypoperfusion), and during a subsequent dobutamine stress period. Dobutamine stress at constant coronary stenosis increased flow in all layers. ET strain increased predominantly in the midmyocardial layers in the longitudinal and circumferential directions, whereas subendocardial strain did not improve in either direction. Dobutamine stress influences ET strain differently in the various axes and layers of the myocardium and only partially in correspondence to tissue flow. Longitudinal and circumferential functional reserve opens the potential for the specific detection of midsubendocardial viable tissue by high-resolution STE. Copyright 2010 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  9. Identifying Limits Of Scalability In Distributed, Heterogeneous, Layer Based Monitoring Concepts Like Slate

    Directory of Open Access Journals (Sweden)

    Marcus Hilbrich

    2012-01-01

    Full Text Available In this paper we present the concept of a scalable job centric monitoring infrastructure.The overall performance of this distributed, layer based architecturecalled SLAte can be increased by installing additional servers to adapt to thedemands of the monitored resources and users. Another important aspect is tooffer a uniform global view on all data which are stored distributed to providean easy access for users or visualisation tools. Additionally we discus the impactof these uniform access layer on scalability.

  10. Heterogeneous catalysis on solids of gases diffusing through a liquid layer, studied by inverse gas chromatography.

    Science.gov (United States)

    Kapolos, John; Katsanos, Nicholas A

    2002-11-15

    Physicochemical parameters for heterogeneous catalytic reactions when the catalytic bed was under a liquid phase have been determined, using a non-linear adsorption isotherm by the reversed-flow version of inverse gas chromatography (RF-GC). The mathematical analysis developed in heterogeneous catalysis, mass transfer across gas-liquid boundaries, and diffusion coefficients of gases in liquids was associated with a non-linear adsorption isotherm to find the relevant equations pertaining to the problem. These equations were then used to calculate the adsorption/desorption rate constant, the rate constant for the first-order catalytic reaction and the equilibrium constant for the non-linear adsorption isotherm. The diffusion coefficients of the reactant in the liquid and gaseous phases and the partition coefficients for the distribution of the reactant between the gaseous and liquid phase were also determined.

  11. Vegetation heterogeneity and landscape position exert strong controls on soil CO2 efflux in a moist, Appalachian watershed

    Science.gov (United States)

    Atkins, J. W.; Epstein, H. E.; Welsch, D. L.

    2014-12-01

    In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL) we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation (2010 - 1042 mm; 2011 - 1739 mm; 2012 - 1244 mm; precipitation data from BDKW2 station, MesoWest, University of Utah). An apparent soil temperature threshold of 11 °C at 12 cm depth on FSOIL was observed in our data - where FSOIL rates greatly increase in variance above this threshold. For analysis, FSOIL values above this threshold were isolated and examined. Differences in FSOIL among years were apparent by elevation (F4,633 = 3.17; p = 0.013) and by vegetation cover (F4, 633 = 2.96; p = 0.019). For the Weimer Run watershed, vegetation exerts the major control on soil CO2 efflux (FSOIL), with the plots beneath shrubs at all elevations for all years showing the greatest mean rates of FSOIL (6.07 μmol CO2 m-2 s-1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m-2 s-1) and plots located in open, forest gaps (4.09 μmol CO2 m-2 s-1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained and that maximum efflux rates in this system occur during periods of average to below average soil water availability. These findings offer valuable insight into the processes occurring within these topographically complex, temperate and humid systems, and the interactions of abiotic and biotic factors mediating biogeochemical cycles. With possible changing rainfall patterns as predicted by climate models, it is important to understand the couplings between water

  12. How does layered heterogeneity affect the ability of subsurface dams to clean up coastal aquifers contaminated with seawater intrusion?

    Science.gov (United States)

    Abdoulhalik, Antoifi; Ahmed, Ashraf A.

    2017-10-01

    The main purpose of this work was to examine how aquifer layering impacts the ability of subsurface dams to retain seawater intrusion (SWI) and to clean up contaminated coastal aquifers using both experimental and numerical techniques. Four different layering configurations were investigated, including a homogeneous case (case H), and three different layered cases where a low permeability layer was set at the top of the aquifer (case LH), at the middle part of the aquifer as interlayer (case HLH), and at the lower part of the aquifer (case HL). The subsurface dam was able to retain the saltwater wedge associated with a drop of the hydraulic gradient from 0.0158 down to 0.0095 in all the cases, thereby achieving up to 78% reduction in the saltwater toe length. In cases LH and HLH, the start of the saltwater spillage was delayed compared to the homogeneous case, and the time taken for the freshwater zone to be fully contaminated (post-spillage) was twice and three times longer, respectively. By contrast, the existence of a low K layer at the bottom of the aquifer (case HL) considerably weakened the ability of dams to retain the intrusion, allowing for quicker saltwater spillage past the wall. The natural cleanup of SWI-contaminated coastal aquifers was, for the first time, evidenced in heterogeneous settings. Depending on the stratification pattern, the presence of stratified layers however prolonged the cleanup time to various degrees, compared to the homogeneous scenario, particularly in case HL, where the cleanup time was nearly 50% longer.

  13. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  14. Multi-Layer Soft Frequency Reuse Scheme for 5G Heterogeneous Cellular Networks

    DEFF Research Database (Denmark)

    Shakir, Md. Hossain; Tariq, Faisal; Safdar, Ghazanfar

    2017-01-01

    Heterogeneous network (HetNet) is a promising cell deployment technique where low power access points are deployed overlaid on a macrocell system. It attains high throughput by intelligently reusing spectrum, and brings a trade-off between energy- and spectral-efficiency. An efficient resource...... allocation strategy is required to significantly improve its throughput in a bid to meet the fifth-generation (5G) high data rate requirements. In this correspondence, a new resource allocation scheme for HetNet, called multi-level soft frequency reuse for HetNet (ML-SFR HetNet), is proposed which increases...

  15. Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer

    NARCIS (Netherlands)

    Krol, M.C.; Molemaker, M.J.; Vilu-Guerau, de J.

    2000-01-01

    Photochemistry is studied in a convective atmospheric boundary layer. The essential reactions that account for the ozone formation and depletion are included in the chemical mechanism which, as a consequence, contains a wide range of timescales. The turbulent reacting flow is modeled with a

  16. Multi-Layer Mobility Load Balancing in a Heterogeneous LTE Network

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Laselva, Daniela

    2012-01-01

    This paper analyzes the behavior of a distributed Mobility Load Balancing (MLB) scheme in a multi-layer 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) deployment with different User Equipment (UE) densities in certain network areas covered with pico cells. Target of the study...

  17. A PHYSICAL MODEL OF THE EFFECT OF A SHALLOW WEAK LAYER ON STRONG GROUND MOTION FOR STRIKE-SLIP RUPTURES

    Energy Technology Data Exchange (ETDEWEB)

    JAMES N. BRUNE AND ABDOLRASOOL ANOOSHEHPOOR

    1998-02-23

    We report results of foam-rubber modeling of the effect of a shallow weak layer on ground motion from strike-slip ruptures. Computer modeling of strong ground motion from strike-slip earthquakes has involved somewhat arbitrary assumptions about the nature of slip along the shallow part of the fault (e.g., fixing the slip to be zero along the upper 2 kilometers of the fault plane) in order to match certain strong motion accelerograms. Most modeling studies of earthquake strong ground motion have used what is termed kinematic dislocation modeling. In kinematic modeling the time function for slip on the fault is prescribed, and the response of the layered medium is calculated. Unfortunately, there is no guarantee that the model and the prescribed slip are physically reasonable unless the true nature of the medium and its motions are known ahead of time. There is good reason to believe that in many cases faults are weak along the upper few kilometers of the fault zone and may not be able to maintain high levels of shear strain required for high dynamic energy release during earthquakes. Physical models of faulting, as distinct from numerical or mathematical models, are guaranteed to obey static and dynamic mechanical laws. Foam-rubber modeling studies have been reported in a number of publications. The object of this paper is to present results of physical modeling using a shallow weak layer, in order to verify the physical basis for assuming a long rise time and a reduced high frequency pulse for the slip on the shallow part of faults. It appears a 2-kilometer deep, weak zone along strike-slip faults could indeed reduce the high frequency energy radiated from shallow slip, and that this effect can best be represented by superimposing a small amplitude, short rise-time pulse at the onset of a much longer rise-time slip. A weak zone was modeled by inserting weak plastic layers of a few inches in thickness into the foam rubber model. For the 15 cm weak zone the average

  18. Phase manipulation of Goos–Hänchen shifts in a single-layer of graphene nanostructure under strong magnetic field

    Science.gov (United States)

    Solookinejad, Gh; Jabbari, M.; Panahi, M.; Ahmadi Sangachin, E.

    2017-11-01

    In this paper, we discuss the phase management of Goos–Hänchen (GH) shifts of a probe light through a cavity with a single-layer graphene nanostructure under a strong magnetic field. By using the quantum mechanical density matrix formalism we study the GH shifts of reflected and transmitted light beams. It is realized that negative or positive GH shifts can be achieved simultaneously by tuning some controllable parameters such as relative phase and the Rabi frequency of the applied fields. Moreover, the thickness effect of the cavity structure is considered as an effective parameter for adjusting the GH shifts of reflected and transmitted light beams. We find that by choosing suitable parameters, a maximum negative shift of 4.5 mm and positive shift of 5.4 mm are possible for GH shifts in reflected and transmitted light. Our proposed model may be useful for developing all-optical devices in the infrared region.

  19. Effects of layered heterogeneity in subsurface geologic materials on solute transport under field conditions: A case study from northeastern Iowa, USA

    Science.gov (United States)

    Iqbal, Mohammad Z.

    2000-06-01

    In the Cedar River watershed of northeastern Iowa, USA, water quality in 17 out of 20 private wells indicates that groundwater is contaminated with nitrate from agricultural leachates. In nine of the wells, nitrate concentration exceeds the US Environmental Protection Agency recommended maximum contaminant level (MCL) of 45 mg/L (as NO3 -) for drinking purposes. Solute-transport investigations determined that the surficial loam sediments, the Quaternary sand and gravel deposits, and the glacial till deposits form layered heterogeneity in the subsurface. The resulting conductivity contrast causes a capillary barrier, thereby altering the mechanisms of vertical tracer movement. Storm-water tracing with potassium bromide, corn fertilizer, and fluorescein dye indicates that macropore flow occurs only within the upper 0.9 m of loamy sediments. An average breakthrough concentration of 204 mg/L bromide at 0.3 m depth on day 3 after the storm event supports the hypothesis of macropore flow in the surficial soils. Fluorescein dye was recovered at a depth of 0.3 m with a peak concentration of 650 μg/L at approximately 5 days after the storm event. The loamy sediment layer is underlain by the Iowan Pebble Band, a pebbly layer admixed with sand, developed in post-glacial time. In the field experiments, preferential flow of the tracers was predominantly vertical within the loamy sediments but rapidly changed to a horizontal matrix flow upon entering the materials of higher saturated hydraulic conductivity in the Pebble Band. The Pebble Band is underlain by low-conductivity deposits of pre-Illinoian till. Even though the upper oxidized portion of the glacial till is reported to have macropores, the Pebble Band prevented deeper infiltration of storm water by maintaining a strong component of horizontal hydraulic gradient. Chemical data indicate that the Pebble Band is a hydraulic-conductivity boundary that abruptly changes the unsaturated-flow mechanism from macropore flow to

  20. Multi-Flow Carrier Aggregation in Heterogeneous Networks: Cross-Layer Performance Analysis

    KAUST Repository

    Alorainy, Abdulaziz

    2017-02-09

    Multi-flow carrier aggregation (CA) has recently been considered to meet the increasing demand for high data rates. In this paper, we investigate the cross-layer performance of multi-flow CA for macro user equipments (MUEs) in the expanded range (ER) of small cells. We develop a fork/join (F/J) queuing analytical model that takes into account the time varying channels, the channel scheduling algorithm, partial CQI feedback and the number of component carriers deployed at each tier. Our model also accounts for stochastic packet arrivals and the packet scheduling mechanism. The analytical model developed in this paper can be used to gauge various packet-level performance parameters e.g., packet loss probability (PLP) and queuing delay. For the queuing delay, our model takes out-of-sequence packet delivery into consideration. The developed model can also be used to find the amount of CQI feedback and the packet scheduling of a particular MUE in order to offload as much traffic as possible from the macrocells to the small cells while maintaining the MUE\\'s quality of service (QoS) requirements.

  1. Heterogeneous photocatalysis with transition metal modified layered titanates for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pilarski, Martin

    2016-09-05

    The objective of this work was the validation of Cu as a low priced co-catalyst material in comparison to the frequently used noble metal co-catalysts Rh, Au and Pt, as well as the evaluation of alternative sacrificial agents for photocatalytic H2 production. An effective conversion of glycerol was a primary aim of this work, due to its abundance as a coproduct of the bio fuel production. Furthermore, photocatalysts were prepared, which are capable to absorb light from the visible range of the light spectrum. The required band gap reduction was realized by cation doping. In the course of the cation doping process Cu{sup 2+}, Cr{sup 3+}, Fe{sup 3+} and Mn{sup 3+} cations were incorporated by a sol-gel synthesis route into the crystal lattice of the layered Cs{sub 0.68}Ti{sub 1.83}O{sub 4}, which was used as a photocatalyst material. The photocatalytic activity of the prepared photocatalysts was investigated in a self constructed test setup under the irradiation of a xenon arc lamp.

  2. Optimization of a development well pattern based on production performance: A case study of the strongly heterogeneous Sulige tight sandstone gas field, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Yuegang Li

    2015-01-01

    Full Text Available As a typical tight sandstone gas field with strong heterogeneity, the Sulige Gas Field in the Ordos Basin faces major challenges in its development because the reservoirs in the gas field are small in effective sand scale, rapid in lithologic change, strong in plane heterogeneity, and poor in connectivity. How to scientifically deploy development wells to improve the recovery is the most important issue for the successful development of this kind of gas fields. Therefore, a well inference analysis was conducted to figure out the impact of well pattern density on the recovery based on the research of many years in gas field development methods and the summary of practical effect. In this paper, we put forward for the first time the concept of inter-well interference probability, and present the relationship between the probability of inter-well interference and well pattern density of the Sulige Gas Field. Then we established a mathematical model for the optimization of development well pattern by combining fine sand anatomy, reservoir engineering, numerical simulation and economic evaluation, and obtained a quantitative relationship between recovery and well pattern density. Furthermore, on the basis of comprehensive analysis, a reasonable development well pattern was designed for the Sulige Gas Field: this well pattern is parallelogram in shape, with a density of 3.1 wells/km2, well spacing of 500 m, and row spacing of 650 m. Development practices have confirmed that this scheme is capable of achieving better economic benefits, producing geological reserves as far as possible and improving the ultimate recovery of such gas fields.

  3. Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen

    International Nuclear Information System (INIS)

    Wang, Yinling; Wang, Zhangcui; Wu, Xiaoqin; Liu, Xiaowang; Li, Maoguo

    2016-01-01

    Highlights: • CoAl-LDHs were synthesized on the surface of graphene oxide in situ. • The oxygen reduction reaction activity of the catalyst was investigated. • The synergistic effect between CoAl-LDHs and rGO is discussed in detail. • The roles of Co 2+ in the LDHs were clarified. - Abstract: Precious metal-free electrocatalysts with high efficiency and durability for the oxygen reduction reaction (ORR) are strongly desired in the field of energy technology. Herein, the CoAl layered double hydroxides (CoAl-LDHs)/reduced graphene oxide (rGO) composites were successfully prepared by growing CoAl-LDHs on the surface of GO in situ via coprecipitation and subsequently hydrothermal treatment. The structure, composition, morphology and ORR catalytic activity of the CoAl-LDHs/rGO composites were investigated as a function of mass ratios of CoAl-LDHs and GO. The results show that there is an optimum mass ratio of CoAl-LDHs and GO (w CoAl-LDHs :w GO = 1:5) for the ORR catalytic activity, where the electron transfer number for ORR at the CoAl-LDHs/rGO composites reaches to 3.5, closing to the full four-electron process. The synergistic effect between CoAl-LDHs and rGO is discussed in detail and the discussion is instructive for the construction of the better transition metal oxides/carbon composite-based ORR catalysts.

  4. Calculation of cobalt-60 primary and scatter dose in layered heterogeneous phantoms using primary and scatter dose spread arrays

    International Nuclear Information System (INIS)

    Iwasaki, Akira

    1993-01-01

    A method of making 60 Co γ-ray primary and scatter dose spread arrays in water is described. The primary dose spread array is made using forward and backward primary dose spread equations (h 1 and h 2 ), where both equations contain a laterally spread primary dose equation (G), made from measured dose data in a cork phantom. The scatter dose spread array is made using differential scatter-maximum ratio (dSMR) and differential backscatter factor (dBSF) equations (k 1 and k 2 ), where both equations are made to be continuous on the boundary. Primary and scatter dose calculations are performed along the beam axis in layered cork heterogeneous phantoms. It is found, even for 60 Co γ-rays, that when a small tumor in the lung is irradiated with a field that just surrounds the tumor, the beam entrance surface and lateral side of the tumor may obtain no therapeutic dose, because of loss of longitudinal and lateral electronic equilibrium, and when a large tumor in the lung is irradiated with a field just surrounding the tumor, the lateral side of the tumor may obtain no therapeutic dose due to loss of lateral electronic equilibrium. (author)

  5. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    Science.gov (United States)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.

    2018-02-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  6. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    International Nuclear Information System (INIS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-01-01

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  7. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qingxue [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Rong [Department of Fundamental Theories, Shandong Institute of Physical Education and Sports, Jinan 250063 (China); Xiao, Hongdi, E-mail: hdxiao@sdu.edu.cn [School of Physics, Shandong University, Jinan, 250100 (China); Cao, Dezhong; Liu, Jianqiang; Ma, Jin [School of Physics, Shandong University, Jinan, 250100 (China)

    2016-11-30

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  8. Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations.

    Directory of Open Access Journals (Sweden)

    Nermin Serbecic

    Full Text Available BACKGROUND: Recently the reduction of the retinal nerve fibre layer (RNFL was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS patients. However, several points are still under discussion. (1 Is high resolution optical coherence tomography (OCT required to detect the partly very subtle RNFL changes seen in MS patients? (2 Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3 Does an optic neuritis (ON or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS and secondary progressive (SPMS MS patients with high resolution OCT technique. METHODOLOGY: Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts, for color vision (Lanthony D-15, the Humphrey visual field and visual evoked potential testing (VEP. PRINCIPAL FINDINGS: All 4 groups (RRMS and SPMS with or without ON showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9-540 months. CONCLUSIONS: RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels.

  9. Primary study authors of significant studies are more likely to believe that a strong association exists in a heterogeneous meta-analysis compared with methodologists.

    Science.gov (United States)

    Panagiotou, Orestis A; Ioannidis, John P A

    2012-07-01

    To assess the interpretation of a highly heterogeneous meta-analysis by authors of primary studies and by methodologists. We surveyed the authors of studies on the association between insulin-like growth factor 1 (IGF-1) and prostate cancer, and 20 meta-analysis methodologists. Authors and methodologists presented with the respective meta-analysis results were queried about the effect size and potential causality of the association. We evaluated whether author responses correlated with the number of IGF-related articles they had published and their study results included in the meta-analysis. We also compared authors' and methodologists' responses. Authors who had published more IGF-related papers offered more generous effect size estimates for the association (ρ(s)=0.61, P=0.01) and higher likelihood that the odds ratio (OR) was greater than 1.20 (ρ(s)=0.63, P=0.01). Authors who had published themselves studies with statistically significant effects for a positive association were more likely to believe that the true OR is greater than 1.20 compared with methodologists (median likelihood 50% versus 2.5%, P=0.01). Researchers are influenced by their own investment in the field, when interpreting a meta-analysis that includes their own study. Authors who published significant results are more likely to believe that a strong association exists compared with methodologists. Copyright © 2012. Published by Elsevier Inc.

  10. Self-Assembled Layered Supercell Structure of Bi2AlMnO6 with Strong Room-Temperature Multiferroic Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leigang; Boullay, Philippe; Lu, Ping; Perez, Olivier; Steciuk, Gwladys; Wang, Xuejing; Jian, Jie; Huang, Jijie; Gao, Xingyao; Zhang, Wenrui; Zhang, Xinghang; Wang, Haiyan

    2017-02-01

    Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi3O3+δ] and [MO2]1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highly anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.

  11. Strong doping of the n-optical confinement layer for increasing output power of high- power pulsed laser diodes in the eye safe wavelength range

    Science.gov (United States)

    Ryvkin, Boris S.; Avrutin, Eugene A.; Kostamovaara, Juha T.

    2017-12-01

    An analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption (TPA), as well as the direct TPA effect. The resulting losses are compared with those in an identical structure with a weakly doped waveguide, and shown to be substantially lower, resulting in a significant improvement in the output power and efficiency in the structure with a strongly doped waveguide.

  12. Hypersonic boundary layer in the vicinity of a point of inflection of leading edge on a flat wing in the regime of strong viscous interaction

    Science.gov (United States)

    Dudin, G. N.; Ledovskiy, A. V.

    2013-06-01

    The flow in a spatial hypersonic laminar boundary layer on a planar wing with a point of inflection in the leading edge is considered in the regime of strong viscous-inviscid interaction. The boundary problems are formulated for two cases: self-similar flow near the point of inflection of the leading edge and full three-dimensional (3D) boundary layer on a wing with variable sweep angle. The numerical solution is obtained using the finite-difference method. The results of parametric calculations of influence of a wing shape and the temperature factor on flow characteristics in the boundary layer are presented. The possibility of formation of local regions with high shear stress and heat flux is shown.

  13. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    Science.gov (United States)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  14. Theory of the axi-symmetric extrusion process of multi-layer materials with a strong plastic nonhomogeneity

    OpenAIRE

    J. Piwnik; A. Patejuk

    2008-01-01

    A novel simplified r hcorctical solution is found lor thc strcss starcs accompanying thc proccss of cxt ri~siono f ma![ i-laycr matcrialsunder rhc conditions af axial symmetry. Thc solution i~ bawd nn ~ h mc n dcl of pcrfcct plastic material satisfying thc Trcsca yicld condition.thc Haar-Karman conditions bcing sntisficd in each layer. Thc laycrs arc chnnctcrizcd by difrercnt yicld limits and stmng plasticnonhomogeneity. In thc ncighhoi~rhoorol f thc interfaces conrinuous variation of rhc yic...

  15. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Nissen, Claus; Almind, Gitte J

    2015-01-01

    >G or c.2708_2711delTTAG did not show a pattern of maximum GC-IPL deficit inferonasal of the fovea. CONCLUSION: Genotype-phenotype heterogeneity in OPA1 ADOA is evident when inner retinal atrophy is examined as a function of age. Thus, a pronounced decline with age in GC-IPL thickness is observed in c...

  16. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  17. Van Der Waals heterogeneous layer-layer carbon nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on graphene and graphane sheets.

    Science.gov (United States)

    Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang

    2017-04-15

    Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  18. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    DEFF Research Database (Denmark)

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform...... of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation...

  19. Theory of the axi-symmetric extrusion process of multi-layer materials with a strong plastic nonhomogeneity

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2008-03-01

    Full Text Available A novel simplified r hcorctical solution is found lor thc strcss starcs accompanying thc proccss of cxt ri~siono f ma![ i-laycr matcrialsunder rhc conditions af axial symmetry. Thc solution i~ bawd nn ~ h mc n dcl of pcrfcct plastic material satisfying thc Trcsca yicld condition.thc Haar-Karman conditions bcing sntisficd in each layer. Thc laycrs arc chnnctcrizcd by difrercnt yicld limits and stmng plasticnonhomogeneity. In thc ncighhoi~rhoorol f thc interfaces conrinuous variation of rhc yicld limit i s a~sunicdZ. hc form of thc plastic zonc nndpsitions or the contact surfi~ccss eparating rhc laycrs nrc assumcd. Shcaring strcsscs and mcan prcssurc in a longitudinal scclion o f t hccxrruded rod arc cxprcsscd in tcrms of filnctions of the axial coordinatc z. Unknown fttnctions of thc singlc coordinatc z arc dctcrmincdFrom thc yicld conditions writtcn for thc contour of thc die. Accitratc analytical relations arc dcrivcd For tllc normal strcss distribution atthc surface of contact bctwccn thc dic and thc matcrial cxlrudcd, Using thc known normal and shcar stress dislrihutions (due to Iriclion,accuratc valuc of thc lower cstimate of thc cxtrusion forcc is dctcrrnincd. Thc sotution may hc applicd lo ~ h cca scs of arbitrary numhcr oflaycrs and arbitrary h rm oithc dic. I t may bc used to a rational analysis o f ~ h pcro ccss of cxirnsiol~o f multi-lnycr cylindrical rods.

  20. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert

    2015-06-11

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  1. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  2. Palladium on Layered Double Hydroxide: A Heterogeneous System for the Enol Phosphate Carbon-Oxygen Bond Activation in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Jaqueline D. Senra

    2017-01-01

    Full Text Available In this work, a new catalytic approach for the C-O activation of enol phosphates based on a palladium supported on layered double hydroxide was developed. In this case, two different ketene aminal phosphates were used as models to study the synthesis of α-phenyl enecarbamates N-Boc/CBz under the Suzuki-Miyaura conditions. The use of an ortho-bromoaniline as precursor allowed the synthesis of the 2-phenyl indole through an arylation/Heck cyclization. Catalyst reusability enabled the synthesis of the heterocycle in moderate yields for four consecutive runs.

  3. Combining laboratory results, numerical modeling, and in situ measurements to investigate the relative contributions of homogeneous and heterogeneous nucleation to ice formation in the tropical tropopause layer

    Science.gov (United States)

    Jensen, E. J.; Karcher, B.; Ueyama, R.; Pfister, L.; Bui, T. V.; Diskin, G. S.; DiGangi, J. P.; Woods, S.; Lawson, P.; Froyd, K. D.; Murphy, D. M.

    2017-12-01

    Laboratory experiments over the past decade have advanced our understanding of the physical state and ice nucleation efficacy of aerosols with atmospherically-relevant compositions at low temperatures. We use these laboratory results along with measurements of upper-tropospheric aerosol composition to develop a parameterization if the ice nuclei number, and activity dependence on ice supersaturation and temperature in the cold tropical tropopause layer (TTL, 13-18 km). We show that leading candidates for aerosol types serving as effective ice nuclei are glassy organic-containing aerosols, crystalline ammonium sulfate, and mineral dust. We apply the low-temperature heterogeneous ice nucleation parameterization in a detailed model of TTL transport and cirrus formation. The model treats heterogeneous ice nucleation and homogeneous freezing of aqueous aerosols, deposition growth and sublimation of ice crystals, and sedimentation of ice crystals. The model is driven by meteorological fields with high-frequency waves superimposed, and simulated cirrus microphysical properties are statistically compared with recent measurements of TTL cirrus microphysical properties and ice supersaturation from recent high-altitude aircraft campaigns. We show that effective ice nuclei concentrations on the order of 50-100/L can dominate over homogeneous freezing production of TTL cirrus ice crystals. Glassy organic-containing aerosols or crystalline ammonium sulfate could conceivably provide more abundant sources of ice nuclei, but the simulations indicate that high concentrations of effective IN would prevent observed occurrence of large supersaturations and high ice concentrations. We will also show the impact of heterogeneous ice nuclei on TTL cirrus microphysical properties and occurrence frequencies.

  4. Novel subdomains of the mouse olfactory bulb defined by molecular heterogeneity in the nascent external plexiform and glomerular layers

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2007-05-01

    Full Text Available Abstract Background In the mouse olfactory system, the role of the olfactory bulb in guiding olfactory sensory neuron (OSN axons to their targets is poorly understood. What cell types within the bulb are necessary for targeting is unknown. What genes are important for this process is also unknown. Although projection neurons are not required, other cell-types within the external plexiform and glomerular layers also form synapses with OSNs. We hypothesized that these cells are important for targeting, and express spatially differentially expressed guidance cues that act to guide OSN axons within the bulb. Results We used laser microdissection and microarray analysis to find genes that are differentially expressed along the dorsal-ventral, medial-lateral, and anterior-posterior axes of the bulb. The expression patterns of these genes divide the bulb into previously unrecognized subdomains. Interestingly, some genes are expressed in both the medial and lateral bulb, showing for the first time the existence of symmetric expression along this axis. We use a regeneration paradigm to show that several of these genes are altered in expression in response to deafferentation, consistent with the interpretation that they are expressed in cells that interact with OSNs. Conclusion We demonstrate that the nascent external plexiform and glomerular layers of the bulb can be divided into multiple domains based on the expression of these genes, several of which are known to function in axon guidance, synaptogenesis, and angiogenesis. These genes represent candidate guidance cues that may act to guide OSN axons within the bulb during targeting.

  5. Ultradispersed and Single-Layered MoS2 Nanoflakes Strongly Coupled with Graphene: An Optimized Structure with High Kinetics for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Huang, Haoliang; Huang, Junying; Liu, Weipeng; Fang, Yueping; Liu, Yingju

    2017-11-15

    As one of the most promising Pt alternatives for cost-effective hydrogen production, molybdenum disulfide (MoS 2 ), although has been studied extensively to improve its electrocatalytic activity, suffers from scarce active sites, low conductivity, and lack of interaction with substrates. To this end, we anchor ultradispersed and single-layered MoS 2 nanoflakes on graphene sheets via a hybrid intermediate (MoO x -cysteine-graphene oxide), which not only confines the subsequent growth of MoS 2 on the graphene surface but also ensures the intimate interaction between Mo species and graphene at the initial stage. Mo-O-C bond and a possible residual MoO 3-x layer are proposed to comprise the interface bridging the two inherent incompatible phases, MoS 2 and graphene. This strongly coupled structure together with the highly exposed MoS 2 morphology accelerates the electron injection from graphene to the active sites of MoS 2 , and thus the hydrogen evolution reaction (HER) can achieve an overpotential of ∼275 mV at ∼-740 mA cm -2 , and a Pt-like Tafel slope of ∼35 mV dec -1 . Our results shed light on the indispensable role of interfacial interaction within semiconducting material-nanocarbon composites and provide a new insight into the actual activity of MoS 2 toward the HER.

  6. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    Science.gov (United States)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  7. Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling

    Science.gov (United States)

    Hütter, Markus; Svendsen, Bob

    2017-12-01

    The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger, Phys. Rev. E 56(6), 6620 (1997); Öttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).

  8. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Vanessa [Instituto de Ciências da Terra – Porto, DGAOT, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Geobiotec. Departamento de Geociências da Universidade de Aveiro, Campo Universitário de Santiago, 3810-193 Aveiro (Portugal); Rodríguez-Castellón, Enrique; Algarra, Manuel [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga. Campus de Teatino s/n, 29071 Málaga (Spain); Rocha, Fernando [Geobiotec. Departamento de Geociências da Universidade de Aveiro, Campo Universitário de Santiago, 3810-193 Aveiro (Portugal); Bobos, Iuliu, E-mail: ibobos@fc.up.pt [Instituto de Ciências da Terra – Porto, DGAOT, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-11-05

    Highlights: • The UO{sub 2}{sup 2+} sorption at pH 4 and 6 on heterogeneous smectite structure. • The cation exchange process is affected by layer charge distribution. • Surface complexation and cation exchange modelling. • New binding energy components identified by X-ray photoelectron spectroscopy. - Abstract: The UO{sub 2}{sup 2+} adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I = 0.02 M) and pH 6 (I = 0.2 M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8 nm (sample PS2), to 5.1 nm (sample PS3) and, to 7.4 nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO{sub 2}{sup 2+} sorption on smectite. The amount of UO{sub 2}{sup 2+} adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8 ± 0.3 and 382.2 ± 0.3 eV, assigned to hydrated UO{sub 2}{sup 2+} adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f{sub 7/2} peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3 ± 0.3 and 381.8 ± 0.3 eV assigned to ≡AlOUO{sub 2}{sup +} and ≡SiOUO{sub 2}{sup +} surface species were observed at pH 6.

  9. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.

    Science.gov (United States)

    Feng, Hao; Ou, Bao-Chi; Zhao, Jing-Kun; Yin, Shuai; Lu, Ai-Guo; Oechsle, Eva; Thasler, Wolfgang E

    2017-09-01

    Pancreatic cancer 3D in vitro models including multicellular tumor spheroid (MCTS), single cell-derived tumor spheroid (SCTS), tissue-derived tumor spheroid, and organotypic models provided powerful platforms to mimic in vivo tumor. Recent work supports that circulating tumor cell (CTC) clusters are more efficient in metastasis seeding than single CTCs. The purpose of this study is to establish 3D culture models which can mimic single CTC, monoclonal CTC clusters, and the expansion of macrometastases. Seven pancreatic ductal adenocarcinoma cell lines were used to establish MCTS and SCTS using hanging drop and ultra-low attachment plates. Spheroid immunofluorescence staining, spheroid formation assay, immunoblotting, and literature review were performed to investigate molecular biomarkers and the morphological characteristics of pancreatic tumor spheroids. Single cells experienced different growth patterns to form SCTS, like signet ring-like cells, blastula-like structures, and solid core spheroids. However, golf ball-like hollow spheroids could also be detected, especially when DanG and Capan-1 cells were cultivated with fibroblast-conditioned medium (p cell lines could also establish tumor spheroid with hanging drop plates by adding methylated cellulose. Tumor spheroids derived from pancreatic cancer cell line DanG possessed asymmetrically distributed proliferation center, immune-checkpoint properties. ß-catenin, Ki-67, and F-actin were active surrounding the crater-like structure distributing on the inner layer of viable rim cover of the spheroids, which was relevant to well-differentiated tumor cells. It is possible to establish 3D CTC cluster models from homogenous PDA cell lines using hanging drop and ultra-low attachment plates. PDA cell line displays its own intrinsic properties or heterogeneity. The mechanism of formation of the crater-like structure as well as golf ball-like structure needs further exploration.

  10. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  11. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    Energy Technology Data Exchange (ETDEWEB)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  12. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    Science.gov (United States)

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-01-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013 e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors. PMID:26867673

  13. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...

  14. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    OpenAIRE

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-01-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5???1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene?s properties. Here we demonstrate stro...

  15. ArcFVDSL, a DSEL Combined to HARTS, a Runtime System Layer to Implement Efficient Numerical Methods to Solve Diffusive Problems on New Heterogeneous Hardware Architecture

    Directory of Open Access Journals (Sweden)

    Gratien Jean-Marc

    2017-03-01

    Full Text Available Nowadays, some frameworks like Arcane and Dune offer a number of advanced tools to deal with the complexity related to parallelism, meshes and linear solvers. However, they do not handle the high level complexity related to discretization methods and physical models. Generative programming and Domain Specific Languages (DSL are key technologies allowing to write code with a high level expressive language and take advantage of the efficiency of generated code with low level services. DSL may be embedded in host languages like Python or C++. Such languages, named in that case Domain Specific Embedded Languages (DSEL, are applied for instance in frameworks like Fenics or Feel++ which are dedicated to the domain of Finite Element (FE methods and Galerkin methods. ArcFVDSL is a DSEL developed on top of the Arcane framework, aiming to implement various lowest order methods (Finite-Volume (FV, Mimetic Finite Difference (MFD, Mixed Hybrid Finite Volume (MHFV, etc. for diffusive problems on general meshes. In this paper, we present various implementations of different complex academic problems. We focus on the capability of the language to allow the description and the resolution of these problems with several lowest-order methods. We illustrate the benefits of such technology combined to runtime system tools like Heterogeneous Abstract RunTime System (HARTS and its ability to handle seamlessly new heterogeneous architectures with multi-core processors enhanced by General Purpose computing on Graphics Processing Units (GP-GPU. We present the performance results of each implementation on different kinds of heterogeneous hardware architecture.

  16. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.

    Science.gov (United States)

    Usman, Muhammad

    2015-10-21

    Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical

  17. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Antonin [X-ray; Liu, Hao [X-ray; Wiaderek, Kamila M. [X-ray; Lebens-Higgins, Zachary W. [Department; Borkiewicz, Olaf J. [X-ray; Piper, Louis F. J. [Department; Chupas, Peter J. [Energy; Chapman, Karena W. [X-ray

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surface impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.

  18. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

    Science.gov (United States)

    Wang, Zhe; Wang, Weihao; Tham, Yee Jun; Li, Qinyi; Wang, Hao; Wen, Liang; Wang, Xinfeng; Wang, Tao

    2017-10-01

    Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NOx recycling upon photolysis of ClNO2. To better understand the roles of N2O5 and ClNO2 in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated ClNO2 plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N2O5 was typically present at very low levels (residual layer over this region and contributed to substantial nitrate formation of up to 17 µg m-3. The estimated nocturnal nitrate formation rates ranged from 0.2 to 4.8 µg m-3 h-1 in various plumes, with a mean of 2.2 ± 1.4 µg m-3 h-1. The results demonstrate the significance of heterogeneous N2O5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NOx transformation, and thus their potential impacts on regional haze pollution in northern China.

  19. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  20. Statistical analysis of high order moments is a turbulent boundary layer with strong density differences; Analyse statistique des moments d'ordre eleve dans une couche limite turbulente en presence de differences de densite importantes

    Energy Technology Data Exchange (ETDEWEB)

    Soudani, A. [Batna Univ., Dept. de Physique, Faculte des Sciences (Algeria); Bessaih, R. [Mentouri-Constantine Univ., Dept. de Genie Mecanique, Faculte des Sciences de l' Ingenieur (Algeria)

    2004-12-01

    The study of turbulent boundary layer with strong differences of density is important for the understanding of practical situations occurring for example in the cooling of turbine blades through the tangential injection of a different gas or in combustion. In order to study the fine structure of wall turbulence in the presence of significant variations of density, a statistical analysis of the experimental data, obtained in a wind tunnel, is carried out. The results show that the relaxation of the skewness factor of u'(S{sub u'}) is carried out more quickly in the external layer than close to the wall, as well for the air injection as for the helium injection. S{sub u'} grows close to the injection slot in an appreciable way and this increase is accentuated for the air injection than for the helium injection. This growth of the skewness factor close to the injection slot can be explained by the increase in the longitudinal convective flux of turbulent energy in this zone. The results show for the distribution of the flatness factor F{sub u'} that there is no significant effect of the density gradient on the intermittent structure of the instantaneous longitudinal velocity in the developed zone, x/{delta} {>=} 5. The statistical analysis carried out in this study shows that the helium injection in the boundary layer generates more violent ejections than in the case of air injection. This result is confirmed by the significant contribution of the ejections to turbulent mass flux.

  1. Atomically Thin Mesoporous Co3O4Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries.

    Science.gov (United States)

    Li, Yingbo; Zhong, Cheng; Liu, Jie; Zeng, Xiaoqiao; Qu, Shengxiang; Han, Xiaopeng; Deng, Yida; Hu, Wenbin; Lu, Jun

    2018-01-01

    Under development for next-generation wearable electronics are flexible, knittable, and wearable energy-storage devices with high energy density that can be integrated into textiles. Herein, knittable fiber-shaped zinc-air batteries with high volumetric energy density (36.1 mWh cm -3 ) are fabricated via a facile and continuous method with low-cost materials. Furthermore, a high-yield method is developed to prepare the key component of the fiber-shaped zinc-air battery, i.e., a bifunctional catalyst composed of atomically thin layer-by-layer mesoporous Co 3 O 4 /nitrogen-doped reduced graphene oxide (N-rGO) nanosheets. Benefiting from the high surface area, mesoporous structure, and strong synergetic effect between the Co 3 O 4 and N-rGO nanosheets, the bifunctional catalyst exhibits high activity and superior durability for oxygen reduction and evolution reactions. Compared to a fiber-shaped zinc-air battery using state-of-the-art Pt/C + RuO 2 catalysts, the battery based on these Co 3 O 4 /N-rGO nanosheets demonstrates enhanced and stable electrochemical performance, even under severe deformation. Such batteries, for the first time, can be successfully knitted into clothes without short circuits under external forces and can power various electronic devices and even charge a cellphone. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Receiver Heterogeneity Helps

    DEFF Research Database (Denmark)

    Kovács, Erika R.; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    Heterogeneity amongst devices and desired service are commonly seen as a source of additional challenges for setting up an efficient multi-layer multicast service. In particular, devices requiring only the base layer can become a key bottleneck to the performance for other devices. This paper...... studies the case of a wireless multi-layer multicast setting and shows that the judicious use of network coding allows devices with different computational capabilities to trade-off processing complexity for an improved quality of service. As a consequence, individual devices can determine their required...... effort, while bringing significant advantages to the system as a whole. Network coding is used as a key element to reduce signaling in order to deliver the multicast service. More importantly, our proposed approach focuses on creating some structure in the transmitted stream by allowing inter...

  3. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  4. Exploring the dynamic integration of heterogeneous services

    CSIR Research Space (South Africa)

    Makamba, M

    2016-08-01

    Full Text Available to incompatibles approaches relied upon at both conceptual and exploitation phases. The proliferation of developed heterogeneous services in the digital world therefore comes along with a range of challenges more precisely in the integration layer. Traditionally...

  5. Heterogeneous Beliefs and Climate Catastrophes

    NARCIS (Netherlands)

    Kiseleva, T.

    2016-01-01

    We study how heterogeneous beliefs about the causes and extent of global warming affect local mitigation and adaptation strategies and therefore global climate dynamics. Local policies are determined by expectations of policy makers about future climate. There are three types of expectations: strong

  6. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    induce more than 3.9 per cent of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic models may be the result of unmapped small-scale heterogeneities in the mantle, mainly in the form of fine layering, and that caution should be taken when interpreting observed anisotropy in terms of LPO and mantle deformation. This effect may be particularly strong in the lithosphere where chemical heterogeneities are assumed to be the strongest.

  7. Impact of terrain heterogeneity on near-surface turbulence structure

    Science.gov (United States)

    Fesquet, Clément; Drobinski, Philippe; Barthlott, Christian; Dubos, Thomas

    2009-10-01

    This study investigates the impact of terrain heterogeneity on local turbulence measurements using 18 months of turbulence data taken on a 30 m tower at the SIRTA mixed land-use observatory under varying stability conditions and fetch configurations. These measurements show that turbulence variables such as the turbulent kinetic energy or momentum fluxes are strongly dependent on the upstream complexity of the terrain (presence of trees or buildings, open field). However, using a detection technique based on wavelet transforms which permits the isolation of the large-scale coherent structures from small-scale background fluctuations, the study shows that, for all stability conditions, whatever the upstream complexity of the terrain, the coherent structures display universal properties which are independent of the terrain nature: the frequency of occurrence, time duration of the coherent structures, the time separation between coherent structures and the relative contribution of the coherent structures to the total fluxes (momentum and heat) appear to be independent of the upstream roughness. This is an important result since coherent structures are known to transport a large portion of the total energy. This study extends to all stability conditions a numerical study by Fesquet et al. [Fesquet, C., Dupont, S., Drobinski, P., Barthlott, C., Dubos, T., 2008. Impact of terrain heterogeneities on coherent structures properties: experimental and numerical approaches. In: 18th Symposium on Boundary Layers and Turbulence. No. 11B.1. Stockholm, Sweden., Fesquet, C., Dupont, S., Drobinski, P., Dubos, T., Barthlott, C., in press. Impact of terrain heterogeneity on coherent structure properties: numerical approach. Bound.-Layer Meteorol.] conducted in neutral conditions which shows that a reason for such behavior is that the production of local active turbulence in an internal boundary layer associated with coherent structure originating from the outer layer and impinging

  8. Impurity screening in strongly coupled plasma systems

    CERN Document Server

    Kyrkos, S

    2003-01-01

    We present an overview of the problem of screening of an impurity in a strongly coupled one-component plasma within the framework of the linear response (LR) theory. We consider 3D, 2D and quasi-2D layered systems. For a strongly coupled plasma the LR can be determined by way of the known S(k) structure functions. In general, an oscillating screening potential with local overscreening and antiscreening regions emerges. In the case of the bilayer, this phenomenon becomes global, as overscreening develops in the layer of the impurity and antiscreening in the adjacent layer. We comment on the limitations of the LR theory in the strong coupling situation.

  9. Morphology and the magnetic and conducting properties of heterogeneous layered magnetic structures [(Co45Fe45Zr10)35(Al2O3)65/ a-Si:H]36

    Science.gov (United States)

    Dyadkina, E. A.; Vorobiev, A. A.; Ukleev, V. A.; Lott, D.; Sitnikov, A. V.; Kalinin, Yu. E.; Gerashchenko, O. V.; Grigoriev, S. V.

    2014-03-01

    The morphology and the magnetic and conducting properties of an amorphous multilayer nanosystem [(Co45Fe45Zr10)35(Al2O3)65/ a-Si:H]36 consisting of (Co45Fe45Zr10)35(Al2O3)65 magnetic layers and semiconducting hydrogenated amorphous silicon ( a-Si:H) layers of various thicknesses have been studied. Using a combination of methods (including polarized neutron reflectometry and grazing incidence small-angle X-ray scattering), it is shown that the magnetic and electrical properties of these multilayer structures are determined by their morphology. It is established that the magnetization and electric resistance of a sample is a nonmonotonic function of the a-Si:H layer thickness. Both characteristics are at a minimum for a structure with a semiconductor layer thickness of 0.4 nm. Samples with silicon layer thicknesses below 0.4 nm represent a three-dimensional structure of Co45Fe45Zr10 grains weakly ordered in space, while in samples with silicon layer thicknesses above 0.4 nm, these grains are packed in layers alternating in the vertical direction. The average lateral distance between nanoparticles in the layer plane has been determined, from which the dimensions of metal grains in each sample have been estimated.

  10. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  11. Hyphal heterogeneity in Aspergillus niger

    OpenAIRE

    de Bekker, A.M.

    2011-01-01

    Mycelial fungi use hyphae to colonize substrates. These hyphae secrete enzymes that convert complex polymers into breakdown products that can be taken up to serve as nutrients. Using GFP as a reporter it has been shown that exploring hyphae of Aspergillus niger are heterogenic with respect to expression of the glucoamylase gene glaA; some hyphae strongly express the glucoamylase gene glaA, while others express it lowly. This was a surprising finding considering the fact that all hyphae were e...

  12. [Review on landscape heterogeneity].

    Science.gov (United States)

    Zhao, Yutao; Yu, Xinxiao; Guang, Wenbin

    2002-04-01

    On the base of precedent studies, the occurring mechanism, classification, measurement methods, and the important role of landscape heterogeneity in landscape ecology were reviewed. The inner and outer uncertain factors result in landscape heterogeneity. Landscape heterogeneity has close relations with landscape stability, landscape design, architecture, management and disturbance, scale and ecological diversity in ecology. Complexity of landscape heterogeneity research, non-system of measurement indices and methods, difficulties and limitations of landscape heterogeneity modelling were all discussed respectively. In addition, it is suggested that the theory and methods of ecological complexity should be used to improve landscape heterogeneity research.

  13. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  14. Service discovery in heterogeneous wireless networks

    NARCIS (Netherlands)

    Blangé, M.J.; Karkowski, I.P.; Vermeulen, B.C.B.

    2005-01-01

    In this paper we describe a possible solution to the problem of service discovery in heterogeneous wireless networks. This solution involves introduction of a network independent service discovery layer, with as main goal the improved robustness of applications running on top of it. A possible

  15. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  16. Scalable Task Assignment for Heterogeneous Multi-Robot Teams

    Directory of Open Access Journals (Sweden)

    Paula García

    2013-02-01

    Full Text Available This work deals with the development of a dynamic task assignment strategy for heterogeneous multi-robot teams in typical real world scenarios. The strategy must be efficiently scalable to support problems of increasing complexity with minimum designer intervention. To this end, we have selected a very simple auction-based strategy, which has been implemented and analysed in a multi-robot cleaning problem that requires strong coordination and dynamic complex subtask organization. We will show that the selection of a simple auction strategy provides a linear computational cost increase with the number of robots that make up the team and allows the solving of highly complex assignment problems in dynamic conditions by means of a hierarchical sub-auction policy. To coordinate and control the team, a layered behaviour-based architecture has been applied that allows the reusing of the auction-based strategy to achieve different coordination levels.

  17. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    Science.gov (United States)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  18. Thermal properties of heterogeneous fuels

    International Nuclear Information System (INIS)

    Staicu, D.; Beauvy, M.

    1998-01-01

    Fresh or irradiated nuclear fuels are composites or solid solutions more or less heterogeneous, and their thermal conductivities are strongly dependent on the microstructure. The effective thermal conductivities of these heterogeneous solids must be determined for the modelling of the behaviour under irradiation. Different methods (analytical or numerical) published in the literature can be used for the calculation of this effective thermal conductivity. They are analysed and discussed, but finally only few of them are really useful because the assumptions selected are often not compatible with the complex microstructures observed in the fuels. Numerical calculations of the effective thermal conductivity of various fuels based on the microstructure information provided in our laboratory by optical microscopy or electron micro-probe analysis images, have been done for the validation of these methods. The conditions necessary for accurate results on effective thermal conductivity through these numerical calculations are discussed. (author)

  19. Heterogeneity in magnetic complex oxides

    Science.gov (United States)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by

  20. Effect of point source and heterogeneity on the propagation of ...

    African Journals Online (AJOL)

    user

    This paper stands to investigate the possibility of propagation of SH waves due to a point source in a magnetoelastic monoclinic layer lying over a heterogeneous monoclinic half-space. The heterogeneity is caused by consideration of quadratic variation in rigidity. The methodology employed combines an efficient ...

  1. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  2. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  3. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described...

  4. Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2015-11-01

    Full Text Available Heterogeneous crystalline semiconductor nanomembrane (NM integration is investigated for single-layer and double-layer Silicon (Si NM photonics, III-V/Si NM lasers, and graphene/Si NM total absorption devices. Both homogeneous and heterogeneous integration are realized by the versatile transfer printing technique. The performance of these integrated membrane devices shows, not only intact optical and electrical characteristics as their bulk counterparts, but also the unique light and matter interactions, such as Fano resonance, slow light, and critical coupling in photonic crystal cavities. Such a heterogeneous integration approach offers tremendous practical application potentials on unconventional, Si CMOS compatible, and high performance optoelectronic systems.

  5. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.

    Science.gov (United States)

    Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x ) on reducible oxide supports (TiO 2 and Nb 2 O 5 ) that induce oxygen-vacancy formation in the support and cause HCO x -functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2 -reduction selectivity.

  6. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  7. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    Science.gov (United States)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    residence time results in low nutrient reduction. Moreover, high nitrification and low ammonium concentration in the interface of the two grain-size layers are measured, probably related to high dissolved oxygen concentration at the coarse-fine sediment interface, further promoting accumulation of bacteria and algae. In contrast, the homogeneous tank shows low dissolved oxygen values and high denitrification in depth which could be related to lower overall hydraulic conductivity, as compared to the heterogeneous tank. The preliminary analysis of our results indicates a key role of hydraulic conductivity on biogeochemical processes in the porous medium but, at the same time that it is strongly interacting with sediment grain-size distribution and the development of biofilm. The final scope of this study is to know the interactions between physicochemical and biological components in sediments in order to understand in detail the biogeochemical processes occurring.

  8. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  9. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  10. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  11. Prediction of crack propagation in layered ceramics with strong interfaces

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Bermejo, R.

    2010-01-01

    Roč. 77, č. 11 (2010), s. 2192-2199 ISSN 0013-7944 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminate * Crack propagation direction * Residual stress * Flaw tolerant ceramics * Optimal design Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.571, year: 2010

  12. Neurobiological heterogeneity in ADHD

    NARCIS (Netherlands)

    de Zeeuw, P.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous disorder clinically. Symptoms take many forms, from subtle but pervasive attention problems or dreaminess up to disruptive and unpredictable behavior. Interestingly, early neuroscientific work on ADHD assumed either a

  13. Multiscale characteristics of mechanical and mineralogical heterogeneity using nanoindentation and Maps Mineralogy in Mancos Shale

    Science.gov (United States)

    Yoon, H.; Mook, W. M.; Dewers, T. A.

    2017-12-01

    Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by

  14. Structural degradation of heterogeneous welded joints

    Directory of Open Access Journals (Sweden)

    Eva Schmidová

    2012-09-01

    Full Text Available Developing the techniques of welding materials with higher dynamic strength onto the rolling surfaces of rails is one of the options for increasing their operational endurance. The subject of this paper is an analyses of heterogeneous weld interfaces experimentally manufactured by welding medium-carbon austenitic steels onto high-carbon unalloyed pearlitic steels. The analyses focus on examinations of the marginal mixing of the materials at the weld interface and the circumstances under which intercrystalline cracks form in the weld deposit layers. Structural analyses, chemical microanalyses and a hardness assessment were performed in order to identify the corresponding structural changes. The proportion of zonal vs. interdendritic segregation of the alloying elements in the degradation of the welded joint was distinguished. We described the nature of the structural heterogeneities produced, locally connected with the martensitic transformation. The chemical heterogeneity leading to the formation of martensite at grain boundaries was identified as the limiting effect.

  15. STRUCTURAL DEGRADATION OF HETEROGENEOUS WELDED JOINTS

    Directory of Open Access Journals (Sweden)

    Eva Schmidová

    2012-10-01

    Full Text Available Developing the techniques of welding materials with higher dynamic strength onto the rolling surfaces of rails is one of the options for increasing their operational endurance. The subject of this paper is an analysis of heterogeneous weld joints experimentally manufactured by welding medium-carbon austenitic steels onto high-carbon unalloyed pearlitic steels. The analyses focus on examinations of the marginal mixing of the materials at the fusion line and the circumstances under which intercrystalline cracks form in the weld deposit layers. Structural analyses, chemical microanalyses and a hardness assessment were performed in order to identify the corresponding structural changes. The proportion of zonal vs. interdendritic segregation of the alloying elements in the degradation of the welded joint was distinguished. We described the nature of the structural heterogeneities produced, locally connected with the martensitic transformation. The chemical heterogeneity leading to the formation of martensite at grain boundaries was identified as the limiting effect.

  16. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  17. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  18. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  19. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  20. Foreign Entry and Heterogeneous Growth of Firms

    DEFF Research Database (Denmark)

    Deng, Paul Duo; Jefferson, Gary H.

    We adopt the framework of Schumpeterian creative destruction formalized by Aghion et al. (2009) to analyze the impact of foreign entry on the productivity growth of domestic firms. In the face of foreign entry, domestic firms exhibit heterogeneous patterns of growth depending on their technological...... distance from foreign firms. Domestic firms with smaller technological distance from their foreign counterparts tend to experience faster productivity growth, while firms with larger technological distance tend to lag further behind. We test this hypothesis using a unique firm-level data of Chinese...... manufacturing. Our empirical results confirm that foreign entry indeed generates strong heterogeneous growth patterns among domestic firms....

  1. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Science.gov (United States)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    -limited pathways - oxidation by transition metal catalysis (α34 = 0.9905±0.0031 at 19 °C, Harris et al., 2012a) and by hypohalites (α34 = 0.9882±0.0036 at 19 °C) - which favour the light isotope. In combination with field measurements of the oxygen and sulfur isotopic composition of SO2 and sulfate, the fractionation factors presented in this paper may be capable of constraining the relative importance of different oxidation pathways in the marine boundary layer.

  2. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2012-05-01

    the alkalinity non-limited pathways – oxidation by transition metal catalysis (α34 = 0.9905±0.0031 at 19 °C, Harris et al., 2012a and by hypohalites (α34 = 0.9882±0.0036 at 19 °C – which favour the light isotope. In combination with field measurements of the oxygen and sulfur isotopic composition of SO2 and sulfate, the fractionation factors presented in this paper may be capable of constraining the relative importance of different oxidation pathways in the marine boundary layer.

  3. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  4. Implications of Heterogeneity in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Sanjay de Mel

    2014-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy in the world. Despite improvement in outcome, the disease is still incurable for most patients. However, not all myeloma are the same. With the same treatment, some patients can have very long survival whereas others can have very short survival. This suggests that there is underlying heterogeneity in myeloma. Studies over the years have revealed multiple layers of heterogeneity. First, clinical parameters such as age and tumor burden could significantly affect outcome. At the genetic level, there are also significant heterogeneity ranging for chromosome numbers, genetic translocations, and genetic mutations. At the clonal level, there appears to be significant clonal heterogeneity with multiple clones coexisting in the same patient. At the cell differentiation level, there appears to be a hierarchy of clonally related cells that have different clonogenic potential and sensitivity to therapies. These levels of complexities present challenges in terms of treatment and prognostication as well as monitoring of treatment. However, if we can clearly delineate and dissect this heterogeneity, we may also be presented with unique opportunities for precision and personalized treatment of myeloma. Some proof of concepts of such approaches has been demonstrated.

  5. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  6. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  7. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  8. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  9. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  10. Operando research in heterogeneous catalysis

    CERN Document Server

    Groot, Irene

    2017-01-01

    This book is devoted to the emerging field of techniques for visualizing atomic-scale properties of active catalysts under actual working conditions, i.e. high gas pressures and high temperatures. It explains how to understand these observations in terms of the surface structures and dynamics and their detailed interplay with the gas phase. This provides an important new link between fundamental surface physics and chemistry, and applied catalysis. The book explains the motivation and the necessity of operando studies, and positions these with respect to the more traditional low-pressure investigations on the one hand and the reality of industrial catalysis on the other. The last decade has witnessed a rapid development of new experimental and theoretical tools for operando studies of heterogeneous catalysis. The book has a strong emphasis on the new techniques and illustrates how the challenges introduced by the harsh, operando conditions are faced for each of these new tools. Therefore, one can also read th...

  11. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  12. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  13. Why does heterogeneity matter?

    Science.gov (United States)

    K.B. Pierce

    2007-01-01

    This is a review of the book "Ecosystem function in heterogeneous landscapes" published in 2005. The authors are G. Lovett, C. Jones, M.G. Turner, and K.C. Weathers. It was published by Springer, New York. The book is a synthesis of the 10th Gary conference held at the Institute of Ecosystem Studies in Millbrook, New York, in 2003.

  14. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  15. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  16. Heterogeneous computing in economics

    DEFF Research Database (Denmark)

    Dziubinski, Matt P.; Grassi, Stefano

    2014-01-01

    This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of C++ Accelerated Massive Parallelism (C++ AMP) recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (J Econ Dyn...

  17. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  18. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  19. Colloid straining within saturated heterogeneous porous media.

    Science.gov (United States)

    Porubcan, Alexis A; Xu, Shangping

    2011-02-01

    The transport of 0.46 μm, 2.94 μm, 5.1 μm and 6.06 μm latex particles in heterogeneous porous media prepared from the mixing of 0.78 mm, 0.46 mm and 0.23 mm quartz sands was investigated through column transport experiments. It was observed that the 0.46 μm particles traveled conservatively within the heterogeneous porous media, suggesting that under the experimental conditions employed in this research the strong repulsive interactions between the negatively charged latex particles and the clean quartz sands led to minimal colloid immobilization due to physicochemical filtration. The immobilization of the 2.94 μm, 5.1 μm and 6.06 μm latex particles was thus attributed to colloid straining. Experimental results showed that the straining of colloidal particles within heterogeneous sand mixtures increased when the fraction of finer sands increased. The mathematical model that was developed and tested based on results obtained using uniform sands (Xu et al., 2006) was found to be able to describe colloid straining within heterogeneous porous media. Examination of the relationship between the best-fit values of the clean-bed straining rate coefficients (k(0)) and the ratio of colloid diameter (d(p)) and sand grain size (d(g)) indicated that when number-average sizes were used to represent the size of the heterogeneous porous media, there existed a consistent relationship for both uniform sands and heterogeneous sand mixtures. Similarly, the use of the number-averaged sizes for the heterogeneous porous media produced a uniform relationship between the colloid straining capacity term (λ) and the ratio of d(p)/d(g) for all the sand treatments. © 2010 Elsevier Ltd. All rights reserved.

  20. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    Science.gov (United States)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the

  1. Site-response Estimation by 1D Heterogeneous Velocity Model using Borehole Log and its Relationship to Damping Factor

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2014-01-01

    In the Niigata area, which suffered from several large earthquakes such as the 2007 Chuetsu-oki earthquake, geographical observation that elucidates the S-wave structure of the underground is advancing. Modeling of S-wave velocity structure in the subsurface is underway to enable simulation of long-period ground motion. The one-dimensional velocity model by inverse analysis of micro-tremors is sufficiently appropriate for long-period site response but not for short-period, which is important for ground motion evaluation at NPP sites. The high-frequency site responses may be controlled by the strength of heterogeneity of underground structure because the heterogeneity of the 1D model plays an important role in estimating high-frequency site responses and is strongly related to the damping factor of the 1D layered velocity model. (author)

  2. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  3. The coalescence of heterogeneous liquid metal on nano substrate

    Science.gov (United States)

    Wang, Long; Li, Yifan; Zhou, Xuyan; Li, Tao; Li, Hui

    2017-06-01

    Molecular dynamics simulation has been performed to study the asymmetric coalescence of heterogeneous liquid metal on graphene. Simulation results show that the anomalies in the drop coalescence is mainly caused by the wettability of heterogeneous liquid metal. The silver atoms incline to distribute on the outer layer of the gold and copper droplets, revealing that the structure is determined by the interaction between different metal atoms. The coalescence and fusion of heterogeneous liquid metal drop can be predicted by comparing the wettability and the atomic mass of metallic liquid drops, which has important implications in the industrial application such as ink-jet printing and metallurgy.

  4. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  5. The role of mechanical heterogeneities during continental breakup: a 3D lithospheric-scale modelling approach

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2015-04-01

    How and why do continents break? More than two decades of analogue and 2D plane-strain numerical experiments have shown that despite the origin of the forces driving extension, the geometry of continental rifts falls into three categories - or modes: narrow rift, wide rift, or core complex. The mode of extension itself is strongly influenced by the rheology (and rheological behaviour) of the modelled layered system. In every model, an initial thermal or mechanical heterogeneity, such as a weak seed or a notch, is imposed to help localise the deformation and avoid uniform stretching of the lithosphere by pure shear. While it is widely accepted that structural inheritance is a key parameter for controlling rift localisation - as implied by the Wilson Cycle - modelling the effect of lithospheric heterogeneities on the long-term tectonic evolution of an extending plate in full 3D remains challenging. Recent progress in finite-element methods applied to computational tectonics along with the improved accessibility to high performance computers, now enable to switch from plane strain thermo-mechanical experiments to full 3D high-resolution experiments. Here we investigate the role of mechanical heterogeneities on rift opening, linkage and propagation during extension of a layered lithospheric systems with pTatin3d, a geodynamics modeling package utilising the material-point-method for tracking material composition, combined with a multigrid finite-element method to solve heterogeneous, incompressible visco-plastic Stokes problems. The initial model setup consists in a box of 1200 km horizontally by 250 km deep. It includes a 35 km layer of continental crust, underlaid by 85 km of sub-continental lithospheric mantle, and an asthenospheric mantle. Crust and mantle have visco-plastic rheologies with a pressure dependent yielding, which includes strain weakening, and a temperature, stress, strain-rate-dependent viscosity based on wet quartzite rheology for the crust, and wet

  6. A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media.

    Science.gov (United States)

    Sun, N; Elimelech, M; Sun, N Z; Ryan, J N

    2001-06-01

    A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.

  7. Micromechanics of heterogeneous materials

    CERN Document Server

    Buryachenko, Valeriy

    2007-01-01

    Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

  8. Bio-inspired heterogeneous composites for broadband vibration mitigation

    Science.gov (United States)

    Chen, Yanyu; Wang, Lifeng

    2015-12-01

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known “brick and mortar” microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  9. Disorder and transport of silver in some layered metal sulfides

    NARCIS (Netherlands)

    Gerards, Anthonius Gijsbertus

    1987-01-01

    The chemical and physical properties of compounds with a layered structure are strongly determined by the two-dimensional nature of the bonding, viz. strong bonding within the layers and much weaker bonds between the layers; graphite is an example of such and anisotropic solid. the layered

  10. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  11. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  12. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  13. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  14. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  15. Cooperative Radio Resource Management for Heterogeneous Networks

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Tragos, Elias; Luo, Jijun

    2009-01-01

    of the network’s resources. This is also the reason why researchers look for systems that are adaptive and flexible and provide coverage in various deployment modes (wide area, metropolitan area and local area). Cooperation and coexistence then extends from interworking between different PHY layer modes......The heterogeneity in technology and also in ownership leads to complex systems and interworking problems, which can be seen from the ability to establish and maintain connections with required quality, in fault detection and location, in resource allocation and in charging of the usage...

  16. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach.

    Science.gov (United States)

    Wang, Jihang; Bratko, Dusan; Luzar, Alenka

    2011-04-19

    Surface free energy of a chemically heterogeneous surface is often treated as an approximately additive quantity through the Cassie equation [Cassie ABD (1948) Discuss Faraday Soc 3:11-16]. However, deviations from additivity are common, and molecular interpretations are still lacking. We use molecular simulations to measure the microscopic analogue of contact angle, Θ(c), of aqueous nanodrops on heterogeneous synthetic and natural surfaces as a function of surface composition. The synthetic surfaces are layers of graphene functionalized with prototypical nonpolar and polar head group: methyl, amino, and nitrile. We demonstrate positive as well as negative deviations from the linear additivity. We show the deviations reflect the uneven exposure of mixture components to the solvent and the linear relation is recovered if fractions of solvent-accessible surface are used as the measure of composition. As the spatial variations in polarity become of larger amplitude, the linear relation can no longer be obtained. Protein surfaces represent such natural patterned surfaces, also characterized by larger patches and roughness. Our calculations reveal strong deviations from linear additivity on a prototypical surface comprising surface fragments of melittin dimer. The deviations reflect the disproportionately strong influence of isolated polar patches, preferential wetting, and changes in the position of the liquid interface above hydrophobic patches. Because solvent-induced contribution to the free energy of surface association grows as cos Θ(c), deviations of cos Θ(c) from the linear relation directly reflect nonadditive adhesive energies of biosurfaces.

  17. Unravelling mononuclear phagocyte heterogeneity

    Science.gov (United States)

    Geissmann, Frédéric; Gordon, Siamon; Hume, David A.; Mowat, Allan M.; Randolph, Gwendalyn J.

    2011-01-01

    When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research. PMID:20467425

  18. Heterogeneous logics of competition

    DEFF Research Database (Denmark)

    Mossin, Christiane

    2015-01-01

    The purpose of the article is to demonstrate that in order to understand competition as a socially organizing phenomenon, we should not examine competition in isolation, but as constellations of heterogeneous logics. More precisely, the article is based on two main theoretical points: (1) Logics...... of a presumed logic of competition within EU law, whereas the second part focuses on particular legal logics. In this respect, the so-called ‘real link criterion’ (determining the access to transnational social rights for certain groups of unemployed people) is given special attention. What is particularly...

  19. Heterogeneous Active Matter

    Science.gov (United States)

    Kolb, Thomas; Klotsa, Daphne

    Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.

  20. Information and Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Qin, Zhenjiang

    2014-01-01

    and the maximum expected abnormal trading volume. Imperfect public information increases the gains-to-trade based on heterogeneously updated posterior beliefs. In an exchange economy, this leads to higher growth in the investors' certainty equivalents and, thus, a higher equilibrium interest rate, whereas the ex...... ante risk premium is unaffected by the informativeness of the public information system. Similar results are obtained in a production economy, but the impact on the ex ante cost of capital is dampened compared to the exchange economy due to welfare improving reductions in real investments to smooth...

  1. Heterogeneous broadband network

    Science.gov (United States)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  2. Heterogeneity of reactive astrocytes.

    Science.gov (United States)

    Anderson, Mark A; Ao, Yan; Sofroniew, Michael V

    2014-04-17

    Astrocytes respond to injury and disease in the central nervous system (CNS) with a process referred to as reactive astrogliosis. Recent progress demonstrates that reactive astrogliosis is not a simple all-or-none phenomenon, but is a finely gradated continuum of changes that range from reversible alterations in gene expression and cell hypertrophy, to scar formation with permanent tissue rearrangement. There is now compelling evidence that reactive astrocytes exhibit a substantial potential for heterogeneity at multiple levels, including gene expression, cell morphology, topography (distance from lesions), CNS regions, local (among neighboring cells), cell signaling and cell function. Structural and functional changes are regulated in reactive astrocytes by many different potential signaling events that occur in a context dependent manner. It is noteworthy that different stimuli of astrocyte reactivity can lead to similar degrees of GFAP upregulation while causing substantially different changes in transcriptome profiles and cell function. Thus, it is not possible to equate simple and uniform measures such as cell hypertrophy and upregulation of GFAP expression with a single, uniform concept of astrocyte reactivity. Instead, it is necessary to recognize the considerable potential for heterogeneity and determine the functional implications of astrocyte reactivity in a context specific manner as regulated by specific signaling events. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.

    1986-01-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  4. Anomalous transport in heterogeneous media

    Science.gov (United States)

    Horbach, Jürgen; Siboni, Nima H.; Schnyder, Simon K.

    2017-08-01

    The diffusion dynamics of particles in heterogeneous media is studied using particle-based simulation techniques. A special focus is placed on systems where the transport of particles at long times exhibits anomalies such as subdiffusive or superdiffusive behavior. First, a two-dimensional model system is considered containing gas particles (tracers) that diffuse through a random arrangement of pinned, disk-shaped particles. This system is similar to a classical Lorentz gas. However, different from the original Lorentz model, soft instead of hard interactions are considered and we also discuss the case where the tracer particles interact with each other. We show that the modification from hard to soft interactions strongly affects anomalous-diffusive transport at high obstacle densities. Second, non-linear active micro-rheology in a glass-forming binary Yukawa mixture is investigated, pulling single particles through a deeply supercooled state by applying a constant force. Here, we observe superdiffusion in force direction and analyze its origin. Finally, we consider the Brownian dynamics of a particle which is pulled through a two-dimensional random force field. We discuss the similarities of this model with the Lorentz gas as well as active micro-rheology in glass-forming systems.

  5. Heterogeneous Integration Technology

    Science.gov (United States)

    2017-05-19

    This type of packaging is used in mobile products where because of space saving features and can be found in smart phones and tables. Figure 69...picture of 8-strata stacked chips with TSVs on interposer layer [128]. ............................. 59 Figure 72: The DARPA SMART program: (a...mounted die is integrated with another package containing stacked chips with bond wire connections [153]. PoP integration is also used heavily in smart

  6. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  7. Heterogeneous Organo-Catalysis: Sustainable Pathways to ...

    Science.gov (United States)

    Glucose and fructose are among the most abundant plant-derived materials1 and have been converted into useful building units often used in the drug discovery and polymer architecture.2 Unfortunately, most of these conversions require mineral acids and complex heterogeneous catalysis systems which suffer from the diminished activity and recyclability issues.3 Herein, we report a highly reactive and inexpensive heterogeneous sulfonated graphitic carbon nitride (Sg-CN), endowed with strong acidity that readily transforms carbohydrates to furanics. The ready availability and benign nature of the material and its stability over the several reaction cycles renders this catalyst very useful in organic synthesis, polymer industry and in the preparation of drug precursors. Poster presentation at the 253rd American Chemical Society (ACS) National meeting in San Francisco, CA

  8. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  9. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    The title of my PhD thesis is “Design of Heterogeneous Catalysts”. Three reactions have been investigated: the methanation reaction, the Fischer-Tropsch reaction, and the NH3-based selective catalytic reduction (SCR) of NO. The experimental work performed in connection with the methanation reaction...... hydrogenation. For both systems a maximum in catalytic activity was found for some of the bimetallic catalysts being superior to the monometallic catalysts. This resulted in volcano curves for all investigated systems. In the Fischer-Tropsch reaction promotion of cobalt catalysts with manganese was studied...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  10. Applied heterogeneous catalysis

    International Nuclear Information System (INIS)

    Le Page, A.J.F.

    1988-01-01

    This reference book explains the scientific principles of heterogeneous catalysis while also providing details on the methods used to develop commercially viable catalyst products. A section of the book presents reactor design engineering theory and practices for the profitable application of these catalysts in large-scale industrial processes. A description of the mechanisms and commercial applications of catalysis is followed by a review of catalytic reaction kinetics. There are five chapters on selecting catalyst agents, developing and preparing industrial catalysts, measuring catalyst properties, and analyzing the physico-chemical characteristics of solid catalyst particles. The final chapter reviews the elements of catalytic reactor design, with emphasis on flow regimes vs. reactor types, heat and mass transfer in reactor beds, single- and multi-phase flows, and the effects of thermodynamics and other catalyst properties on the process flow scheme

  11. Multiphase blast interaction between heterogeneous explosives

    Science.gov (United States)

    Ripley, Robert; Ryan, Sydney; Jenkins, Charles M.

    2017-06-01

    Spherical charges loaded with micrometric metal powders feature explosively dispersed particle fields. The interaction phenomena of opposing multiphase flow fields from multiple charges depend on the charge spacing, loading configuration and particle morphology. For identical heterogeneous charges with a separation distance in the near field, the multiphase blast interaction includes particle-particle collision in the shocked air and impinging detonation products between the charges. Experiments recorded using high-speed framing cameras show the blast interaction process and resolve details of the multiphase structures. Hydrocode simulations are conducted using inelastic Lagrangian particle groups with a Direct Simulation Monte Carlo particle collision model. The numerical results distinguish the multiphase interaction layer and gas dynamic boundaries, with an emphasis on the particle laden Mach stem. The experimental results provide data for comparison to the interacting front velocities and Mach stem velocity. Modeling results for twin charges are shown to be different from a single heterogeneous blast reflection due to the stochastic and dissipative particle collisions. Remaining differences between the experimental and numerical results are discussed. The numerical results are further analyzed to assess particle fragmentation and potential for enhanced reaction in the interaction region between heterogeneous charges. DISTRIBUTION A. Approved for public release; distribution is unlimited. 96TW-2017-0079.

  12. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    The convergence of different types of traffic has preceded the convergence of systems and services in a wireless heterogeneous network. Voice and data traffic are usually treated separate in both 2G and 2.5G wireless networks. With advances in packet switching technology and especially with the d...... and to the discruption caused by the user mobility during the session. Voice over IP in Wireless Hetetrogeneous Networks thus investigates and proposes cross-layer techniques for realizing time-efficient control mechanisms for VoIP: signaling, mobility and security.......The convergence of different types of traffic has preceded the convergence of systems and services in a wireless heterogeneous network. Voice and data traffic are usually treated separate in both 2G and 2.5G wireless networks. With advances in packet switching technology and especially...... with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality Vo...

  13. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  14. Influence of initial stress, irregularity and heterogeneity on Love-type ...

    Indian Academy of Sciences (India)

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over ... The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the ...... University Press, Cambridge. Kaur T, Singh A K, ...

  15. Numerical investigation of temperature distribution in a confined heterogeneous geothermal reservoir due to injection-production

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, M.S.

    The present study deals with the modeling of transient temperature distribution in a heterogeneous geothermal reservoir in response to the injection-production process. The heterogeneous geothermal aquifer considered here is a confined aquifer with homogeneous layers of finite length and overlain

  16. Space Qualified Heterogeneous Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to develop a radiation hardened, monolithic, heterogeneous processor for space imaging and radar systems. High performance processors are needed...

  17. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  18. Harvesting geographic features from heterogeneous raster maps

    Science.gov (United States)

    Chiang, Yao-Yi

    2010-11-01

    Raster maps offer a great deal of geospatial information and are easily accessible compared to other geospatial data. However, harvesting geographic features locked in heterogeneous raster maps to obtain the geospatial information is challenging. This is because of the varying image quality of raster maps (e.g., scanned maps with poor image quality and computer-generated maps with good image quality), the overlapping geographic features in maps, and the typical lack of metadata (e.g., map geocoordinates, map source, and original vector data). Previous work on map processing is typically limited to a specific type of map and often relies on intensive manual work. In contrast, this thesis investigates a general approach that does not rely on any prior knowledge and requires minimal user effort to process heterogeneous raster maps. This approach includes automatic and supervised techniques to process raster maps for separating individual layers of geographic features from the maps and recognizing geographic features in the separated layers (i.e., detecting road intersections, generating and vectorizing road geometry, and recognizing text labels). The automatic technique eliminates user intervention by exploiting common map properties of how road lines and text labels are drawn in raster maps. For example, the road lines are elongated linear objects and the characters are small connected-objects. The supervised technique utilizes labels of road and text areas to handle complex raster maps, or maps with poor image quality, and can process a variety of raster maps with minimal user input. The results show that the general approach can handle raster maps with varying map complexity, color usage, and image quality. By matching extracted road intersections to another geospatial dataset, we can identify the geocoordinates of a raster map and further align the raster map, separated feature layers from the map, and recognized features from the layers with the geospatial

  19. Effective IPTV channel management method over heterogeneous environments

    Science.gov (United States)

    Joo, Hyunchul; Lee, Dai-boong; Song, Hwangjun

    2007-09-01

    This paper presents an effective IPTV channel management method using SVC (scalable video coding) that considers concurrently both channel zapping time and network utilization. A broadcasting channel is encoded in two-layered bitstream (base-layer channel and enhancement-layer channel) to supply for heterogeneous environments. The proposed algorithm locates only a limited numbers of base-layer channels close to users to reduce the network delay part of channel zapping time and adjusts the length of GOP (group of picture) into each base-layer channel to decrease the video decoding delay part of channel zapping time, which are performed based on user's channel preference information. Finally, the experimental results are provided to show the performance of the proposed schemes.

  20. Heterogeneity of an earth

    Science.gov (United States)

    Litvinova, T.; Petrova, A.

    2009-04-01

    The study of magnetic anomaly field structure of the Barents Sea water area along seismic and extended profiles intersecting known fields is carried out. Geomagnetic and density sections down to 40 km depth are constructed. This allowed the estimation of heterogeneities of the Barents Sea water area deep structure. The analysis of geomagnetic and density sections along extended profiles showed the confinedness of oil-and-gas bearing provinces to deep permeable zones characterized by reduced magnetic and density features. Based on the analysis of permeable zones, regional diagnostic features similar to those obtained earlier in oil-and-gas bearing provinces in other regions, for example, in Timan-Pechora, Volga-Urals and Siberian, as well as in the Northern and Norwegian seas water areas, are revealed. The analysis of magnetic and gravity fields over the region area allowed the delineation of weakened zones as intersection areas of weakly magnetic areals with reduced density. Within the Barents Sea water area, permeable areas with lenticular-laminated structure of the upper and lower Earth's crust containing weakly magnetic areals with reduced rock density within the depth range of 8-12 and 15-20 km are revealed. Such ratio of magnetic and density heterogeneities in the Earth's crust is characteristic for zones with proved oil-and-gas content in the European part of the Atlantic Ocean water area. North Kildin field on 1 AR profile is confined to a trough with thick weakly magnetic stratum discontinuously traced to a depth of 6-10 km. At a depth of approximately 15 km, a lens of weakly magnetic and porous formations is observed. Ludlov field in the North Barents trough is confined to a zone of weakly magnetic rocks with reduced density traced to a depth of 8-9 km. Deeper, at Н=15 km, a lenticular areal of weakly magnetic formations with reduced density is observed. The profile transecting the Stockman field shows that it is located in the central part of a permeable

  1. Evaluating Traditional Hydrogeologic Characterization Approaches in a Highly Heterogeneous Glaciofluvial Aquifer

    Science.gov (United States)

    Alexander, M.; Berg, S. J.; Illman, W.

    2009-05-01

    Hydraulic conductivity (K) and specific storage (Ss) estimates are two of the most essential parameters when designing transient groundwater flow models which are commonly used in contaminant transport and water resource investigations. The purpose of this study was to evaluate the effectiveness of traditional hydrogeologic characterization approaches in a highly heterogeneous glaciofluvial aquifer at the North Campus Research Site (NCRS) situated on the University of Waterloo campus. The site is instrumented with four Continuous Multichannel Tubing (CMT) wells containing a total of 28 monitoring points and a multi-screen well used for pumping at different elevations. Continuous soil cores to a depth of approximately 18 m were collected during the installation of the CMTs and the multi-screen well. The cores were subsequently characterized using the Unified Soil Classification System and grain size analysis. Samples were obtained from the core at approximately 10 cm increments and a falling head permeameter was used to make 471 K estimates. The estimates from the falling head permeameter showed K to vary from 10-4 - 10-10 m/s illustrating the highly heterogeneous nature of the aquifer at the NCRS. A geostatistical analysis performed on the core K dataset yielded a strongly heterogeneous K field for the site. K and Ss estimates were also obtained via slug tests in the CMT ports through type curve analysis. Cross-hole pumping tests were conducted using the center multi-screened well and the 4 CMTs installed in a 5-spot pattern. Pumping was conducted in 7 zones using a straddle packer system and the corresponding drawdown responses were recorded in 28 zones in the CMTs and 3 zones in the center well using pressure transducers. The various K and Ss estimates were then evaluated by simulating the transient drawdown data using a 3D forward numerical model constructed using Hydrogeosphere (Therrien et al., 2005). Simulation was conducted using 3 separate K and Ss fields

  2. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  3. Strong Josephson Coupling in Planar Graphene Junctions

    Science.gov (United States)

    Park, Jinho; Lee, Gil-Ho; Lee, Jae Hyeong; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong

    A recent breakthrough of processing graphene, employing encapsulation by hexagonal boron nitride layers (BGB structure), allows realizing the ballistic carrier transport in graphene. Thereafter, ballistic Josephson coupling has been studied by closely edge-contacted BGB structure with two superconducting electrodes. Here, we report on the strong Josephson coupling with planar graphene junction in truly short and ballistic regime. Our device showed high transmission probability and the junction critical current (IC) oscillating for sweeping the gate voltage along with the normal conductance oscillation (Fabry-Perot oscillations), providing a direct evidence for the ballistic nature of the junction pair current. We also observed the convex-upward shape of decreasing critical currents with increasing temperature, canonical properties of the short Josephson coupling. By fitting these curves into theoretical models, we demonstrate the strong Josephson coupling in our devices, which is also supported by the exceptionally large value of ICRN ( 2 Δ / e RNis the normal resistance).

  4. Wall Layers

    Science.gov (United States)

    1992-01-14

    Mathematical Sciences Institute. Ithaca, NY: Cornell. Guckenheimer, J. & Labouriau, 1. 1990. Bifurcation of the Hodgkin - Huxley equations: a new vt.vist. In...olm es -____ II_ John Guckenheimer Avwi tI.,,ti 1it y ’odes ,Av9L! an.,I/or Dist Special •D L 2 Narrative Philip Holmes is continuing to study the...not localized in spae like the structur observed in the turbulent baft y layer. Wavelet bases, having compact support, seem much more appropriate. J

  5. On Heterogeneous Covert Networks

    Science.gov (United States)

    Lindelauf, Roy; Borm, Peter; Hamers, Herbert

    Covert organizations are constantly faced with a tradeoff between secrecy and operational efficiency. Lindelauf, Borm and Hamers [13] developed a theoretical framework to determine optimal homogeneous networks taking the above mentioned considerations explicitly into account. In this paper this framework is put to the test by applying it to the 2002 Jemaah Islamiyah Bali bombing. It is found that most aspects of this covert network can be explained by the theoretical framework. Some interactions however provide a higher risk to the network than others. The theoretical framework on covert networks is extended to accommodate for such heterogeneous interactions. Given a network structure the optimal location of one risky interaction is established. It is shown that the pair of individuals in the organization that should conduct the interaction that presents the highest risk to the organization, is the pair that is the least connected to the remainder of the network. Furthermore, optimal networks given a single risky interaction are approximated and compared. When choosing among a path, star and ring graph it is found that for low order graphs the path graph is best. When increasing the order of graphs under consideration a transition occurs such that the star graph becomes best. It is found that the higher the risk a single interaction presents to the covert network the later this transition from path to star graph occurs.

  6. Heterogeneous burnable poisons:

    International Nuclear Information System (INIS)

    Leiva, Sergio; Agueda, Horacio; Russo, Diego

    1989-01-01

    The use of materials possessing high neutron absorption cross-section commonly known as 'burnable poisons' have its origin in BWR reactors with the purpose of improving the efficiency of the first fuel load. Later on, it was extended to PWR to compensate of initial reactivity without infringing the requirement of maintaining a negative moderator coefficient. The present tendency is to increase the use of solid burnable poisons to extend the fuel cycle life and discharge burnup. There are two concepts for the burnable poisons utilization: 1) heterogeneously distributions in the form of rods, plates, etc. and 2) homogeneous dispersions of burnable poisons in the fuel. The purpose of this work is to present the results of sinterability studies, performed on Al 2 O 3 -B 4 C and Al 2 O 3 -Gd 2 O 3 systems. Experiments were carried on pressing at room temperature mixtures of powders containing up to 5 wt % of B 4 C or Gd 2 O 3 in Al 2 O 3 and subsequently sintering at 1750 deg C in reducing atmosphere. Evaluation of density, porosity and microstructures were done and a comparison with previous experiences is shown. (Author) [es

  7. Heterogeneity: multilingualism and democracy

    Directory of Open Access Journals (Sweden)

    Hans-Jürgen Krumm

    2004-01-01

    Full Text Available Linguistic diversity and multilingualism on the part of individuals are aprerequisite and a constitutive condition of enabling people to live togetherin a world of growing heterogeneity. Foreign language teaching plays animportant part in democratic education because it can be seen as a trainingin respecting otherness and developing an intercultural, non-ethnocentricperception and attitude. This is all the more important because of the neces-sity of integrating children from migrant families into school life.My article argues that language education policy has to take this per-spective into account, i.e., of establishing a planned diversification so thatpupils (and their parents will not feel satisfied with learning English only,but also become motivated to learn languages of their own neighbourhood,such as migrant and minority languages. However, in order to make use ofthe linguistic resources in the classroom, relating it to the democratic impetusof foreign language education, it is necessary to revise existing languagepolicies and to develop a multilingual perspective for all educational institutions.

  8. Heterogeneity in the penumbra

    Science.gov (United States)

    del Zoppo, Gregory J; Sharp, Frank R; Heiss, Wolf-Dieter; Albers, Gregory W

    2011-01-01

    Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K+ homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding ‘penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple ‘mini-cores' associated with multiple ‘mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia. PMID:21731034

  9. DESIGN AND HETEROGENEOUS ENGINEERING:

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian; Binder, Thomas

    2008-01-01

    theory of ‘following traces’, ‘heterogeneous engineering’ and ‘programs and anti-programs’ will be useful for the study of designers, but their potential has not been fully explored. Thorough investigation of texts of design work as well as an empirical case from a rubber valve plant in Denmark leads us......This paper seeks a vocabulary to study designers at work. The paper draws on STS studies of scientists and laboratories. A number of studies are explored in order to identify different points of attention in studies of science and in studies of design. It is argued that the notions in actor network...... to the notions of “mind”. Designing is argued to be successful when it takes place as mindful interrelating between numbers of entities of different kinds. The subjectivity and “biographical trajectory” of the designer are argued to be of particular interest in order to understand design work. The notion of mind...

  10. Heterogeneity of Morquio disease.

    Science.gov (United States)

    Beck, M; Glössl, J; Grubisic, A; Spranger, J

    1986-04-01

    Further clinical heterogeneity of Morquio disease, mucopolysaccharidosis IV (MPS IV), is delineated by the observation of a 30-year-old man with unusually mild clinical manifestations. He is 156 cm tall, has comparatively mild skeletal abnormalities and fine corneal deposits. Keratosulfaturia is absent. N-Acetylgalactosamine-6-sulfate (GalNAc-6-S) sulfatase (E.C. 3.1.6.-) was markedly reduced in his fibroblasts. The residual enzyme activity exhibited a pH profile comparable to that of patients with the "classical" form of the disorder. From our observation and a review of the literature it is concluded that Morquio disease can be divided in several subgroups: besides the severe ("classical") type A there exist an intermediate and a mild form that are also caused by a GalNAc-6-S sulfatase deficiency. A late-onset variant of Morquio disease, which is due to a deficiency of beta-galactosidase, has been classified as type B. In addition, patients with mild manifestation of the disease and normal activities in fibroblasts of GalNAc-6-S sulfatase and beta-galactosidase have been observed (type C). The genetic nature of the broad clinical variability of Morquio disease is incompletely understood: it is partially caused by different enzyme defects. Other factors thought to influence the clinical expression include the pH profile of the residual enzyme activity and an additional neuraminidase defect.

  11. Parsing Heterogeneous Striatal Activity

    Directory of Open Access Journals (Sweden)

    Kae Nakamura

    2017-05-01

    Full Text Available The striatum is an input channel of the basal ganglia and is well known to be involved in reward-based decision making and learning. At the macroscopic level, the striatum has been postulated to contain parallel functional modules, each of which includes neurons that perform similar computations to support selection of appropriate actions for different task contexts. At the single-neuron level, however, recent studies in monkeys and rodents have revealed heterogeneity in neuronal activity even within restricted modules of the striatum. Looking for generality in the complex striatal activity patterns, here we briefly survey several types of striatal activity, focusing on their usefulness for mediating behaviors. In particular, we focus on two types of behavioral tasks: reward-based tasks that use salient sensory cues and manipulate outcomes associated with the cues; and perceptual decision tasks that manipulate the quality of noisy sensory cues and associate all correct decisions with the same outcome. Guided by previous insights on the modular organization and general selection-related functions of the basal ganglia, we relate striatal activity patterns on these tasks to two types of computations: implementation of selection and evaluation. We suggest that a parsing with the selection/evaluation categories encourages a focus on the functional commonalities revealed by studies with different animal models and behavioral tasks, instead of a focus on aspects of striatal activity that may be specific to a particular task setting. We then highlight several questions in the selection-evaluation framework for future explorations.

  12. Field heterogeneity: some basic issues

    Energy Technology Data Exchange (ETDEWEB)

    Philip, J.R.

    1980-04-01

    Present-day soil-water physics enables useful quantitative predictions in the laboratory and in simple field situations. However, difficulties frequently arise for areas of appreciable size in the field. Two types of heterogeneity are distinguished: deterministic and stochastic. The first often demands an extension of established analyses and may involve important phenomena absent from the analogous homogeneous problem. Stochastic heterogeneity may involve many scales and is imperfectly known. The statistical properties may be stationary, but in more complicated cases, randomness may be embedded in (either known or unknown) systematic trends. Some aspects of unsaturated and generally unsteady flow in heterogeneous systems are reviewed: the mathematical nature of the flow equation; the concept of scale-heterogeneity; analytical and quasianalytical solutions. The enormity of the total problem of unsaturated unsteady flow in stochastic heterogeneous systems is illustrated through a dialectic of 8 successive stages of simplification. 37 references.

  13. Strongly nonlinear dynamics of electrolytes in large ac voltages

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bazant, Martin Z.; Bruus, Henrik

    2010-01-01

    , ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features—significant salt depletion...... in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of “ac capacitive desalination” since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion...... to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional...

  14. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  15. Effects of Heterogeneous Social Interactions on Flocking Dynamics

    Science.gov (United States)

    Miguel, M. Carmen; Parley, Jack T.; Pastor-Satorras, Romualdo

    2018-02-01

    Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium X Y model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.

  16. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  17. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  18. Theory of third sound in a compressible and layered superfluid

    International Nuclear Information System (INIS)

    Puff, R.D.; Dash, J.G.

    1980-01-01

    This paper examines the theory of third sound, without attenuation effects, in layered superfluid films with finite compressibility. This theory, together with the application of a simple thermodynamic model for the film layers shows how the third-sound velocity can undergo strong variations with coverage associated with progressive changes in film compressibility, in-layer phase changes, and layer completion

  19. Influence of initial stress, irregularity and heterogeneity on Love-type ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study.

  20. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  1. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  2. Age heterogeneity of soil organic matter

    International Nuclear Information System (INIS)

    Rethemeyer, J.; Grootes, P.M.; Bruhn, F.; Andersen, N.; Nadeau, M.J.; Kramer, C.; Gleixner, G.

    2004-01-01

    Accelerator mass spectrometry (AMS) radiocarbon measurements were used to investigate the heterogeneity of organic matter in soils of agricultural long-term trial sites in Germany and Great Britain. The strong age heterogeneity of the soil organic matter (SOM) is reflected by highly variable 14 C values of different organic components, ranging from modern (>100 pMC) to 7% modern carbon (pMC). At the field experiment in Halle (Germany), located in a heavily industrialized area, an increase of 14 C content with increasing depth was observed even though the input of modern plant debris should be highest in the topsoil. This is attributed to a significant contribution of old carbon (of up to 50% in the topsoil) to SOM. As a test to exclude the old carbon contamination, more specific SOM fractions were extracted. However, even a phospholipid fraction representing viable microbial biomass that is supposed to be short-lived in SOM, shows a strong influence of old, refractory carbon, when radiocarbon dated. In contrast, 14 C data of other field trials distant from industrial areas indicate that there inputs of old carbon to the soil are lower or even absent. Such locations are more favorable to study SOM stabilization and to quantify turnover of organic carbon in soils

  3. Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts

    Science.gov (United States)

    Dumeignil, Franck; Paul, Jean-Francois; Paul, Sebastien

    2017-01-01

    With the development of a strong bioeconomy sector related to the creation of next-generation biorefineries, heterogeneous catalysis is receiving renewed attention. Indeed, catalysis is at the core of biorefinery design, and many new catalysts and catalytic processes are being developed. On the one hand, they are based on knowledge acquired during…

  4. The human endurance athlete: heterogeneity and adaptability of ...

    African Journals Online (AJOL)

    1997-12-09

    Dec 9, 1997 ... In human subjects, large variations between individuals (up to 3-fold) exist in the capacity for endurance exer- cise performance. In a heterogeneous population, endurance performance is strongly related to whole body maximal oxygen uptake (VO,max). This is in part genotype dependent (-25%) but is ...

  5. The human endurance athlete: heterogeneity and adaptability of ...

    African Journals Online (AJOL)

    In human subjects, large variations between individuals (up to 3-fold) exist in the capacity for endurance exercise performance. In a heterogeneous population, endurance performance is strongly related to whole body maximal oxygen uptake (VO2 max). This is in part genotype dependent (~25%) but is adaptable with ...

  6. Impacts of fluvial sedimentary heterogeneities on CO2 storage performance

    Science.gov (United States)

    Issautier, B. H.; Viseur, S.; Audigane, P. D.

    2011-12-01

    of some 50 scenarios. The results show that a strong compartmentalization, due to a shaly barrier, may decrease storage capacity by 11 to 25 percent. ? Flow-simulation of an 8-scenario sample extracted from the 50 possible scenarios. In contrast to the static modelling estimated capacities, the preliminary flow-simulation results indicate that capacity remains similar whichever model is applied (A or B). This is because the scale of the heterogeneity is similar to the extent of the CO2 plume, meaning that heterogeneity does not affect the amount of injected CO2 that can be stored in the sedimentary body. Nevertheless, connectivity strongly influences storage capacity, as determined by the 8 scenarios (model A) in which the total amount of CO2 injected ranges between 7 and 12 Mt over a 50-year period. Moreover, heterogeneity significantly increases pressure build-up, and may strongly disrupt the hydrodynamics in the aquifer.

  7. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  8. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  9. µ-reactors for Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Jensen, Robert

    is described in detail. Since heating and temperature measurement is an extremely important point in heterogeneous catalysis an entire chapter is dedicated to this subject. Three different types of heaters have been implemented and tested both for repeatability and homogeneity of the heating as well...... catalyst surface area by reacting off an adsorbed layer of oxygen with CO. This procedure can be performed at temperatures low enough that sintering of Pt nanoparticles is not an issue. Some results from the reactors are presented. In particular an unexpected oscillation phenomenon of CO-oxidation on Pt...... nanoparticles are presented in detail. The sensitivity of the reactors are currently being investigated with CO oxidation on Pt thin films as a test reaction, and the results so far are presented. We have at this point shown that we are able to reach full conversion with a catalyst area of 38 µm2 with a turn...

  10. Field Heterogeneity: Some Basic Issues

    Science.gov (United States)

    Philip, J. R.

    1980-04-01

    Present-day soil-water physics enables useful quantitative predictions in the laboratory and in simple field situations. Difficulties, however, frequently arise for areas of appreciable size in the field. Known and unknown heterogeneities, on many scales, may vitiate predictions based on theory for homogeneous, or very simple heterogeneous, systems. Two types of heterogeneity are distinguished, deterministic and stochastic. The first often demands an extension of established analyses and may involve important phenomena absent from the analogous homogeneous problem. Stochastic heterogeneity may involve many scales and is imperfectly known. The statistical properties may be stationary, but in more complicated cases, randomness may be embedded in (either known or unknown) systematic trends. Some aspects of unsaturated and generally unsteady flow in heterogeneous systems are reviewed: the mathematical nature of the flow equation; the concept of scale-heterogeneity; analytical and quasi-analytical solutions. The enormity of the total problem of unsaturated unsteady flows in stochastic heterogeneous systems is illustrated through a dialectic of eight successive stages of simplification. The concept of the autocorrelation function governing λ, the internal characteristic length, is introduced; and the problem posed in terms involving the distribution and autocorrelation functions of λ, the reduced potential and conductivity functions, and the initial and boundary conditions as the data, from which it is required to establish distribution functions of various descriptors of the flow. The solution to a grossly simplified example of horizontal absorption is presented. Mean apparent sorptivity decreases rapidly to about one fifth of the mean (and about half the minimum) sorptivity of the component soils. Variation about the mean is very great but decreases as absorption proceeds. The example epitomizes the failure of additivity of properties in stochastic heterogeneous

  11. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  12. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  13. Heterogeneous information network model for equipment-standard system

    Science.gov (United States)

    Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing

    2018-01-01

    Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.

  14. 3D modeling of carbonates petro-acoustic heterogeneities

    Science.gov (United States)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  15. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  16. A Heterogeneous Distributed Virtual Geographic Environment—Potential Application in Spatiotemporal Behavior Experiments

    Directory of Open Access Journals (Sweden)

    Shen Shen

    2018-02-01

    Full Text Available Due to their strong immersion and real-time interactivity, helmet-mounted virtual reality (VR devices are becoming increasingly popular. Based on these devices, an immersive virtual geographic environment (VGE provides a promising method for research into crowd behavior in an emergency. However, the current cheaper helmet-mounted VR devices are not popular enough, and will continue to coexist with personal computer (PC-based systems for a long time. Therefore, a heterogeneous distributed virtual geographic environment (HDVGE could be a feasible solution to the heterogeneous problems caused by various types of clients, and support the implementation of spatiotemporal crowd behavior experiments with large numbers of concurrent participants. In this study, we developed an HDVGE framework, and put forward a set of design principles to define the similarities between the real world and the VGE. We discussed the HDVGE architecture, and proposed an abstract interaction layer, a protocol-based interaction algorithm, and an adjusted dead reckoning algorithm to solve the heterogeneous distributed problems. We then implemented an HDVGE prototype system focusing on subway fire evacuation experiments. Two types of clients are considered in the system: PC, and all-in-one VR. Finally, we evaluated the performances of the prototype system and the key algorithms. The results showed that in a low-latency local area network (LAN environment, the prototype system can smoothly support 90 concurrent users consisting of PC and all-in-one VR clients. HDVGE provides a feasible solution for studying not only spatiotemporal crowd behaviors in normal conditions, but also evacuation behaviors in emergency conditions such as fires and earthquakes. HDVGE could also serve as a new means of obtaining observational data about individual and group behavior in support of human geography research.

  17. Synchronous message-based communication for distributed heterogeneous systems

    International Nuclear Information System (INIS)

    Wilkinson, N.; Dohan, D.

    1992-01-01

    The use of a synchronous, message-based real-time operating system (Unison) as the basis of transparent interprocess and inter-processor communication over VME-bus is described. The implementation of a synchronous, message-based protocol for network communication between heterogeneous systems is discussed. In particular, the design and implementation of a message-based session layer over a virtual circuit transport layer protocol using UDP/IP is described. Inter-process communication is achieved via a message-based semantic which is portable by virtue of its ease of implementation in other operating system environments. Protocol performance for network communication among heterogeneous architecture is presented, including VMS, Unix, Mach and Unison. (author)

  18. Heterogeneous packing and hydraulic stability of cube and cubipod armor units

    OpenAIRE

    GÓMEZ-MARTÍN, M. ESTHER; Medina, Josep R.

    2014-01-01

    This paper describes the heterogeneous packing (HEP) failure mode of breakwater armor. HEP reduces packing density in the armor layer near and above the mean water level and increases packing density below it. With HEP, armor units may move in the armor layer, although they are not actually extracted from it. Thus, when HEP occurs, armor-layer porosity is not constant, and measurements obtained with conventional methods may underestimate armor damage. In this paper, the Virtual Net method ...

  19. Woody plant encroachment amplifies spatial heterogeneity of soil phosphorus to considerable depth.

    Science.gov (United States)

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben

    2018-01-01

    The geographically extensive phenomenon of woody plant encroachment into grass-dominated ecosystems has strong potential to influence biogeochemical cycles at ecosystem to global scales. Previous research has focused almost exclusively on quantifying pool sizes and flux rates of soil carbon and nitrogen (N), while few studies have examined the impact of woody encroachment on soil phosphorus (P) cycling. Moreover, little is known regarding the impact of woody encroachment on the depth distribution of soil total P at the landscape scale. We quantified patterns of spatial heterogeneity in soil total P along a soil profile by taking spatially explicit soil cores to a depth of 120 cm across a subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N 2 -fixer) and other tree/shrub species during the past century. Soil total P increased significantly following woody encroachment throughout the entire 120-cm soil profile. Large groves (>100 m 2 ) and small discrete clusters (120 cm) and transfer to upper portions of the profile via litterfall and root turnover. Woody encroachment also altered patterns of spatial heterogeneity in soil total P in the horizontal plane, with highest values at the centers of woody patches, decreasing toward the edges, and reaching lowest values in the surrounding grassland matrix. These spatial patterns were evident throughout the upper 1.2 m of the soil profile, albeit at reduced magnitude deeper in the soil profile. Spatial generalized least squares models indicated that fine root biomass explained a significant proportion of the variation in soil total P both across the landscape and throughout the profile. Our findings suggest that transfer of P from deeper soil layers enlarges the P pool in upper soil layers where it is more actively cycled may be a potential strategy for encroaching woody species to satisfy their P demands. © 2017 by the Ecological Society of America.

  20. The tritium labelling of ibuprofen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.V.; Rivera, P.; Estaban, M.

    1986-01-01

    The tritium labelling of 2-(4-isobutylphenyl) propionic acid (ibuprofen) was performed. The method employed was heterogeneous catalytic exchange between ibuprofen and tritiated water. Prior to labelling, thermic stability of ibuprofen was studied. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activity of the labelled compound were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  1. Computational Mechanics for Heterogeneous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baczewski, Andrew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lehoucq, Richard B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierce, Flint [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem

  2. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  3. Dealing with spatial heterogeneity

    Science.gov (United States)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  4. Intracluster atomic and electronic structural heterogeneities in supported nanoscale metal catalysts

    NARCIS (Netherlands)

    Elsen, A.; Jung, U.; Vila, F.; Li, Y.; Safonova, O.V.; Thomas, R.; Tromp, M.; Rehr, J.J.; Nuzzo, R.G.; Frenkel, A.I.

    2015-01-01

    This work reveals and quantifies the inherent intracluster heterogeneity in the atomic structure and charge distribution present in supported metal catalysts. The results demonstrate that these distributions are pronounced and strongly coupled to both structural and dynamic perturbations. They also

  5. Onset of Convection in Strongly Shaken Granular Matter

    NARCIS (Netherlands)

    Eshuis, Peter; Eshuis, P.G.; van der Meer, Roger M.; Alam, Meheboob; van Gerner, H.J.; van der Weele, J.P.; Lohse, Detlef

    2010-01-01

    Strongly vertically shaken granular matter can display a density inversion: A high-density cluster of beads is elevated by a dilute gaslike layer of fast beads underneath (“granular Leidenfrost effect”). For even stronger shaking the granular Leidenfrost state becomes unstable and granular

  6. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  7. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  8. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  9. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  10. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  11. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  12. Heterogeneity in Preferences and Productivity

    DEFF Research Database (Denmark)

    Gørtz, Mette

    This paper discusses the determinants of the retirement decision and the implications of retirement on economic well-being. The main contribution of the paper is to formulate the role of individual heterogeneity explicitly. We argue that individual heterogeneity in 1) productivity of market work...... choices of expenditure, household production and leisure for people in and around retirement. The unobserved individual heterogeneity factor is isolated by comparing cross-sectional evidence and panel data estimates of the effects of retirement on consumption and time allocation. Based on cross......-section data, we can identify a difference in consumption due to retirement status, but when the panel nature of the data is exploited, the effect of retirement on consumption is small and insignificant. Moreover, the analyses point at a large positive effect of retirement on household production. Our results...

  13. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    describes the persistence of reproductive success during the life of an individual. Trajectories of reproductive stage determine survivorship, and we analyse the variance in lifespan within and between trajectories of reproductive stage. We show how stage-structured models can be used to predict realized......Longitudinal data on natural populations have been analysed using multistage models in which survival depends on reproductive stage, and individuals change stages according to a Markov chain. These models are special cases of stage-structured population models. We show that stage-structured models...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...

  14. Coordination Frictions and Job Heterogeneity

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Christian Daniel

    This paper develops and extends a dynamic, discrete time, job to worker matching model in which jobs are heterogeneous in equilibrium. The key assumptions of this economic environment are (i) matching is directed and (ii) coordination frictions lead to heterogeneous local labor markets. We de- rive...... a number of new theoretical results, which are essential for the empirical application of this type of model to matched employer-employee microdata. First, we o¤er a robust equilibrium concept in which there is a continu- ous dispersion of job productivities and wages. Second, we show that our model can...... be readily solved with continuous exogenous worker heterogene- ity, where high type workers (high outside options and productivity) earn higher wages in high type jobs and are hired at least as frequently to the better job types as low type workers (low outside options and productivity). Third, we...

  15. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors....... For this purpose, a Saccharomyces cerevisiae strain, that functions as a protein production reporter, has been developed. A heterologous protein has been tagged with a fluorescent protein providing a way to measure the amount of heterologous protein produced by the cells on single cell level. Gradients...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  16. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  17. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  18. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  19. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  20. Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations

    Science.gov (United States)

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao

    2010-01-01

    Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...

  1. Dynamic fracture of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Stout, M.G.; Liu, C.; Addessio, F.L.; Williams, T.O.; Bennett, J.G.; Haberman, K.S.; Asay, B.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to investigate the fundamental aspects of the process of dynamic fracture propagation in heterogeneous materials. The work focused on three important, but poorly understood, aspects of dynamic fracture for materials with a heterogeneous microstructure. These were: the appropriateness of using a single-parameter asymptotic analysis to describe dynamic crack-tip deformation fields, the temperature rises at the tip and on the flanks of a running crack, and the constitutive modeling of damage initiation and accumulation.

  2. Majority rule on heterogeneous networks

    International Nuclear Information System (INIS)

    Lambiotte, R

    2008-01-01

    We focus on the majority rule (MR) applied on heterogeneous networks. When the underlying topology is homogeneous, the system is shown to exhibit a transition from an ordered regime to a disordered regime when the noise is increased. When the network exhibits modular structures, in contrast, the system may also exhibit an asymmetric regime, where the nodes in each community reach an opposite average opinion. Finally, the node degree heterogeneity is shown to play an important role by displacing the location of the order-disorder transition and by making the system exhibit non-equipartition of the average spin

  3. The effect of intra-trappean heterogeneities on seismic data: A case study from the Deccan Traps

    Science.gov (United States)

    Pandey, Dhananjai; Singh, Satish; Sinha, Martin; MacGregor, Lucy

    2007-09-01

    Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.

  4. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  5. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  6. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  7. Heterogeneous fundamentalists and market maker inventories

    International Nuclear Information System (INIS)

    Carraro, Alessandro; Ricchiuti, Giorgio

    2015-01-01

    In this paper, we develop a heterogeneous agents model of asset price and inventory with a market maker who considers the excess demand of two groups of agents that employ the same trading rule (i.e. fundamentalists) with different beliefs on the fundamental value. The dynamics of our model is driven by a bi-dimensional discrete non-linear map. We show that the market maker has a destabilizing role when she actively manages the inventory. Moreover, inventory share and the distance between agents’ beliefs strongly influence the results: market instability and periodic, or even, chaotic price fluctuations can be generated. Finally, we show through simulations that endogenous fluctuations of the fractions of agents may trigger instability for a larger set of parameters.

  8. Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals

    Science.gov (United States)

    Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.

    2016-09-01

    Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.

  9. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  10. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2008-07-01

    Full Text Available Observations of the unique chemical environment over snow and ice in recent decades, particularly in the polar regions, have stimulated increasing interest in the boundary layer processes that mediate exchanges between the ice/snow interface and the atmosphere. This paper provides a review of the underlying concepts and examples from recent field studies in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP that focus on processes linking halogens to the depletion of boundary layer ozone in coastal environments, mercury transport and deposition, snow photochemistry, and related snow physics. In this context, observational approaches, stable boundary layer behavior, the effects of a weak or absent diurnal cycle, and transport and mixing over the heterogeneous surfaces characteristic of coastal ocean environments are of particular relevance.

  11. The heterogeneous dynamics of economic complexity.

    Directory of Open Access Journals (Sweden)

    Matthieu Cristelli

    Full Text Available What will be the growth of the Gross Domestic Product (GDP or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.

  12. The heterogeneous dynamics of economic complexity.

    Science.gov (United States)

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.

  13. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    Science.gov (United States)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  14. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  15. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  16. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  17. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  18. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  19. Chloride Transport in Heterogeneous Formation

    Science.gov (United States)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  20. A Heterogeneous Quantum Computer Architecture

    NARCIS (Netherlands)

    Fu, X.; Riesebos, L.; Lao, L.; Garcia Almudever, C.; Sebastiano, F.; Versluis, R.; Charbon, E.; Bertels, K.

    2016-01-01

    In this paper, we present a high level view of the heterogeneous quantum computer architecture as any future quantum computer will consist of both a classical and quantum computing part. The classical part is needed for error correction as well as for the execution of algorithms that contain both

  1. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  2. Molecular ingredients of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  3. Communicating to heterogeneous target groups

    DEFF Research Database (Denmark)

    Pedersen, Karsten

    very often have to communicate to rather heterogeneous target groups that have little more in common than a certain geographical habitat. That goes against most schoolbook teaching in the field of communication, but is none the less the terms with which that kind of communication has to live...... will be able to make a much stronger case....

  4. Prices and heterogeneous search costs

    NARCIS (Netherlands)

    Luis Moraga-Gonzalez, Jose; Sandor, Zsolt; Wildenbeest, Matthijs R.

    2017-01-01

    We study price formation in a model of consumer search for differentiated products in which consumers have heterogeneous search costs. We provide conditions under which a pure-strategy symmetric Nash equilibrium exists and is unique. Search costs affect two margins-the intensive search margin (or

  5. Languages as semiotically heterogenous systems.

    Science.gov (United States)

    Kendon, Adam

    2017-01-01

    The target article is consistent with seeing languages as semiotically heterogenous, using categorial, depictive, and analogic semiotic signs. "Gesture," used in the target article, is shown to be vague and not useful. Kendon's view, criticised in the target, is restated. His proposal for comparative semiotic analyses of how visible bodily action is used in utterance production is reexplained.

  6. Molecular Mechanism of Heterogeneous Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Molecular Mechanism of Heterogeneous Catalysis - The 2007 Nobel Prize in Chemistry. R S Swathi K L Sebastian. General Article Volume 13 Issue 6 June 2008 pp 548-560 ...

  7. Social capital and community heterogeneity

    NARCIS (Netherlands)

    Coffé, Hilde R.

    2009-01-01

    Abstract Recent findings indicate that more pronounced community heterogeneity is associated with lower levels of social capital. These studies, however, concentrate on specific aspects in which people differ (such as income inequality or ethnic diversity). In the present paper, we introduce the

  8. Social Capital and Community Heterogeneity

    Science.gov (United States)

    Coffe, Hilde

    2009-01-01

    Recent findings indicate that more pronounced community heterogeneity is associated with lower levels of social capital. These studies, however, concentrate on specific aspects in which people differ (such as income inequality or ethnic diversity). In the present paper, we introduce the number of parties in the local party system as a more…

  9. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  10. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    Science.gov (United States)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to

  11. Influence of aquifer heterogeneity on the design and modelling of Aquifer Thermal Energy Storage (ATES) systems

    OpenAIRE

    Bridger, David W.

    2006-01-01

    A modelling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in aquifer thermal energy storage (ATES) systems. An existing ATES system installed within a heterogeneous aquifer system in Agassiz, British Columbia, Canada was used as a case study. Two 3D heat transport models of the study site were developed and calibrated using the heat transport code FEFLOW, including: a "simple" model domain with unif...

  12. An MPLS-based Quality of Service Architecture for Heterogeneous Networks

    OpenAIRE

    Raghavan, Srihari

    2001-01-01

    This thesis proposes a multi-protocol label switching (MPLS)-based architecture to provide quality of service (QoS) for both internet service provider (ISP) networks and backbone Internet Protocol (IP) networks that are heterogeneous in nature. Heterogeneous networks are present due to the use of different link-layer mechanisms in the current Internet. Copper-based links, fiber-based links, and wireless links are some examples of different p...

  13. Surface heterogeneity of small asteroids

    Science.gov (United States)

    Sasaki, Sho

    A rubble pile model of asteroid origin would predict averaged rather homogeneous surface of an asteroid. Previous spacecraft observations (mostly S-type asteroids) did not show large color/albedo variation on the surface. Vesta would be exceptional since HST observation suggested that its surface should be heterogeneous due to the impact excavation of the interior. As for a young asteroid (832) Karin (age being 5Ma), Sasaki et al. (2004) detected variation of infrared spectra which could be explained by the difference of the space weathering degree. They discussed the possibility of the survival of the old surface. However, the variation was not confirmed by later observation (Chapman et al., 2007; Vernazza et al., 2007). Recent observation of a small (550m) asteroid Itokawa by Hayabusa spacecraft revealed that Itokawa is heterogeneous in color and albedo although the overall rocky structure is considered as a rubble pile (Saito et al., 2006). The color difference can be explained by the difference of weathering degree (Ishiguro et al., 2008). The heterogeneity could be explained by mass movement caused by rapid rotation from YORP effect (Scheeres et al., 2007) or seismic shaking (Sasaki, 2006). Probably small silicate asteroids without significant regolith could have heterogeneous in color and albedo. On large asteroids (˜ a few 10km), regolith reaccumulation should have covered the underlying heterogeneity. References: Chapman, C. R. et al (2007) Icarus, 191, 323-329 Ishiguro, M. et al. (2008) MAPS, in press. Saito, J. et al. (2006) Science, 312, 1341-1344 Sasaki, S. (2006) in Spacecraft Reconnaissance of Asteroid and Comet Interiors Sasaki, T. et al (2004) Astrophys. J. 615, L161-L164 Scheeres, D. J. (2007) Icarus 188, 425-429 Vernazza, P. et al. (2007) Icarus 191, 330-336.

  14. AXAF user interfaces for heterogeneous analysis environments

    Science.gov (United States)

    Mandel, Eric; Roll, John; Ackerman, Mark S.

    1992-01-01

    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors

  15. Detection of Heterogeneous Small Inclusions by a Multi-Step MUSIC Method

    Science.gov (United States)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of detecting and localizing scatterers with small (in terms of wavelength) cross sections by collecting their scattered field is addressed. The problem is dealt with for a two-dimensional and scalar configuration where the background is given as a two-layered cylindrical medium. More in detail, while scattered field data are taken in the outermost layer, inclusions are embedded within the inner layer. Moreover, the case of heterogeneous inclusions (i.e., having different scattering coefficients) is addressed. As a pertinent applicative context we identify the problem of diagnose concrete pillars in order to detect and locate rebars, ducts and other small in-homogeneities that can populate the interior of the pillar. The nature of inclusions influences the scattering coefficients. For example, the field scattered by rebars is stronger than the one due to ducts. Accordingly, it is expected that the more weakly scattering inclusions can be difficult to be detected as their scattered fields tend to be overwhelmed by those of strong scatterers. In order to circumvent this problem, in this contribution a multi-step MUltiple SIgnal Classification (MUSIC) detection algorithm is adopted [1]. In particular, the first stage aims at detecting rebars. Once rebars have been detected, their positions are exploited to update the Green's function and to subtract the scattered field due to their presence. The procedure is repeated until all the inclusions are detected. The analysis is conducted by numerical experiments for a multi-view/multi-static single-frequency configuration and the synthetic data are generated by a FDTD forward solver. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] R. Solimene, A. Dell'Aversano and G. Leone, "MUSIC algorithms for rebar detection," J. of Geophysics and Engineering, vol. 10, pp. 1

  16. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  17. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales.

    Science.gov (United States)

    Stein, Anke; Gerstner, Katharina; Kreft, Holger

    2014-07-01

    Environmental heterogeneity is regarded as one of the most important factors governing species richness gradients. An increase in available niche space, provision of refuges and opportunities for isolation and divergent adaptation are thought to enhance species coexistence, persistence and diversification. However, the extent and generality of positive heterogeneity-richness relationships are still debated. Apart from widespread evidence supporting positive relationships, negative and hump-shaped relationships have also been reported. In a meta-analysis of 1148 data points from 192 studies worldwide, we examine the strength and direction of the relationship between spatial environmental heterogeneity and species richness of terrestrial plants and animals. We find that separate effects of heterogeneity in land cover, vegetation, climate, soil and topography are significantly positive, with vegetation and topographic heterogeneity showing particularly strong associations with species richness. The use of equal-area study units, spatial grain and spatial extent emerge as key factors influencing the strength of heterogeneity-richness relationships, highlighting the pervasive influence of spatial scale in heterogeneity-richness studies. We provide the first quantitative support for the generality of positive heterogeneity-richness relationships across heterogeneity components, habitat types, taxa and spatial scales from landscape to global extents, and identify specific needs for future comparative heterogeneity-richness research. © 2014 John Wiley & Sons Ltd/CNRS.

  18. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  19. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects

    DEFF Research Database (Denmark)

    Alexeev, Dmitry; Chen, Jie; Walther, Jens Honore

    2015-01-01

    difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching...... between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid−liquidinterfaces by controlling and regulating the liquid layering at the interface....

  20. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  1. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  2. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  3. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  4. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  5. Heterogenously-integrated InP on Si microdisk lasers

    Science.gov (United States)

    Morthier, G.; Spuesens, T.; Mechet, P.; Olivier, N.; Fedeli, J.-M.; Regreny, P.; Van Thourhout, D.; Roelkens, G.

    2015-03-01

    We review recent theoretical and experimental work on InP membrane microdisk lasers heterogeneously integrated on SOI and coupled to a Si bus waveguide. After a general introduction on the fabrication and the operation principles, we will describe various improvements in the fabrication technology. This includes improvements in the yield of the bonding of the InP die on the SOI die and in the controllability of the bonding layer thickness, as well as an optimization of the alignment of the microdisk with respect to the silicon waveguide and some proposals for better heat sinking and loss reduction. Improvement in the alignment and the bonding has led to interesting results on the uniformity in device characteristics. In a second part, unidirectional behaviour and reflection sensitivity will be briefly discussed. Theoretical, numerical and experimental results will be shown about the unidirectional behavior and it will be explained how unidirectional microdisk lasers can be a lot less sensitive to external reflections than other lasers. We will also show how such lasers can be used as optical signal regenerators that can work with low optical input powers and that have small power consumption. We will end with a description of demonstrations of optical interconnects based on heterogeneously integrated microdisk lasers and heterogeneously integrated photodetectors. Optical interconnects on chip have been demonstrated at 10 Gb/s. An epitaxial layer stack that contains both the laser and the detector structure has been used for this purpose.

  6. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria......, in particular the Bohm criteria, restricting the conditions under which double layers may form. In the present paper several already published theoretical models of different types of double layers are discussed. It is shown that the existence conditions often imply current-driven instabilities in the ambient...... plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas often produce instabilities in the surrounding plasma and are generally time...

  7. Iterative method for solving the inverse problem of dynamic diffraction by heterogeneous crystals

    International Nuclear Information System (INIS)

    Podorov, S.G.; Punegov, V.I.

    1997-01-01

    The symmetrical Bragg X-ray diffraction from the depth-heterogeneous crystal layer lying on the thick ideal substrate is considered. The inverse problem of the dynamic diffraction by the deformed crystal structure is solved. The iterative formula for numerical solution of the inverse diffraction problem is obtained. This iterative procedure is applied for calculation of parameters for the heterogeneous structure InGaAsSb/AlGaAsSb/(001)GaSb. The information about the distribution of crystal lattice deformations and the amorphism degree is obtained. The mean static Debye-Waller factor of the AlGaAsSb layer is 0.8 [ru

  8. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  9. Hysteresis in layered spring magnets.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.; Kaper, H. G.; Leaf, G. K.; Mathematics and Computer Science

    2001-01-01

    This article addresses a problem of micromagnetics: the reversal of magnetic moments in layered spring magnets. A one-dimensional model is used of a film consisting of several atomic layers of a soft material on top of several atomic layers of a hard material. Each atomic layer is taken to be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. The state of such a system is described by a chain of magnetic spin vectors. Each spin vector behaves like a spinning top driven locally by the effective magnetic field and subject to damping (Landau-Lifshitz-Gilbert equation). A numerical integration scheme for the LLG equation is presented that is unconditionally stable and preserves the magnitude of the magnetization vector at all times. The results of numerical investigations for a bilayer in a rotating in-plane magnetic field show hysteresis with a basic period of 2{pi} at moderate fields and hysteresis with a basic period of {pi} at strong fields.

  10. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  11. Clinical heterogeneity in Fabry disease

    Directory of Open Access Journals (Sweden)

    G. N. Salogub

    2015-01-01

    Full Text Available Fabry disease is an X-linked, lysosomal storage disease (OMIM: 301500, caused by α-galactosidase A deficiency, resulting in accumulation of its substrates, glycosphingolipids, primarily – globotriaosylceramide, in the lysosomes of multiple cell types with multi-system clinical manifestations, even within the same family, including abnormalities of the central and peripheral nervous system, kidneys, heart, gastrointestinal tract, lungs, organ of vision. Clinical heterogeneity is often the reason of the delayed diagnosis. Nowadays enzyme replacement therapy has proved its efficiency in the treatment of Fabry disease. Including Fabry disease in the differential diagnosis of a large range of disorders is important because of its wide clinical heterogeneity and the possibility of an earlier intervention with a beneficial treatment.

  12. Replikasi Unidirectional pada Heterogen Database

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2013-12-01

    Full Text Available The use of diverse database technology in enterprise today can not be avoided. Thus, technology is needed to generate information in real time. The purpose of this research is to discuss a database replication technology that can be applied in heterogeneous database environments. In this study we use Windows-based MS SQL Server database to Linux-based Oracle database as the goal. The research method used is prototyping where development can be done quickly and testing of working models of the interaction process is done through repeated. From this research it is obtained that the database replication technolgy using Oracle Golden Gate can be applied in heterogeneous environments in real time as well.

  13. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  14. Dynamic heterogeneity and life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli

    2010-01-01

    of dynamic models of observable phenotypes of individuals. Phenotypic change in turn determines variation among individuals in their fitness components over the life course. We refer to this dynamic accumulation of fitness differences as dynamic heterogeneity and illustrate it for an animal population...... in which longitudinal data are studied using multistate capture-mark-recapture models. Although our approach can be applied to any characteristic, for our empirical example we use reproduction as the phenotypic character to define stages. We indicate how our stage-structured model describes the nature...... of the variation among individual characteristics that is generated by dynamic heterogeneity. We conclude by discussing our ongoing and planned work on animals and humans. We also discuss the connections between our work and recent work on human mortality, disability and health, and life course theory....

  15. Biodiesel production using heterogeneous catalysts.

    Science.gov (United States)

    Semwal, Surbhi; Arora, Ajay K; Badoni, Rajendra P; Tuli, Deepak K

    2011-02-01

    The production and use of biodiesel has seen a quantum jump in the recent past due to benefits associated with its ability to mitigate greenhouse gas (GHG). There are large number of commercial plants producing biodiesel by transesterification of vegetable oils and fats based on base catalyzed (caustic) homogeneous transesterification of oils. However, homogeneous process needs steps of glycerol separation, washings, very stringent and extremely low limits of Na, K, glycerides and moisture limits in biodiesel. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The present report is review of the progress made in development of heterogeneous catalysts suitable for biodiesel production. This review shall help in selection of suitable catalysts and the optimum conditions for biodiesel production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  17. Contractual heterogeneity in strategic alliances.

    OpenAIRE

    Reuer, Jeffrey J.; Ariño, Africa

    2002-01-01

    We investigate firms' alliance design choices by examining alliances as multifaceted contractual forms. The analysis explores the contractual heterogeneity underlying alternative governance structures for alliances, the bundling of different contractual provisions, and the dimensionality of the contractual completeness construct. The empirical evidence indicates that the complexity of collaborative agreements ­in terms of the number and stringency of provisions­ is greater for alliances that ...

  18. REPLIKASI UNIDIRECTIONAL PADA HETEROGEN DATABASE

    OpenAIRE

    Hendro Nindito; Evaristus Didik Madyatmadja; Albert Verasius Dian Sano

    2013-01-01

    The use of diverse database technology in enterprise today can not be avoided. Thus, technology is needed to generate information in real time. The purpose of this research is to discuss a database replication technology that can be applied in heterogeneous database environments. In this study we use Windows-based MS SQL Server database to Linux-based Oracle database as the goal. The research method used is prototyping where development can be done quickly and testing of working models of the...

  19. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    OpenAIRE

    Hendro Nindito; Evaristus Didik Madyatmadja; Albert Verasius Dian Sano

    2014-01-01

    The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MyS...

  20. Grade Retention and Unobserved Heterogeneity

    OpenAIRE

    Robert J. Gary-Bobo; Marion Gousse; Jean-Marc Robin

    2014-01-01

    We study the treatment effect of grade retention using a panel of French junior high-school students, taking unobserved heterogeneity and the endogeneity of grade repetitions into account. We specify a multistage model of human-capital accumulation with a finite number of types representing unobserved individual characteristics. Class-size and latent student-performance indices are assumed to follow finite mixtures of normal distributions. Grade retention may increase or decrea...

  1. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  2. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin

    1999-01-01

    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  3. Probability densities in strong turbulence

    Science.gov (United States)

    Yakhot, Victor

    2006-03-01

    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  4. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    <strong>Abstract>

    Aquifer

  5. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage Impacts of heterogeneity, thermal interference and bioremediation Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2 <strong>Abstract> Aquifer thermal energy storage (ATES) is

  6. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, JEJ; Hovenga, S; Vellenga, E; Bos, NA

    Multiple Myeloma ( MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome.

  7. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, Jeroen E. J.; Hovenga, Sjoerd; Vellenga, Edo; Bos, Nicolaas A.

    2004-01-01

    Multiple Myeloma (MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome. Although

  8. Glassy dynamics and heterogeneity of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Inoue, Rintaro; Kawashima, Kazuko; Miyazaki, Tsukasa; Matsuba, Go; Nishida, Koji; Tsukushi, Itaru; Shibata, Kaoru; Hino, Masahiro

    2009-01-01

    We review our recent studies on glassy dynamics and glass transition of polymer thin films using neutron and X-ray reflectivity and inelastic neutron techniques. In the last decade extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties such as reduction in the glass transition temperature T g with film thickness and negative thermal expansivity for thin films below about 25 nm, and often some contradictory experimental results have been reported. It is believed that a key to solve the controversial situation is to disclose heterogeneous structure or multi-layer structure in polymer thin films. In the review, therefore, we summarize our recent experimental results by neutron and X-ray reflectivity and inelastic neutron scattering, focusing on the dynamic heterogeneity in polymer thin films. (author)

  9. Molecular heterogeneity in glioblastoma: potential clinical implications

    Directory of Open Access Journals (Sweden)

    Nicole Renee Parker

    2015-03-01

    Full Text Available Glioblastomas, (grade 4 astrocytomas, are aggressive primary brain tumors characterized by histopathological heterogeneity. High resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.

  10. Strongly correlated superconductivity and quantum criticality

    Science.gov (United States)

    Tremblay, A.-M. S.

    Doped Mott insulators and doped charge-transfer insulators describe classes of materials that can exhibit unconventional superconducting ground states. Examples include the cuprates and the layered organic superconductors of the BEDT family. I present results obtained from plaquette cellular dynamical mean-field theory. Continuous-time quantum Monte Carlo evaluation of the hybridization expansion allows one to study the models in the large interaction limit where quasiparticles can disappear. The normal state which is unstable to the superconducting state exhibits a first-order transition between a pseudogap and a correlated metal phase. That transition is the finite-doping extension of the metal-insulator transition obtained at half-filling. This transition serves as an organizing principle for the normal and superconducting states of both cuprates and doped organic superconductors. In the less strongly correlated limit, these methods also describe the more conventional case where the superconducting dome surrounds an antiferromagnetic quantum critical point. Sponsored by NSERC RGPIN-2014-04584, CIFAR, Research Chair in the Theory of Quantum Materials.

  11. Transfers in heterogeneous environments; Transferts en milieux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Flesselles, J.M. [Saint-Gobain Recherche, 93 - Aubervilliers (France); Gouesbet, G.; Mees, L.; Roze, C.; Girasole, Th.; Grehan, G. [Laboratoire d' Electromagnetisme et Systemes Particulaires (LESP), UMR CNRS 6614, CORIA. Universite de Rouen et INSA de Rouen, 76 - Saint-Etienne du Rouvray (France); Goyheneche, J.M.; Vignoles, G.; Coindreau, O. [Laboratoire des Composites Thermostructuraux (LCTS), UMR 5801, 33 - Pessac (France); Moyne, Ch. [LEMTA (UMR 7563) CNRS-INPL-UHP, 54 - Vandoeuvre les Nancy (France); Coussy, O. [Institut Navier - ENPC, 77 - Marne-la-Vallee (France); Lassabatere, Th. [Electricite de France Les Renardieres, Dept. Materiaux Mecanique des Composants, 77 - Moret sur Loing (France); Tadrist, L. [IUSTI - UMR 6595, 13 - Marseille (France)

    2004-07-01

    This document gathers the articles and transparencies of the invited talks given at the 2004 French congress of thermal engineering about transfers in heterogeneous environment. Content: transfer phenomena in industrial glass furnaces; simple and multiple scattering diagnosis by femto-second pulsed laser: application to particulate diagnoses; thermal modeling of thermo-structural composites; hybrid mixtures theory, average volumic measurement, periodical or stochastic homogenization: advance in scale change processes; thermo-hydro-chemical-mechanical coupling in porous medium: application to young concrete structures and to clay barriers of disposal facilities; transfers and flows in fluidization: recent advances and future challenges. (J.S.)

  12. Continuous wave MRI of heterogeneous materials

    Science.gov (United States)

    Fagan, Andrew J.; Davies, Gareth R.; Hutchison, James M. S.; Lurie, David J.

    2003-08-01

    A prototype continuous wave MRI system operating at 7 T has been used successfully to study a variety of heterogeneous materials exhibiting T 2 relaxation values ranging from 10 μs to 50 ms. Two-dimensional images of a poly(methly methacrylate) (PMMA) resolution phantom (T 2=38 μs) exhibited a spatial resolution of approximately 1 mm at a magnetic field gradient strength of 200 mT/m. The technique was used to study the hydration, drying, and subsequent water penetration properties of cement samples made from ordinary Portland cement, and revealed inhomogeneities arising from the cure conditions. Sandstone samples from an oil reservoir in the North Sea were also studied; structure within these materials, arising from the sedimentary bed layering in the reservoir, was found to have an effect on their water transport properties. A section from a confectionery bar (T 2* approximately 50-60 ms) was also imaged, and its internal structure could be clearly discerned.

  13. Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes.

    Science.gov (United States)

    Kim, Youngmin; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong

    2017-03-01

    One of the most important aspects that we need to consider in the design of intrinsically stretchable electrodes is that most electronic devices that can be formed on them are not stretchable themselves. This discrepancy can induce severe stress singularities at the interfaces between stiff devices and stretchable electrodes, leading to catastrophic device delamination when the substrate is stretched. Here, we suggest a novel solution to this challenge which involves introducing a photolithography-based rigid-island approach to fabricate the heterogeneous configuration of a silver nanowire (AgNW)/polymer composite structure. For this, we designed two new transparent polymers: a photopatternable polymer that is rigid yet flexible, and a stretchable polymer, both of which have identical acrylate functional groups. Patterning of the rigid polymer and subsequent overcoating of the soft polymer formed rigid island disks embedded in the soft polymer, resulting in a selectively stretchable transparent film. Strong covalent bonds instead of weak physical interactions between the polymers strengthened the cohesive force at the interface of the rigid/soft polymers. Inverted-layer processing with a percolated AgNW network was used to form a heterogeneous AgNW/polymer composite structure that can be used as a selectively stretchable transparent electrode. An optimized structural configuration prevented the resistance of the rigid electrode from varying up to a lateral strain of 70%. A repeated stretch/release test with 60% strain for 5000 cycles did not cause any severe damage to the structure, revealing that the fabricated structure was mechanically stable and reliable.

  14. Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Summerhill, Richard [Internet2, Washington, DC (United States); Lehman, Tom [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst. (ISI); Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical & Computer Engineering; Boyd, Eric [Univ. Corporation for Advanced Internet Development (UCAID), Washington, DC (United States)

    2009-08-14

    There were four basic task areas identified for the Hybrid-MLN project. They are: Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation; Heterogeneous DataPlane Testing; Simulation; Project Publications, Reports, and Presentations.

  15. Velocity-independent layer stripping of PP and PS reflection traveltimes

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Tsvankin, I.

    -converted waves, long-offset data, and laterally heterogeneous target layers with multiple, curved reflectors. Numerical tests confirm the high accuracy of the algorithm in computing the interval traveltimes of both PP- and PS-waves in a dipping, transversely...

  16. High-performance hierarchically parallel multiscale framework for modeling heterogeneous materials

    OpenAIRE

    Mosby, Matthew; Matous, Karel

    2014-01-01

    Heterogeneous multiscale materials are present in our everyday lives, embodied in engineered systems such as filled and layered composites, and in nature as soils and layered rock formations. The overall behavior of these materials is heavily influenced by the widely ranging size, shape, distribution, and material property contrasts of their microscale constituents. Understanding how changes in these microstructure parameters affects the overall behavior of the material is important to optima...

  17. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  18. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  19. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  20. John Strong - 1941-2006

    CERN Document Server

    2006-01-01

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

  1. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  2. Percolation and permeability of heterogeneous fracture networks

    Science.gov (United States)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    for transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the medium vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the medium. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. A short overview of the second class of heterogeneous media will be given. [1] Barton C.A., Zoback M.D., J. Geophys. Res., 97B, 5181-5200 (1992). [2] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [3] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [4] Adler P.M. et al, Fractured porous media, Oxford U. Press, 2012.

  3. Heterogeneous policies, heterogeneous technologies: The case of renewable energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2016-01-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main finding is that, compared to privatisation and unbundling, reducing entry barriers is a more significant driver of renewable energy innovation, but that its effect varies across technologies and is stronger in technologies characterised by potential entry of small, independent power producers. In addition, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, ratification of the Kyoto protocol, which determined a more stable and less uncertain policy framework, amplifies the inducement effect of both energy policy and market liberalisation. - Highlights: • We study the effect of market regulation and energy policy on renewable technologies. • Reducing entry barriers is a significant driver of renewable energy innovation. • The Kyoto protocol amplifies the effect of both energy policy and liberalisation. • These effects are heterogeneous across technologies and stronger for wind.

  4. Particle-Hole Transformation in Strongly-Doped Iron-Based Superconductors

    OpenAIRE

    Rodriguez, J. P.

    2016-01-01

    An exact particle-hole transformation is discovered in a local-moment description of a single layer in an iron-based superconductor. Application of the transformation to a surface layer of heavily electron-doped FeSe predicts a surface-layer high-temperature superconductor at strong hole doping. Comparison with existing low-T_c iron superconductors suggests that the critical temperature at heavy hole doping can be increased by increasing direct ferromagnetic exchange in between nearest neighb...

  5. Magnetic-field behavior of heterogeneous magnetic materials

    International Nuclear Information System (INIS)

    Shalygina, E.E.; Maximova, G.V.; Komarova, M.A.; Melnikov, V.A.; Shalygin, A.N.; Molokanov, V.V.

    2009-01-01

    Results on the investigation of the magnetic properties of nanocrystalline Co/Ni/Fe and Fe/Zr/Fe thin-film systems are presented. The study of the magnetic properties of the examined samples was carried out employing magneto-optical micromagnetometer with a surface sensitivity about of 20 nm of the thickness depth and a vibrating sample magnetometer. The examined samples were revealed to exhibit hysteresis loops of complicated forms. These data were explained by the magnetostatic and exchange interactions between the layers in heterogeneous magnetic materials

  6. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso Marina, M.; Kaiser Ruiz del Olmo, F.

    1977-01-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs

  7. 5G heterogeneous networks self-organizing and optimization

    CERN Document Server

    Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing

    2016-01-01

    This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.

  8. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso, M.; Kaiser, F.

    1977-01-01

    The influence of the temperature at 65degC and 120degC on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, diphenyl glioxal and 2,3-tetramethylene-4-phenylthien-7-oxodiacetin. The method employed was the heterogeneous catalytic exchange between tritiaded water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolitic effects on labelled benzoic acid were also considered. (author) [es

  9. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  10. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  11. Promoting Strong Written Communication Skills

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  12. Integrating heterogeneous healthcare call centers.

    Science.gov (United States)

    Peschel, K M; Reed, W C; Salter, K

    1998-01-01

    In a relatively short period, OHS has absorbed multiple call centers supporting different LOBs from various acquisitions, functioning with diverse standards, processes, and technologies. However, customer and employee satisfaction is predicated on OHS's ability to thoroughly integrate these heterogeneous call centers. The integration was initiated and has successfully progressed through a balanced program of focused leadership and a defined strategy which includes site consolidation, sound performance management philosophies, and enabling technology. Benefits have already been achieved with even more substantive ones to occur as the integration continues to evolve.

  13. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  14. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  15. Cellulose conversion under heterogeneous catalysis.

    Science.gov (United States)

    Dhepe, Paresh L; Fukuoka, Atsushi

    2008-01-01

    In view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non-food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value-added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

  16. A Heterogeneous Medium Analytical Benchmark

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1999-01-01

    A benchmark, called benchmark BLUE, has been developed for one-group neutral particle (neutron or photon) transport in a one-dimensional sub-critical heterogeneous plane parallel medium with surface illumination. General anisotropic scattering is accommodated through the Green's Function Method (GFM). Numerical Fourier transform inversion is used to generate the required Green's functions which are kernels to coupled integral equations that give the exiting angular fluxes. The interior scalar flux is then obtained through quadrature. A compound iterative procedure for quadrature order and slab surface source convergence provides highly accurate benchmark qualities (4- to 5- places of accuracy) results

  17. Heterogeneity effects in neutron transport computations

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1975-01-01

    A nuclear reactor is, generally, an intricate heterogeneous structure whose adjacent components may differ radically in their neutronic properties. The heterogeneities in the structure of the reactor complicate the work of the reactor analyst and tend to degrade the efficiency of the numerical methods used in reactor computations. Two types of heterogeneity effects are considered. First, certain singularities in the solution of the neutron transport equation, induced by heterogeneities, are briefly described. Second, the effect of heterogeneities on neutron leakage rates, and consequently on effective diffusion coefficients, are discussed. (5 figures) (U.S.)

  18. Gold Nanoparticles on Layered Double Hydroxide Nanosheets and Its Electrocatalysis for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hye Ran; Lee, Jong Hyeon [The Catholic University of Korea, Bucheon (Korea, Republic of); Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, Bucheon (Korea, Republic of)

    2016-03-15

    We developed a new way to form the well-defined nanocomposite of Au NPs and exfoliated LDH nanosheet by in situ chemical reduction with NaBH{sub 4}. The optical and structural studies indicate that the Au NPs are highly dispersed and immobilized on the surface of LDH nanosheets. The Au/LDH nanosheet exhibited an excellent electrocatalysis toward glucose oxidation reaction. The results strongly demonstrate that the nanoscopic natures and dense positive charges of LDH nanosheet effectively stabilized the Au NPs to maintain their inherent properties during the synthesis and the electrocatalysis. The use of the double hydroxide nanosheets as nanoscopic support materials for the transition-metal NPs will dramatically improve their functionalities in heterogeneous catalysis. Recently, two-dimensional nanosheet of exfoliated layered double hydroxide (LDH) has emerged as a new type of solid support to immobilize the diverse metal NPs because of the large metal hydroxide area, good biochemical stability, and highly charged positive potential of 1- to 2-nm thick LDH layers. LDHs consist of a continuous stack of positively charged metal hydroxide layers with counter anions and water molecules placed in interlayer spaces.

  19. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine

    Science.gov (United States)

    Yeaman, Sam; Jarvis, Andy

    2006-01-01

    Genetic variation is of fundamental importance to biological evolution, yet we still know very little about how it is maintained in nature. Because many species inhabit heterogeneous environments and have pronounced local adaptations, gene flow between differently adapted populations may be a persistent source of genetic variation within populations. If this migration–selection balance is biologically important then there should be strong correlations between genetic variance within populations and the amount of heterogeneity in the environment surrounding them. Here, we use data from a long-term study of 142 populations of lodgepole pine (Pinus contorta) to compare levels of genetic variation in growth response with measures of climatic heterogeneity in the surrounding region. We find that regional heterogeneity explains at least 20% of the variation in genetic variance, suggesting that gene flow and heterogeneous selection may play an important role in maintaining the high levels of genetic variation found within natural populations. PMID:16769628

  20. Overload cascading failure on complex networks with heterogeneous load redistribution

    Science.gov (United States)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  1. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  2. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2014-01-01

    Full Text Available The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2 was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.

  3. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Minnema-Luiting, Jorien; Vroman, Heleen; Aerts, Joachim; Cornelissen, Robin

    2018-03-30

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.

  4. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  5. Layer-dependent band alignment and work function of few-layer phosphorene.

    Science.gov (United States)

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-10-20

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications.

  6. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  7. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  8. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  9. Immunophenotype Heterogeneity in Nasal Glomangiopericytoma

    Directory of Open Access Journals (Sweden)

    Adriana Handra-Luca

    2015-01-01

    Full Text Available Nasal glomangiopericytoma is rare. The immunophenotype is heterogeneous, more frequently smooth-muscle-actin and CD34-positive. We report expression patterns for several vascular-related proteins such as CD99, CD146, Bcl2, and WT1 as well as for treatment-related proteins such as mTOR and EGFR in a nasal glomangiopericytoma. The patient (woman, 86 years presented with a left nasal tumefaction. The resected specimen (1.5-cm showed a glomangiopericytoma. Tumor cells expressed smooth-muscle-actin, CD31, CD34, and progesterone receptor. They also expressed the vascular-cell-related proteins Bcl2, CD99, CD146, and WT1, as well as mTOR and EGFR. Nasal glomangiopericytomas show immunohistochemical heterogeneity for vascular-related markers, suggesting a possible extensive pericytic differentiation. The expression of potential targets for drug treatments such as mTOR and EGFR may impact on the clinical follow-up of these tumors occurring at advanced ages, which may require complex surgery.

  10. Dispersivity in heterogeneous permeable media

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1994-01-01

    When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage (typically 80%) of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. Alternatively, for continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the classical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects of this behavior on radionuclide or other contaminant migration

  11. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  12. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays

    NARCIS (Netherlands)

    Dodge, A.; Fluri, K.; Verpoorte, E.; De Rooij, N.F.

    2001-01-01

    This article presents the first example of a microfluidic chip for heterogeneous bioassays using a locally immobilized biospecitic layer and operated electrokinetically. The reaction chamber has picoliter dimensions and is integrated into a network of microchannels etched in glass. The high affinity

  13. Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2014-07-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main findings show that lowering entry barriers is a more significant driver of renewable energy innovation than privatisation and un-bundling, but its effect varies across technologies, being stronger in technologies characterised by the potential entry of small, independent power producers. Additionally, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, the ratification of the Kyoto protocol - determining a more stable and less uncertain policy framework - amplifies the inducement effect of both energy policy and market liberalisation. (authors)

  14. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  15. Strong localization of photonics in symmetric Fibonacci superlattices

    International Nuclear Information System (INIS)

    Cheng, Y H; Tsao, C W; Chen, C H; Hsueh, W J

    2015-01-01

    Strong localization from the Fabry-Pérot-like resonances that occur in symmetric Fibonacci superlattices is presented in this study. When compared with traditional Fabry–Pérot resonators, in symmetric Fibonacci superlattices, the middle space is a variant rather than an invariant half-wavelength thickness for each resonance with different orders. In addition, the electric fields of the resonances may be located on both sides of the space layer in the superlattice, which is in contrast to those in a traditional Fabry–Pérot resonator. The electric field of the resonances is strongly localized as the generation order increases. Moreover, the group delays of these peaks increase with generation order. More strongly localized modes can be found from the symmetric Fibonacci superlattices than from the traditional Fabry–Pérot resonators, which makes the proposed structure an attractive alternative to a wide variety of optoelectronic devices. (paper)

  16. The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency

    Directory of Open Access Journals (Sweden)

    Limei Tian

    2015-11-01

    Full Text Available Studies have shown that the structure of dolphin skin controls fluid media dynamically. Gaining inspiration from this phenomenon, a kind of bionic structural heterogeneous composite material was designed. The bionic structural heterogeneous composite material is composed of two materials: a rigid metal base layer with bionic structures and an elastic polymer surface layer with the corresponding mirror structures. The fluid control mechanism of the bionic structural heterogeneous composite material was investigated using a fluid–solid interaction method in ANSYS Workbench. The results indicated that the bionic structural heterogeneous composite material’s fluid control mechanism is its elastic deformation, which is caused by the coupling action between the elastic surface material and the bionic structure. This deformation can decrease the velocity gradient of the fluid boundary layer through changing the fluid–solid actual contact surface and reduce the frictional force. The bionic structural heterogeneous composite material can also absorb some energy through elastic deformation and avoid energy loss. The bionic structural heterogeneous composite material was applied to the impeller of a centrifugal pump in a contrast experiment, increasing the pump efficiency by 5% without changing the hydraulic model of the impeller. The development of this bionic structural heterogeneous composite material will be straightforward from an engineering point of view, and it will have valuable practical applications.

  17. Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars

    Science.gov (United States)

    Kirchoff, Michelle R.; Grimm, Robert E.

    2018-01-01

    Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (D) ≥ 5 km using the density of small, superposed craters with D D 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.

  18. Successive ionic layer adsorption and reaction deposition of ...

    African Journals Online (AJOL)

    Successive ionic layer adsorption and reaction (SILAR) deposition of CdS which is based on sequential reactions at the substrate surface is report in this work. Each reaction is followed by rinsing which enables heterogeneous reaction between the solid phase and the solvated ions in the solution. Accordingly, a thin film ...

  19. Pharmacogenomics Bias - Systematic distortion of study results by genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Zietemann, Vera

    2008-04-01

    trial. Results: We found four studies that systematically evaluated heterogeneity bias. All of them indicated that there is a potential of heterogeneity bias. However, none of these studies explicitly investigated the effect of genetic heterogeneity. Therefore, we performed our own simulation study. Our generic simulation showed that a purely HT-related bias is negative (conservative and a purely HP-related bias is positive (liberal. For many typical scenarios, the absolute bias is smaller than 10%. In case of joint HP and HT, the overall bias is likely triggered by the HP component and reaches positive values >100% if fractions of „fast progressors" and „strong treatment responders" are low. In the clinical example with pravastatin therapy, the unadjusted model overestimated the true life-years gained (LYG by 5.5% (1.07 LYG vs. 0.99 LYG for 56-year-old men. Conclusions: We have been able to predict the pharmacogenomics bias jointly caused by heterogeneity in progression of disease and heterogeneity in treatment response as a function of characteristics of patients, chronic disease, and treatment. In the case of joint presence of both types of heterogeneity, models ignoring this heterogeneity may generate results that overestimate the treatment benefit.

  20. The genetic validation of heterogeneity in schizophrenia

    Directory of Open Access Journals (Sweden)

    Moritani Makiko

    2011-10-01

    Full Text Available Abstract Introduction Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Methods Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p Results No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57 was slightly lower than among controls (6.6+/-1.39. Conclusion The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.

  1. Two-region mass transfer to account for 2D profile scale heterogeneity in a 1D effective plot scale flow model

    Science.gov (United States)

    Filipovic, Vilim; Coquet, Yves; Gerke, Horst H.

    2017-04-01

    In arable soil landscapes, specific spatial heterogeneities related to tillage and trafficking can influence the movement of water and chemicals. The structure in the topsoil is characterized by spatial patterns with locally compacted zones. The contrasting hydraulic properties of more-and-less compacted soil zones can result in heterogeneous flow fields and preferential flow. Two- or three-dimensional models used to account for soil spatial variability are relatively too complex when trying to include local heterogeneities in the description of field scale flow and transport problems. The idea was to reduce the model complexity linked to the explicit description of heterogeneities in 2D or 3D without deteriorating the validity of simulation results. When reducing the spatial dimensionality, the geometry in a 2D, cross-sectional explicit plot description is removed on the expense of an increased complexity of the 1D model with two flow domains and mass exchange between them. Our objective was to design a simplified 1D model approach that effectively accounts for plot-scale soil structural variability. In this simplified 1D model, effective soil hydraulic parameters can be assigned to each of the two domains separately. Different theoretical scenarios simulating different shape, size and arrangement of compacted clods in the tilled layer were set to estimate their effect on solute behaviour. The mass exchange parameters could be determined from structure quantification and by comparing simplified 1D with reference 2D results accounting for defined soil structural (i.e., here the compacted regions) geometries. The mass exchange is strongly related to the geometry of the compacted zones including their distribution and size within the non-compacted soil. Additionally, the simplified model approach was tested by comparing it with measured results from a field tracer experiment.

  2. MFM study of magnetic interaction between recording and soft magnetic layers

    International Nuclear Information System (INIS)

    Honda, Yukio; Tanahashi, Kiwamu; Hirayama, Yoshiyuki; Kikukawa, Atsushi; Futamoto, Masaaki

    2001-01-01

    Magnetic force microscopy was used to study the magnetic interaction between the recording and the soft magnetic layers in double-layer perpendicular media by observing the magnetization structure from the soft magnetic layer side. There was a strong magnetic interaction between the recording and the soft magnetic layers. Introducing a thin nonmagnetic intermediate layer between the two layers greatly reduced the magnetic interaction and drastically reduced the medium noise

  3. A novel composite alignment layer for transflective liquid crystal display

    International Nuclear Information System (INIS)

    Li Shuangyao; Li Xuan; Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing

    2010-01-01

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 μm. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  4. Kinetic Description of Heterogeneous Catalytic Processes Using Adsorption Substitution Reactions

    Science.gov (United States)

    Stytsenko, V. D.

    2018-02-01

    Complex heterogeneous catalytic processes involving strongly chemisorbed particles (SCPs) are considered: syntheses of methanol, pyrocatechol, and diphenylamine and hydrogenation of CO and benzene. Nonstationary transformations of SCPs (CO and benzene) during continuous analysis of the gas phase are studied with mass spectrometric, flame ionization and thermal conductivity detectors. It is shown that the adsorption substitution reaction (ASR) proceeds before catalysis under typical conditions of these processes; in other words, the substitution reaction, rather than Langmuir adsorption equilibrium, determines the composition of reactive species on the catalyst surface. Consequently, ASRs and chemical transformations of SCPs must be considered for kinetic description of heterogeneous catalytic processes. It is shown that the ASRs allow us to describe these catalytic processes simply and adequately, and the obtained models can be used for the regulation and optimization of processes.

  5. Harvesting Information from Heterogeneous Sources

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    The abundance of information regarding any topic makes the Internet a very good resource. Even though searching the Internet is very easy, what remains difficult is to automate the process of information extraction from the available online information due to the lack of structure and the diversity...... in the sharing methods. Most of the times, information is stored in different proprietary formats, complying with different standards and protocols which makes tasks like data mining and information harvesting very difficult. In this paper, an information harvesting tool (heteroHarvest) is presented...... with objectives to address these problems by filtering the useful information and then normalizing the information in a singular non hypertext format. We also discuss state of the art tools along with the shortcomings and present the results of an analysis carried out over different heterogeneous formats along...

  6. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  7. Data Integration for Heterogenous Datasets.

    Science.gov (United States)

    Hendler, James

    2014-12-01

    More and more, the needs of data analysts are requiring the use of data outside the control of their own organizations. The increasing amount of data available on the Web, the new technologies for linking data across datasets, and the increasing need to integrate structured and unstructured data are all driving this trend. In this article, we provide a technical overview of the emerging "broad data" area, in which the variety of heterogeneous data being used, rather than the scale of the data being analyzed, is the limiting factor in data analysis efforts. The article explores some of the emerging themes in data discovery, data integration, linked data, and the combination of structured and unstructured data.

  8. Thermoelectricity in Heterogeneous Nanofluidic Channels.

    Science.gov (United States)

    Li, Long; Wang, Qinggong

    2018-04-19

    Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. HETEROGENEOUS REBURNING BY MIXED FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  10. Heterogeneous Reburning By Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson Hall

    2009-03-31

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  11. Magnetism in layered Ruthenates

    International Nuclear Information System (INIS)

    Steffens, Paul C.

    2008-01-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca 2-x Sr x RuO 4 have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca 1.8 Sr 0.2 RuO 4 , which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca 1.8 Sr 0.2 RuO 4 above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr 2 RuO 4 . With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca 3 Ru 2 O 7 , the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T N , excitations at this wave vector and another one, related to Sr 3 Ru 2 O 7 , have been

  12. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  13. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...... atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth's PBL, classical...... of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which...

  14. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  15. Kinetics of heterogeneous systems; La cinetique des milieux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Deniz, V. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    In this report, a general transport theory treatment is presented for the kinetics study as applied to finite heterogeneous systems. The theory is applicable to experiments near the critical point as well as to pulsed neutron experiments on multiplying or non-multiplying lattices. The general method is also applied to exponential experiments on infinite non-diverging lattices. The particularity of the present study is the explicit introduction of heterogeneity in the formulation and the search for the dependence of the parameters on the buckling of the finite medium. As a result of this, the finite medium parameters are in the first place expressed in terms of the corresponding infinite medium ones through the buckling and the anisotropic migration areas, and in the second place all the parameters are expressed as integrals only over an unit cell instead of over the whole pile. A preliminary less detailed study is first made in order to distinguish clearly between what are called 'dynamic parameters' and 'static parameters', and to define the meanings given in this report to these two terms. In the appendices are given approximate one-group treatments for the study of the dynamic fine structure, the time constant in infinite lattices, and the anisotropic diffusion coefficients in non-multiplying lattices. (author) [French] On presente dans ce rapport une methode generale, utilisant la theorie du transport pour l'etude de la cinetique des milieux finis heterogenes. La theorie est applicable aussi bien aux experiences pres de la criticite qu'aux experiences par sources pulsees de neutrons sur des reseaux multiplicateurs ou non-multiplicateurs. La methode generale est aussi appliquee aux experiences exponentielles sur des reseaux infinis non-divergents. La particularite de l'etude est l'introduction explicite de l'heterogeneite dans la formulation et la recherche de la dependance des parametres par rapport au laplacien du

  16. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    Energy Technology Data Exchange (ETDEWEB)

    Barten, Werner [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Robinson, Peter C. [QuantiSci Limited, Henley-on-Thames (United Kingdom)

    2001-02-01

    verification for these geometries relies chiefly on the verification for one-dimensional matrix diffusion, on qualitative estimates and on different self-consistency tests. The steady-state release for a single nuclide is additionally verified quantitatively. PICNIC has been verified as far as possible at present to allow application with confidence in performance assessment and in modelling of transport experiments. It is shown that structural geological information on small-scale heterogeneity can be entered easily into PICNIC. It is explained, e.g. that considering two-dimensional matrix diffusion into the layer of altered wall rock adjacent to open channels in the cataclastic zone can strongly increase the performance of the geosphere for migrating radionuclides, depending however on the properties of the nuclides and the rock. Considering the effects of matrix diffusion into a second rock layer can also be highly beneficial. (author)

  17. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    International Nuclear Information System (INIS)

    Barten, Werner; Robinson, Peter C.

    2001-02-01

    these geometries relies chiefly on the verification for one-dimensional matrix diffusion, on qualitative estimates and on different self-consistency tests. The steady-state release for a single nuclide is additionally verified quantitatively. PICNIC has been verified as far as possible at present to allow application with confidence in performance assessment and in modelling of transport experiments. It is shown that structural geological information on small-scale heterogeneity can be entered easily into PICNIC. It is explained, e.g. that considering two-dimensional matrix diffusion into the layer of altered wall rock adjacent to open channels in the cataclastic zone can strongly increase the performance of the geosphere for migrating radionuclides, depending however on the properties of the nuclides and the rock. Considering the effects of matrix diffusion into a second rock layer can also be highly beneficial. (author)

  18. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  19. Firm Heterogeneity, Credit Constraints, and Endogenous Growth

    OpenAIRE

    Torben Klarl; Alfred Maussner

    2010-01-01

    This paper is concerned with the role of firm heterogeneity under credit constraints for economic growth. We focus on firm size, innovativeness and credit constraints in a semi-endogenous growth model reflecting recent empirical findings on firm heterogeneity. It allows for an explicit solution for transitional growth and balanced growth path productivity as well as the growth maximizing firm heterogeneity. This enables us to draw inference about the impact of key policy parameters of the mod...

  20. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    Science.gov (United States)

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  1. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  2. Cellulose Depolymerization over Heterogeneous Catalysts.

    Science.gov (United States)

    Shrotri, Abhijit; Kobayashi, Hirokazu; Fukuoka, Atsushi

    2018-02-14

    Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H 2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble

  3. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  4. A double layer review

    International Nuclear Information System (INIS)

    Block, L.P.

    1977-06-01

    A review of the main results on electrostatic double layers (sometimes called space charge layers or sheaths) obtained from theory, and laboratory and space experiments up to the spring of 1977 is given. By means of barium jets and satellite probes, double layers have now been found at the altitudes, earlier predicted theoretically. The general potential distribution above the auroral zone, suggested by inverted V-events and electric field reversals, is corroborated. (author)

  5. Centralized Resource Management for Network Infrastructure Including Ip Telephony by Integrating a Mediator Between the Heterogeneous Data Sources

    OpenAIRE

    Mohammed Fethi Khalfi; Malika Kandouci

    2011-01-01

    Over the past decade, mobile has experienced a revolution that will ultimately change the way we communicate.All these technologies have a common denominator exploitation of computer information systems, but their operation can be tedious because of problems with heterogeneous data sources.To overcome the problems of heterogeneous data sources, we propose to use a technique of adding an extra layer interfacing applications of management or supervision at the different dat...

  6. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  7. Effect of Heterogeneity of JSFR Fuel Assemblies to Power Distribution

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Shimazu, Yoichiro; Hibi, Koki; Fujimura, Koji

    2013-01-01

    Conclusion: 1) Strong heterogeneity of JSFR assemblies was successfully calculated by BACH. 2) Verification test of BACH: • Infinite assembly model; • Color set model; • Good agreement with Monte-Carlo results. 3) Core calculations 3 models for inner duct was used; inward model, outward model and homogeneous model. • k eff difference between the inward and out ward model → 0.3%Δk; • ~20% effect on flux and power distributions. Therefore, we have to pay careful attention for the location of inner duct in fuel loading of JSFR

  8. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  9. Improvement of discontinuity factor for strong absorber region

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiong, E-mail: guojiong12@mail.tsinghua.edu.cn; Li, Fu, E-mail: lifu@mail.tsinghua.edu.cn; Zhang, Han; Zhou, Xiafeng; Fan, Kai; Wang, Lidong; Lu, Jianan

    2016-09-15

    At Institute of Nuclear and New Energy Technology (INET) the discontinuity factor corrected diffusion method with the homogenization technology was developed and applied in the control rod worth calculation of the pebble bed high temperature gas cooled reactor. But the result with the normal procedure is not accurate enough for a strong absorber. The numerical analysis shows that the strong absorber still has great influence on the flux distribution in the nearby graphite region, so that the flux distribution obtained by the normal diffusion method does not agree with the transport result. Thus, two improvements were proposed in this paper. First, instead of the neutron flux in the middle of the fine mesh, the surface flux of the absorber region was calculated through the net current in the boundary of the region; and then, while the discontinuity factor of the homogenized absorber region should be calculated, the discontinuity factor of the neighboring graphite region on the other side of the interface should also be calculated to eliminate the influence of the strong absorber. The numerical results demonstrate that, based on the improved method, the accuracy of heterogeneous transport calculation can be achieved by a diffusion calculation.

  10. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  11. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv) ...

  12. 78 FR 15710 - Strong Sensitizer Guidance

    Science.gov (United States)

    2013-03-12

    ... definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science of sensitization that have... document is intended to clarify the ``strong sensitizer'' definition, assist manufacturers in understanding...

  13. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

    Science.gov (United States)

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

  14. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  15. Operating a heterogeneous telescope network

    Science.gov (United States)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  16. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  17. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  18. The composition of heterogeneous control laws

    Science.gov (United States)

    Kuipers, Benjamin; Astrom, Karl

    1991-01-01

    The fuzzy control literature and industrial practice provide certain nonlinear methods for combining heterogeneous control laws, but these methods have been very difficult to analyze theoretically. An alternate formulation and extension of this approach is presented that has several practical and theoretical benefits. An example of heterogeneous control is given and two alternate analysis methods are presented.

  19. Understanding the Executive Functioning Heterogeneity in Schizophrenia

    Science.gov (United States)

    Raffard, Stephane; Bayard, Sophie

    2012-01-01

    Schizophrenia is characterized by heterogeneous brain abnormalities involving cerebral regions implied in the executive functioning. The dysexecutive syndrome is one of the most prominent and functionally cognitive features of schizophrenia. Nevertheless, it is not clear to what extend executive deficits are heterogeneous in schizophrenia…

  20. Monetary policy, banking and heterogeneous agents

    NARCIS (Netherlands)

    Wolski, M.

    2012-01-01

    The influence of heterogeneous expectations on monetary policy performance has gained a lot of attention in the recent years. It proved to be an important factor that, under some circumstances, may even destabilize the economy (Massaro, 2012). This paper investigates the phenomenon of heterogeneous

  1. resource allocation methodology for internet heterogeneous traffic

    African Journals Online (AJOL)

    Dr Obe

    buffer capacity in switches - that are required for heterogeneous internet traffic which guarantees a given QoS, even under high network loading conditions. This paper, therefore, presents a method for determining the optimum internet resources required for heterogeneous (data and voice only) traffic services to guarantee ...

  2. Fixed export cost heterogeneity, trade and welfare

    DEFF Research Database (Denmark)

    Jørgensen, Jan Guldager; Schröder, Philipp J.H.

    2008-01-01

    -country intra-industry trade model where firms are of two different marginal costs types and where fixed export costs are heterogeneous across firms. This model traces many of the stylized facts of international trade. However, we find that with heterogeneous fixed export costs there exists a positive bilateral...

  3. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  4. How Do School Systems Manage Pupils' Heterogeneity?

    Science.gov (United States)

    Dupriez, Vincent; Dumay, Xavier; Vause, Anne

    2008-01-01

    School systems worldwide respond in particular ways to students' academic heterogeneity, and different countries have developed different strategies to manage such heterogeneity. Whereas some countries separate children according to distinctive educational routes (or tracks) at early ages, others rely on intensive use of grade retention, while…

  5. Towards an Organizational Economics of Heterogeneous Capabilities

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    The notion of “capability” has long been influential in management research as an approach to address firm-level heterogeneity and heterogeneity in competitive outcomes. I discuss how recent advances in economics may allow for a more rigorous understanding and measurement of capability that take...... organizational practices into account. However, economists may also learn from work on capabilities in management research....

  6. Towards an Organizational Economics of Heterogeneous Capabilities

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    The notion of “capability” has long been influential in management research as an approach to address firm-level heterogeneity and heterogeneity in competitive outcomes. I discuss how recent advances in economics may allow for a more rigorous understanding and measurement of capability that take...

  7. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  8. Quantifying the heterogeneity of the tectonic stress field using borehole data

    Science.gov (United States)

    Schoenball, Martin; Davatzes, Nicholas C.

    2017-08-01

    The heterogeneity of the tectonic stress field is a fundamental property which influences earthquake dynamics and subsurface engineering. Self-similar scaling of stress heterogeneities is frequently assumed to explain characteristics of earthquakes such as the magnitude-frequency relation. However, observational evidence for such scaling of the stress field heterogeneity is scarce. We analyze the local stress orientations using image logs of two closely spaced boreholes in the Coso Geothermal Field with subvertical and deviated trajectories, respectively, each spanning about 2 km in depth. Both the mean and the standard deviation of stress orientation indicators (borehole breakouts, drilling-induced fractures, and petal-centerline fractures) determined from each borehole agree to the limit of the resolution of our method although measurements at specific depths may not. We find that the standard deviation in these boreholes strongly depends on the interval length analyzed, generally increasing up to a wellbore log length of about 600 m and constant for longer intervals. We find the same behavior in global data from the World Stress Map. This suggests that the standard deviation of stress indicators characterizes the heterogeneity of the tectonic stress field rather than the quality of the stress measurement. A large standard deviation of a stress measurement might be an expression of strong crustal heterogeneity rather than of an unreliable stress determination. Robust characterization of stress heterogeneity requires logs that sample stress indicators along a representative sample volume of at least 1 km.

  9. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  10. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  11. Heterogeneous Causal Effects and Sample Selection Bias

    DEFF Research Database (Denmark)

    Breen, Richard; Choi, Seongsoo; Holm, Anders

    2015-01-01

    The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects....... This might lead us to find heterogeneous effects when the true effect is homogenous, or to wrongly estimate not only the magnitude but also the sign of heterogeneous effects. We apply a test for the robustness of heterogeneous causal effects in the face of varying degrees and patterns of selection bias...

  12. Design Technology for Heterogeneous Embedded Systems

    CERN Document Server

    O'Connor, Ian; Piguet, Christian

    2012-01-01

    Designing technology to address the problem of heterogeneous embedded systems, while remaining compatible with standard “More Moore” flows, i.e. capable of handling simultaneously both silicon complexity and system complexity, represents one of the most important challenges facing the semiconductor industry today. While the micro-electronics industry has built its own specific design methods to focus mainly on the management of complexity through the establishment of abstraction levels, the emergence of device heterogeneity requires new approaches enabling the satisfactory design of physically heterogeneous embedded systems for the widespread deployment of such systems. This book, compiled largely from a set of contributions from participants of past editions of the Winter School on Heterogeneous Embedded Systems Design Technology (FETCH), proposes a broad and holistic overview of design techniques used to tackle the various facets of heterogeneity in terms of technology and opportunities at the physical ...

  13. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  14. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  15. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  16. Tracing recycled volatiles in a heterogeneous mantle with boron isotopes

    Science.gov (United States)

    Walowski, Kristina; Kirstein, Linda; de Hoog, Cees-Jan; Elliot, Tim; Savov, Ivan; Devey, Colin

    2016-04-01

    Recycling of oceanic lithosphere drives the chemical evolution of the Earth's mantle supplying both solids and volatiles to the Earth's interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth's surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.

  17. [Method on ozone generation with strong ionization discharge].

    Science.gov (United States)

    Zhang, Z; Han, H; Chu, Q; Bai, X

    2001-03-01

    This paper presents the formed methods of strong ionization discharge of dielectric barrier and plasma chemical reaction process of ozone generation. Ozone combination and decomposition are controlled by electric field intensity and electron energy. Therefore, new technologies with thinner dielectric layers (230 microns) of model alpha Al2O3 and narrow discharge gap (110 microns) are introduced, and strong ionization discharge is gained which reduced field (E) and electron average energy are more than 400Td and 10 eV respectively. Ozone concentration reaches to 200 g/m3 and ozone producing efficiency is 100 g/(kW.h). Ozone generator of big yield and miniaturization with module assembled method is realized.

  18. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene.

    Science.gov (United States)

    Jain, Ankit; McGaughey, Alan J H

    2015-02-17

    Using first principles calculations, we predict the thermal conductivity of the two-dimensional materials black phosphorene and blue phosphorene. Black phosphorene has an unprecedented thermal conductivity anisotropy ratio of three, with predicted values of 110 W/m-K and 36 W/m-K along its armchair and zigzag directions at a temperature of 300 K. For blue phosphorene, which is isotropic with a zigzag structure, the predicted value is 78 W/m-K. The two allotropes show strikingly different thermal conductivity accumulation, with phonons of mean free paths between 10 nm and 1 μm dominating in black phosphorene, while a much narrower band of mean free paths (50-200 nm) dominate in blue phosphorene. Black phosphorene shows intriguing potential for strain-tuning of its thermal conductivity tensor.

  19. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene

    OpenAIRE

    Ankit Jain; Alan J. H. McGaughey

    2015-01-01

    Using first principles calculations, we predict the thermal conductivity of the two-dimensional materials black phosphorene and blue phosphorene. Black phosphorene has an unprecedented thermal conductivity anisotropy ratio of three, with predicted values of 110?W/m-K and 36?W/m-K along its armchair and zigzag directions at a temperature of 300?K. For blue phosphorene, which is isotropic with a zigzag structure, the predicted value is 78?W/m-K. The two allotropes show strikingly different ther...

  20. Tailoring the interface layer of the bipolar membrane

    NARCIS (Netherlands)

    Balster, J.H.; Srinkantharajah, S.; Sumbharaju, R.; Punt, Ineke G.M.; Lammertink, Rob G.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    This work investigates various parameters affecting the water splitting of bipolar ion-exchange membranes. We show that the amount of functional groups and the water content of the interface layer have a strong influence on the bipolar membrane resistance. Use of anion exchange layers containing

  1. Cell‐to‐cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community

    Science.gov (United States)

    Campbell, Kate; Vowinckel, Jakob

    2016-01-01

    Abstract Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self‐establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single‐cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2O2, diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild‐type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism. PMID:27312776

  2. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  3. Impact of flow correlation and heterogeneity on transport in fractured media: field evidence and theoretical model

    Science.gov (United States)

    Kang, P. K.; Le Borgne, T.; Dentz, M.; Bour, O.; Juanes, R.

    2014-12-01

    Quantitative modeling of flow and transport through fractured geological media is challenging due to the inaccessibility of the underlying medium properties and the complex interplay between heterogeneity and small scale transport processes such as heterogeneous advection, matrix diffusion, hydrodynamic dispersion and adsorption. This complex interplay leads to anomalous (non-Fickian) transport behavior, the origin of which remains a matter of debate: whether it arises from variability in fracture permeability (velocity heterogeneity), connectedness in the fracture network (velocity correlation), or interaction between fractures and matrix. Here we show that this uncertainty of heterogeneity- vs. correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on correlation, whereas late-time scaling of breakthrough curves is mainly controlled by heterogeneity. We build on this insight, and propose a Lagrangian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle velocities. In this framework, flow heterogeneity and flow correlation are quantified by a Markov process of particle transition times that is characterized by a distribution function and a transition probability. Our transport model captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. We validate our model in the Ploemeur observatory in France. Thus, the proposed correlated CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of flow correlation and heterogeneity on transport in fractured media.

  4. Double layer formation

    International Nuclear Information System (INIS)

    Singh, N.

    1982-01-01

    Results from several numerical simulations of the formation of double layers in plasmas with a constant potential drop across them are presented. Here the emphasis is mainly on plasma processes during the formation of double layers. The recurring formation of double layers, their propagation and associated current interruptions are observed when the electron current injected into the simulation region from the low potential side exceeds the electron thermal current. This recurring process is stopped (or delayed) when the electron current recuperation is inhibited by a small magnetic force on the electrons. The motion of double layers is examined and it is found that the motion is caused by the interruption of the ion current from the high potential side. The subsequent recovery of this current renders the double layer stationary. (author)

  5. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution......; a method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according...

  6. Revealing spatially heterogeneous relaxation in a model nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shiwang; Bocharova, Vera [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Mirigian, Stephen; Schweizer, Kenneth S. [Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Carrillo, Jan-Michael Y.; Sumpter, Bobby G. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokolov, Alexei P., E-mail: sokolov@utk.edu [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Chemistry, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no “glassy” layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk T{sub g}. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  7. Multi-area layered multicast scheme for MPLS networks

    Science.gov (United States)

    Ma, Yajie; Yang, Zongkai; Wang, Yuming; Chen, Jingwen

    2005-02-01

    Multi-protocol label switching (MPLS) is multiprotocols both at layer 2 and layer 3. It is suggested to overcome the shortcomings of performing complex longest prefix matching in layer 3 routing by using short, fixed length labels. The MPLS community has put more effort into the label switching of unicast IP traffic, but less in the MPLS multicast mechanism. The reasons are the higher label consumption, the dynamical mapping of L3 multicast tree to L2 LSPs and the 20-bit shim header which is much fewer than the IPv4 IP header. On the other hand, heterogeneity of node capability degrades total performance of a multicast group. In order to achieve the scalability as well as the heterogeneity in MPLS networks, a novel scheme of MPLS-based Multi-area Layered Multicast Scheme (MALM) is proposed. Unlike the existing schemes which focus on aggregating the multicast stream, we construct the multicast tree based on the virtual topology aggregation. The MPLS area is divided into different sub-areas to form the hierarchical virtual topology and the multicast group is reconstructed into multiple layers according to the node capability. At the same time, the label stack is used to save the label space. For stability of the MALM protocol, a multi-layer protection scheme is also discussed. The experiment results show that the proposed scheme saves label space and decrease the Multicast Forwarding Table in much degree.

  8. Effects of fault heterogeneity on seismic energy and spectrum

    Science.gov (United States)

    Dragoni, Michele; Santini, Stefano

    2017-12-01

    We study the effects of friction heterogeneity on the dynamics of a seismogenic fault. To this aim, we consider a fault model containing two asperities with different static frictions and a rate-dependent dynamic friction. We consider the seismic events produced by the consecutive failure of the two asperities and study their properties as functions of the ratio between static frictions. In particular, we calculate the moment rate, the stress evolution during fault slip, the average stress drop, the partitioning of energy release, the seismic energy, the far-field waveforms and the spectrum of seismic waves. These quantities depend to various extent on the friction distribution on the fault. In particular, the stress distribution on the fault is always strongly heterogeneous at the beginning of the seismic event. Seismic energy and frictional heat decrease with increasing friction heterogeneity, while seismic efficiency is constant. We obtain an equation relating seismic efficiency to the parameters of the friction law, showing that the efficiency is maximum for smaller values of dynamic friction. The seismic spectrum depends on the friction distribution as to the positions and the values of the minima. However, under the model assumption that the slip durations are the same for both asperities, the corner frequency is independent of the friction distribution, but it depends on the friction law and on the coupling between asperities. The model provides a relation between the total radiated energy and the seismic moment that is consistent with the empirical relation between the two quantities. The fault model with one asperity is also considered as a particular case. The model is applied to the 1965 Rat Islands (Alaska) earthquake and shows the role of fault heterogeneity in controlling the spatial distribution of stress drop as well as the time dependence and the final amount of radiated energy.

  9. Beamforming in heterogeneous networks with Massive MIMO

    Directory of Open Access Journals (Sweden)

    ZHAO Pu

    2016-04-01

    Full Text Available Poor TSV assignment algorithm leads to a large detour of wire-length.Some of the previous works deal with TSV assignment problem using layer-by-layer methods(LBL only gets local optimal results.In this research work,a backward layer-by-layer reassignment(BRLBL is developed to do further optimization.This reassignment algorithm takes global information into consideration and optimizes the outcome of layer-by-layer TSV assignment methods.Also a fast layer-by-layer reassignment(FLBL method is proposed to shorten the runtime.Experimental results show that BRLBL achieves an average reduction over 3.7% of wire-length,while the FLBL improves the execution time of BRLBL by 10 times.

  10. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current.

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-04

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  11. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  12. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  13. Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock

    Directory of Open Access Journals (Sweden)

    Dimanov A.

    2010-06-01

    Full Text Available The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture and plastic (pore collapse deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact, we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.

  14. Use of seismic interferometry to improve the imaging of a heterogeneous landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Draganov, D.S.; Ghose, R.; Heimovaara, T.J.

    2015-01-01

    In this study we investigate the application of seismic interferometry (SI) to seismic reflection data recorded over a landfill. Landfills represent strongly heterogeneous subsurfaces making the seismic reflection imaging challenging. We show that SI improves the imaging of high-density areas, which

  15. A heterogeneous graph-based recommendation simulator

    Energy Technology Data Exchange (ETDEWEB)

    Yeonchan, Ahn [Seoul National University; Sungchan, Park [Seoul National University; Lee, Matt Sangkeun [ORNL; Sang-goo, Lee [Seoul National University

    2013-01-01

    Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.

  16. Viewing injustice: greater emotion heterogeneity with age.

    Science.gov (United States)

    Charles, Susan Turk

    2005-03-01

    The present study examined age differences in emotion heterogeneity, defined as the experience of co-occurring negative emotions. Younger and older European American and Mexican American participants (N=183) viewed film clips depicting scenes of injustice. Younger adults were more likely to report a single primary negative emotion, whereas older adults reported greater emotion heterogeneity, a finding consistent across gender and ethnicity. In addition, greater emotion heterogeneity was related to a greater number of life experiences. Future directions concerning the meaning of and possible implications for this age difference are discussed.

  17. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  18. Theory of the upper critical field in layered superconductors

    International Nuclear Information System (INIS)

    Klemm, R.A.; Luther, A.; Beasley, M.R.

    1975-01-01

    The upper critical field H/subc/ 2 in layered superconductors is calculated from a microscopic theory in which the electrons are assumed to propagate freely within the individual layers subject to scattering off impurities and to propagate via tunneling between the layers. For the magnetic field parallel to the layers, there is a temperature T* 2 /sub parallel/ is thus determined by the combined effects of Pauli paramagnetism and spin-orbit scattering, and for sufficiently strong spin-orbit scattering rates, H/subc/ 2 /sub parallel/(T =0) can greatly exceed the Chandrasekhar-Clogston Pauli limiting field H/subP/. This unusual behavior is found to be most pronounced in the dirty limit for the electron propagation within the layers and when the electrons scatter many times in a given layer before tunneling to an adjacent layer. Our results are also discussed in light of the available experimental data. (auth)

  19. Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials.

    Science.gov (United States)

    Zhang, Fu-Tao; Xu, Lu; Chen, Jia-Hui; Zhao, Bo; Fu, Xian-Zhu; Sun, Rong; Chen, Qianwang; Wong, Ching-Ping

    2018-01-17

    A new surface modification method is developed for electroless deposition of robust metal (copper, nickel, silver) layers on poly(dimethylsiloxane) (PDMS) substrate with strong adhesion. Under the synergies of the polydopamine (PDA), the plasma process enhances Ag + reduction, and a thin Ag film is capable of tightly attaching to the PDMS surface, which catalyzes electroless deposition (ELD) to form robust metal layers on the PDMS surface with strong adhesion. Subsequently, a flexible and stretchable Cu-PDMS conductor is obtained through this method, showing excellent metallic conductivity of 1.2 × 10 7 S m -1 , even at the longest stretch strain (700%). This process provides a successful strategy for obtaining good robust metal layers on PDMS and other polymer substrate surfaces with strong adhesion and conductivity.

  20. Influence of physical and chemical aquifer heterogeneity on nitrate reduction processes by numerical simulations

    Science.gov (United States)

    Kalbacher, T.; Jang, E.; He, W.; Savoy, H.; Schueth, C.; Kolditz, O.

    2015-12-01

    Nitrate reduction reactions, as one of the most important redox reactions in a subsurface system, are strongly influenced by various heterogeneity factors which influence transport of chemical species and spatial distribution of redox substances and consequently have an effect on overall nitrate reduction capacity. In this presented work, the influence of two heterogeneity factors, spatially heterogeneity of hydrological parameters versus spatial heterogeneity of geochemical reactive substances distribution, are discussed with a focus on nitrate transport and redox transformation processes. For this purpose, a coupling interface OGS#IPhreeqc is employed. This code combines Finite-Element groundwater flow and multi-species transport code of OpenGeoSys (OGS) with the IPhreeqc module of open source geochemical solver PHREEQC. The resulting coupled model is applied for simulation of nitrate reduction processes with a series of hypothetical aquifer systems, built using exponentially-correlated log-normal distributed hydraulic conductivity and reactive substances. The spatially heterogeneous aquifer system is realized by a RandomFields package using a statistical program R. Results show that the heterogeneous hydraulics conductivity field has larger impact on nitrate reduction capacity than heterogeneous reactive substances distribution. Moreover, nitrate reduction capacity can be increased by enhanced mixing in heterogeneous hydraulic conductivity field however its overall reduction capacity has gradually decreased as a degree of heterogeneity has increased since accessibility of the chemical species by the reactive substances may be limited. These results support that appropriate characterization of the variance of hydraulic conductivity within the aquifer is important to predict contaminant fate and transport and quantify the impact of uncertainty on numerical groundwater simulation.

  1. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  2. Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter?

    Science.gov (United States)

    Lee, Myung-Bok; Martin, James A

    2017-01-01

    While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010-2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon's landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non

  3. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  4. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  5. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  6. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  7. Heterogeneous Clustering: Operational and User Impacts

    Science.gov (United States)

    Salm, Saita Wood

    1999-01-01

    Heterogeneous clustering can improve overall utilization of multiple hosts and can provide better turnaround to users by balancing workloads across hosts. Building a cluster requires both operational changes and revisions in user scripts.

  8. Flavivirus structural heterogeneity: implications for cell entry.

    Science.gov (United States)

    Rey, Félix A; Stiasny, Karin; Heinz, Franz X

    2017-06-01

    The explosive spread of Zika virus is the most recent example of the threat imposed to human health by flaviviruses. High-resolution structures are available for several of these arthropod-borne viruses, revealing alternative icosahedral organizations of immature and mature virions. Incomplete proteolytic maturation, however, results in a cloud of highly heterogeneous mosaic particles. This heterogeneity is further expanded by a dynamic behavior of the viral envelope glycoproteins. The ensemble of heterogeneous and dynamic infectious particles circulating in infected hosts offers a range of alternative possible receptor interaction sites at their surfaces, potentially contributing to the broad flavivirus host-range and variation in tissue tropism. The potential synergy between heterogeneous particles in the circulating cloud thus provides an additional dimension to understand the unanticipated properties of Zika virus in its recent outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pricing Liquidity Risk with Heterogeneous Investment Horizons

    NARCIS (Netherlands)

    Beber, Alessandro; Driessen, Joost; Neuberger, A.; Tuijp, P

    We develop an asset pricing model with stochastic transaction costs and investors with heterogeneous horizons. Depending on their horizon, investors hold different sets of assets in equilibrium. This generates segmentation and spillover effects for expected returns, where the liquidity (risk)

  10. Heterogeneous Multicore Processor Technologies for Embedded Systems

    CERN Document Server

    Uchiyama, Kunio; Kasahara, Hironori; Nojiri, Tohru; Noda, Hideyuki; Tawara, Yasuhiro; Idehara, Akio; Iwata, Kenichi; Shikano, Hiroaki

    2012-01-01

    To satisfy the higher requirements of digitally converged embedded systems, this book describes heterogeneous multicore technology that uses various kinds of low-power embedded processor cores on a single chip. With this technology, heterogeneous parallelism can be implemented on an SoC, and greater flexibility and superior performance per watt can then be achieved. This book defines the heterogeneous multicore architecture and explains in detail several embedded processor cores including CPU cores and special-purpose processor cores that achieve highly arithmetic-level parallelism. The authors developed three multicore chips (called RP-1, RP-2, and RP-X) according to the defined architecture with the introduced processor cores. The chip implementations, software environments, and applications running on the chips are also explained in the book. Provides readers an overview and practical discussion of heterogeneous multicore technologies from both a hardware and software point of view; Discusses a new, high-p...

  11. Heterogeneous agents and decison making within firms

    NARCIS (Netherlands)

    Hung, Chung-yu

    2015-01-01

    This dissertation explores the implications of agents’ heterogeneity in decision making within situations where information is not completely contractible. Specifically, the study applies empirical methods across three chapters to examine the role of employees’ traits and their mutual relationships

  12. NMR analysis of compositional heterogeneity in polysaccharides

    Science.gov (United States)

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  13. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  14. Understanding Heterogeneous Preferences of Cooperative Members

    NARCIS (Netherlands)

    Kalogeras, N.; Pennings, J.M.E.; Lans, van der I.A.; Garcia, P.; Dijk, van G.

    2009-01-01

    We study the heterogeneity in the preference structure of cooperative members. Using conjoint analysis the utility that members attach to intra-organizational and strategic attributes of their cooperative is elicited. Recognizing that members are not homogenous, a concomitant finitemixture

  15. Heterogeneity and Risk Sharing in Village Economies*

    Science.gov (United States)

    Chiappori, Pierre-André; Samphantharak, Krislert; Schulhofer-Wohl, Sam; Townsend, Robert M.

    2013-01-01

    We show how to use panel data on household consumption to directly estimate households’ risk preferences. Specifically, we measure heterogeneity in risk aversion among households in Thai villages using a full risk-sharing model, which we then test allowing for this heterogeneity. There is substantial, statistically significant heterogeneity in estimated risk preferences. Full insurance cannot be rejected. As the risk sharing, as-if-complete-markets theory might predict, estimated risk preferences are unrelated to wealth or other characteristics. The heterogeneity matters for policy: Although the average household would benefit from eliminating village-level risk, less-risk-averse households who are paid to absorb that risk would be worse off by several percent of household consumption. PMID:24932226

  16. Heterogeneity and Risk Sharing in Village Economies.

    Science.gov (United States)

    Chiappori, Pierre-André; Samphantharak, Krislert; Schulhofer-Wohl, Sam; Townsend, Robert M

    2014-03-01

    We show how to use panel data on household consumption to directly estimate households' risk preferences. Specifically, we measure heterogeneity in risk aversion among households in Thai villages using a full risk-sharing model, which we then test allowing for this heterogeneity. There is substantial, statistically significant heterogeneity in estimated risk preferences. Full insurance cannot be rejected. As the risk sharing, as-if-complete-markets theory might predict, estimated risk preferences are unrelated to wealth or other characteristics. The heterogeneity matters for policy: Although the average household would benefit from eliminating village-level risk, less-risk-averse households who are paid to absorb that risk would be worse off by several percent of household consumption.

  17. Exploring heterogeneous market hypothesis using realized volatility

    Science.gov (United States)

    Chin, Wen Cheong; Isa, Zaidi; Mohd Nor, Abu Hassan Shaari

    2013-04-01

    This study investigates the heterogeneous market hypothesis using high frequency data. The cascaded heterogeneous trading activities with different time durations are modelled by the heterogeneous autoregressive framework. The empirical study indicated the presence of long memory behaviour and predictability elements in the financial time series which supported heterogeneous market hypothesis. Besides the common sum-of-square intraday realized volatility, we also advocated two power variation realized volatilities in forecast evaluation and risk measurement in order to overcome the possible abrupt jumps during the credit crisis. Finally, the empirical results are used in determining the market risk using the value-at-risk approach. The findings of this study have implications for informationally market efficiency analysis, portfolio strategies and risk managements.

  18. Heterogeneous treatment in the variational nodal method

    International Nuclear Information System (INIS)

    Fanning, T.H.

    1995-01-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations

  19. Heterogeneous Deployment Analysis for Cost-Effective Mobile Network Evolution

    DEFF Research Database (Denmark)

    Coletti, Claudio

    2013-01-01

    -powered base stations is a promising cost-effective solution to considerably enhance user experience. In such a network topology, which is denoted as heterogeneous deployment, the macro layer is expected to provide wider coverage but lower average data speeds whereas small cells are targeted at extending...... network coverage and boosting network capacity in traffic hot-spot areas. The thesis deals with the deployment of both outdoor small cells and indoor femto cells. Amongst the outdoor solution, particular emphasis is put on relay base stations as backhaul costs can be reduced by utilizing LTE spectrum...... statistical models of deployment areas, the performance analysis is carried out in the form of operator case studies for large-scale deployment scenarios, including realistic macro network layouts and inhomogeneous spatial traffic distributions. Deployment of small cells is performed by means of proposed...

  20. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and ... also important applications in nonlinear analysis [2]. The theory was brought to ..... for each t > 0 since each set on the right-hand side of the relation (3.1) belongs to I. Thus, by Definition 2.11 and the ...