Strong interactions - quark models
International Nuclear Information System (INIS)
Goto, M.; Ferreira, P.L.
1979-01-01
The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt
Quark imprisonment as the origin of strong interactions
Amati, Daniele
1974-01-01
A formal scheme is suggested in which the only dynamical ingredients are weak and electro-magnetic interactions with quarks and leptons treated on the same footing. Strong interactions are generated by the requirement that quarks do not appear physically. (7 refs).
Heavy quark mass effects and improved tests of the flavor independence of strong interactions
Energy Technology Data Exchange (ETDEWEB)
Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration
1998-08-01
A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.
International Nuclear Information System (INIS)
Biebel, O.
1993-11-01
A study of possible flavour dependence of the strong interaction is presented using data collected with the OPAL detector at the e + e - collider LEP. Four subsamples of events, highly enriched in bottom, charm, strange and light quarks are obtained from high momentum electrons and muons, D *± mesons, K s 0 mesons, and highly energetic stable charged particles, respectively. From the jet production rates of each of these four samples a strong coupling constant α s f for the dominant quark flavour is derived. The ratios of α s for a specific quark flavour f and its complementary flavours are determined to be α s b /α s udsc =1.017±0.036, α s c /α s udsb =0.918±0.115, α s s /α s udcb =1.158±0.164, α s uds /α s cb =1.038 ± 0.221, where the errors are combinations of statistical and systematic uncertainties. In combining the relevant data samples, a systematic study of possible dependence of the strong interaction on quark mass, weak isospin, and generation is performed. No evidence for any such dependence of the strong coupling constant α s is observed. Finally all samples are combined to determine the strong coupling constant of each flavour individually. Again the results are well consistent with the flavour independence of QCD. (orig.)
Flavor changing strong interaction effects on top quark physics at the CERN LHC
International Nuclear Information System (INIS)
Ferreira, P.M.; Santos, R.; Oliveira, O.
2006-01-01
We perform a model independent analysis of the flavor changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model
International Nuclear Information System (INIS)
Flambaum, V.V.; Shuryak, E.V.
2002-01-01
Recent data on the cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of the possible variation of other constants. We discuss the variation of strong scale and quark masses. We derive limits on their relative change from (i) primordial big bang nucleosynthesis, (ii) the Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
Quark interchange model of baryon interactions
International Nuclear Information System (INIS)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers
Quark interchange model of baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Spin polarization in high density quark matter under a strong external magnetic field
DEFF Research Database (Denmark)
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact......In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....
Strong-interaction nonuniversality
International Nuclear Information System (INIS)
Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.
1989-01-01
The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
A strongly coupled quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Shuryak, Edward [Department of Physics and Astronomy, University at Stony Brook, NY 11794 (United States)
2004-08-01
Successful description of robust collective flow phenomena at RHIC by ideal hydrodynamics, recent observations of bound c-barc,q-barq states on the lattice, and other theoretical developments indicate that QGP produced at RHIC, and probably in a wider temperature region T{sub c} < T < 4T{sub c}, is not a weakly coupled quasiparticle gas as believed previously. We discuss how strong the interaction is and why it seems to generate hundreds of binary channels with bound states, surviving well inside the QGP phase. We in particular discuss their effect on pressure and viscosity. We conclude by reviewing the similar phenomena for other 'strongly coupled systems', such as (i) strongly coupled supersymmetric theories studied via Maldacena duality; (ii) trapped ultra-cold atoms with very large scattering length, tuned to Feschbach resonances.
A theory of the strong interactions
International Nuclear Information System (INIS)
Gross, D.J.
1979-01-01
The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)
Interacting quark matter equation of state for compact stars
Fraga, Eduardo S; Vuorinen, Aleksi
2014-01-01
Lattice QCD studies of the thermodynamics of the hot quark-gluon plasma (QGP) demonstrate the importance of accounting for the interactions of quarks and gluons, if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.
Nuclear Matter from Effective Quark-Quark Interaction
Baldo, M.; Fukukawa, K.
2014-12-01
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Quark confinement and hadronic interactions
International Nuclear Information System (INIS)
Lenz, F.
1985-01-01
With the possibility for 'exact' calculations within the framework of a fundamental theory, QCD, the role of models in strong interaction physics is changing radically. The relevance of detailed numerical model studies is diminishing with the development of those exact, numerical approaches to QCD. On the other hand, the insight gained from such purely numerical studies is necessarily limited and must be complemented by the more qualitative but also more intuitive insight gained from model studies. In particular, the subject of hadron-hadron interactions requires model studies to relate the wide variety of strong interaction physics to the fundamental properties of strong interaction physics. The author reports on such model studies of the hadron-hadron interaction
Strong nucleon and Δ-isobar form factors in the quark-confinement model
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.; Lubovitskij, V.E.
1989-01-01
The nucleon and the Δ-isobar are investigated as three-quark systems in the quark-confinement model (QCM). This model is based on two hypotheses. First, quark confinement is accomplished through averaging over some vacuum gluon fields which are assumed to provide the confinement of any colour states. Second, hadrons are treated as collective colourless excitations of quark-gluon interactions. The QCM is applied to low-energy baryon physics. The nucleon magnetic moments and electromagnetic radii, the ratio G A /G V , and the decay width for Δ→pπ are calculated. The behaviour of the electromagnetic and strong meson-nucleon (meson-isobar) form factors is determined for space-like momentum transfers. The results are compared with experimental data for the electromagnetic form factors and phenomenological strong form factors as used in the Bonn potential. 32 refs.; 10 figs.; 4 tabs
Vectorlike interactions of leptons and quarks
International Nuclear Information System (INIS)
Fritzsch, H.
1976-07-01
A vectorlike theory of hadronic weak interactions can only be constructed if there exist more than 4 quark flavours and more than 4 leptons. Any vectorlike theory implies the existence of right-handed weak currents. Typically those currents are relevant for the weak interactions of heavy leptons. The experimental consequences of some typical vectorlike models are discussed. (BJ) [de
Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential
International Nuclear Information System (INIS)
Osman, A.
1985-11-01
The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)
Quark-gluon plasma in strong magnetic fields
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran
2013-04-01
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
Quark-gluon plasma in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran
2013-04-15
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
Net charge of quark jets in (anti)neutrino interactions
International Nuclear Information System (INIS)
Teper, M.
1981-01-01
We analyse recent measurements of the net charges of quark jets in neutrino and antineutrino interactions. The data indicates that (i) the two quarks in the nucleon fragmentation region prefer to behave as a diquark rather than as a pair of independent quarks, and (ii) the struck quark does not appear to suffer any soft charge exchange of the kind that occurs when a valence quark inside a nucleon is slowed to x approx. O. (orig.)
International Nuclear Information System (INIS)
Ebata, T.
1981-01-01
With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)
The strongly coupled fourth family and a first-order electroweak phase transition. 1. Quark sector
International Nuclear Information System (INIS)
Kikukawa, Yoshio; Kohda, Masaya; Yasuda, Junichiro
2009-01-01
In models of dynamical electroweak symmetry breaking due to strongly coupled fourth-family quarks and leptons, their low-energy effective descriptions may involve multiple composite Higgs fields, leading to a possibility that the electroweak phase transition at finite temperature is first-order due to the Coleman-Weinberg mechanism. We examine the behavior of the electroweak phase transition on the basis of the effective renormalizable Yukawa theory, which consists of the fourth-family quarks and two SU(2)-doublet Higgs fields corresponding to the bilinear operators of the fourth-family quarks with/without imposing the compositeness condition. The strength of the first-order phase transition is estimated using the finite-temperature effective potential at one loop with ring improvement. In the Yukawa theory without the compositeness condition, it is found that there is a parameter region where the first-order phase transition is sufficiently strong for the electroweak baryogenesis with the experimentally acceptable Higgs boson and fourth-family quark masses. On the other hand, when the compositeness condition is imposed, the phase transition turns out to be weakly first-order, or possibly second-order, although the result is rather sensitive to the details of the compositeness condition. By combining with the result of the Yukawa theory without the compositeness condition, it is argued that with the fourth-family quark masses in the range of 330-480 GeV, corresponding to the compositeness scale in the range of 1.0-2.3 TeV, the four-fermion interaction among the fourth-family quarks does not lead to the strongly first-order electroweak phase transition. (author)
Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum
Directory of Open Access Journals (Sweden)
Musakhanov Mirzayusuf
2017-01-01
Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.
Weak interactions of the b quark
International Nuclear Information System (INIS)
Branco, G.C.; Mohapatra, R.N.
1978-01-01
In weak-interaction models with two charged W bosons of comparable mass, there exists a novel possibility for the weak interactions of the b quark, in which the (u-barb)/sub R/ current occurs with maximal strength. It is noted that multimuon production in e + e - annihilation at above Q 2 > or approx. = (12 GeV) 2 will distinguish this scheme from the conventional one. We also present a Higgs system that leads naturally to this type of coupling, in a class of gauge models
Interactions of heavy quarks in quantum chromodynamics
International Nuclear Information System (INIS)
Dine, M.
1978-01-01
The interactions of heavy quarks in quantum chromodynamics (QCD) are analyzed in detail. The problem of extracting instantaneous interaction potentials from quantum field theory is first reviewed, in the context of simple models. How such a potential for a fermion-antifermion system may be extracted is indicated. After a review of the quantization of non-Abelian gauge theories in Coulomb gauge, the interaction of a heavy quark-antiquark (Q anti Q) pair is considered. A Ward identity relating the Coulomb-gluon-fermion vertex to the fermion self-energy is derived. This identity is used to prove the mass independence of the static potential. The potential is shown to be infrared finite through two loops, and its general structure in perturbation theory is indicated. At three loops, divergences associated with long-lived intermediate states appear. A method to resolve this problem for static sources is given, but the result cannot readily be identified as a potential appropriate to the description of a Q anti Q bound state. This problem is discussed in detail. Then the spin-dependent interactions in these systems are analyzed. It is shown that the spin-dependent potentials depend in a nontrivial way on the quark mass. The phenomenological implications of these results are considered. In conclusion, the implications of the results for nonperturbative attacks on the potential problem are discussed. The importance of source-field correlations is stressed. The limitations of schemes introduced recently to compute spin-dependent forces due to instantons are illustrated
Strong Interactions Physics at BaBar
Energy Technology Data Exchange (ETDEWEB)
Pioppi, M.
2005-03-14
Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.
Effective interactions from q-deformed quark fields
International Nuclear Information System (INIS)
Timoteo, V. S.; Lima, C. L.
2007-01-01
From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed
Strong interaction phenomenology
International Nuclear Information System (INIS)
Giffon, M.
1989-01-01
A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)
Addressing the strong CP problem with quark mass ratios
Energy Technology Data Exchange (ETDEWEB)
Diaz-Cruz, J.L.; Saldana-Salazar, U.J. [Benemerita Univ. Autonoma de Puebla (Mexico). Facultad de Ciencias Fisico-Matematicas; Hollik, W.G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-05-15
The strong CP problem is one of many puzzles in the theoretical description of elementary particles physics that still lacks an explanation. Solutions to that problem usually comprise new symmetries or fields or both. The main problem seems to be how to achieve small CP in the strong interactions despite large CP violation in weak interactions. Observation of CP violation is exclusively through the Higgs-Yukawa interactions. In this letter, we show that with minimal assumptions on the structure of mass (Yukawa) matrices the strong CP problem does not exist in the Standard Model and no extension to solve this is needed. However, to solve the flavor puzzle, models based on minimal SU(3) flavor groups leading to the proposed flavor matrices are favored.
Direct URCA-processes in neutron star quark core with strong magnetic field.
Directory of Open Access Journals (Sweden)
Belyaev Vasily
2017-01-01
In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.
Electroweak interactions: an introduction to the physics of quarks and leptons
International Nuclear Information System (INIS)
Renton, Peter
1990-01-01
The Glashow-Salam-Weinberg model, that unifies the weak and electromagnetic forces of nature and gives a detailed description of the interactions between quarks and leptons is considered. The various experimental tests, either planned or that have been made, are described in detail and the interaction of quarks by the strong force and the theory of quantum chromodynamics are also discussed and theories proposing further unification of the forces of nature are outlined. (author)
QCD : the theory of strong interactions Conference MT17
2001-01-01
The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.
Critical parameters of Quark-Hadron phase transition with interacting and massive quarks
International Nuclear Information System (INIS)
Singh, C.P.; Patra, B.K.
1994-06-01
Current techniques to simulate the dynamical behaviour of Quark-Gluon Plasma (QGP) reveal that the order of the phase transition as well as the values of the critical parameters depend on the number of quark flavours as well as on the quark-masses included in the simulation. We attempt to show here the effects of the number of quark flavours and quark-masses on critical parameters by using the perturbative, finite temperature field theory to g 3 s order in the strong coupling g s . We treat the hadrons as particles with finite size and its implications on the equation of state for hadron gas are studied. We find that the critical temperature T c is lowered by 9 MeV as we move from two to three quark flavours. The nature of the phase transition always remains as first order. However, the inclusion of quark-masses in our calculation does not affect the result much. (author). 14 refs, 3 figs
Energy Technology Data Exchange (ETDEWEB)
Pelaez, Jose R
1998-12-14
We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.
QCD : the theory of strong interactions Exhibition LEPFest 2000
2000-01-01
The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.
Strongly Interacting Matter at High Energy Density
International Nuclear Information System (INIS)
McLerran, L.
2008-01-01
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N c arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma
Strong interaction at finite temperature
Indian Academy of Sciences (India)
Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...
Truncation of QCD with four-quark interaction
Andrianov, A. A.; Andrianov, V. A.
1992-09-01
We examine conditions for models with fourquark interaction and a finite cutoff to be a reasonable approximation to the QCD at low energies. The flavourdependent part of QCD vacuum energy is identified with an effective potential for quark model. The independence on the cutoff and the scale anomaly of QCD is exploited in the quark sector to establish the scaling law for QCD-motivated effective coupling constants. On the contrary the insensitivity of effective potential in respect to “intrinsic” field dilatations leads to a selection rule for parameters of quark models to make a truncation of QCD.
The Theory of Quark and Gluon Interactions
Ynduráin, Francisco J
2006-01-01
F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
Heavy quark photoproduction in pp coherent interactions at LHC
Energy Technology Data Exchange (ETDEWEB)
Goncalves, V.P. [Universidade Federal de Pelotas, P.O. Box 354, Campus Universitario, sn, CEP 96010-900, Pelotas - RS (Brazil); Machado, M.V.T. [Universidade Federal do Pampa, P. O. BOX 07, Rua Carlos Barbosa, sn, CEP 96412-420, Bage - RS (Brazil); Meneses, A.R. [Universidade Federal de Pelotas, P.O. Box 354, Campus Universitario, sn, CEP 96010-900, Pelotas - RS (Brazil)
2010-02-15
In this work we analyze the possibility of constraining the QCD dynamics at high energies studying the heavy quark photoproduction at LHC in coherent interactions. The rapidity distribution and total cross section for charm and bottom production are estimated using three different phenomenological saturation models which successfully describe the HERA data. Our results indicate that the experimental study of the inclusive heavy quark photoproduction can be very useful to discriminate between the classical and quantum versions of the Color Glass Condensate (CGC) formalism.
Heavy quark energy loss far from equilibrium in a strongly coupled collision
Chesler, Paul M; Rajagopal, Krishna
2013-01-01
We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...
Strongly Interacting Light Dark Matter
Directory of Open Access Journals (Sweden)
Sebastian Bruggisser, Francesco Riva, Alfredo Urbano
2017-09-01
Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.
Strongly interacting light dark matter
International Nuclear Information System (INIS)
Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo
2016-07-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Heavy quark production in semihard interactions of nucleons
International Nuclear Information System (INIS)
Levin, E.M.; Ryskin, M.G.; Shabel'skij, Yu.M.; Shuvaev, A.G.
1991-01-01
Cross section of semihard process (heavy quark production) in the interactions of high-energy nucleons is calculated. The normalization of gluon structure function at small x and the role of absorption corrections are discussed in detail. The virtuality of interacting gluons as well as their transverse motion and possible various polarizations are accounted for in calculations. Comparatively large cross section of the high-energy inclusive b-quark production (σ(b-barb) is predicted, in particular, σ(p-barp→b-barb)=150-300 μb at √s=1.8 TeV
Radiation of a circulating quark in strongly coupled N = 4 super Yang-Mills theory
Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna
2010-12-01
The energy density and angular distribution of power radiated by a quark undergoing circular motion in strongly coupled N = 4 supersymmetric Yang-Mills (SYM) theory is computed using gauge/gravity duality. The results are qualitatively similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: At large velocities the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α˜1/γ and radial thickness scaling like ˜1/γ3.
Strongly interacting matter under rotation
Jiang, Yin; Lin, Zi-Wei; Huang, Xu-Guang; Liao, Jinfeng
2018-02-01
The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.
Strongly interacting matter under rotation
Directory of Open Access Journals (Sweden)
Jiang Yin
2018-01-01
Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.
Weak interactions of quarks and leptons: experimental status
International Nuclear Information System (INIS)
Wojcicki, S.
1984-09-01
The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references
Quark compound bag (QCB) model and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Simonov, Yu.A.
1983-01-01
Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction
Effective potential of light quark interactions at finite temperatures
International Nuclear Information System (INIS)
Lipskikh, S.I.
1989-01-01
The model of an open bosonic string with free ends is applied to construct the effective interaction potential for two light quarks at finite temperatures. This potential is shown to be a second-order potential with respect to the interquark distance
Weak interactions of quarks and leptons: experimental status
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1984-09-01
The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references. (WHK)
Interactions of quarks and gluons with nuclei at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Mueller, A.H. [Columbia Univ., New York, NY (United States)
1994-04-01
Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.
Transport quasiparticles and transverse interactions in quark-gluon plasmas
International Nuclear Information System (INIS)
Baym, Gordon
1996-01-01
Calculations of the properties of interacting quark-gluon plasmas are beset by infrared divergences associated with the fact that magnetic interactions, i.e., those occurring through exchange of transverse gluons, are, in the absence of a 'magnetic mass''in QCD, not screened. In this lecture we discuss the effects of magnetic interactions on the transport coefficients and the quasiparticle structure of quark-gluon plasmas. We describe how inclusion of dynamical screening effects - corresponding to Landau damping of the virtual quanta exchanged - leads to finite transport scattering rates. In the weak coupling limit, dynamical screening effects dominate over a magnetic mass. We illustrate the breakdown of the quasi particle structure of degenerate plasmas caused by long-ranged magnetic interactions, describe the structure of fermion quasiparticles in hot relativistic plasmas, and touch briefly on the problem of the lifetime of quasiparticle in the presence of long-ranged magnetic interactions. (author)
Equation of state of strange quark matter in a strong magnetic field
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2012-01-01
Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars
Strongly interacting photons and atoms
International Nuclear Information System (INIS)
Alge, W.
1999-05-01
This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)
Radiation by a heavy quark in N=4 SYM at strong coupling
Hatta, Y; Mueller, A H; Triantafyllopoulos, D N
2011-01-01
Using the AdS/CFT correspondence in the supergravity approximation, we compute the energy density radiated by a heavy quark undergoing some arbitrary motion in the vacuum of the strongly coupled N=4 supersymmetric Yang-Mills theory. We find that this energy is fully generated via backreaction from the near-boundary endpoint of the dual string attached to the heavy quark. Because of that, the energy distribution shows the same space-time localization as the classical radiation that would be produced by the heavy quark at weak coupling. We believe that this and some other unnatural features of our result (like its anisotropy and the presence of regions with negative energy density) are artifacts of the supergravity approximation, which will be corrected after including string fluctuations. For the case where the quark trajectory is bounded, we also compute the radiated power, by integrating the energy density over the surface of a sphere at infinity. For sufficiently large times, we find agreement with a previo...
Supersymmetry and weak, electromagnetic and strong interactions
International Nuclear Information System (INIS)
Fayet, P.
1977-01-01
A supersymmetric theory of particle interactions is discussed. It is based on the earlier model which involves gauge (or vector) superfields, and matter (or chiral) superfields; each of them describes a vector and a Majorana spinor in the first case, or a two-component Dirac spinor and a complex scalar in the second case. The new theory suggests the possible existence of spin - 1/2 gluons and heavy spin-0 quarks, besides spin - 1 gluons and spin - 1/2 quarks. To prevent scalar particles to be exchanged in processes such as μ or β decays a new class of leptons with its own quantum number is introduced; it includes charged leptons and a ''photonic neutrino''
Heavy quark potential in a static and strong homogeneous magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)
2017-11-15
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)
Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions
Energy Technology Data Exchange (ETDEWEB)
Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)
2015-09-17
The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks
Chu, Peng-Cheng; Li, Xiao-Hua; Ma, Hong-Yang; Wang, Bin; Dong, Yu-Min; Zhang, Xiao-Min
2018-03-01
We study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields within the extended confined isospin-density-dependent mass (CIDDM) model including the temperature dependence of the equivalent mass for quarks. The quark symmetry energy, quark symmetry free energy, and the equation of state (EOS) of SQM in constant magnetic fields at finite temperature are investigated, and it is found that including the temperature dependence in CIDDM model and considering strong magnetic fields can both significantly influence the properties of the SQM and the maximum mass of quark stars. Using the density-dependent magnetic field and assuming two extreme cases for the magnetic field orientation in QSs (the radial orientation in which the local magnetic fields are along the radial direction and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial orientation), we analyze the mass-radius relations for different stages of the protoquark stars (PQSs) along the star evolution. Our results indicate that the maximum mass of magnetized PQSs may depend on not only the strength distribution and the orientation of the magnetic fields inside the PQSs, but also the heating process and the cooling process in the star evolution.
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
Quark structure of chiral solitons
Energy Technology Data Exchange (ETDEWEB)
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Heavy quarks and CP: Moriond 1985
International Nuclear Information System (INIS)
Bjorken, J.D.
1985-03-01
The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs
Algebra of strong and electroweak interactions
International Nuclear Information System (INIS)
Bolokhov, S.V.; Vladimirov, Yu.S.
2004-01-01
The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru
Strong diffusion effect of charm quarks on J/ψ production in Pb-Pb collisions at the LHC
Zhao, Jiaxing; Chen, Baoyi
2018-01-01
We study the J / ψ production based on coalescence model at √{sNN } = 2.76 and 5.02 TeV Pb-Pb collisions. With the colliding energy increasing from 2.76 TeV to 5.02 TeV, the number of charm pairs is enhanced by more than 50%. However, the ratio of J / ψ inclusive nuclear modification factors RAA5.02 TeV / RAA2.76 TeV is only about 1.1 ∼ 1.2. We find that the regeneration of J / ψ is proportional to the densities of charm and anti-charm quarks, instead of their total numbers. The charm quark density is diluted by the strong expansion of quark gluon plasma, which suppresses the combination probability of heavy quarks and J / ψ regeneration. This effect is more important in higher colliding energies where QGP expansion is strong. We also propose the ratio NJ/ψ /(Nc) 2 as a measurement of c and c bar coalescence probability, which is only affected by the heavy quark diffusions in QGP, and does not depend on the inputs such as cold nuclear matter effects and cross sections of charm quark production. Further more, we give the predictions at the energy of Future Circular Collider (√{sNN } = 39 TeV).
Planar quark diagrams and binary spin processes
International Nuclear Information System (INIS)
Grigoryan, A.A.; Ivanov, N.Ya.
1986-01-01
Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed
The Charm and Beauty of Strong Interactions
El-Bennich, Bruno
2018-01-01
We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.
The Strongly Interacting Quark Gluon Plasma at RHIC and LHC
Directory of Open Access Journals (Sweden)
Tserruya Itzhak
2014-04-01
Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.
What we can learn from lepton-quark interactions
International Nuclear Information System (INIS)
Quigg, C.
1981-07-01
A review is presented of what has been learned from lepton-quark interactions. Next, the context in which to ask future questions, the paradigm, it constitutes the set of assumptions that we believe on the basis of present experiments and which - subject always to refinement, extension, and revision - defines the way we talk about experiments done now and in the future. Two fothcoming neutrino experiments are discussed which seem to be of specific interest. Finally, some of the possibilities for experiments with ep colliders are covered. The point of that discussion is to try to understand what - in very general terms - are the things we may hope to learn from these facilities, and to begin to ask what requirements our physics questions place upon machines and experiments
Including virtual photons in strong interactions
International Nuclear Information System (INIS)
Rusetsky, A.
2003-01-01
In the perturbative field-theoretical models we investigate the inclusion of the electromagnetic interactions into the purely strong theory that describes hadronic processes. In particular, we study the convention for splitting electromagnetic and strong interactions and the ambiguity of such a splitting. The issue of the interpretation of the parameters of the low-energy effective field theory in the presence of electromagnetic interactions is addressed, as well as the scale and gauge dependence of the effective theory couplings. We hope, that the results of these studies are relevant for the electromagnetic sector of ChPT. (orig.)
The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity
Energy Technology Data Exchange (ETDEWEB)
Burikham, Piyabut [Chulalongkorn University, High Energy Physics Theory Group, Department of Physics, Faculty of Science, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Lake, Matthew J. [Sun Yat-Sen University, School of Physics, Guangzhou (China); Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore (Singapore); Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand)
2017-11-15
Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 GeV{sup -1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ{sub f}. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ{sub f} with the 'bag constant' of the MIT bag model, B ≅ 2 x 10{sup 14} g cm{sup -3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity 'particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ{sub f}, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed. (orig.)
The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity
International Nuclear Information System (INIS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2017-01-01
Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 GeV -1 . We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f . This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the 'bag constant' of the MIT bag model, B ≅ 2 x 10 14 g cm -3 . Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity 'particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ f , producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed. (orig.)
Far-from-equilibrium heavy quark energy loss at strong coupling
Chesler, Paul; Rajagopal, Krishna
2013-01-01
We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.
Extreme states of matter in strong interaction physics an introduction
Satz, Helmut
2018-01-01
This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature latti...
Search for Quarks in High-Energy Neutrino Interactions
2002-01-01
This experiment is a search for quarks produced in high energy neutrino interactions. Neutrino interactions take place in a 23-ton lead target and are recognized by one or more particles crossing the counter hodoscopes S1 and S2, together with the absence of an incident particle signal in the initial veto counter V^0.\\\\ \\\\ The lead is viewed by an avalanche chamber to measure the specific ionization of the charged secondaries produced in the @n-interaction with high accuracy even in jet-like events, and by a series of two pairs of scintillation counter hodoscopes (ST1, ST2). The latter provide time-of-flight measurements and dE/dx measurements for a fast analysis in low and medium multiplicity provide a trigger for the chamber. \\\\ \\\\ In order to reduce the background in the set-up, very low momentum particles (mainly due to cascading processes in the target) are separated out by a @= 1 T.m magnet placed behind the target. \\\\ \\\\ A system of wire chambers W1, W2, which register both the position and the time at...
International Nuclear Information System (INIS)
Chan, J.; DePorcel, L.; Dixon, L.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Electroweak and Strong Interactions Phenomenology, Concepts, Models
Scheck, Florian
2012-01-01
Electroweak and Strong Interaction: Phenomenology, Concepts, Models, begins with relativistic quantum mechanics and some quantum field theory which lay the foundation for the rest of the text. The phenomenology and the physics of the fundamental interactions are emphasized through a detailed discussion of the empirical fundamentals of unified theories of strong, electromagnetic, and weak interactions. The principles of local gauge theories are described both in a heuristic and a geometric framework. The minimal standard model of the fundamental interactions is developed in detail and characteristic applications are worked out. Possible signals of physics beyond that model, notably in the physics of neutrinos are also discussed. Among the applications scattering on nucleons and on nuclei provide salient examples. Numerous exercises with solutions make the text suitable for advanced courses or individual study. This completely updated revised new edition contains an enlarged chapter on quantum chromodynamics an...
Vector mesons in strongly interacting matter
Indian Academy of Sciences (India)
probes like photons, pions or protons or the heated and compressed hadronic matter generated in a heavy-ion collision. Leaving any nuclear medium without strong final-state interactions, dileptons are the optimum decay channel as they avoid any final-state distortion of the 4- momenta of the decay products entering eq.
Vector mesons in strongly interacting matter
Indian Academy of Sciences (India)
Properties of hadrons in strongly interacting matter provide a link between quantum chromodynamics in the ... Top: Spectral function of the ρ-meson at normal nuclear matter density as a function of mass and ... directly but folded with the branching ratio ΓV →p1+p2 /Γtot into the specific final channel one is investigating.
SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ,M.
2004-09-21
I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
Strong interaction studies with kaonic atoms
Directory of Open Access Journals (Sweden)
Marton J.
2016-01-01
Full Text Available The strong interaction of antikaons (K− with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K−pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K−p atom leading to a hadronic shift ϵ1s and a hadronic broadening Γ1s of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2. Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.
Quarks for hadrons and leptons
International Nuclear Information System (INIS)
Lopes, J.L.
1975-01-01
The simplest, naive, model for a unified description of leptons and hadrons consists in postulating, besides the usual quarks p, n, lambda a fourth quark, with very heavy mass and very high binding to pairs like anti p n and anti p lambda. In a SU(4) scheme the fourth quark has a quantum number charm which may be taken as proportional to the lepton number. Muons would be distinguished from electrons by the occurence of a lambda-quark instead of a n-quark in their structure. The forces among these quarks would have to be such as to give leptons an almost point-like structure at the experimentally known energies as well as absence of strong interactions at these energies. However, one would expect the display of strong interactions by leptons at extremely high energies [pt
Electromagnetic probes of strongly interacting matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... The nuclear matter under extreme conditions of temperatures () and baryonic densities () undergoes a phase transition to quark gluon plasma (QGP). It is expected that such extreme conditions can be achieved by colliding nuclei at ultrarelativistic energies. In the present review, the suitability of ...
Initial and Final State Interaction Effects in Small-x Quark Distributions
Energy Technology Data Exchange (ETDEWEB)
Xiao, Bo-Wen; Yuan, Feng
2010-08-30
We study the initial and final state interaction effects in the transverse momentum dependent parton distributions in the small-x saturation region. In particular, we discuss the quark distributions in the semi-inclusive deep inelastic scattering, Drell-Yan lepton pair production and dijet-correlation processes in pA collisions. We calculate the quark distributions in the scalar-QED model and then extend to the color glass condensate formalism in QCD. The quark distributions are found universal between the DIS and Drell-Yan processes. On the other hand, the quark distribution from the qq'-->qq' channel contribution to the dijet-correlation process is not universal. However, we find that it can be related to the quark distribution in DIS process by a convolution with the normalized unintegrated gluon distribution in the CGC formalism in the large Nc limit.
International Nuclear Information System (INIS)
Carruthers, P.; Thews, R.L.
1988-01-01
This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories
Gauge theories of weak, electromagnetic and strong interactions
International Nuclear Information System (INIS)
Boehm, M.; Joos, H.
1978-05-01
This 10 lectures are devided into the chapters: Phenomenological basis of the quantum chromodynamics, phenomenology of weak interactions, quantum electrodynamics and gauge invariance, from the fermimodel to the quantum flavor dynamics, on the quantum theory of yang-mills-fields, spontaneous symmetry breaking - the Higgs-Kibble-mechanism, the Salam-Weinberg-model, asymptotic freedom, quark confinement and charmonium. (WL) [de
Physics Performance Report for PANDA : Strong Interaction Studies with Antiprotons
Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Heng, Y.; Liu, Z.; Liu, H.; Shen, X.; Wang, O.; Xu, H.; Becker, J.; Feldbauer, F.; Heinsius, F. -H.; Held, T.; Koch, H.; Kopf, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.; Wiedner, U.; Zhong, J.; Bianconi, A.; Bragadireanu, M.; Pantea, D.; Tudorache, A.; Tudorache, V.; De Napoli, M.; Giacoppo, F.; Raciti, G.; Rapisarda, E.; Sfienti, C.; Bialkowski, E.; Budzanowski, A.; Czech, B.; Kistryn, M.; Kliczewski, S.; Kozela, A.; Kulessa, P.; Pysz, K.; Schaefer, W.; Siudak, R.; Szczurek, A.; Czy. zycki, W.; Domagala, M.; Hawryluk, M.; Lisowski, E.; Lisowski, F.; Wojnar, L.; Gil, D.; Hawranek, P.; Kamys, B.; Kistryn, St.; Korcyl, K.; Krzemien, W.; Magiera, A.; Moskal, P.; Rudy, Z.; Salabura, P.; Smyrski, J.; Wronska, A.; Al-Turany, M.; Augustin, I.; Deppe, H.; Flemming, H.; Gerl, J.; Goetzen, K.; Hohler, R.; Lehmann, D.; Lewandowski, B.; Luehning, J.; Maas, F.; Mishra, D.; Orth, H.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schmitt, L.; Schwarz, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Brinkmann, K. -T.; Freiesleben, H.; Jaekel, R.; Kliemt, R.; Wuerschig, T.; Zaunick, H. -G.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Feshchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Kudaev, V. Ch.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevski, A.; . Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, A.; Shabratova, G. S.; Skachkova, A. N.; Skachkov, N. B.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopianov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Foehl, K.; Glazier, D.; Watts, D.; Woods, P.; Eyrich, W.; Lehmann, A.; Teufel, A.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tann, B.; Tomaradze, A.; Bettoni, D.; Carassiti, V.; Cecchi, A.; Dalpiaz, P.; Fioravanti, E.; Garzia, I.; Negrini, M.; Savri`e, M.; Stancari, G.; Dulach, B.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Macri, M.; Marinelli, M.; Parodi, R. F.; Brodski, I.; Doering, W.; Drexler, P.; Dueren, M.; Gagyi-Palffy, Z.; Hayrapetyan, A.; Kotulla, M.; Kuehn, W.; Lange, S.; Liu, M.; Metag, V.; Nanova, M.; Novotny, R.; Salz, C.; Schneider, J.; Schoenmeier, P.; Schubert, R.; Spataro, S.; Stenzel, H.; Strackbein, C.; Thiel, M.; Thoering, U.; Yang, S.; Clarkson, T.; Cowie, E.; Downie, E.; Hill, G.; Hoek, M.; Ireland, D.; Kaiser, R.; Keri, T.; Lehmann, I.; Livingston, K.; Lumsden, S.; MacGregor, D.; McKinnon, B.; Murray, M.; Protopopescu, D.; Rosner, G.; Seitz, B.; Yang, G.; Babai, M.; Biegun, A. K.; Bubak, A.; Guliyev, E.; Suyam Jothi, Vanniarajan; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.; Smit, H.; van der Weele, J. C.; Garcia, F.; Riska, D. -O.; Buescher, M.; Dosdall, R.; Dzhygadlo, R.; Gillitzer, A.; Grunwald, D.; Jha, V.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Maier, R.; Mertens, M.; Ohm, H.; Prasuhn, D.; Randriamalala, T.; Ritman, J.; Roeder, M.; Stockmanns, T.; Wintz, P.; Wuestner, P.; Kisiel, J.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schroeder, B.; Achenbach, P.; Mora Espi, M. C.; Pochodzalla, J.; Sanchez, S.; Sanchez-Lorente, A.; Dormenev, V. I.; Fedorov, A. A.; Korzhik, M. V.; Missevitch, O. V.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Hoeppner, C.; Ketzer, B.; Konorov, I.; Mann, A.; Neubert, S.; Paul, S.; Weitzel, Q.; Khoukaz, A.; Rausmann, T.; Taeschner, A.; Wessels, J.; Varma, R.; Baldin, E.; Kotov, K.; Peleganchuk, S.; Tikhonov, Yu.; Boucher, J.; Hennino, T.; Kunne, R.; Ong, S.; Pouthas, J.; Ramstein, B.; Rosier, P.; Sudol, M.; Van de Wiele, J.; Zerguerras, T.; Dmowski, K.; Korzeniewski, R.; Przemyslaw, D.; Slowinski, B.; Boca, G.; Braghieri, A.; Costanza, S.; Fontana, A.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Belikov, N. I.; Davidenko, A. M.; Derevschikov, A. A.; Goncharenko, Y. M.; Grishin, V. N.; Kachanov, V. A.; Konstantinov, D. A.; Kormilitsin, V. A.; Kravtsov, V. I.; Matulenko, Y. A.; Melnik, Y. M.; Meschanin, A. P.; Minaev, N. G.; Mochalov, V. V.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Ryazantsev, A. V.; Semenov, P. A.; Soloviev, L. F.; Uzunian, A. V.; Vasiliev, A. N.; Yakutin, A. E.; Baeck, T.; Cederwall, B.; Bargholtz, C.; Geren, L.; Tegner, P. E.; Belostotski, S.; Gavrilov, G.; Itzotov, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.; Zhadanov, A.; Fava, L.; Panzieri, D.; Alberto, D.; Amoroso, A.; Botta, E.; Bressani, T.; Bufalino, S.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Ferrero, L.; Grasso, A.; Greco, M.; Kugathasan, T.; Maggiora, M.; Marcello, S.; Serbanut, G.; Sosio, S.; Bertini, R.; Calvo, D.; Coli, S.; De Remigis, P.; Feliciello, A.; Filippi, A.; Giraudo, G.; Mazza, G.; Rivetti, A.; Szymanska, K.; Tosello, F.; Wheadon, R.; Morra, O.; Agnello, M.; Iazzi, F.; Szymanska, K.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Ekstroem, C.; Calen, H.; Grape, S.; Hoeistad, B.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Thome, E.; Zlomanczuk, J.; Diaz, J.; Ortiz, A.; Borsuk, S.; Chlopik, A.; Guzik, Z.; Kopec, J.; Kozlowski, T.; Melnychuk, D.; Plominski, M.; Szewinski, J.; Traczyk, K.; Zwieglinski, B.; Buehler, P.; Gruber, A.; Kienle, P.; Marton, J.; Widmann, E.; Zmeskal, J.; Lutz, M. F. M.; Pire, B.; Scholten, O.; Timmermans, R.
To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy
Strongly Interacting Matter in Magnetic Field
Mao, Shijun; Wu, Youjia; Zhuang, Pengfei
Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.
Fundamental Structure of Matter and Strong Interaction
Energy Technology Data Exchange (ETDEWEB)
Jian-Ping Chen
2011-11-01
More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.
Strong Interaction Studies with PANDA at FAIR
International Nuclear Information System (INIS)
Schönning, Karin
2016-01-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme
Strong Interaction Studies with PANDA at FAIR
Schönning, Karin
2016-10-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.
A search for quarks produced in heavy-ion interactions
2002-01-01
We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about $10^{5}$. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per $2 \\times 10^{8}$ beam particles.
The theory of quark and gluon interactions. 4. ed.
International Nuclear Information System (INIS)
Yndurain, F.J.
2006-01-01
First published in 1983, this book has become a classic among advanced textbooks. The new fourth edition maintains the high standard of its predecessors. The book offers basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Explanations of theory are supported throughout with experimental findings. The text provides readers with sufficient understanding to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory. (orig.)
Strong Interactive Massive Particles from a Strong Coupled Theory
DEFF Research Database (Denmark)
Yu. Khlopov, Maxim; Kouvaris, Christoforos
2008-01-01
(-2). These excessive techniparticles are all captured by $^4He$, creating \\emph{techni-O-helium} $tOHe$ ``atoms'', as soon as $^4He$ is formed in Big Bang Nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in Big Bang Nucleosynthesis. Due...
Finite temperature system of strongly interacting baryons
Energy Technology Data Exchange (ETDEWEB)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.
Finite temperature system of strongly interacting baryons
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light
Effective Field Theories and Strong Interactions. Final Technical Report
International Nuclear Information System (INIS)
Fleming, Sean
2011-01-01
The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can
Search for excited quarks in e+e- interactions with the CELLO detector
International Nuclear Information System (INIS)
Behrend, H.J.; Buerger, J.; Criegee, L.; Dainton, J.B.; Fenner, H.; Field, J.H.; Franke, G.; Fuster, J.; Holler, Y.; Meyer, J.; Schroeder, V.; Sindt, H.; Timm, U.; Winter, G.G.; Zimmermann, W.; Bussey, P.J.; Buttar, C.; Campbell, A.J.; Hendry, D.; McCurrach, G.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Ahme, J.; Blobel, V.; Feindt, M.; Harjes, J.; Poppe, M.; Spitzer, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Luers, D.; Oberlack, H.; Sack, B.; Schacht, P.; Shooshtari, G.; Wiedenmann, W.; Cordier, A.; Davier, M.; Fournier, D.; Gaillard, M.; Grivaz, J.F.; Haissinski, J.; Janot, P.; Journe, V.; Le Diberder, F.; Ros, E.; Spadafora, A.; Veillet, J.J.; Aleksan, R.; Cozzika, G.; Ducros, Y.; Lavagne, Y.; Ould Saada, F.; Pamela, J.; Pierre, F.; Zacek, J.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Levy, A.
1986-01-01
The production of excited quarks has been looked for in e + e - interactions at PETRA at center of mass energies up to 46.8 GeV using the CELLO detector. The different final state topologies considered are four-jets, two-jets and two-photons, three-jets, two-jets and one-photon. No deviation from standard QCD predictions is observed, thus yielding limits on the coupling constants and the masses of these possible quark states. (orig.)
The hadronic standard model for strong and electroweak interactions
Energy Technology Data Exchange (ETDEWEB)
Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1993-12-31
We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.
Strongly interacting matter at high densities with a soliton model
Johnson, Charles Webster
1998-12-01
One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of
Convex Modeling of Interactions with Strong Heredity.
Haris, Asad; Witten, Daniela; Simon, Noah
2016-01-01
We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.
Analytic properties of the quark propagator from an effective infrared interaction model
Windisch, Andreas
2017-04-01
In this paper, I investigate the analytic properties of the quark propagator Dyson-Schwinger equation (DSE) in the Landau gauge. In the quark self-energy, the combined gluon propagator and quark-gluon vertex is modeled by an effective interaction (the so-called Maris-Tandy interaction), where the ultraviolet term is neglected. This renders the loop integrand of the quark self-energy analytic on the cut plane -π complex conjugation symmetry, this region fully covers the parabolic integration domain for Bethe-Salpeter equations (BSEs) for bound state masses of up to 4.5 GeV. Employing a novel numerical technique that is based on highly parallel computation on graphics processing units (GPUs), I extract more than 6500 poles in this region, which arise as the bare quark mass is varied over a wide range of closely spaced values. The poles are grouped in 23 individual trajectories that capture the movement of the poles in the complex region as the bare mass is varied. The raw data of the pole locations and residues is provided as Supplemental Material, which can be used to parametrize solutions of the complex quark propagator for a wide range of bare mass values and for large bound-state masses. This study is a first step towards an extension of previous work on the analytic continuation of perturbative one-loop integrals, with the long-term goal of establishing a framework that allows for the numerical extraction of the analytic properties of the quark propagator with a truncation that extends beyond the rainbow by making adequate adjustments in the contour of the radial integration of the quark self-energy.
NN interaction from bag-model quark interchange
International Nuclear Information System (INIS)
Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.
1982-01-01
A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV
NN interaction from bag-model quark interchange
Energy Technology Data Exchange (ETDEWEB)
Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.
1982-03-01
A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV.
Studies of the strong and electroweak interactions at the Z0 pole
International Nuclear Information System (INIS)
Hildreth, M.D.
1995-03-01
This thesis presents studies of the strong and electroweak forces, two of the fundamental interactions that govern the behavior of matter at high energies. The authors have used the hadronic decays of Z 0 bosons produced with the unique experimental apparatus of the e + e - Linear Collider at the Stanford Linear Accelerator Center (SLAC) and the SLAC Large Detector (SLD) for these measurements. Employing the precision tracking capabilities of the SLD, they isolated samples of Z 0 events containing primarily the decays of the Z 0 to a chosen quark type. With an inclusive selection technique, they have tested the flavor independence of the strong coupling, α s by measuring the rates of multi-jet production in isolated samples of light (uds), c, and b quark events. They find: α s uds /α s all 0.987 ± 0.027(stat) ± 0.022(syst) ± 0.022(theory), α s c /α s all = 1.012 ± 0.104(stat) ± 0.102(syst) ± 0.096(theory), α s b /α s all = 1.026 ± 0.041(stat) ± 0.030(theory), which implies that the strong interaction is independent of quark flavor within the present experimental sensitivity. They have also measured the extent of parity-violation in the Z 0 c bar c coupling, given by the parameter A c 0 , using a sample of fully and partially reconstructed D* and D + meson decays and the longitudinal polarization of the SLC electron beam. This sample of charm quark events was derived with selection techniques based on their kinematic properties and decay topologies. They find A c 0 = 0.73 ± 0.22(stat) ± 0.10(syst). This value is consistent with that expected in the electroweak standard model of particle interactions
Gauge unification of basic forces particularly of gravitation with strong interactions
International Nuclear Information System (INIS)
Salam, A.
1977-01-01
Corresponding to the two known types of gauge theories, Yang-Mills with spin-one mediating particles and Einstein Weyl with spin-two mediating particles, it is speculated that two distinct gauge unifications of the basic forces appear to be taking place. One is the familiar Yang-Mills unification of weak and electromagnetic forces with the strong. The second is the less familiar gauge unification of gravitation with spin-two tensor-dominated aspects of strong interactions. It is proposed that there are strongly interacting spin-two strong gravitons obeying Einstein's equations, and their existence gives a clue to an understanding of the (partial) confinement of quarks, as well as of the concept of hadronic temperature, through the use of Schwarzschild de-Sitter-like partially confining solitonic solutions of the strong gravity Einstein equation
Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity
International Nuclear Information System (INIS)
Abuki, Hiroaki; Brauner, Tomas
2008-01-01
We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the 1/N expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting values of the quark-quark coupling are expected. Possible impact on the phase diagram of color-superconducting quark matter is discussed.
Toward a Strongly Interacting Scalar Higgs Particle
International Nuclear Information System (INIS)
Shalaby, Abouzeid M.; El-Houssieny, M.
2008-01-01
We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism
Hadron yields and the phase diagram of strongly interacting matter
Floris, Michele
2014-01-01
This paper presents a brief review of the interpretation of measurements of hadron yields in hadronic interactions within the framework of thermal models, over a broad energy range (from SIS to LHC energies, $\\sqrt{s_{NN}} \\simeq$ 2.5 GeV -- 5 TeV). Recent experimental results and theoretical developments are reported, with an emphasis on topics discussed during the Quark Matter 2014 conference.
''Follow that quark!'' (and other exclusive stories)
International Nuclear Information System (INIS)
Carroll, A.S.
1987-01-01
Quarks are considered to be the basic constituents of matter. In a series of recent experiments, Carroll studied exclusive reactions as a means of determining the interactions between quarks. Quantum Chromo-dynamics (QCD) is the modern theory of the interaction of quarks. This theory explains how quarks are held together via the strong interaction in particles known as hadrons. Hadrons consisting of three quarks are called baryons. Hadrons made up of a quark and an antiquark are called mesons. In his lecture, Carroll describes what happens when two hadrons collide and scatter to large angles. The violence of the collision causes the gluons that bind the quarks in a particular hadron to temporarily lose their grip on particular quarks. Quarks scramble toward renewed unity with other quarks, and they undergo rearrangement, which generally results in additional new particles. A two-body exclusive reaction has occurred when the same number of particles exist before and after the collisions. At large angles these exclusive reactions are very rare. The labels on the quarks known as flavor enable the experimenter to follow the history of individual quarks in detail during these exclusive reactions. Carroll describes the equipment used in the experiment to measure short distance, hard collisions at large angles. The collisions he discusses occur when a known beam of mesons or protons collide with a stationary proton target. Finally, Carroll summarizes what the experiments have shown from the study of exclusive reactions and what light some of their results shed on the theory of QCD
Strong interactions studies with medium energy probes
International Nuclear Information System (INIS)
Seth, K.K.
1993-10-01
This progress report refers to the period August 1992 to August 1993, which includes the first year of the three-year period December 1, 1992--November 30, 1995 of the existing research contract. As anticipated in the 1992--1995 proposal the major preoccupation during 1992--1993 was with Fermilab experiment E760. This experiment, whose primary objective is to make very high-resolution study of Charmonium Spectroscopy via proton-antiproton annihilations, has turned out to be a veritable gold-mine of exciting hadronic physics in other areas as well. These include the proton from factor in the time-life region, proton-antiproton forward scattering, QCD scaling laws, and light quark spectroscopy. A large fraction of the data from E760 have been analyzed during this year, and several papers have been published. In addition to the E760 experiment at Fermilab continued progress was made earlier nuclear physics-related experiments at LAMPF, MIT, and NIKHEF, and their results for publication. Topics include high- resolution electron scattering, quasi-free electron scattering and low-energy pion double charge exchange
The phase diagram in the SU(3) Nambu-Jona-Lasinio model with 't Hooft and eight-quark interactions
International Nuclear Information System (INIS)
Moreira, J.; Hiller, B.; Blin, A. H.; Osipov, A. A.
2010-01-01
It is shown that the endpoint of the first order transition line which merges into a crossover regime in the phase diagram of the Nambu--Jona-Lasinio model, extended to include the six-quark 't Hooft and eight-quark interaction Lagrangians, is pushed towards vanishing chemical potential and higher temperatures with increasing strength of the OZI-violating eight-quark interactions. We clarify a connection between the location of the endpoint in the phase diagram and the mechanism of chiral symmetry breaking at the quark level. Constraints on the coupling strengths based on groundstate stability and physical considerations are explained.
Energy Technology Data Exchange (ETDEWEB)
Chan, J.; DePorcel, L.; Dixon, L. [eds.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Composite-meson--quark interactions under the condition of dynamical breaking of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Hirata, M.
1989-03-01
Starting from the QCD-inspired model Hamiltonian which can lead to the dynamical breakdown of chiral symmetry, we describe a vacuum consisting of a condensate of q-barq pairs and furthermore meson states and composite-meson field operators within the new Tamm-Dancoff approximation. Using these fields operators and the Hamiltonian we construct composite-meson--quark interactions.
QCD corrections to single top quark production in electron-photon interactions
Kühn, J H; Uwer, Peter
2003-01-01
Single top quark production in electron-photon interactions provides a clean environment for the measurement of the Cabibbo-Kobayashi-Maskawa matrix element V sub t sub b. Aiming at an experimental precision at the percent level the knowledge of radiative corrections is important. In this paper we present results for the radiative corrections in quantum chromodynamics. (orig.)
The Astrophysics of Strongly Interacting Systems
Nerella, Tejaswi Venumadhav
This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars. In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation. In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch. In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10--19 G (or 10--21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons. In the final part of
International Nuclear Information System (INIS)
Burke, D.; Dixon, L.; Leith, D.W.G.S.
1997-01-01
The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings
Energy Technology Data Exchange (ETDEWEB)
Burke, D.; Dixon, L.; Leith, D.W.G.S.
1997-01-01
The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings.
De Sitter vacua of strongly interacting QFT
Energy Technology Data Exchange (ETDEWEB)
Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)
2017-03-22
We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.
Heavy quarks and their experimental consequences
International Nuclear Information System (INIS)
Appelquist, T.
1975-09-01
Recent theoretical work on heavy quark dynamics is reviewed. In the context of a color gauge theory of strong interactions, the structure of heavy quark-antiquark bound states and their decay properties is discussed. The emphasis is on the dynamical differences between heavy and light quark bound states. It is suggested that the former will more directly reflect the structure of the underlying field theory
Heavy quarks and their experimental consequences
International Nuclear Information System (INIS)
Applequist, T.
1975-01-01
Recent theoretical work on heavy quark dynamics is reviewed. In the context of a color gauge theory of strong interactions, the structure of heavy quark-antiquark bound states and their decay properties is discussed. The emphasis is on the dynamical differences between heavy and light quark bound states. It is suggested that the former will more directly reflect the structure of the underlying field theory
Phenomenology of heavy leptons and heavy quarks
International Nuclear Information System (INIS)
Gilman, F.J.
1978-11-01
The review of the quark and lepton family includes properties of the tau, SU(2) x U(1) classification of the tau and its decays, heavier leptons, the spectroscopy of heavy hadrons composed of quarks, their strong and electromagnetic decays, the weak interaction properties of the c, b, and t quarks, and the decays of hadrons containing them expected within the context of the standard SU(2) x U(1) model. 76 references
The Skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-08-01
It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei
Relativistic rapprochement of electromagnetic and strong interactions
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1995-01-01
On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs
Quark (diquark) fragmentation in soft π-p interactions at P=40 GeV/c
International Nuclear Information System (INIS)
Didenko, L.A.; Grishin, V.G.; Kuznetsov, V.A.
1984-01-01
The quark and diquark fragmentation into π +- -, K 0 -mesons and Λ-hyperons in soft π - p-interactions at 40 GeV/c is studied. Fragmentation Dsup(πsup(+-)) (Xsub(F)) and invariant Fsup(πsup(+-)) (Xsub(F)) functions are compared with analogous data on ν(anti ν)p - interactions. It is shown that a good agreement exists in the region Xsub(F) > or approximately 0.15 for these different processes. The Xsub(E)-dependence of the quark and diquark fragmentation function for neutral kaons is similar to that in e + e - annihilation. The pickup probability of strange s(anti s) quark (lambda sub(s)) and diquark (lambda sub(qq)) relative to u(anti u) and d(anti d) quarks from the sea has been found to be equal to lambda sub(s)=0.17 and lambda sub(qq)=0.14+-0.03
"Strong interaction" for particle physics laboratories
2003-01-01
A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...
Electromagnetic signals of quark gluon plasma
Indian Academy of Sciences (India)
Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...
Chemtob, M
2000-01-01
The contribution from the R parity violating interaction lambda /sub ijk/'L/sub i/Q/sub j/D/sub k//sup c/ in the associated production of a top quark (antiquark) with a charm antiquark (quark) is examined for high energy leptonic colliders. We concentrate on the reaction l /sup -/+l/sup +/ to (tc)+(ct) to (bl nu c)+(bl nu c) associated with the semileptonic top quark decay. A set of characteristic dynamical distributions for the signal events is evaluated and the results contrasted against those from the standard model W-boson pair production background. The sensitivity to parameters (R parity violating coupling constants and down-squark mass) is studied at the energies of the CERN LEP-II collider and the future linear colliders. Next, we turn to a study of a CP-odd observable, associated with the top quark spin, which leads to an asymmetry in the energy distribution of the emitted charged leptons for the pair of CP- conjugate final states bl nu c and bl nu c. A nonvanishing asymmetry arises from a CP-odd pha...
Studies of the strong and electroweak interactions at the Z^{0} pole
Energy Technology Data Exchange (ETDEWEB)
Hildreth, Michael Douglas [Stanford Univ., CA (United States)
1995-03-01
This thesis presents studies of the strong and electroweak forces, two of the fundamental interactions that govern the behavior of matter at high energies. The authors have used the hadronic decays of Z^{0} bosons produced with the unique experimental apparatus of the e^{+}e^{-} Linear Collider at the Stanford Linear Accelerator Center (SLAC) and the SLAC Large Detector (SLD) for these measurements. Employing the precision tracking capabilities of the SLD, they isolated samples of Z^{0} events containing primarily the decays of the Z^{0} to a chosen quark type. With an inclusive selection technique, they have tested the flavor independence of the strong coupling, α_{s} by measuring the rates of multi-jet production in isolated samples of light (uds), c, and b quark events. They find: α$s\\atop{uds}$/α$s\\atop{all}$ 0.987 ± 0.027(stat) ± 0.022(syst) ± 0.022(theory), α$c\\atop{s}$/α$all\\atop{s}$ = 1.012 ± 0.104(stat) ± 0.102(syst) ± 0.096(theory), α$b\\atop{s}$/α$all\\atop{s}$ = 1.026 {+-} 0.041(stat) ± 0.030(theory), which implies that the strong interaction is independent of quark flavor within the present experimental sensitivity. They have also measured the extent of parity-violation in the Z^{0} c$\\bar{c}$ coupling, given by the parameter A $0\\atop{c}$, using a sample of fully and partially reconstructed D* and D^{+} meson decays and the longitudinal polarization of the SLC electron beam. This sample of charm quark events was derived with selection techniques based on their kinematic properties and decay topologies. They find A$0\\atop{c}$ = 0.73 ± 0.22(stat) ± 0.10(syst). This value is consistent with that expected in the electroweak standard model of particle interactions.
Quark-model study of the hadron structure and the hadron-hadron interaction
International Nuclear Information System (INIS)
Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H
2011-01-01
Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.
Search for single top quark production via contact interactions at LEP2
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W-D; Arnoud, Y; Ask, S; Asman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K-H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Berat, C; Berggren, M; Bertrand, D; Besancon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Bruckman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, Ph; Checchia, P; Chierici, R; Chliapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D; Cuevas, J; D'Hondt, J; da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; De Boer, W; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; de Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelof, T; Ellert, M; Elsing, M; Espirito Santo, M C; Fanourakis, G; Fassouliotis, D; Feindt, M; Fernandez, J; Ferrer, A; Ferro, F; Flagmeyer, U; Foeth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; Garcia, C; Gavillet, Ph; Gazis, E; Gokieli, R; Golob, B; Gomez-Ceballos, G; Goncalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hoffman, J; Holmgren, S-O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kouznetsov, O; Krumstein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Lopez, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Marechal, B; Margoni, M; Marin, J-C; Mariotti, C; Markou, A; Martinez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W; Mjoernmark, U; Moa, T; Moch, M; Moenig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mueller, U; Muenich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, F; Nawrocki, K; Nemecek, S; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V; Oliveira, O; Olshevski, A; Onofre, A; Orava, R; Osterberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, Th D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdniakov, V; Pukhaeva, N; Pullia, A; Radojicic, D; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P; Richard, F; Ridky, J; Rivero, M; Rodriguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovsky, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassov, T; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tome, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M-L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Dam, P; Van Eldik, J; van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2011-01-01
Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb^-1. No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail (eds.)
2017-04-15
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
International Nuclear Information System (INIS)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail
2017-04-01
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
Weak Interaction Models with New Quarks and Right-handed Currents
Wilczek, F. A.; Zee, A.; Kingsley, R. L.; Treiman, S. B.
1975-06-01
We discuss various weak interaction issues for a general class of models within the SU(2) x U(1) gauge theory framework, with special emphasis on the effects of right-handed, charged currents and of quarks bearing new quantum numbers. In particular we consider the restrictions on model building which are imposed by the small KL - KS mass difference and by the .I = = rule; and we classify various possibilities for neutral current interactions and, in the case of heavy mesons with new quantum numbers, various possibilities for mixing effects analogous to KL - KS mixing.
Prospects for strong interaction physics at ISABELLE. [Seven papers
Energy Technology Data Exchange (ETDEWEB)
Sidhu, D P; Trueman, T L
1977-01-01
Seven papers are presented resulting from a conference intended to stimulate thinking about how ISABELLE could be used for studying strong interactions. A separate abstract was prepared for each paper for inclusion in DOE Energy Research Abstracts (ERA). (PMA)
Strongly-Interacting Fermi Gases in Reduced Dimensions
2015-11-16
superconductivity), nuclear physics (nuclear matter), high - energy physics (effective theories of the strong interactions ), astrophysics (compact stellar objects...strongly- interacting Fermi gases confined in a standing- wave CO2 laser trap. This trap produces a periodic quasi-two-dimensional pancake geometry...predictions of the phase diagram and high temperature superfluidity. Our recent measurements reveal that pairing energy and cloud profiles can be
International Nuclear Information System (INIS)
Rho, Mannque.
1980-04-01
The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology
Semicalssical quantization of interacting anyons in a strong magnetic field
International Nuclear Information System (INIS)
Levit, S.; Sivan, N.
1992-01-01
We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)
Membrane-mediated interaction between strongly anisotropic protein scaffolds.
Directory of Open Access Journals (Sweden)
Yonatan Schweitzer
2015-02-01
Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Parity violating NN forcES in the quark compound bag model
International Nuclear Information System (INIS)
Simonov, Yu.A.
1982-01-01
Parity violation (PV) in the interaction is considered as due to the Weinberg-Salam quark-quark interaction inside the six-quark bag. The initial and final strong interaction is described within the same quark compound bag (QCB) model, where the NN coupling to the six quark QCB is defined from the NN experimental data. The resulting PV amplitude contains no free parameters and allows therefore an unambiguous test of the QCB model. An estimate of the 1 S 0 → 3 P 0 contribution to the proton-proton asymmetry is in a rough agreement with experimental data [ru
Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions
International Nuclear Information System (INIS)
Chien, Y.T.; Cirigliano, V.; Dekens, W.; Vries, J. de; Mereghetti, E.
2016-01-01
We investigate direct and indirect constraints on the complete set of anomalous CP-violating Higgs couplings to quarks and gluons originating from dimension-6 operators, by studying their signatures at the LHC and in electric dipole moments (EDMs). We show that existing uncertainties in hadronic and nuclear matrix elements have a significant impact on the interpretation of EDM experiments, and we quantify the improvements needed to fully exploit the power of EDM searches. Currently, the best bounds on the anomalous CP-violating Higgs interactions come from a combination of EDM measurements and the data from LHC Run 1. We argue that Higgs production cross section and branching ratios measurements at the LHC Run 2 will not improve the constraints significantly. On the other hand, the bounds on the couplings scale roughly linearly with EDM limits, so that future theoretical and experimental EDM developments can have a major impact in pinning down interactions of the Higgs.
Mixtures of Strongly Interacting Bosons in Optical Lattices
International Nuclear Information System (INIS)
Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.
2008-01-01
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices
Glassy states in fermionic systems with strong disorder and interactions
Schwab, David J.; Chakravarty, Sudip
2009-03-01
We study the competition between interactions and disorder in two dimensions. Whereas a noninteracting system is always Anderson localized by disorder in two dimensions, a pure system can develop a Mott gap for sufficiently strong interactions. Within a simple model, with short-ranged repulsive interactions, we show that, even in the limit of strong interaction, the Mott gap is completely washed out by disorder for an infinite system for dimensions D≤2 , leading to a glassy state. Moreover, the Mott insulator cannot maintain a broken symmetry in the presence of disorder. We then show that the probability of a nonzero gap as a function of system size falls onto a universal curve, reflecting the glassy dynamics. An analytic calculation is also presented in one dimension that provides further insight into the nature of slow dynamics.
New results on strong-interaction effects in antiprotonic hydrogen
Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).
New results on strong-interaction effects in antiprotonic hydrogen
International Nuclear Information System (INIS)
Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction
Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model
Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang
2018-02-01
Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.
Strong light-matter interaction in graphene - Invited talk
DEFF Research Database (Denmark)
Xiao, Sanshui
of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interaction. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range[1]. The hybrid system is further......Graphene has attracted lots of attention due to its remarkable electronic and optical properties, thus providing great promise in photonics and optoelectronics. However, the performance of these devices is generally limited by the weak light-matter interaction in graphene. The combination...
Discriminative deep inelastic tests of strong interaction field theories
International Nuclear Information System (INIS)
Glueck, M.; Reya, E.
1979-02-01
It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de
Strongly interacting mesoscopic systems of anyons in one dimension
DEFF Research Database (Denmark)
Zinner, N. T.
2015-01-01
Using the fractional statistical properties of so-called anyonic particles, we present exact solutions for up to six strongly interacting particles in one-dimensional confinement that interpolate the usual bosonic and fermionic limits. Specifically, we consider two-component mixtures of anyons...
Interplay of Anderson localization and strong interaction in disordered systems
Energy Technology Data Exchange (ETDEWEB)
Henseler, Peter
2010-01-15
We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)
Interplay of Anderson localization and strong interaction in disordered systems
International Nuclear Information System (INIS)
Henseler, Peter
2010-01-01
We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)
A systematic study of the strong interaction with PANDA
Messchendorp, J. G.; Hosaka, A; Khemchandani, K; Nagahiro, H; Nawa, K
2011-01-01
The theory of Quantum Chromo Dynamics (QCD) reproduces the strong interaction at distances much shorter than the size of the nucleon. At larger distance scales, the generation of hadron masses and confinement cannot yet be derived from first principles on basis of QCD. The PANDA experiment at FAIR
Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium
Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M
1999-01-01
In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).
Emergence of junction dynamics in a strongly interacting Bose mixture
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas
We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the...
Directory of Open Access Journals (Sweden)
Brigitte Hiller
2006-02-01
Full Text Available Low energy hadron phenomenology involving the (u,d,s quarks is often approached through effective multi-quark Lagrangians with the symmetries of QCD. A very successful approach consists in taking the four-quark Nambu--Jona-Lasinio Lagrangianwith the chiral $U_L(3imes U_R(3$ symmetry in the massless limit, combined with the $U_A(1$ breaking six-quark flavourdeterminant interaction of 't Hooft. We review the present status and some very recent developments related to the functionalintegration over the cubic term in auxiliary mesonic variables that one introduces to bosonize the system. Various approaches forhandling this functional, which cannot be integrated exactly, are discussed: the stationary phase approximation, the perturbative expansion, the loop expansion, their interrelation and importance for the evaluation of the effective action. The intricate group structure rules out the method of Airy's integral. The problem ofthe instability of the vacuum is stated and a solution given by including eight-quark interactions.
Symmetry-protected collisions between strongly interacting photons.
Thompson, Jeff D; Nicholson, Travis L; Liang, Qi-Yu; Cantu, Sergio H; Venkatramani, Aditya V; Choi, Soonwon; Fedorov, Ilya A; Viscor, Daniel; Pohl, Thomas; Lukin, Mikhail D; Vuletić, Vladan
2017-02-09
Realizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems. Here, using coherent coupling between light and Rydberg excitations in an ultracold atomic gas, we demonstrate a controlled and coherent exchange collision between two photons that is accompanied by a π/2 phase shift. The effect is robust in that the value of the phase shift is determined by the interaction symmetry rather than the precise experimental parameters, and in that it occurs under conditions where photon absorption is minimal. The measured phase shift of 0.48(3)π is in excellent agreement with a theoretical model. These observations open a route to realizing robust single-photon switches and all-optical quantum logic gates, and to exploring novel quantum many-body phenomena with strongly interacting photons.
Review of Top Quark Physics Results
Energy Technology Data Exchange (ETDEWEB)
Kehoe, R.; Narain, M.; Kumar, A.
2007-12-01
As the heaviest known fundamental particle, the top quark has taken a central role in the study of fundamental interactions. Production of top quarks in pairs provides an important probe of strong interactions. The top quark mass is a key fundamental parameter which places a valuable constraint on the Higgs boson mass and electroweak symmetry breaking. Observations of the relative rates and kinematics of top quark final states constrain potential new physics. In many cases, the tests available with study of the top quark are both critical and unique. Large increases in data samples from the Fermilab Tevatron have been coupled with major improvements in experimental techniques to produce many new precision measurements of the top quark. The first direct evidence for electroweak production of top quarks has been obtained, with a resulting direct determination of V{sub tb}. Several of the properties of the top quark have been measured. Progress has also been made in obtaining improved limits on potential anomalous production and decay mechanisms. This review presents an overview of recent theoretical and experimental developments in this field. We also provide a brief discussion of the implications for further efforts.
International Nuclear Information System (INIS)
Rozanska, M.; Jezabek, M.
1991-04-01
Three version of a model with colour excitations of constituent quarks are examined using inclusive leading proton and antiproton spectra in nuclear interactions at high energies. The comparison with experimental data excludes the models in which fragmentation into leading final hadrons depends only on the colour charge of constituents in an intermediate system. (author)
International Nuclear Information System (INIS)
Rosner, J.L.
1985-10-01
New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs
Finding strongly interacting symmetry breaking at the SSC
International Nuclear Information System (INIS)
Golden, M.
1989-02-01
Pairs of gauge bosons, W and Z, are a probe of the electroweak symmetry-breaking sector, since the numbers of two gauge boson events are much larger in strongly coupled models than weak. The doubly charged channels W + W + and W/sup /minus//W/sup/minus// are cleanest, since they do not suffer from q/bar q/ or gg fusion backgrounds. The like-charged gauge boson events are observable only if the symmetry breaking sector is strongly interacting. 19 refs., 4 figs., 2 tabs
The Model of Complex Structure of Quark
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Experimental problems of search for quark-gluon plasma in nucleus-nucleus interactions
International Nuclear Information System (INIS)
Okonov, Eh.O.
1987-01-01
Experimental problems for searching for quark-gluon (quagma) plasma in nucleus-nucleus interactions (NbNb,CaCa, ArPb, CnE, ONe) in the energy range E=0.4-1 GeV/A and 3.67 GeV/A and 200 GeV/A energies are discussed. Peculiarities of performing experiments on Dubna synchrophasotron and SPS Bevalac are discussed. The first results prove hadron matter thermalization sufficient for quagma manifestation. It is found that such characteristics of studied interactions as relative λ-hyperon yield, spectral (temperature) characteristics of λ k -hyperons (with higher values of transferred transverse momenta) and associatively produced peons are of greatest interest. The necessity of precise establishment of λ-hyperon group as excessive and differing in its origin from the other particles of the hadron phase is noted. It is shown that experimental approach used in Dubna research proved efficient and requires further development. It includes : selection of rare events (fluctuations) in central interactions of nuclei with high local excitation; search and research of peculiarities in the production of strange particles and in associative pion production; use of streamer spectrometer with a trigger system of rigid selection of central interactions
On the strong crack-microcrack interaction problem
Gorelik, M.; Chudnovsky, A.
1992-07-01
The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.
Ruling out a strongly interacting standard Higgs model
International Nuclear Information System (INIS)
Riesselmann, K.; Willenbrock, S.
1997-01-01
Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society
A connection between the strong and weak interactions
International Nuclear Information System (INIS)
Treiman, S.B.
1989-01-01
By studying weak scattering reactions (such as pion-nucleon scattering), the author and his colleague Marvin L Goldberger became renowned in the 1950s for work on dispersion relations. As a result of their collaboration a remarkable and unexpected connection was found between strong and weak interaction quantities. Agreement with experiment was good. Work by others found the same result, but via the partially conserved axial reactor current relation between the axial current divergence and the canonical pion field. (UK)
Thermodynamics of strong-interaction matter from Lattice QCD
Ding, Heng-Tong; Karsch, Frithjof; Mukherjee, Swagato
2015-01-01
We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open he...
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
The Electron-Phonon Interaction in Strongly Correlated Systems
International Nuclear Information System (INIS)
Castellani, C.; Grilli, M.
1995-01-01
We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)
Yazgan, Efe
2015-01-01
Measurements involving top quarks provide important tests of QCD. A selected set of top quark measurements in CMS including the strong coupling constant, top quark pole mass, constraints on parton distribution functions, top quark pair differential cross sections, ttbar+0 and >0 jet events, top quark mass studied using various kinematic variables in different phase-space regions, and alternative top quark mass measurements is presented. The evolution of expected uncertainties in future LHC runs for the standard and alternative top quark mass measurements is also presented.
Heavy quark threshold dynamics in higher order
Energy Technology Data Exchange (ETDEWEB)
Piclum, J.H.
2007-05-15
In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)
Hadronization of quark theories and bilocal QED
International Nuclear Information System (INIS)
Kleinert, H.
1977-01-01
There are two approaches to strong interactions: colored quark gluon theory and the dual model. For the simplified situation where gluons are color synglets with an arbitrary mass an equivalence of both approaches is established. Using functional methods quantum flavour dynamics is transformed into an equivalent bilocal field theory, whose bare quanta propagate and interact just like hadrons in dual diagrams
Strong-force theorists scoop Noble Prize
Durrani, Matin
2004-01-01
Three US theorists have shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic freedom in the theory of the strong interaction". Their theoretical work explains why quarks behave almost as free particles at high energies (½ page)
Dynamical symmetry breaking in models with strong Yukawa interactions
Czech Academy of Sciences Publication Activity Database
Beneš, Petr
2012-01-01
Roč. 62, 1-2 (2012), s. 1-274 ISSN 0323-0465 R&D Projects: GA ČR GA202/06/0734; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : spontaneus symmetry breaking * Gauge symmetries * nonperturbative techniques * radiative symmetry breaking * Quark and lepton masses * Cabibbo-Kobayashi-Maskawa matrix elements * extensions of electroweak Higgs sector Subject RIV: BE - Theoretical Physics Impact factor: 1.333, year: 2012
Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality
Energy Technology Data Exchange (ETDEWEB)
Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)
2008-08-01
This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.
Emergence of junction dynamics in a strongly interacting Bose mixture
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas
We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry...... of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared...
Strongly modified plasmon-matter interaction with mesoscopic quantum emitters
DEFF Research Database (Denmark)
Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders
2011-01-01
Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...
Strongly interacting atom lasers in three-dimensional optical lattices.
Hen, Itay; Rigol, Marcos
2010-10-29
We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.
Heavy quark spectroscopy and decay
Energy Technology Data Exchange (ETDEWEB)
Schindler, R.H.
1987-01-01
The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.
Ising models of strongly coupled biological networks with multivariate interactions
Merchan, Lina; Nemenman, Ilya
2013-03-01
Biological networks consist of a large number of variables that can be coupled by complex multivariate interactions. However, several neuroscience and cell biology experiments have reported that observed statistics of network states can be approximated surprisingly well by maximum entropy models that constrain correlations only within pairs of variables. We would like to verify if this reduction in complexity results from intricacies of biological organization, or if it is a more general attribute of these networks. We generate random networks with p-spin (p > 2) interactions, with N spins and M interaction terms. The probability distribution of the network states is then calculated and approximated with a maximum entropy model based on constraining pairwise spin correlations. Depending on the M/N ratio and the strength of the interaction terms, we observe a transition where the pairwise approximation is very good to a region where it fails. This resembles the sat-unsat transition in constraint satisfaction problems. We argue that the pairwise model works when the number of highly probable states is small. We argue that many biological systems must operate in a strongly constrained regime, and hence we expect the pairwise approximation to be accurate for a wide class of problems. This research has been partially supported by the James S McDonnell Foundation grant No.220020321.
International Nuclear Information System (INIS)
Alkofer, R.; Reinhardt, H.
1995-01-01
This book is an introduction to chiral quark dynamics. In the first chapter the reduction of low-energy QCD to QFD with the derivation of effective low-energy quark interactions and invariance properties is described. Then the effective meson theory is introduced. In this connection the functional integral bosonization of the quark-antiquark interaction, the small amplitude expansion of the action, the dynamical breaking of chiral symmetry, the Bethe-Salpeter equation for pseudoscalar mesons, the gauged linear σ model, the Skyrme model, and the chiral anomaly are considered. Then baryons are described as chiral solitons. Finally baryons are considered as bound states of diquarks and quarks. (HSI)
QCD Green's Functions and Phases of Strongly-Interacting Matter
Directory of Open Access Journals (Sweden)
Schaefer B.J.
2011-04-01
Full Text Available After presenting a brief summary of functional approaches to QCD at vanishing temperatures and densities the application of QCD Green's functions at non-vanishing temperature and vanishing density is discussed. It is pointed out in which way the infrared behavior of the gluon propagator reflects the (de-confinement transition. Numerical results for the quark propagator are given thereby verifying the relation between (de--confinement and dynamical chiral symmetry breaking (restoration. Last but not least some results of Dyson-Schwinger equations for the color-superconducting phase at large densities are shown.
Noise in strong laser-atom interactions: Phase telegraph noise
International Nuclear Information System (INIS)
Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.
1984-01-01
We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions
International Nuclear Information System (INIS)
Larsen, R.C.; Leipuner, L.B.; Morse, W.M.; Adair, R.K.; Kasha, H.; Schmidt, M.P.
1983-01-01
An experiment to search for quarks at the CBA is described. The cross sections for the production of massive quark-antiquark pairs in nucleon-nucleon interactions is estimated, and the experimental design and procedures are described
Introduction to gauge theories of the strong, weak, and electromagnetic interactions
International Nuclear Information System (INIS)
Quigg, C.
1980-07-01
The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios
Towards a unified gauge theory of gravitational and strong interactions
International Nuclear Information System (INIS)
Hehl, F.W.; Sijacki, D.
1980-01-01
The space-time properties of leptons and hadrons is studied and it is found necessary to extend general relativity to the gauge theory based on the four-dimensional affine group. This group translates and deforms the tetrads of the locally Minkowskian space-time. Its conserved currents, momentum, and hypermomentum, act as sources in the two field equations of gravity. A Lagrangian quadratic in torsion and curvature allows for the propagation of two independent gauge fields: translational e-gravity mediated by the tetrad coefficients, and deformational GAMMA-gravity mediated by the connection coefficients. For macroscopic matter e-gravity coincides with general relativity up to the post-Newtonian approximation of fourth order. For microscopic matter GAMMA-gravity represents a strong Yang-Mills type interaction. In the linear approximation, for a static source, a confinement potential is found. (author)
Ion Motion in a Plasma Interacting with Strong Magnetic Fields
International Nuclear Information System (INIS)
Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.
1999-01-01
The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized
Energy Technology Data Exchange (ETDEWEB)
Klijnsma, Thomas; Dissertori, Guenther [ETH Zurich, Institute for Particle Physics, Zurich (Switzerland); Bethke, Siegfried [Max-Planck-Institute of Physics, Munich (Germany); Salam, Gavin P. [CERN, Theoretical Physics Department, Geneva (Switzerland); CNRS, UMR 7589, LPTHE, Paris (France)
2017-11-15
We present a determination of the strong coupling constant α{sub s} (m{sub Z}) using inclusive top-quark pair production cross section measurements performed at the LHC and at the Tevatron. Following a procedure first applied by the CMS Collaboration, we extract individual values of α{sub s} (m{sub Z}) from measurements by different experiments at several centre-of-mass energies, using QCD predictions complete in NNLO perturbation theory, supplemented with NNLL approximations to all orders, and suitable sets of parton distribution functions. The determinations are then combined using a likelihood-based approach, where special emphasis is put on a consistent treatment of theoretical uncertainties and of correlations between various sources of systematic uncertainties. Our final combined result is α{sub s} (m{sub Z}) = 0.1177{sup +0.0034}{sub -0.0036}. (orig.)
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
International Nuclear Information System (INIS)
Levchenko, B.B.; Nikolaev, N.N.
1985-01-01
In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)
Can confinement ensure natural CP-invariance of strong interactions
International Nuclear Information System (INIS)
Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.
1979-01-01
P- and T-invariance violation in quantum chromodynamics (QCD) due to the so called THETA term Δα=THETAxgsub(s)sup(2)/32πsup(2)xGsub(μν)sup(a)xGsub(μν)sup(a) tilde, where Gsub(μν)sup(a) is the gluon field strength tensor, and gsub(s) is the quark-gluon coupling constant is discussed. It is shown that irrespectively of how the confinement works there emerge observable P- and T-odd effects. The proof is based on the assumption that QCD resolves the upsilon(1) problem, i.e. the mass of the singlet pseudoscalar meson does not vanish in the chiral limit. A modification of the axion scheme which restores the natural P and T invariance of the theory is suggested and cannot be ruled out experimentally
High-energy strong interactions: from `hard' to `soft'
Ryskin, M. G.; Martin, A. D.; Khoze, V. A.
2011-04-01
We discuss the qualitative features of the recent data on multiparticle production observed at the LHC. The tolerable agreement with Monte Carlos based on LO DGLAP evolution indicates that there is no qualitative difference between `hard' and `soft' interactions; and that a perturbative QCD approach may be extended into the soft domain. However, in order to describe the data, these Monte Carlos need an additional infrared cutoff k min with a value k min ˜2-3 GeV which is not small, and which increases with collider energy. Here we explain the physical origin of the large k min . Using an alternative model which matches the `soft' high-energy hadron interactions smoothly on to perturbative QCD at small x, we demonstrate that this effective cutoff k min is actually due to the strong absorption of low k t partons. The model embodies the main features of the BFKL approach, including the diffusion in transverse momenta, ln k t , and an intercept consistent with resummed next-to-leading log corrections. Moreover, the model uses a two-channel eikonal framework, and includes the contributions from the multi-Pomeron exchange diagrams, both non-enhanced and enhanced. The values of a small number of physically-motivated parameters are chosen to reproduce the available total, elastic and proton dissociation cross section (pre-LHC) data. Predictions are made for the LHC, and the relevance to ultra-high-energy cosmic rays is briefly discussed. The low x inclusive integrated gluon PDF, and the diffractive gluon PDF, are calculated in this framework, using the parameters which describe the high-energy pp and pbar{p} ` soft' data. Comparison with the PDFs obtained from the global parton analyses of deep inelastic and related hard scattering data and from diffractive deep inelastic data looks encouraging.
Status of the quark gluon plasma search
Indian Academy of Sciences (India)
A selection of results are discussed that support the conclusion that strongly interacting quark gluon plasma is produced in heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL. Author Affiliations. Terry C Awes1. Oak Ridge National Laboratory, Oak Ridge, TN 37831. Pramana – Journal of Physics. Current Issue ...
Peptide-microgel interactions in the strong coupling regime.
Hansson, Per; Bysell, Helena; Månsson, Ronja; Malmsten, Martin
2012-09-06
The interaction between lightly cross-linked poly(acrylic acid) microgels and oppositely charged peptides was investigated as a function of peptide length, charge density, pH, and salt concentration, with emphasis on the strong coupling regime at high charge contrast. By micromanipulator-assisted light microscopy, the equilibrium volume response of single microgel particles upon oligolysine and oligo(lysine/alanine) absorption could be monitored in a controlled fashion. Results show that microgel deswelling, caused by peptide binding and network neutralization, increases with peptide length (3 attraction between the network chains is described using an exponential force law, and the network elasticity by the inverse Langevin theory. The model was used to calculate the composition of microgels in contact with reservoir solutions of peptides and simple electrolytes. At high electrostatic coupling, the calculated swelling curves were found to display first-order phase transition behavior. The model was demonstrated to capture pH- and electrolyte-dependent microgel swelling, as well as effects of peptide length and charge density on microgel deswelling. The analysis demonstrated that the peptide charge (length), rather than the peptide charge density, determines microgel deswelling. Furthermore, a transition between continuous and discrete network collapse was identified, consistent with experimental results in the present investigations, as well as with results from the literature on microgel deswelling caused by multivalent cations.
Discovery of single top quark production
Energy Technology Data Exchange (ETDEWEB)
Gillberg, Dag [Simon Fraser Univ., Burnaby, BC (Canada)
2009-04-01
The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking - the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. An analysis is performed using 2.3 fb^{-1} of data recorded by the D0 detector at the Fermilab Tevatron Collider at centre-of-mass energy √s = 1.96 TeV. Boosted decision trees are used to isolate the single top signal from background, and the single top cross section is measured to be σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.74_{-0.74}^{+0.95} pb. Using the same analysis, a measurement of the amplitude of the CKM matrix element V_{tb}, governing how top and b quarks mix, is also performed. The measurement yields: |V{sub tb}|f_{1}^{L}| = 1.05 -_{0.12}^{+0.13}, where f_{1}^{L} is the left-handed Wtb coupling. The separation of signal from background is improved by combining the boosted decision trees with two other multivariate techniques. A new cross section measurement is performed, and the significance for the excess over the predicted background exceeds 5
Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction
Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.
2017-06-01
We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.
The colours of strong interaction; L`interaction forte sous toutes ses couleurs
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)
AUTHOR|(INSPIRE)INSPIRE-00508100
The strong interaction is one of the four fundamental forces of nature. It binds together quarks inside protons and neutrons (which are example of baryons - particles composed of three quarks) and assures the stability of the atomic nucleus. Parameters describing the strong potential are also crucial for the neutron stars models used in astrophysics. What is more, a precise study of strongly interacting particles may help to better understand the process of baryon annihilation. The current knowledge of the strong interactions between baryons other than nucle- ons is limited - there exist only a few measurements of the cross sections for pairs of (anti)baryons. The reason is that in many cases it is not possible to perform scattering experiments with beams of particles and antiparticles, as the exotic matter (such as Λ, Ξ or Σ baryons) is very shot-living. This issue can be solved thanks to the recent particle colliders like the Large Hadron Collider and experiments dedicated to study the heavy-ion collisio...
Searches for baryons with multiple heavy quarks at LHCb
CERN. Geneva
2017-01-01
Hadrons are systems bound by the strong interaction, which is described at the fundamental level by quantum chromodynamics (QCD). While QCD is well understood at high energy in the perturbative regime, low-energy phenomena, such as the binding of quarks and gluons within hadrons, are more difficult to predict. High precision measurements are then of paramount importance to test the reliability of several models and computational techniques, such as constituent-quark models or lattice-QCD calculations, in predicting the mass spectrum and the properties of hadrons. Owing to its excellent capabilities with particle identification, tracking and vertex reconstruction, LHCb is in a unique position to make significant contributions to the sector of particle spectroscopy. For example, five narrow structures have been recently observed in the $\\Xi_c^+K^-$ mass spectrum, consistent with excited $\\Omega_c^{0}$ states, composed of a charm quark and two strange quarks. Despite the fact that the quark model predicts the ex...
Unlocking color and flavor in superconducting strange quark matter
International Nuclear Information System (INIS)
Alford, Mark; Berges, Juergen; Rajagopal, Krishna
1999-01-01
We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities
A new parametric equation of state and quark stars
International Nuclear Information System (INIS)
Na Xuesen; Xu Renxin
2011-01-01
It is still a matter of debate to understand the equation of state of cold matter with supra-nuclear density in compact stars because of unknown non-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect that the inter-cluster interaction will share some general features with the nucleon- nucleon interaction successfully depicted by various models. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume that the wave function of quark clusters have a Gaussian form. With this parametrization, the Tolman-Oppenheimer-Volkoff equation is solved with reasonably constrained parameter space to give mass-radius relations of crystalline solid quark stars. With baryon number densities truncated at 2n 0 at surface and the range of the interaction fixed at 2 fm we can reproduce similar mass-radius relations to that obtained with bag model equations of state. The maximum mass ranges from ∼ 0.5 solar mass to approx.> 3 solar mass . The recently measured high pulsar mass (approx.> 2 solar mass ) is then used to constrain the parameters of this simple interaction potential. (authors)
Low-temperature behavior of the quark-meson model
Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen
2018-02-01
We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.
Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions
Energy Technology Data Exchange (ETDEWEB)
Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)
2016-12-15
The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.
Universal parametrization for quark and lepton substructure
International Nuclear Information System (INIS)
Akama, Keiichi; Terazawa, Hidezumi.
1994-01-01
A universal parametrization for possible quark and lepton substructure is advocated in terms of quark and lepton form factors. It is emphasized that the lower bounds on compositeness scale, Λ c , to be determined experimentally strongly depend on their definitions in composite models. From the recent HERA data, it is estimated to be Λ c > 50 GeV, 0.4 TeV and 10 TeV, depending on the parametrizations with a single-pole form factor, a contact interaction and a logarithmic form factor, respectively. (author)
Cold quarks stars from hot lattice QCD
International Nuclear Information System (INIS)
Schulze, R.; Kaempfer, B.
2010-01-01
At small net baryon densities ab initio lattice QCD provides valuable information on the finite-temperature equation of state of strongly interacting matter. Our phenomenological quasiparticle model provides a means to map such lattice results to regions relevant for future heavy-ion experiments at large baryon density; even the cool equation of state can be inferred to address the issue of quark stars. We report on (i) the side conditions (charge neutrality, beta equilibrium) in mapping latest lattice QCD results to large baryon density and (ii) scaling properties of emerging strange quark stars. (author)
International Nuclear Information System (INIS)
Rosner, J.L.
1981-01-01
This paper invites experimenters to consider the wide variety of tests suggested by the new aspects of quark models since the discovery of charm and beauty, and nonrelativistic models. Colors and flavours are counted and combined into hadrons. The current quark zoo is summarized. Models and theoretical background are studied under: qualitative QCD: strings and bags, potential models, relativistic effects, electromagnetic transitions, gluon emissions, and single quark transition descriptions. Hadrons containing quarks known before 1974 (i.e. that can be made of ''light'' quarks u, d, and s) are treated in Section III, while those containing charmed quarks and beauty (b) quarks are discussed in Section IV. Unfolding the properties of the sixth quark from information on its hadrons is seen as a future application of the methods used in this study
CLEO-c and CESR-c: A new frontier in strong and weak interactions
Energy Technology Data Exchange (ETDEWEB)
Richichi, Stephen J
2003-06-01
We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: ''CESR-c and OLEO-c''. Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model.
CLEO-c and CESR-c: A new frontier in strong and weak interactions
Richichi, Stephen J.
2003-06-01
We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: "CESR-c and OLEO-c". Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model.
CLEO-c and CESR-c: A new frontier in strong and weak interactions
International Nuclear Information System (INIS)
Richichi, Stephen J.
2003-01-01
We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: ''CESR-c and OLEO-c''. Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model
Interaction of neutral particles with strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2013-07-01
Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.
Intensities and strong interaction attenuation of kaonic x-rays
Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig
1974-01-01
Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).
Quark effects in nuclear physics
International Nuclear Information System (INIS)
Miller, G.A.
1983-01-01
A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references
Dynamical fermion mass generation by a strong Yukawa interaction
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš; Hošek, Jiří
2005-01-01
Roč. 72, č. 4 (2005), 045007 ISSN 0556-2821 R&D Projects: GA MŠk LA 080; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : dynamical mass generation * Yukawa interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.852, year: 2005
Coulomb plus strong interaction bound states - momentum space numerical solutions
International Nuclear Information System (INIS)
Heddle, D.P.; Tabakin, F.
1985-01-01
The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)
Quantum memory with strong and controllable Rydberg-level interactions.
Li, Lin; Kuzmich, A
2016-11-21
Realization of distributed quantum systems requires fast generation and long-term storage of quantum states. Ground atomic states enable memories with storage times in the range of a minute, however their relatively weak interactions do not allow fast creation of non-classical collective states. Rydberg atomic systems feature fast preparation of singly excited collective states and their efficient mapping into light, but storage times in these approaches have not yet exceeded a few microseconds. Here we demonstrate a system that combines fast quantum state generation and long-term storage. An initially prepared coherent state of an atomic memory is transformed into a non-classical collective atomic state by Rydberg-level interactions in less than a microsecond. By sheltering the quantum state in the ground atomic levels, the storage time is increased by almost two orders of magnitude. This advance opens a door to a number of quantum protocols for scalable generation and distribution of entanglement.
Theoretical studies in weak, electromagnetic and strong interactions. Attachments
International Nuclear Information System (INIS)
Nandi, S.
1999-01-01
The project covered a wide area of current research in theoretical high-energy physics. This included Standard Model (SM) as well as physics beyond the Standard Model. Specific topics included supersymmetry (SUSY), perturbative quantum chromodynamics (QCD), a new weak interaction for the third family (called topflavor), neutrino masses and mixings, topcolor model, Pade approximation, and its application to perturbative QCD and other physical processes
Evidence for production of single top quarks
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Simon Fraser U.; Ahn, S.H.; /Korea U., KODEL; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP /Michigan U.
2008-03-01
We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p{bar p} collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top quark partner that is always produced from strong coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top quark production has been searched for in ever larger datasets. In this analysis, we select events from a 0.9 fb{sup -1} dataset that have an electron or muon and missing transverse energy from the decay of a W boson from the top quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W+jets and t{bar t} events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top quark production of {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.7 {+-} 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find |V{sub tb}f{sub 1}{sup L}| = 1.31{sub -0.21}{sup +0.25}, where f{sub 1}{sup L} is a generic vector coupling. This model-independent measurement translates into 0.68 < |V{sub tb}| {le} 1 at the 95% C.L. in the standard model.
Testing the Standard Model for the electroweak interactions of the heavy quarks
International Nuclear Information System (INIS)
Perret, Pascal
2002-01-01
The standard model was a solid theoretical construction. It faced successfully all the tests done at LEP between 1989 and 2000 within 90 GeV to 209 GeV range. The thesis describes the precision measurements of the physical parameters in the heavy quark sector and the tests of the electroweak standard model. The work consists in five parts. The first part is dedicated to some theoretical preliminaries. The electroweak Standard Model is briefly reviewed as well as the necessary elements of the study of heavy flavors. Testing the predictions of the Standard Model and Quantum Chromodynamics requires a comprehensive understanding of heavy quarks. In the second part the LEP accelerator and the ALEPH detector are described as well as the lepton identification within ALEPH, particularly of the electrons. The data acquired in the first LEP phase the interest was allowed investigating the properties of b and c heavy quarks, essential in testing the Standard Model. The studies on b quarks were of most interest because these quarks were more easily to be evidenced experimentally, while the insights on Standard Model are more significant. This quark is heavier (m b = 4 to 4.4 GeV/c 2 ), has a longer lifetime (τ b = 1.564 ± 0.014 ps) and presents the most important semileptonic branching ratios (B(b → l) ∼ 11% ). The principal tools used in their studies were the leptons issued from their decays. In more than 80% of the Z 0 → bb-bar events there is at least one lepton (an electron or muon) issued from the direct or secondary decay of a beauty hadron. In the case of charm, 40% of events produce at least one lepton. By taking into account the lepton identification accuracy and the fact that a number of kinetic cuts should be applied to get rid of the too high a background noise (p > 2 or 3 GeV/c), 50% of the leptons are lost. The fraction is however high and additional criteria should be applied in order to increase the amount of interesting events. Hence, a vertex
Y-Scaling in a simple quark model
International Nuclear Information System (INIS)
Kumano, S.; Moniz, E.J.
1988-01-01
A simple quark model is used to define a nuclear pair model, that is, two composite hadrons interacting only through quark interchange and bound in an overall potential. An ''equivalent'' hadron model is developed, displaying an effective hadron-hadron interaction which is strongly repulsive. We compare the effective hadron model results with the exact quark model observables in the kinematic region of large momentum transfer, small energy transfer. The nucleon reponse function in this y-scaling region is, within the traditional frame work sensitive to the nucleon momentum distribution at large momentum. We find a surprizingly small effect of hadron substructure. Furthermore, we find in our model that a simple parametrization of modified hadron size in the bound state, motivated by the bound quark momentum distribution, is not a useful way to correlate different observables
A relativized quark model for radiative baryon transitions
International Nuclear Information System (INIS)
Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.
1989-03-01
In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)
Muons probe strong hydrogen interactions with defective graphene.
Riccò, Mauro; Pontiroli, Daniele; Mazzani, Marcello; Choucair, Mohammad; Stride, John A; Yazyev, Oleg V
2011-11-09
Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH(2)) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples.
Interaction of Azobenzene and Benzalaniline with Strong Amido Bases.
Kornev, Alexander N; Sushev, Vyacheslav V; Zolotareva, Natalia V; Baranov, Evgenii V; Fukin, Georgy K; Abakumov, Gleb A
2015-12-18
The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.
Spin effects in strong-field laser-electron interactions
International Nuclear Information System (INIS)
Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C
2013-01-01
The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.
Strongly-interacting mirror fermions at the LHC
Directory of Open Access Journals (Sweden)
Triantaphyllou George
2017-01-01
Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.
't Hooft, Gerardus
QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…
A non-linear theory of strong interactions
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs
Cheshire cat phenomena and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1986-11-01
The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum
Screening of heavy quarks and hadrons at finite temperature and density
Energy Technology Data Exchange (ETDEWEB)
Doering, M.
2006-09-22
Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16{sup 3} x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T{sub c}. The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)
Screening of heavy quarks and hadrons at finite temperature and density
International Nuclear Information System (INIS)
Doering, M.
2006-01-01
Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16 3 x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T c . The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)
Magnetic dynamics of weakly and strongly interacting hematite nanoparticles
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen
2000-01-01
The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance.......3(-0.8)(+1.0) x 10(-10) s for a rotation of the sublattice magnetization directions in the rhombohedral (111) plane. The corresponding median superparamagnetic blocking temperature is about 150 K. The dynamics of the second, dry sample, in which the particles are uncoated and thus allowed to aggregate, is slowed...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...
Light and neutron scattering study of strongly interacting ionic micelles
International Nuclear Information System (INIS)
Degiorgio, V.; Corti, M.; Piazza, R.
1989-01-01
Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs
Strong delayed interactive effects of metal exposure and warming
DEFF Research Database (Denmark)
Debecker, Sara; Dinh, Khuong Van; Stoks, Robby
2017-01-01
As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...
Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking
Konstandin, Thomas
2011-01-01
The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Taylor, John C.
1984-01-01
Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
Meson dynamics beyond the quark model: a study of final state interactions
International Nuclear Information System (INIS)
Au, K.L.; Pennington, M.R.; Morgan, D.
1986-09-01
A scalar glueball is predicted in the 1 GeV mass region. The present analysis is concerned with experimental evidence for such a state. Recent high statistics results on central dimeson production at the ISR enable the authors to perform an extensive new coupled channel analysis of I = O S-wave ππ and KK-bar final states. This unambiguously reveals three resonances in the 1 GeV region - S 1 (991), S 2 (988) and epsilon(900) - where the naive quark model expects just two. These new features are discussed including how they may be confirmed experimentally and their present interpretation. The S 1 (991) is a plausible candidate for the scalar glueball. Other production reactions are examined (heavy flavour decays and γγ reactions) which lead to the same final states. (author)
Barducci, D.; Fabbrichesi, M.; Tonero, A.
2017-10-01
We identify the differential cross sections for t t ¯ production and the total cross section for Higgs production through gluon fusion as the processes in which the two effective operators describing the leading nonstandard interactions of the top quark with the gluon can be disentangled and studied in an independent fashion. Current data on the Higgs production and the d σ /d pTt differential cross section provide limits comparable to, but not more stringent than, those from the total t t ¯ cross sections measurements at the LHC and Tevatron, where however the two operators enter on the same footing and can only be constrained together. We conclude by stating the (modest) reduction in the uncertainties necessary to provide more stringent limits by means of the Higgs production and t t ¯ differential cross section observables at the LHC with the future luminosity of 300 and 3000 fb-1 .
Study of the interaction of atoms with strong laser fields
International Nuclear Information System (INIS)
Edwards, M.
1984-01-01
Three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks that corresponded to the absorption of more than the minimum number of photons required to ionize the atom. A model approximation here showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis, namely: a study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a two-level atom. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) that attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. This study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm -2
Bottom-quark production from muon-jet and dimuon events in p bar p-interactions at √s = 1.8 TeV
International Nuclear Information System (INIS)
Huehn, T.
1994-09-01
Bottom quark production in p bar p-interactions has been measured in the rapidity range | y b | -1 and 6.4 pb -1 of data for the muon-jets and dimuon analysis, respectively, and are compared to next-to-leading order QCD predictions. The measurements are consistent within errors and are in reasonable agreement with QCD predictions
Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics
International Nuclear Information System (INIS)
Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.
1994-06-01
By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)
International Nuclear Information System (INIS)
Thews, R.L.
1986-01-01
The research reported includes: low energy quark-hadron dynamics; quark-gluon models for hadronic interactions, decays and structure; mathematical and physical properties of nonlinear sigma models, Yang-Mills theories, and Coulomb gases, which are of interest in both particle physics and condensed matter physics; statistical and dynamical aspects of hadronic multiparticle production. 28 refs
International Nuclear Information System (INIS)
Senda Ikuo.
1991-05-01
We propose dynamical models of hadrons, the nucleation model and the free-decay model, in which results of string model are used to represent interactions. The dynamical properties of hadrons, which are obtained by string model, are examined and their parameters are fitted by experimental data. The equilibrium properties of hadrons at high density are investigated by the nucleation model and we found a singular behaviour at energy density 3 ∼ 5 GeV/fm 3 , where hadrons coalesce to create highly excited states. We argue that this singular behaviour corresponds to the phase transition to quark-gluon plasma. The possibility to observe the production of high density strongly interacting matter at collider experiments are discussed using the free-decay model, which produces pion distributions as decay products of resonances. We show that our free-decay model recovers features of hadron distributions obtained in hadron collision experiments. Finally the perspectives and extensions are discussed. (author). 34 refs, 19 figs, 2 tabs
DEFF Research Database (Denmark)
Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas
2017-01-01
We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous...
Energy Technology Data Exchange (ETDEWEB)
Fuecker, M.
2007-05-15
This thesis presents the calculation of the Standard Model weak-interaction corrections of order {alpha}{sub s}{sup 2}{alpha} to hadronic top-quark pair production. The one-loop weak corrections to top antitop production due to gluon fusion and uark antiquark annihilation are computed. Also the order {alpha}{sub s}{sup 2}{alpha} corrections to top antitop production due to quark gluon and antiquark gluon scattering in the Standard Model are calculated. In this complete weak-corrections of order {alpha}{sub s}{sup 2}{alpha} to gg, q anti q, gq, and g anti q induced hadronic t anti t production the top and antitop polarizations and spin-correlations are fully taken into account. For the Tevatron and the LHC the weak contributions to the cross section, to the transverse top-momentum (p{sub T}) distributions, and to the top antitop invariant mass (M{sub t} {sub anti} {sub t}) distributions are analyzed. At the LHC the corrections to the distributions can be of the order of -10 percent compared with the leading-order results, for p{sub T}>1500 GeV and M{sub t} {sub anti} {sub t}>3000 GeV, respectively. At the Tevatron the corrections are -4 percent for p{sub T}>600 GeV and M{sub t} {sub anti} {sub t}>1000 GeV. This thesis also considers parity-even top antitop spin correlations of the form d{sigma}(++)+d{sigma}(--)-d{sigma}(+-)-d{sigma}(-+), where the first and second argument denotes the top and antitop spin projection onto a given reference axis. This spin asymmetries are computed as a function of M{sub t} {sub anti} {sub t}. At the LHC the weak corrections are of order of -10 percent for M{sub t} {sub anti} {sub t}>1000 GeV for all analyzed reference axes. At the Tevatron the corrections are in the range of 5 percent at threshold and -5 percent for M{sub t} {sub anti} {sub t}>1000 GeV. Apart from parity-even spin asymmetries also the Standard Model predictions for parity violating effects in topquark pair production are calculated. This thesis analyzes parity
Some issues linked to the description of systems in strong interaction
International Nuclear Information System (INIS)
Theussl, L.
2001-06-01
In the first part of this work we have dealt with some issues that are relevant in the area of nucleonic resonances within different constituent quark models. In this context we have concentrated on the theoretical description of Pi and Nu decays for N and Delta resonances. The results obtained point to the necessity of a more microscopic description of the dynamics which is at the same time responsible for the binding of quarks inside baryons and the decay of the latter ones. In the second part we have contributed to the study of crossed two-boson exchanges in the Bethe-Salpeter equation as well as to the investigation of different three-dimensional approaches that follow from the Bethe-Salpeter equation in a certain non-relativistic reduction scheme. These one include in particular an equation whose interaction depends on the total energy of the system. It was shown that such an equation is able to account for a certain number of properties of Bethe-Salpeter equation, in particular, that there also arise abnormal solutions in such an approach. (author)
Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.
1990-01-01
Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs
Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.
2015-01-01
We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using...
Energy Technology Data Exchange (ETDEWEB)
Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)
2016-05-15
The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)
International Nuclear Information System (INIS)
Joos, H.
1976-07-01
The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de
Hadronization of quark theories
International Nuclear Information System (INIS)
Kleinert, H.
1978-01-01
Local quark gluon theories are converted into bilocal field theories via functional techniques. The new field quanta consist of all quark-antiquark bound states in the ladder approximation. they are called bare hadrons. Hadronic Feynman graphs are developed which strongly resemble dual diagrams. QED is a special case with the bare hadrons being positronium atoms. Photons couple to hadrons via intermediate vector mesons in a current-field identity. The new theory accommodates naturally bilocal currents measured in deep-inelastic ep scattering. Also, these couple via intermediate mesons. In the limit of heavy gluon masses, the hadron fields become local and describe π, rho, A 1 , sigma mesons in a chirally invariant Lagrangian (the sigma model). Many interesting new relations are found between meson and quark properties such as m/sub rho/ 2 approx. = 6M 2 , where M is the true nonstrange quark mass after spontaneous breakdown of chiral symmetry. There is a simple formula linking these quark masses with the small bare masses of the Lagrangian. The quark masses also determine the vacuum expectations of scalar densities. These show an SU(3) breaking in the vacuum of approx. = -16%. 14 figures
International Nuclear Information System (INIS)
1996-01-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature.
Bulk viscosity of strange quark matter in density dependent quark ...
Indian Academy of Sciences (India)
Abstract. We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and ...
International Nuclear Information System (INIS)
Close, F.E.
1988-01-01
The paper concerns some of the ideas underlying quarks and their interactions, the way that quarks build up hadrons, and the extent to which the QCD theory can be applied to phenomena involving nuclei. The article is part of the Proceedings of the International School of Nuclear Physics, Erice, 1987. A description is given of quarks and multiplets. Colour is discussed with respect to: evidence for colour, a non abelian Su(3) theory, the pauli principle at work in hadrons, and spin flavour correlations and magnetic moments. Colour, gluons and the inter quark potential are also examined. (UK)
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Electromagnetic properties of light and heavy baryons in the relativistic quark model
International Nuclear Information System (INIS)
Nicmorus Marinescu, Diana
2007-01-01
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated...
Taste changing in staggered quarks
International Nuclear Information System (INIS)
Quentin Mason
2004-01-01
The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice
2014-01-20
The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, $m_t^{pole}$, or the strong coupling constant, $\\alpha_S$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$^{+3.0}_{-2.8}$ GeV is obtained when constraining $\\alpha_S$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $m_t^{pole}$ to the latest average from direct mass measurements, a value of $\\alpha_S(m_Z)$ = 0.1151$^{+0.0028}_{-0.0027}$ is extracted. This is the first determination of $\\alpha_S$ using events from top-quark production.
LHC Signatures of Vector-Like Quarks
Directory of Open Access Journals (Sweden)
Yasuhiro Okada
2013-01-01
Full Text Available This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400–600 GeV have been excluded by all experiments. In order to be as simple and model independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet, or triplet under SU(2L which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in the literature are also provided for reference purposes.
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, H., E-mail: harg@cefet-rj.b [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana 249, 20271-110, Rio de Janeiro, RJ (Brazil); Duarte, S.B., E-mail: sbd@cbpf.b [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J.C.T., E-mail: jcto@cbpf.b [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana s/n, 69310-270, Boa Vista, RR (Brazil)
2010-02-15
Recently reported massive compact stars (Mapprox2M{sub o}) have provided strong constraints on the properties of the ultradense matter beyond the saturation nuclear density. Therefore, realistic quark or hybrid star models must be compatible with these observational data. Some used equations of state (EoS) describing quark matter are in general too soft and hence are not suitable to explain the stability of high compact star masses. In this work, we present the calculations of static spherically symmetric quark star structure by using an equation of state which takes into account the superconducting colour-flavour locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. We discuss the influence of the obtained quark matter equation of state on the mass-radius relationship of quark stars. Massive quark stars are found due to the stiffness of the equation of state, when reasonable values of the superconducting gap, taken as a free parameter, are used.
Energy Technology Data Exchange (ETDEWEB)
Morozov, A.Y.
1983-01-01
The value of the Coulomb-like interaction of a heavy quark and antiquark (mass M>>q = momentum transfer) is determined by dimensional regularization in the M-barS-bar scheme. The coupling constant ..cap alpha../sub Coul/(q/sup 2/) = 4..pi../bln(Vertical Barq/sup 2/Vertical Bar/..lambda../sup 2//sub Coul/), where b and ..lambda../sub Coul/ depend weakly on q/sup 2/: b = 9, ..lambda../sub Coul/ = 1.25..lambda../sub M/S-bar for Vertical Barq/sup 2/Vertical Bar< or approx. =m/sub c//sup 2/; b = 8.33, ..lambda../sub Coul/ = 1.19..lambda../sub M/S-bar for m/sup 2//sub c/< or =Vertical Barq/sup 2/Vertical Bar< or = m/sup 2//sub b/; b = 7.67, ..lambda../sub Coul/ = 1.12..lambda../sub M/S-bar for m/sup 2//sub b/ < or =Vertical Barq/sup 2/Vertical Bar< or =m/sub t//sup 2/.
Confined quarks and the decays of ''old'' and ''new'' vector and tensor mesons
International Nuclear Information System (INIS)
Montvay, I.; Spitzer, J.
1977-06-01
The two-body strong decays of the vector and tensor mesons were calculated from the quark 100p coupling graph. The main assumptions of the model were: (i) confinement in the Minkowski-space of relative positions (and momenta); (ii) an effective quark mass approximation for quark propagation inside hadrons; and (iii) the quark diagram structure of hadrons interactions. In the calculations oscillator type (Gaussian) wave functions were used. The description of the decays of ''old'' (non-charmed) vector and tensor mesons leads to a consistent qualitative picture with small effective masses (about 300 MeV) and considerable differences in the size of the quark confinement region for different mesons. The ''new'' (charmed) particle decays and, therefore, the SU(3)-breaking were also considered. (Sz.N.Z.)
International Nuclear Information System (INIS)
Harari, H.
1977-01-01
The physics of quarks and leptons within the framework of gauge theories for the weak and electromagnetic interactions is reviewed. The Weinberg-Salam SU(2)xU(1) theory is used as a ''reference point'' but models based on larger gauge groups, especially SU(2)sub(L)xSU(2)sub(R)xU(1), are discussed. We distinguish among three ''Generations'' of fundamental fermions: The first generation (e - , νsub(e), u, d), the second generation (μ - , νsub(μ), c, s) and the third generation (tau - , νsub(tau), t, b). For each generation are discussed the classification of all fermions, the charged and neutral weak currents, possible right-handed currents, parity and CP-violation, fermion masses and Cabibbo-like angles and related problems. Theoretical ideas as well as experimental evidence, emphasizing open theoretical problems and possible experimental tests are reviewed, as well as the possibility of unifying the weak, electromagnetic and strong interactions in a grand unification scheme. The problems and their possible solutions are presented, generation by generation, but a brief subject-index (following the table of contents) enbales the interested reader to follow any specific topic throughout the three generations. (author)
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calcula...
Bootstrapping quarks and gluons
Energy Technology Data Exchange (ETDEWEB)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
Bootstrapping quarks and gluons
International Nuclear Information System (INIS)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces
Directory of Open Access Journals (Sweden)
Neng-Zhong Xie
Full Text Available Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge are studied that are stronger than (or comparable to the common hydrogen bond interactions, and play important roles in protein-protein interactions.Quantum chemical methods MP2 and CCSD(T are used in calculations of interaction energies and structural optimizations.The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions.(1 The salt bridge interactions between acidic amino acids (Glu- and Asp- and alkaline amino acids (Arg+, Lys+ and His+ are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2 The cation- interactions between protonated amino acids (Arg+, Lys+ and His+ and aromatic amino acids (Phe, Tyr, Trp and His are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3 The amide bridge interactions between the two amide-containing amino acids (Asn and Gln are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4 Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.
International Nuclear Information System (INIS)
Veltman, M.
1979-01-01
The theory of strong interactions is supposedly quantum chromodynamics, an unbroken gauge theory based on the group SU(3). The theory of weak and e.m. interactions is believed to be described by the Weinberg-GIM model, based on the spontaneously broken symmetry SU(2) x U(1). There are many uncertainties around these theories. Quantum chromodynamics has met with many successes, but the most important feature, quark confinement, has not been proven. Also other things, such as PCAC, have not yet been understood. And we have no reasonable calculation of particle masses (pion, proton, etc.). Nevertheless we consider quantum chromodynamics a reasonably respectable theory, and in this talk we will take that theory for granted. The situation with respect to the SU(2) x U(1) theory is much more difficult. No vector bosons have yet been observed, and the Higgs system is more obscure than ever. Glashow's model has been turned into a renormalizable model by Weinberg through the use of the Higgs system, but up to now no radiative corrections of the appropriate type have been measured. The only thing we know is that at low energies this Glashow model reduces to a four-fermion theory involving certain currents, and this has been checked reasonably well. Also, the discovery of charm (and hopefully the discovery of a top quark) fits beautifully into the picture along the lines of the GIM mechanism. CP violation could be due to complex quark masses according to the Kobayashi-Maskawa scheme. The point of view is taken that the existence of vector bosons is not evident, and the Higgs mechanism is a possibility at best. It is the purpose of this talk to outline and clarify this view
arXiv Recent results from the strong interactions program of NA61/SHINE
Pulawski, Szymon
2017-01-01
The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.
Parsaei, Sara; Rajabi, Ali Akbar
2018-01-01
The electromagnetic transition between the nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement. We study the electromagnetic properties of the excitation of the negative parity the N*(1535) resonances in the nonrelativistic constituent quark model at large momentum transfers and have performed a calculation the longitudinal and transverse helicity amplitudes. Since the helicity amplitudes depend strongly on the quark wave function in this paper, we consider the baryon as a simple, non-relativistically three-body quark model and also consider a hypercentral potential scheme for the internal baryon structure, which makes three-body forces among three quarks. Since the hyper central potential depends only on the hyper radius, therefore, the Cornell potential which is a combination of the Coulombic-like term plus a linear confining term is considered as the potential for interaction between quarks. In our work, in solving the Schrodinger equation with the Cornell potential, the Nikiforov–Uvarov method employed, and the analytic eigen-energies and eigen-functions obtained. By using the obtained eigen-functions, the transition amplitudes calculated. We show that our results in the range {{{Q}}}2> 2 {{GeV}}2 lead to an overall better agreement with the experimental data in comparison with the other three non-relativistic quark models.
Strong excitonic interactions in the oxygen K-edge of perovskite oxides
Energy Technology Data Exchange (ETDEWEB)
Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)
2017-07-15
Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.
Observation of $t$-channel electroweak top quark production
Energy Technology Data Exchange (ETDEWEB)
Triplett, Nathan [Iowa State Univ., Ames, IA (United States)
2011-01-01
The top quark is the heaviest known fundamental particle, with a mass of 172.0^{+0.9}_{-1.3}GeV. This is nearly twice the mass of the second heaviest known particle, the Z boson, and roughly the mass of a gold atom. Because of its unusually large mass, studying the top quark may provide insight into the Higgs mechanism and other beyond the standard model physics. Only two accelerators in the world are powerful enough to produce top quarks. The Tevatron, which first accelerated protons in 1983, has produced almost 400,000 top quarks, roughly half at each of its two detectors: DO and CDF. The LHC is a much newer accelerator which currently has accumulated about 0.5% as much data as the Tevatron. However, when running at full luminosity, the LHC is capable of producing a top quark about once every second and will quickly surpass the Tevatron as the leading producer of top quarks. This analysis uses data from the DØ detector at the Tevatron, which are described in chapter 3. Top quarks are produced most often in pairs of top and anti-top quarks through an interaction of the strong force. This production mode was first observed in 1995 at the Tevatron. However, top quarks can also be produced though an electroweak interaction, which produces just one top quark. This production mode was first observed at the Tevatron in 2008. Single top quark production can occur in different channels. In this analysis, a measurement of the cross section of the t-channel production mode is performed. This measurement uses 5.4 fb^{-1} of data and uses the technique of boosted decision trees in order to separate signal from background events. The t-channel cross section is measured to be: σ(p$\\bar{p}$ → tqb + X) = 3.03^{+0.78}_{-0.66} pb (0.0.1). Additional cross section measurements were also performed for the s-channel as well as the s + t-channel. The measurement of each one of these three cross sections was repeated three times using
Inelastic strong interactions at high energies. Annual progress report, June 1, 1979-May 1, 1980
International Nuclear Information System (INIS)
Suranyi, P.
1980-02-01
Investigations in the area of Grand Unified Field Theories were begun. Various ways of breaking the SU(5) symmetric theory of Georgi and Glashow were studied. As usual, an approx. 24 of Higgs breaks the symmetry from SU(5) to SU(3)/sub c/xSU(2)xU(1). It was found that an approx. 45 of Higgs is acceptable for breaking the symmetry from SU(3)/sub c/xSU(2)xU(1) to SU(3)/sub c/xU(1)/sub em/. In addition phenomenologically correct quark-lepton mass ratios are obtained by use of renormalization-group techniques if there are 6 generations of particles in the theory. Efforts directed at the development of approximate methods for extracting information from quantum field theories were continued. The quantum mechanics of polynomial potentials as a model for quantum field theories was investigated. A perturbation expansion for the energy levels and wave functions was constructed and has been proven to be convergent for arbitrary values of the coupling constants, in contrast to ordinary perturbation expansions that have a zero radius of convergence. The physical significance of the new perturbation expansions was explored both in the weak and strong coupling limits
Spectral asymptotics of a strong δ′ interaction supported by a surface
International Nuclear Information System (INIS)
Exner, Pavel; Jex, Michal
2014-01-01
Highlights: • Attractive δ ′ interactions supported by a smooth surface are considered. • Surfaces can be either infinite and asymptotically planar, or compact and closed. • Spectral asymptotics is determined by the geometry of the interaction support. - Abstract: We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive δ ′ interaction supported by a smooth surface in R 3 , either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schrödinger type operator with an effective potential expressed in terms of the interaction support curvatures
Theory and phenomenology of strong and weak interaction high energy physics
International Nuclear Information System (INIS)
1989-01-01
This paper reviews research done on theoretical high energy physics. Areas of discussion are: chiral symmetry; quantum chromodynamics; quark-gluon plasma; particle decay of kaons; photonuclear reactions from cosmic ray showers; symmetry breaking and other related topics
Precision determination of the strong interaction shift and width in pionic hydrogen
International Nuclear Information System (INIS)
Anagnostopoulos, D.F.; Covita, D.D.S.; Santos, J.M.F. dos; Veloso, J.F.C.A.; Fuhrmann, H.; Gruber, A.; Hirtl, A.; Ishiwatari, T.; Marton, J.; Schmid, P.; Zmeskal, J.; Gotta, D.; Hennebach, M.; Nekipelov, M.; Indelicato, P.; Jensen, T.; Bigot, E.O. Le; Trassinelli, M.; Simons, L.M.
2005-01-01
The new pionic hydrogen experiment at PSI aims at an improvement in the determination of the strong interaction ground state shift and width of the pionic hydrogen atom. High precision x-ray crystal spectroscopy is used to extract isospin separated scattering lengths with accuracies on the percent level. Compared to previous efforts, the energy resolution and statistics could be improved considerably and the background is much reduced. The response function of the Johann-type crystal spectrometer has been determined with a novel method with unprecedented accuracy. The inherent difficulties of the exotic atom's method result, from the fact that the formation of a sufficient amount of pionic hydrogen atoms requires a hydrogen target pressure of several bar at least. For the extraction of a strong interaction shift, an extrapolation method to vacuum conditions proved to be successful. This contribution mostly discusses the strategy to extract a result for the strong interaction width from the data.(author)
Confining quark condensate model of the nucleon.
Energy Technology Data Exchange (ETDEWEB)
Frank, Michael; Tandy, Peter
1992-07-01
We obtain a mean-field solution for the nucleon as a quark-meson soliton obtained from the action of the global color-symmetry model of QCD. All dynamics is generated from an effective interaction of quark currents. At the quark-meson level there are two novel features: (1) absolute confinement is produced from the space-time structure of the dynamical self-energy in the vacuum quark propagator; and (2) the related scalar meson field is an extended q-barq composite that couples nonlocally to quarks. The influence of these features upon the nucleon mass contributions and other nucleon properties is presented.
Probes of one quark-gluon plasma in high energy collisions
International Nuclear Information System (INIS)
Kajantie, K.; McLerran, L.
1987-01-01
Quark gluon plasma is the high-temperature high-density phase of matter described by the laws of quantum chromodynamics. At low temperatures and densities quarks, gluons, and color fields are confined to the interiors of strongly interacting particles, hadrons. At high temperatures and densities the hadrons overlap and lose their identity; quarks, gluons and color fields are not confined within hadrons but can move over distances larger than the hadron size, 1 fm. The authors expect that the early universe, when it was younger than about 10/sup -5/s, was filled with quark gluon plasma (and, at least, photons and leptons). The possible observational consequences-relic cold strange quark matter, energy density inhomgeneities, black holes, gravitational radiation, etc. are rather speculative and so far no observational evidence exists. Cold quark gluon plasma or quark matter could also exist in the present universe in the interiors of compact stellar systems. Here also no convincing observational evidence exists, although changes in cooling rates have been suggested as such. Information on possible quark gluon plasma can be gained, however, by studying ultrarelativistic nuclear collisions or very high multiplicity fluctuations in hadron-hadron collisions. What the signals could be is the subject of this review
Measurement of the Cross Section for open b-Quark Production in Two-Photon Interactions at LEP
Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; alez; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.
2007-01-01
Inclusive \\beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of $698\\mathrm{pb}^{-1}\\,$ collected by the ALEPH detector with $\\sqrt{s}$ between 130 and 209 \\GeV . The b quarks were identified using lifetime information. The cross section is found to be \\[ \\mathrm{ \\sigma(e^+ e^- \\rightarrow e^+ e^- b \\bar{b}\\, X) = (5.4\\pm 0.8\\,_{stat} \\pm 0.8\\,_{syst}} )\\,\\mathrm{pb},\\] which is consistent with Next-to-Leading Order QCD.
Heavy-flavour hadrons as probes of strongly-interacting matter: highlights from ALICE
CERN. Geneva
2014-01-01
In Pb-Pb collisions the heavy-flavour nuclear modification factor together with the elliptic-flow measurements allow one to study the heavy-quark transport properties in the hot and dense medium. The production of heavy quarks in heavy-ion collisions is furthermore also affected by the presence of cold nuclear matter in the initial state. The study of p-Pb collisions is instrument...
Dissipative force on an external quark in heavy quark cloud
Chakrabortty, Shankhadeep
2011-11-01
Within the finite temperature N = 4 strongly coupled super-Yang-Mills, we compute the dissipative force on an external quark in the presence of evenly distributed heavy quark cloud. This is computed holographically by constructing the corresponding gravity dual. We study the behaviour of this force as a function of the cloud density. Along the way we also analyze the stability of the gravity dual for vector and tensor perturbations.
Holographic quark-gluon plasmas at finite quark density
Energy Technology Data Exchange (ETDEWEB)
Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)
2012-07-15
Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Computational strong-field quantum dynamics intense light-matter interactions
2017-01-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
Computational strong-field quantum dynamics. Intense light-matter interactions
Energy Technology Data Exchange (ETDEWEB)
Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik
2017-09-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
International Nuclear Information System (INIS)
Gaillard, M.K.
1978-08-01
The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references
International Nuclear Information System (INIS)
Harari, H.
1976-01-01
The experimental information which was accumulated in the last 18 months in e + e - collisions and upsilonN scattering indicates that more than four kinds of quarks are already present. Six different pieces of evidence for the existence of six quarks: the triangle anomalies, the value of R, psi-spectroscopy, neutrino processes, CP-violation and the possible existence of V+A currents are discussed. It is concluded that there is strong (but not yet conclusive) evidence for the existence of six quarks and six leptons. (author)
International Nuclear Information System (INIS)
Drechsler, W.
1977-01-01
A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory
Proceedings of Summer Institute of Particle Physics, July 27-August 7, 1981: the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Mosher, A. (ed.)
1982-01-01
The ninth SLAC Summer Institute on Particle Physics was held in the period July 27 to August 7, 1981. The central topic was the strong interactions with the first seven days spent in a pedagogic mode and the last three in a topical conference. In addition to the morning lectures on experimental and theoretical aspects of the strong interactions, three were lectures on machine physics; this year it was electron-positron colliding beam machines, both storage rings and linear colliders. Twenty-three individual items from the meeting were prepared separately for the data base. (GHT)
Strong interaction effects in high-Z K sup minus atoms
Energy Technology Data Exchange (ETDEWEB)
Batty, C.J.; Eckhause, M.; Gall, K.P.; Guss, P.P.; Hertzog, D.W.; Kane, J.R.; Kunselman, A.R.; Miller, J.P.; O' Brien, F.; Phillips, W.C.; Powers, R.J.; Roberts, B.L.; Sutton, R.B.; Vulcan, W.F.; Welsh, R.E.; Whyley, R.J.; Winter, R.G. (Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom (GB) College of William and Mary, Williamsburg, Virginia 23185 Boston University, Boston, Massachusetts 02215 University of Wyoming, Laramie, Wyoming 82071 California Institute of Technology, Pasadena, California 91125 Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)
1989-11-01
A systematic experimental study of strong interaction shifts, widths, and yields from high-{ital Z} kaonic atoms is reported. Strong interaction effects for the {ital K}{sup {minus}}(8{r arrow}7) transition were measured in U, Pb, and W, and the {ital K}{sup {minus}}(7{r arrow}6) transition in W was also observed. This is the first observation of two measurably broadened and shifted kaonic transitions in a single target and thus permitted the width of the upper state to be determined directly, rather than being inferred from yield data. The results are compared with optical-model calculations.
Marri, Ivan; Govoni, Marco; Ossicini, Stefano
2014-09-24
We present density functional theory calculations of carrier multiplication properties in a system of strongly coupled silicon nanocrystals. Our results suggest that nanocrystal-nanocrystal interaction can lead to a reduction of the carrier multiplication energy threshold without altering the carrier multiplication efficiency at high energies, in agreement with experiments. The time evolution of the number of electron-hole pairs generated in a system of strongly interacting nanocrystals upon absorption of high-energy photons is analyzed by solving a system of coupled rate equations, where exciton recycling mechanisms are implemented. We reconsider the role played by Auger recombination which is here accounted also as an active, nondetrimental process.
Menke, Sven; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.
International Nuclear Information System (INIS)
Thews, R.L.; Scadron, M.D.; Patrascioiu, A.; Sucipto, E.
1986-01-01
Progress is reported in these areas: dynamical quark mass in QCD; quark s-d self energy in QFD; theory of nonleptonic weak decays; decays of heavy-quark mesons; quarks in nuclei; nonperturbative effects in non-abelian quantum field theory; whether perturbation theory is the asymptotic expansion in lattice gauge theories; and expanding in the gradient at weak coupling. 16 refs
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Density functional theory for strongly-interacting electrons: Perspectives for Physics and Chemistry
Gori Giorgi, P.; Seidl, M.
2010-01-01
Improving the accuracy and thus broadening the applicability of electronic density functional theory (DFT) is crucial to many research areas, from material science, to theoretical chemistry, biophysics and biochemistry. In the last three years, the mathematical structure of the strong-interaction
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Pankrashkin, K.
2014-01-01
Roč. 39, č. 2 (2014), s. 193-212 ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014
Spectral asymptotics of a strong delta ' interaction supported by a surface
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Jex, M.
2014-01-01
Roč. 378, 30-31 (2014), s. 2091-2095 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : delta ' surface interaction * strong coupling expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.683, year: 2014
On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries
Czech Academy of Sciences Publication Activity Database
Dittrich, Jaroslav; Exner, Pavel; Kuhn, C.; Pankrashkin, K.
2016-01-01
Roč. 97, 1-2 (2016), s. 1-25 ISSN 0921-7134 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schrodinger operator * delta-interaction * strong coupling * eigenvalue Subject RIV: BE - Theoretical Physics Impact factor: 0.933, year: 2016
Fractional energy states of strongly-interacting bosons in one dimension
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.
2014-01-01
We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...
Interaction of a neutral composite particle with a strong Coulomb field
International Nuclear Information System (INIS)
Wong, Cheuk-Yin.
1988-01-01
The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs
Description of meson strong and electromagnetic interactions in quantum chiral theory
International Nuclear Information System (INIS)
Volkov, M.K.; Pervushin, V.N.
1978-01-01
Strong and electromagnetic interactions of mesons in the framework of the chiral theory are considered. The pion-pion scattering phases, the pion electromagnetic form factor, the mean squared radius of a K-meson, and the electric and magnetic polarizabilities of pions are calculated using the superpropagator method. The rho-meson mass, Msub(rho)=800 MeV, is calculated too
Strongly interacting bosons in a one-dimensional optical lattice at incommensurate densities
Lazarides, A.|info:eu-repo/dai/nl/315556668; Tieleman, O.|info:eu-repo/dai/nl/341386456; de Morais Smith, C.|info:eu-repo/dai/nl/304836346
2011-01-01
We investigate quantum phase transitions occurring in a system of strongly interacting ultracold bosons in a one-dimensional optical lattice. After discussing the commensurate-incommensurate transition, we focus on the phases appearing at an incommensurate filling. We find a rich phase diagram, with
DEFF Research Database (Denmark)
Petrosyan, David; Molmer, Klaus
2013-01-01
We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...
Global quark polarization in non-central A+A collisions
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian-Hua; Chen, Shou-Wan; Deng, Wei-tian; Tang, Zuo-Tang; Wang, Qun; Wang, Xin-Nian
2007-10-12
Partons produced in the early stage of non-central heavy-ioncollisionscan develop a longitudinal fluid shear because of unequal localnumber densities of participant target and projectile nucleons. Undersuch fluid shear, local parton pairs with non-vanishing impact parameterhave finite local relative orbital angular momentum along the directionopposite to the reaction plane. Such finite relative orbitalangularmomentum among locally interacting quark pairs can lead to global quarkpolarization along the same direction due to spin-orbital coupling. Locallongitudinal fluid shear is estimated within both Landau fireball andBjorken scaling model of initial parton production. Quark polarizationthrough quark-quark scatterings with the exchange of a thermal gluon iscalculated beyond small-angle scattering approximation in a quark-gluonplasma. The polarization is shown to have a non-monotonic dependence onthe local relative orbital angular momentum dictated by the interplaybetween electric and magnetic interaction. It peaks at a value ofrelative orbital angular momentum which scales with the magnetic mass ofthe exchanged gluons. With the estimated small longitudinal fluid shearin semi-peripheral Au+Au collisions at the RHIC energy, the final quarkpolarization is found to be small left hbar P_q right hbar<0.04 inthe weak coupling limit. Possible behavior of the quark polarization inthe strong coupling limit and implications on the experimental detectionof such global quark polarization at RHIC and LHC are alsodiscussed.
Directory of Open Access Journals (Sweden)
B.A. Arbuzov
2017-09-01
Full Text Available Assuming an existence of the anomalous triple electro-weak bosons interaction being defined by coupling constant λ we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions −0.011<λ<0.011 we present results for possible effects in processes pp→W+W−H,pp→W+ZH,pp→W−ZH,pp→t¯tH, pp→b¯bH. Effects could be significant with negative sign of λ in associated heavy quarks t,b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.
The strong interaction in e+e- annihilation and deep inelastic scattering
International Nuclear Information System (INIS)
Samuelsson, J.
1996-01-01
Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e + e - annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of 'effective gluons'. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q 2 (DGLAP) and low x-moderate Q 2 (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs
Strongly interacting dark matter: Self-interactions and keV lines
Boddy, Kimberly K.; Feng, Jonathan L.; Kaplinghat, Manoj; Shadmi, Yael; Tait, Timothy M. P.
2014-11-01
We consider a simple supersymmetric hidden sector: pure SU (N ) gauge theory. Dark matter is made up of hidden glueballinos with mass mX and hidden glueballs with mass near the confinement scale Λ . For mX˜1 TeV and Λ ˜100 MeV , the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order Λ2/mX˜10 keV . We show that the radiative decays of the excited state can explain the observed 3.5 keV x-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.
Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Ambrosio, G.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barone, M.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Bertolucci, S.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bocian, D.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Caprio, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervetto, M.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diaz Gomez, M.M.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evangelakou, D.; Evans, H.; Evdokimov, V.N.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Ferro, F.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Fopma, J.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Gnanvo, K.G.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Pineiro, B.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Green, B.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Grewal, A.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Grivaz, J.F.; Groer, L.S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haeberli, C.; Haefner, P.; Hartel, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hallewell, G.D.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, R.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Hendriks, P.J.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hindson, D.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Hollins, T.I.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howell, D.F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, M.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joos, D.; Joram, C.; Jorge, P.M.; Jorgensen, S.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; Kind, P.; King, B.T.; King, M.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Knobloch, J.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lambacher, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M.A.L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Lepidis, J.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; MacQueen, D.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Mangin-Brinet, M.; Manjavidze, I.D.; Mann, A.; Mann, W.A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayer, J.K.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; McGarvie, S.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Migliaccio, A.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Mima, S.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moch, M.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Moszczynski, A.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moye, T.H.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munar, A.; Munwes, Y.; Murakami, K.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Naito, D.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Nauyock, F.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neukermans, L.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, C.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ottewell, B.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Oye, O.K.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palma, A.; Palmer, J.D.; Palmer, M.J.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panin, V.N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peeters, S.J.M.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petereit, E.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popescu, R.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prata, M.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sala, P.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schaller, M.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Scholte, R.C.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schroff, D.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schweiger, D.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shield, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Stefanidis, E.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stiller, W.; Stockmanns, T.; Stockton, M.C.; Stodulski, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szczygiel, R.R.; Szeless, B.; Szymocha, T.; Sanchez, J.; Ta, D.; Taboada Gameiro, S.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vertogardov, L.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wuestenfeld, J.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Xu, N.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, S.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, J.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.
2013-07-16
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\\chi$ distributions excludes quark contact interactions with a compositeness scale $\\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
Energy Technology Data Exchange (ETDEWEB)
Maki, Tuula [Univ. of Helsinki (Finland)
2008-03-18
The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
New Bound States of Top-anti-Top Quarks and T-balls Production at Colliders (Tevatron, LHC, etc.)
Froggatt, C D; Nevzorov, R B; Nielsen, H B; Das, C R
2008-01-01
The present talk is based on the assumption that New Bound States (NBSs) of top-anti-top quarks (named T-balls) exist in the Standard Model (SM): a) there exists the scalar 1S - bound state of 6t+6\\bar t - the bound state of 6 top-quarks with their 6 anti-top-quarks; b) the forces which bind these top-quarks are very strong and almost completely compensate the mass of the 12 top-anti-top-quarks forming this bound state; c) such strong forces are produced by the interactions of top-quarks via the virtual exchange of the scalar Higgs bosons having the large value of the top-quark Yukawa coupling constant g_t\\simeq 1. Theory also predicts the existence of the NBS 6t + 5\\bar t, which is a color triplet and a fermion similar to the t'-quark of the fourth generation. We have also considered "b-replaced" NBSs: n_b b + (6t + 6\\bar t - n_b t) and n'_b b + (6t + 5\\bar t - n'_b t), etc. We have estimated the masses of the lightest "b-replaced" NBS: M_{NBS}\\simeq (300 - 400) GeV, and discussed the larger masses of the NB...
Strong field approximation within a Faddeev-like formalism for laser-matter interactions
International Nuclear Information System (INIS)
Popov, Y.; Galstyan, A.; Piraux, B.; Mota-Furtado, F.; O'Mahony, P.F.
2017-01-01
We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation (SFA). By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation. (authors)
Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli
2014-03-01
We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.
International Nuclear Information System (INIS)
Sivan, N.; Levit, S.
1992-01-01
We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)
Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)
2017-08-15
We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wicke, Daniel; /Wuppertal U., Dept. Math.
2009-08-01
The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the
International Nuclear Information System (INIS)
Arnold, R.C.
1975-12-01
A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters
Bogolubov–Hartree–Fock Theory for Strongly Interacting Fermions in the Low Density Limit
Energy Technology Data Exchange (ETDEWEB)
Bräunlich, Gerhard [Friedrich-Schiller-University Jena, Institute for Mathematics (Germany); Hainzl, Christian [University of Tübingen, Mathematical Institute (Germany); Seiringer, Robert, E-mail: robert.seiringer@ist.ac.at [Institute of Science and Technology Austria (Austria)
2016-06-15
We consider the Bogolubov–Hartree–Fock functional for a fermionic many-body system with two-body interactions. For suitable interaction potentials that have a strong enough attractive tail in order to allow for two-body bound states, but are otherwise sufficiently repulsive to guarantee stability of the system, we show that in the low-density limit the ground state of this model consists of a Bose–Einstein condensate of fermion pairs. The latter can be described by means of the Gross–Pitaevskii energy functional.
Strong constraints on self-interacting dark matter with light mediators
International Nuclear Information System (INIS)
Bringmann, Torsten; Walia, Parampreet
2017-04-01
Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.
Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity.
Gan, Xuetao; Mak, Kin Fai; Gao, Yuanda; You, Yumeng; Hatami, Fariba; Hone, James; Heinz, Tony F; Englund, Dirk
2012-11-14
We demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample. A coupled-mode theory model matches experimental observations and indicates significantly increased light absorption in the graphene layer. The coupled graphene-cavity system also enables precise measurements of graphene's complex refractive index.
Equilibration Dynamics of Strongly Interacting Bosons in 2D Lattices with Disorder.
Yan, Mi; Hui, Hoi-Yin; Rigol, Marcos; Scarola, V W
2017-08-18
Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)SCIEAS0036-807510.1126/science.aaf8834], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.
International Nuclear Information System (INIS)
Matveev, V.A.; Tavkhelidze, A.N.
2005-01-01
A brief review is given of the priority works which were mainly carried out at the Laboratory of Theoretical Physics, JINR, and devoted to the introduction to hadron physics of the concept of color and colored quarks, and to the description of hadrons in the framework of the model of quasi-free quarks. These ideas play a key role in the modern theory of strong interactions - quantum chromodynamics
International Nuclear Information System (INIS)
Matveev, V.A.; Tavkhelidze, A.N.
2006-01-01
A brief review is given of the priority works which were mainly carried out at the Laboratory of Theoretical Physics, JINR, and devoted to the introduction to hadron physics of the concept of color and colored quarks, and to the description of hadrons in the framework of the model of quasi-free quarks. These ideas play a key role in the modern theory of strong interactions - quantum chromodynamics
Gauge unification of basic forces, particularly of gravitation with strong interactions
International Nuclear Information System (INIS)
Salam, A.
1977-01-01
An attempt is made to present a case for the use of both the Einstein--Weyl spin-two and the Yang--Mills spin-one gauge structures for describing strong interactions. By emphasizing both spin-one and -two aspects of this force, it is hoped that a unification of this force, on the one hand, with gravity theory and, on the other, with the electromagnetic and weak interactions can be achieved. A Puppi type of tetrahedral interralation of fundamental forces, with the strong force playing a pivotal role due to its mediation through both spin-one and -two quanta, is proposed. It is claimed that the gauge invariance of gravity theory permits the use of ambuguity-free nonpolynomial techniques and thereby the securing of relistic regularization in gravity-modified field theories with the Newtonian constant G/sub N/ providing a relistic cutoff. 37 references
Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium
Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F
2016-01-01
Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...
On the Frequency Distribution of Neutral Particles from Low-Energy Strong Interactions
Directory of Open Access Journals (Sweden)
Federico Colecchia
2017-01-01
Full Text Available The rejection of the contamination, or background, from low-energy strong interactions at hadron collider experiments is a topic that has received significant attention in the field of particle physics. This article builds on a particle-level view of collision events, in line with recently proposed subtraction methods. While conventional techniques in the field usually concentrate on probability distributions, our study is, to our knowledge, the first attempt at estimating the frequency distribution of background particles across the kinematic space inside individual collision events. In fact, while the probability distribution can generally be estimated given a model of low-energy strong interactions, the corresponding frequency distribution inside a single event typically deviates from the average and cannot be predicted a priori. We present preliminary results in this direction and establish a connection between our technique and the particle weighting methods that have been the subject of recent investigation at the Large Hadron Collider.
Thermodynamics of strongly interacting fermions in two-dimensional optical lattices
Energy Technology Data Exchange (ETDEWEB)
Khatami, Ehsan; Rigol, Marcos [Department of Physics, Georgetown University, Washington DC, 20057 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)
2011-11-15
We study finite-temperature properties of strongly correlated fermions in two-dimensional optical lattices by means of numerical linked cluster expansions, a computational technique that allows one to obtain exact results in the thermodynamic limit. We focus our analysis on the strongly interacting regime, where the on-site repulsion is of the order of or greater than the band width. We compute the equation of state, double occupancy, entropy, uniform susceptibility, and spin correlations for temperatures that are similar to or below the ones achieved in current optical lattice experiments. We provide a quantitative analysis of adiabatic cooling of trapped fermions in two dimensions, by means of both flattening the trapping potential and increasing the interaction strength.
Asymptotic behavior of quark masses induced by instantons
International Nuclear Information System (INIS)
Carneiro, C.E.I.; Frenkel, J.
1984-02-01
A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt
Hadronic physics of q anti q light quark mesons, quark molecules and glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1980-10-01
A brief introduction reviews the development of QCD and defines quark molecules and glueballs. This review is concerned primarily with u, d, and s quarks, which provide practically all of the cross section connected with hadronic interactions. The following topics form the bulk of the paper: status of quark model classification for conventional u, d, s quark meson states; status of multiquark or quark molecule state predictions and experiments; glueballs and how to find them; and the OZI rule in decay and production and how glueballs might affect it. 17 figures, 1 table
Limitations due to strong head-on beam-beam interactions (MD 1434)
Buffat, Xavier; Iadarola, Giovanni; Papadopoulou, Parthena Stefania; Papaphilippou, Yannis; Pellegrini, Dario; Pojer, Mirko; Crockford, Guy; Salvachua Ferrando, Belen Maria; Trad, Georges; Barranco Garcia, Javier; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department
2017-01-01
The results of an experiment aiming at probing the limitations due to strong head on beam-beam interactions are reported. It is shown that the loss rates significantly increase when moving the working point up and down the diagonal, possibly due to effects of the 10th and/or 14th order resonances. Those limitations are tighter for bunches with larger beam-beam parameters, a maximum total beam-beam tune shift just below 0.02 could be reached.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel
2015-04-24
A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at $\\sqrt{s}$ = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 6.0 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions.
Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles.
Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi; Volansky, Tomer; Wacker, Jay G
2015-07-10
A recent proposal is that dark matter could be a thermal relic of 3→2 scatterings in a strongly coupled hidden sector. We present explicit classes of strongly coupled gauge theories that admit this behavior. These are QCD-like theories of dynamical chiral symmetry breaking, where the pions play the role of dark matter. The number-changing 3→2 process, which sets the dark matter relic abundance, arises from the Wess-Zumino-Witten term. The theories give an explicit relationship between the 3→2 annihilation rate and the 2→2 self-scattering rate, which alters predictions for structure formation. This is a simple calculable realization of the strongly interacting massive-particle mechanism.
International Nuclear Information System (INIS)
Miller, G.A.
1984-01-01
In the Cloudy Bag Model hadrons are treated as quarks confined in an M.I.T. bag that is surrounded by a cloud of pions. Computations of the charge and magnetism distributions of nucleons and baryons, pion-nucleon scattering, and the strong and electromagnetic decays of mesons are discussed. Agreement with experimental results is excellent if the nucleon bag radius is in the range between 0.8 and 1.1 fm. Underlying qualitative reasons which cause the pionic corrections to be of the obtained sizes are analyzed. If bags are of such reasonably large sizes, nucleon bags in nuclei will often come into contact. As a result one needs to consider whether explicit quark degrees of freedom are relevant for Nuclear Physics. To study such possibilities a model which treats a nucleus as a collection of baryons, pions and six-quark bags is discussed. In particular, the short distance part of a nucleon-nucleon wave function is treated as six quarks confined in a bag. This approach is used to study the proton-proton weak interaction, the asymptotic D to S state ratio of the deuteron, the pp → dπ reaction, the charge density of /sup 3/He, magnetic moments of /sup 3/He and /sup 3/H and, the /sup 3/He-/sup 3/H binding energy difference. It is found that quark effects are very relevant for understanding nuclear properties
Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity
Czech Academy of Sciences Publication Activity Database
Abuki, H.; Brauner, Tomáš
2008-01-01
Roč. 78, č. 12 (2008), 125010/1-125010/13 ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008
Energy Technology Data Exchange (ETDEWEB)
Sirunyan, Albert M; et al.
2017-12-06
A search for flavor-changing neutral currents (FCNC) in events with the top quark and the Higgs boson is presented. The Higgs boson decay to a pair of b quarks is considered. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $\\sqrt{s}=$ 13 TeV. Two channels are considered: single top quark FCNC production in association with the Higgs boson (pp $\\to$ tH), and top quark pair production with FCNC decay of the top quark (t $\\to$ qH). Final states with one isolated lepton and at least three reconstructed jets, among which at least two are associated with b quarks, are studied. No significant deviation is observed from the predicted background. Observed (expected) upper limits at 95% confidence level are set on the branching fractions of top quark decays, $\\mathcal{B}$(t $\\to$ uH) $<$0.47% (0.34%) and $\\mathcal{B}$(t $\\to$ cH) $<$ 0.47% (0.44%), assuming a single nonzero FCNC coupling.
Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Benettoni, Massimo; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Klyukhin, Vyacheslav; Kodolova, Olga; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Volkov, Petr; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; Garcia-Ferrero, Juan; García Alonso, Andrea; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Dutta, Irene; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel
2017-01-01
A search for flavor-changing neutral currents (FCNC) in events with the top quark and the Higgs boson is presented. The Higgs boson decay to a pair of b quarks is considered. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $ \\sqrt{s} = $ 13 TeV. Two channels are considered: single top quark FCNC production in association with the Higgs boson (${\\mathrm{p}}{\\mathrm{p}} \\to \\mathrm{t}\\mathrm{H}$), and top quark pair production with FCNC decay of the top quark ($\\mathrm{t} \\to \\mathrm{q}\\mathrm{H}$). Final states with one isolated lepton and at least three reconstructed jets, among which at least two are associated with b quarks, are studied. No significant deviation is observed from the predicted background. Observed (expected) upper limits at 95% confidence level are set on the branching fractions of top quark decays, $\\mathcal{B}(\\mathrm{t} \\to \\mathrm{u}\\mathrm{H}) < $ 0.47% (0.34%) and $\\mathcal{B}(\\mathrm{...
arXiv Recent results and future of the NA61/SHINE strong interactions program
Lysakowski, Bartosz
2018-01-01
NA61/SHINE is a fixed target experiment at the CERN Super-Proton- Synchrotron. The main goals of the experiment are to discover the critical point of strongly interacting matter and study the properties of the onset of deconfnement. In order to reach these goals the collaboration studies hadron production properties in nucleus-nucleus, proton-proton and proton-nucleus interactions. In this talk, recent results on particle production in p+p interactions, as well as Be+Be and Ar+Sc collisions in the SPS energy range are reviewed. The results are compared with available world data. The future of the NA61/SHINE scientifc program is also presented.
Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls
Andrews, Jennifer E.; Smith, Nathan
2018-03-01
We present a moderate-resolution spectrum of the peculiar Type II supernova iPTF14hls taken on day 1153 after discovery. This spectrum reveals the clear signature of shock interaction with dense circumstellar material (CSM). We suggest that this CSM interaction may be an important clue for understanding the extremely unusual photometric and spectroscopic evolution seen over the first 600 days of iPTF14hls. The late-time spectrum shows a double-peaked intermediate-width Hα line indicative of expansion speeds around 1000 km s-1, with the double-peaked shape hinting at a disc-like geometry in the CSM. If the CSM was highly asymmetric, perhaps in a disc or torus that was ejected from the star 3-6 years prior to explosion, then the CSM interaction could have been overrun and hidden below the SN ejecta photosphere from a wide range of viewing angles. In that case, CSM interaction luminosity would have been thermalized well below the photosphere, potentially sustaining the high luminosity without exhibiting the traditional observational signatures of strong CSM interaction (narrow Hα emission and X-rays). Variations in density structure of the CSM could account for the multiple rebrightenings of the lightcurve. We propose that a canonical 1× 1051 erg explosion energy with enveloped CSM interaction as seen in some recent SNe, rather than an entirely new explosion mechanism, may be adequate to explain the peculiar evolution of iPTF14hls.
Role of high-order dispersion on strong-field laser-molecule interactions
Dantus, Marcos; Nairat, Muath
2016-05-01
Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)
Directory of Open Access Journals (Sweden)
Aditi Gupta
2016-03-01
Full Text Available Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1 using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing
Study the Structure of Hadrons and Quark-hadron duality with electrons up to 6 GeV energy
International Nuclear Information System (INIS)
Mkrtchyan, Hamlet
2008-01-01
The fundamental nature of matter in terms of elementary particles and their interactions is the central topic in subatomic physics. From the nuclear physics perspective, the atom consists of a cloud of electrons surrounding a positively charged nucleus, which contain protons and neutrons. Our understanding of the substructure of the matter has evolved considerably over the last hundred years. Scattering experiments beginning with Reserford, have provided invaluable insight into the fundamental building block of matter. Hadrons, i.e., nucleons or pions, are not elementary particles themselves but instead exhibit a substructure based on more fundamental particles. The incremental improvements in experimental design, coupled with progressively more sophisticated theoretical formalisms have led to our present-day understanding that all matter is constructed from combination of six quarks and six leptons. The familiar protons and neutrons which compose most matter are referred to as baryons and contain three quarks. Mesons are those particles containing a combination of a quark and anti-quark. Quark are bound together by gluons, the gauge-bosons of the strong interaction described by quantum chromodynamics (QCD). The electromagnetic interaction has proved very successful in probing the structure of the nucleon in a quest to understand the strong interactions between quarks and the gluons that bind them. In general, electron scattering experiments can be classified into elastic, inelastic and deep-inelastic scattering. Elastic scattering is characterized by the absorption of the transfered energy and three-momentum by the target without excitation.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to
Surface structure of quark stars with magnetic fields
Indian Academy of Sciences (India)
the formation of quark stars, with particular attention to the attractive quark-nova scenario which may be connected to r-process nucleosynthesis. 2. Degenerate electron gas in a strong magnetic field. Recently, a few authors [21] pointed out that the deficit of (massive) strange quarks due to surface effects on the star can lead ...
CP Violation in Single Top Quark Production
Energy Technology Data Exchange (ETDEWEB)
Geng, Weigang [Michigan State Univ., East Lansing, MI (United States)
2012-01-01
We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb^{-1} of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. de Costa Rica, San Jose (Costa Rica)
2015-04-06
Quantum Chromodynamics (QCD) provides a fundamental description of the physics binding quarks into protons, neutrons, and other hadrons. QCD is well understood at short distances where perturbative calculations are feasible. Establishing an explicit relation between this regime and the large-distance physics of quark confinement has been a long-sought goal. A major challenge is to relate the parameter Λ_{s}, which controls the predictions of perturbative QCD (pQCD) at short distances, to the masses of hadrons. Here we show how new theoretical insights into QCD's behavior at large and small distances lead to an analytical relation between hadronic masses and Λ_{s}. The resulting prediction, Λ_{s} = 0.341 ± 0.024 GeV agrees well with the experimental value 0.339 ± 0.016 GeV. Conversely, the experimental value of Λ_{s} can be used to predict the masses of hadrons, a task which had so far only been accomplished through intensive numerical lattice calculations, requiring several phenomenological input parameters.
Observation of Spin-Polarons in a strongly interacting Fermi liquid
Zwierlein, Martin
2009-03-01
We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.
Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction
International Nuclear Information System (INIS)
He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu
2015-01-01
Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)
Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.
Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip
2017-02-01
The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x ) on reducible oxide supports (TiO 2 and Nb 2 O 5 ) that induce oxygen-vacancy formation in the support and cause HCO x -functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2 -reduction selectivity.
Unitary quantum gases: from cold atoms to quark-gluon plasmas
van Heugten, J. J. R. M.
2013-01-01
We investigate the many-body properties of two distinct degenerate systems with strong interactions, namely that of a quark-gluon plasma and of an atomic Bose gas. In the first part of this thesis, the temperature dependence of the thermodynamic potential of quantum chromodynamics is studied. In
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.
Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke
2008-02-22
Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).
Viscosity in strongly interacting quantum field theories from black hole physics.
Kovtun, P K; Son, D T; Starinets, A O
2005-03-25
The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of variant Planck's over 2pi/4pik(B) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
Mechanism for thermal relic dark matter of strongly interacting massive particles.
Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G
2014-10-24
We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.
Many-body Anderson localization of strongly interacting bosons in random lattices
International Nuclear Information System (INIS)
Katzer, Roman
2015-05-01
In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating
Generalization of the quark rearrangement model
International Nuclear Information System (INIS)
Fields, T.; Chen, C.K.
1976-01-01
An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed
Quark degrees of freedom in nuclei
International Nuclear Information System (INIS)
Lovas, I.
1986-03-01
Experimental facts which can not be interpreted in terms of nucleonic degrees of freedom are reviewed. Attempts to explain these observations by the help of the notions of quark physics are indicated. Some predicted exotic states are enumerated. The most promising models of the nucleon-nucleon interactions in terms of quarks are briefly discussed. (author)
Davis, J. C. Séamus; Lee, Dung-Hai
2013-01-01
Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268
Black, Kevin; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.
A Test of the Flavor Independence of Strong Interactions in e+e- Annihilation at the Z0 Pole
Energy Technology Data Exchange (ETDEWEB)
Muller, David
1999-09-03
This thesis presents a comparison of the strong coupling of the gluons to light (q_{l} = u + d + s), c, and b quarks, determined from multijet rates in flavor-tagged samples of approximately 150,000 hadronic Z^{0} decays recorded with the SLC Large Detector at the SLAC Linear Collider between 1993 and 1995. Flavor separation among primary q_{l} {anti q_{l}} , c{anti c} and b {anti b} final states was made on the basis of the reconstructed mass of long-lived heavy-hadron decay vertices, yielding tags with high purity and low bias against {>=} 3-jet final states. The data obtained imply no flavor dependence within our sensitivity.
Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems
Meyer, Gregory; Machado, Francisco; Yao, Norman
2017-04-01
Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.
Spontaneous magnetization in high-density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constanca
2015-01-01
It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...
Final Report for Project. Quark matter under extreme conditions
International Nuclear Information System (INIS)
Incera, Vivian; Ferrer, Efrain
2015-01-01
The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report 'Reaching for the Horizon' has been 'to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.' The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.
Final Report for Project. Quark matter under extreme conditions
Energy Technology Data Exchange (ETDEWEB)
Incera, Vivian [Univ. of Texas, El Paso, TX (United States); Ferrer, Efrain [Univ. of Texas, El Paso, TX (United States)
2015-12-31
The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.
International Nuclear Information System (INIS)
Recami, E.; Tonin Zanchin, V.; Martinez, J.M.
1986-01-01
A unified geometrical approach to strong and gravitational interactions has been recently proposed, based on the classical methods of General Relativity. According to it, hadrons can be regarded as black-hole type solutions of new field equations describing two tensorial metric-field (the ordinary gravitational field, and the strong one). In this paper, we first seize the opportunity for an improved exposition of some elements of the theory relevant to our present scope. Secondly, by extending the Bekenstein-Hawking thermodynamics to the above mentioned strong black-holes (SBH), it is shown: 1) that SBH thermodynamics seems to require a new expansion of our cosmos after its Big Crunch (i.e. that a recontraction of our cosmos has to be followed by a new creation); 2) that a collapsing star with mass M approximately in the range 3 to 5 solar masses, once reached the neutron-star density, could re-explode tending to form a (radiating) object with a diameter of the order of 1 light-day: thus failing to create a gravitational black-hole
Toponium Tests Of Top-Quark Higgs Bags
Macpherson, Alick L.; Campbell, Bruce A.
1993-01-01
Recently it has been suggested that top quarks, or very massive fourth generation quarks, might surround themselves with a Higgs "bag" of deformation of the Higgs expectation value from its vacuum magnitude. In this paper we address the question of whether such nonlinear Higgs-top interaction effects are subject to experimental test. We first note that if top quarks were necessarily accompanied by Higgs "bags", then top quark weak decay would involve the sudden disruption of the Higgs "bag", ...
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Topics in the theory of heavy-quark systems
International Nuclear Information System (INIS)
Flory, C.A.
1981-04-01
Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism
Uniform strongly interacting soliton gas in the frame of the Nonlinear Schrodinger Equation
Gelash, Andrey; Agafontsev, Dmitry
2017-04-01
The statistical properties of many soliton systems play the key role in the fundamental studies of integrable turbulence and extreme sea wave formation. It is well known that separated solitons are stable nonlinear coherent structures moving with constant velocity. After collisions with each other they restore the original shape and only acquire an additional phase shift. However, at the moment of strong nonlinear soliton interaction (i.e. when solitons are located close) the wave field are highly complicated and should be described by the theory of inverse scattering transform (IST), which allows to integrate the KdV equation, the NLSE and many other important nonlinear models. The usual approach of studying the dynamics and statistics of soliton wave field is based on relatively rarefied gas of solitons [1,2] or restricted by only two-soliton interactions [3]. From the other hand, the exceptional role of interacting solitons and similar coherent structures - breathers in the formation of rogue waves statistics was reported in several recent papers [4,5]. In this work we study the NLSE and use the most straightforward and general way to create many soliton initial condition - the exact N-soliton formulas obtained in the theory of the IST [6]. We propose the recursive numerical scheme for Zakharov-Mikhailov variant of the dressing method [7,8] and discuss its stability with respect to increasing the number of solitons. We show that the pivoting, i.e. the finding of an appropriate order for recursive operations, has a significant impact on the numerical accuracy. We use the developed scheme to generate statistical ensembles of 32 strongly interacting solitons, i.e. solve the inverse scattering problem for the high number of discrete eigenvalues. Then we use this ensembles as initial conditions for numerical simulations in the box with periodic boundary conditions and study statics of obtained uniform strongly interacting gas of NLSE solitons. Author thanks the
Quarks and gluons in the phase diagram of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Welzbacher, Christian Andreas
2016-07-14
In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates
PREFACE: Quark Matter 2006 Conference
Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan
2007-07-01
The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The
The quark gluon plasma; Le plasma de quarks et de gluons
Energy Technology Data Exchange (ETDEWEB)
Granier de Cassagnac, R. [Ecole Polytechnique, Lab. Leprince-Ringuet, 91 - Palaiseau (France)
2010-05-15
The quark-gluon plasma (QGP) is a state of matter in which the universe was expected to be a few micro-seconds after the big-bang. Violent collisions of heavy ions are supposed to re-create this state in particle accelerators. Numerous signatures of this fugacious state have already been observed at the RHIC (relativistic heavy ion collider). The first evidence of the violence of collisions is the number of generated particles: about 6000 per collision, mostly hadrons. This figure seems high but in fact is less than theoretically expected and is the first sign of the formation of a QGP that saturates the density of gluons. Another sign, observed at the RHIC is the damping of the particle jets that are produced in the collision. This damping is consistent with the crossing of a medium whose density is so high that it can not be made of hadrons but of partons. In the RHIC experiments the collective behaviour of quarks and gluons shows that they are strongly interacting with one another. This fact supports the idea that the QGP is more a perfect liquid rather than an ideal gas in which quarks and gluons move freely. (A.C.)
Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2015-07-15
We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schroedinger equation. Its gravitational-wave solution is analogous to the solution of the Schroedinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested. (orig.)
Description of meson strong weak and electromagnetic interactions in quantum chiral theory
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1979-01-01
The picture of all the principal meson decays of the basic octet has been obtained in the framework of the SU(3)xSU(3) symmetric chiral model of the field theory. An attempt is made to generalize the nonlinear chiral model for the case of charmed hadrons, i.e., a transition from the SU(3)xSU(3) group to the SU(4)xSU(4) group. The authors have succeeded in elucidating unambiguously the role of the Kabibbo angle both in weak and strong interactions (it defines the structure of weak hadron currents and hadron mass splitting in isotopic multiplets). Proceeding from decays of the basic octet mesons it has been shown that the nonlinear chiral SU(3)xSU(3) symmetric theory may be considered as the quantum field theory, which satisfactorily describes the low-energy meson physics in two first orders of the perturbation theory (tree and single-loop approximations)
Particle-Hole Character of the Higgs and Goldstone Modes in Strongly Interacting Lattice Bosons
Di Liberto, M.; Recati, A.; Trivedi, N.; Carusotto, I.; Menotti, C.
2018-02-01
We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.
Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions.
Lu, L; Song, M; Liu, W; Reyes, A P; Kuhns, P; Lee, H O; Fisher, I R; Mitrović, V F
2017-02-09
Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2 NaOsO 6 . Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba 2 NaOsO 6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.
Influence of broken flavor and C and P symmetry on the quark propagator
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel; Mian, Walid Ahmed [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)
2017-02-15
Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P. While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions. (orig.)
Kanske, Philipp; Böckler, Anne; Trautwein, Fynn-Mathis; Parianen Lesemann, Franca H; Singer, Tania
2016-09-01
Although the processes that underlie sharing others' emotions (empathy) and understanding others' mental states (mentalizing, Theory of Mind) have received increasing attention, it is yet unclear how they relate to each other. For instance, are people who strongly empathize with others also more proficient in mentalizing? And (how) do the neural networks supporting empathy and mentalizing interact? Assessing both functions simultaneously in a large sample (N = 178), we show that people's capacities to empathize and mentalize are independent, both on a behavioral and neural level. Thus, strong empathizers are not necessarily proficient mentalizers, arguing against a general capacity of social understanding. Second, we applied dynamic causal modeling to investigate how the neural networks underlying empathy and mentalizing are orchestrated in naturalistic social settings. Results reveal that in highly emotional situations, empathic sharing can inhibit mentalizing-related activity and thereby harm mentalizing performance. Taken together, our findings speak against a unitary construct of social understanding and suggest flexible interplay of distinct social functions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases
Olsen, Ben A.; Luciuk, Chris; Smale, Scott; Böttcher, Florian; Sharum, Haille; Trotzky, Stefan; Enss, Tilman; Thywissen, Joseph H.
2017-04-01
Conjectured quantum bounds on transport appear to be respected in many strongly interacting many-body systems. Since transport occurs as a system relaxes to equilibrium, many such bounds can be recast as an upper bound on the local relaxation rate kB T / ℏ . Systems saturating this ``Planckian'' bound lack well defined quasiparticles promoting transport. We measure the transport properties of 2D ultracold Fermi gases of 40K during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of spin current around the local magnetization. When the 2D scattering length is tuned near an s-wave Feshbach resonance to be comparable to the inverse Fermi wave vector kF- 1 , we find that the bare transverse spin diffusivity reaches a minimum of 1 . 7(6) ℏ / m . Demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved rf spectroscopy. At unitarity, the contact rises to 0 . 28(3) kF2 per particle, measuring the breaking of scaling symmetry. Our observations support the conjecture that under strong scattering, the local relaxation rate is bounded from above by kB T / ℏ .
Quark confinement in a constituent quark model
International Nuclear Information System (INIS)
Langfeld, K.; Rho, M.
1995-01-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density
Quark confinement in a constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
New precision era of experiments on strong interaction with strangeness at DAFNE/LNF-INFN
Directory of Open Access Journals (Sweden)
Ishiwatari T.
2014-03-01
Full Text Available The strong-interaction shifts and widths of kaonic hydrogen, deuterium, 3He, and 4He were measured in the SIDDHARTA experiment. The most precise values of the shift and width of the kaonic hydrogen 1s state were determined to be ϵ1s = −283 ± 36(stat±6(syst eV and Γ1s = 541±89(stat±22(syst eV. The upper limit of the kaonic deuterium Kα yield was found to be ≤ 0.39%. In addition, the shifts and widths of the kaonic 3He and 4He 2p states were determined to be ϵ2p(3He = −2 ± 2(stat ± 4(syst eV and Γ2p(3He = 6 ± 6(stat ± 7(syst eV; ϵ2p(4He = +5 ± 3(stat ± 4(syst eV and Γ2p(4He = 14 ± 8(stat ± 5(syst eV. These values are important for the constraints of the low-energy K¯N$\\bar KN$ interaction in theoretical approaches.
Interaction of a strong stellar wind with a mutiphase interstellar medium
International Nuclear Information System (INIS)
Wolff, M.T.
1986-01-01
The interaction of a strong stellar wind with the interstellar medium produces a hot, low density cavity surrounded by a swept-up shell of gas. This cavity-plus-shell structure is collectively called an interstellar bubble. In calculations prior to this work, researchers assumed that the interstellar medium surrounding the wind-blowing star was described by a constant density and temperature (i.e., was homogeneous). This dissertation improves on these earlier calculations by assuming that the interstellar medium surrounding the star is inhomogeneous or multiphase. Gas flows are modeled by assuming that the inhomogeneous phases of the interstellar medium (the clouds) and the intercloud gas form two distinct but interacting fluid that can exchange mass momentum and energy with each other. In one set of calculations, it is assumed that thermal conductive evaporation of clouds brought about by the clouds sitting inside a region of hot (T ≅ 10 6 K) gas is the only mass exchange process operation between the clouds and intercloud fluid. It was found that the mass injection from the clouds to the intercloud gas via the process of thermal evaporation can significantly modify the structure of the interstellar bubble from that found in previous studies
Quark and pion effective couplings from polarization effects
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)
2016-05-15
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)
Maximum Mass of Hybrid Stars in the Quark Bag Model
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
Role of strongly interacting additives in tuning the structure and properties of polymer systems
Daga, Vikram Kumar
Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals
Experimental investigations of strong interactions in non-perturbative QCD region
International Nuclear Information System (INIS)
Lindenbaum, S.J.; Samuel, S.
1992-01-01
We have experimentally investigated the reactions π - p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p →φφ{ σ λ } (OZI allowed),φK + K - { σ λ }(OZI allowed),bar pp → φ φ π 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter) reactions with the OZI allowed and taking a global view we hope to critically test our hypothesis that the g T (2010), g T' (2300), and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1--3 2 ++ glueballs. We have searched for a Quark-Gluon Plasma by using 14.6 GeV/c x A Si ions incident on Au, Cu and Si. The novel detector used was a large solid angle TPC system. Although we found considerable strangeness enhancement this is explainable by conventional cascade physics including N* production. We have been engaged in phenomenological analyses in both glueball and heavy ion work. We have found that the θ(1720) is the same as the 0 ++ f 0 (1720) we discovered earlier. Furthermore that the G(1590) can be explained as a sum of the f 0 (1400) and f 0 (1720) and does not require a new resonant state. We have also found that the strangeness enhancement discovered in heavy ion collisions so far is explainable by conventional physics. We are in the STAR Collaboration at RHIC which uses a large TPC system to search for a Quark-Gluon Plasma
Experimental investigations of strong interaction in the non-perturbative QCD region
International Nuclear Information System (INIS)
Lindenbaum, S.J.; Samuel, S.
1993-09-01
A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas
How I Got to Work with Feynman on the Covariant Quark Model
Ravndal, Finn
2015-03-01
In the period 1968-1974 I was a graduate student and then a postdoc at Caltech and was involved with the developments of the quark and parton models. Most of this time I worked in close contact with Richard Feynman and thus was present from the parton model was proposed until QCD was formulated. A personal account is presented how the collaboration took place and how the various stages of this development looked like from the inside until QCD was established as a theory for strong interactions with the partons being quarks and gluons.
Advances in the Application of the Similarity Renormalization Group to Strongly Interacting Systems
Wendt, Kyle Andrew
The Similarity Renormalization Group (SRG) as applied in nuclear physics is a tool to soften and decouple inter-nucleon interactions. The necessity for such a tool is generated by the strong coupling of high- and low-momentum degrees of freedom in modern precision interactions. In recent years the SRG have been used with great success in enhancing few (2-12) nucleon calculations, but there are still many open questions about the nature of the SRG, and how it affects chiral forces. This thesis focuses on three topics within the study of the SRG as it applies to nuclear few-body interactions, with a focus on nuclear forces from chiral effective field theory. The typical SRG applied to nuclear physics is the T̂ rel-SRG, which uses the relative kinetic energy to generate a renormalizing flow. However, this generator explicitly violates criteria that ensure the SRG will decouple the interaction. Previous study of this generator found for a simple model that as the resolution is lowered past the momentum scales associated with a bound state, the T̂rel-SRG enhances coupling near the bound state whereas the classical Wegner generator completely decouples the bound state. In practice, this has not been an issue because the only two-body bound state is very shallow, and therefore well below the SRG softening scales. This study is extended to use leading order chiral effective field theory with large cutoffs to explore this decoupling. This builds in the same low energy physics while including spurious high energy details, including high energy bound states. The evolutions with T̂rel-SRG are compared to the evolution with Wegner's generator. During the decoupling process, the SRG can induce new non-local contributions to the interactions, which inhibits its application using Quantum Monte Carlo (QMC) methods. Separating out the non-local terms is numerically difficult. Instead an approximate separation is applied to T̂ rel-SRG evolved interactions and the nature of the
Numerical simulation of wave-current interaction under strong wind conditions
Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier
2017-04-01
Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).
Critical Behavior of a Strongly-Interacting 2D Electron System
Sarachik, Myriam P.
2013-03-01
Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.
Dense hadron star in quark degree of freedom
Directory of Open Access Journals (Sweden)
Tzeng Yiharn
2014-03-01
Full Text Available The quark degree of freedom may play an important role as one studies dense hadron stars which can help to understand the universe origin. We add a temperature dependence to the effective quark mass adopted from a quark-quark interaction on the QCD basis to probe properties of the star in the quark degree of freedom. Based on this interaction, the quark matter’s equation of state is obtained and its thermodynamic characteristics is investigated in detail. Stability of a star made of such matter is examined with and without strange quarks. The Tolman-Oppenheimer-Volkov equation along with the condition that dm=dr = 4πr2E are used to calculate mass and radius of such a star. Exact computations are made to calculate the star’s radius and mass at several temperatures. Comparisons of results from these temperatures are made and the significance is carefully investigated and discussed.
International Nuclear Information System (INIS)
Jacob, Maurice
1988-01-01
The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions
Iorio, Alberto Orso Maria
2016-01-01
Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on dif- ferential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.
Indian Academy of Sciences (India)
Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics.
Strongly self-interacting vector dark matter via freeze-in
Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da
2018-01-01
We study a vector dark matter (VDM) model in which the dark sector couples to the Standard Model sector via a Higgs portal. If the portal coupling is small enough the VDM can be produced via the freeze-in mechanism. It turns out that the electroweak phase transition have a substantial impact on the prediction of the VDM relic density. We further assume that the dark Higgs boson which gives the VDM mass is so light that it can induce strong VDM self-interactions and solve the small-scale structure problems of the Universe. As illustrated by the latest LUX data, the extreme smallness of the Higgs portal coupling required by the freeze-in mechanism implies that the dark matter direct detection bounds are easily satisfied. However, the model is well constrained by the indirect detections of VDM from BBN, CMB, AMS-02, and diffuse γ/X-rays. Consequently, only when the dark Higgs boson mass is at most of O (keV) does there exist a parameter region which leads to a right amount of VDM relic abundance and an appropriate VDM self-scattering while satisfying all other constraints simultaneously.
Three-dimensional RAGE Simulations of Strong Shocks Interacting with Sapphire Balls
Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Foster, J. M.; Hartigan, P.; Carver, R.; Blue, B. E.; Hansen, J. F.
2007-11-01
The goal of our 2007-2008 NLUF experiments at the OMEGA laser facility is to investigate the physics associated with the interaction of strong shocks and jets with clumpy media. These experiments have close analogs with structures observed in a variety of astrophysical flows, including jets from young stars, outflows from planetary nebulae, and extragalactic jets. In these experiments, a multi-mega bar shock is created in a plastic layer by heating a hohlraum to 190 eV temperature with 5 kJ of laser energy. The shock enters a 0.3 g/cc RF foam into which are embedded 500 micron diameter sapphire balls. The shock shears off the ball such that it creates thin two-dimensional sheets of sapphire which subsequently break up and undergo the three-dimensional Widnall instability (Widnall, S. E., Bliss, D. B., & Tsai, C. 1974, J. Fluid Mech., 66, 35). The time evolution of the ball/balls is diagnosed with dual-axes point-projection radiography. In this poster, we discuss the results of high-resolution three-dimensional radiation-hydrodynamic simulations with the adaptive-mesh-refinement RAGE code of single and multiple balls. Comparisons with data from our August shots will be made.
International Nuclear Information System (INIS)
Dubovitskii, V.A.; Pavlov, G.A.; Krasnikov, Yu.G.
1996-01-01
Thermodynamic analysis of media with strong interparticle (Coulomb) interaction is presented. A method for constructing isotherms is proposed for a medium described by a closed multicomponent thermodynamic model. The method is based on choosing an appropriate nondegenerate frame of reference in the extended space of thermodynamic variables and provides efficient thermodynamic calculations in a wide range of parameters, for an investigation of phase transitions of the first kind, and for determining both the number of phases and coexistence curves. A number of approximate thermodynamic models of hydrogen plasma are discussed. The approximation corresponding to the n5/2 law, in which the effects of particle attraction and repulsion are taken into account qualitatively, is studied. This approximation allows studies of thermodynamic properties of a substance for a wide range of parameters. In this approximation, for hydrogen at a constant temperature, various properties of the degree of ionization are revealed. In addition, the parameters of the second critical point are found under conditions corresponding to the Jovian interior
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
neutrino Frederick Reines; 25. Recollections on the establishment of the weak-interaction notion Bruno M. Pontecorvo; 26. Symmetry and conservation laws in particle physics in the fifties Louis Michel; 27. A connection between the strong and weak interactions Sam B. Treiman; Part VII. Weak interactions and parity nonconservation; 29. The nondiscovery of parity nonconservation Allan Franklin; 30. K-meson decays and parity violation Richard H. Dalitz; 31. An Experimentalist's Perspective Val L. Fitch; 32. The early experiments leading to the V - A interaction Valentine L. Telegdi; 33. Midcentury adventures in particles physics E. C. G. Sudarshan; Part VIII. The particle physics community; 34. The postwar political economy of high-energy physics Robert Seidel; 35. The history of CERN during the early 1950s Edoardo Amaldi; 36. Arguments pro and contra the European laboratory in the participating countries Armin Hermann; 37. Physics and excellences of the life it brings Abdus Salam; 38. Social aspects of Japanese particle physics in the 1950s Michiji Konuma; Part IX. Theories of hadrons; 39. The early S-matrix theory and its propagation (1942-1952) Helmut Rechenberg; 40. From field theory to phenomenology: the history of dispersion relations Andy Pickering; 41. Particles as S-matrix poles: hadron democracy Geoffrey F. Chew; 42. The general theory of quantised fields in the 1950s Arthur S. Wrightman; 43. The classification and structure of hadrons Yuval Ne'eman; 44. Gauge principle, vector-meson dominance and spontaneous symmetry breaking Yoichiro Nambu; Part X. Personal overviews; 45. Scientific impact of the first decade of the Rochester conferences (1950-1960) Robert E. Marshak; 46. Some reflections on the history of particle physics in the 1950s Silvan S. Schweber; 47. Progress in elementary particle theory 1950-1964 Murray Gell-Mann.
A Uniﬁed Theory of Interaction: Gravitation, Electrodynamics and the Strong Force
Directory of Open Access Journals (Sweden)
Wagener P.
2009-01-01
Full Text Available A unified model of gravitation and electromagnetism is extended to derive the Yukawa potential for the strong force. The model satisfies the fundamental characteristics of the strong force and calculates the mass of the pion.
International Nuclear Information System (INIS)
Otterlund, Ingvar; Ruuskanen, Vesa
1993-01-01
In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure
Calculating hadronic properties in strong QCD
International Nuclear Information System (INIS)
Pennington, M.R.
1996-01-01
This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)
Measurement of single top quark production at D0 using a matrix element method
Energy Technology Data Exchange (ETDEWEB)
Mitrevski, Jovan Pavle [Columbia Univ., New York, NY (United States)
2007-01-01
Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |V_{tb}|, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb^{-1} of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of σ_{s}/σ_{t} = 0.44, we measure the single top quark production cross section: σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.8$-1.4\\atop{+1.6}$ pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance.
Heavy quark flow as better probes of QGP properties
Lin, Zi-Wei; Li, Hanlin; Wang, Fuqiang
2018-02-01
In earlier studies we have proposed that most parton v2 comes from the anisotropic escape of partons, not from the hydrodynamic flow, even for semi-central Au+Au collisions at = 200 GeV. Here we study the flavor dependence of this escape mechanism with a multi-phase transport model. In contrast to naive expectations, we find that the charm v2 is much more sensitive to the hydrodynamic flow than the lighter quark v2, and the fraction of v2 from the escape mechanism decreases strongly with the quark mass for large collision systems. We also find that the light quark collective flow is essential for the charm quark v2. Our finding thus suggests that heavy quark flows are better probes of the quark-gluon-plasma properties than light quark flows.
Zwierlein, Martin
2017-04-01
Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.
Disentangling weak and strong interactions in B → K*(→ Kπ)π Dalitz-plot analyses
Energy Technology Data Exchange (ETDEWEB)
Charles, Jerome [CNRS, Aix-Marseille Univ., Universite de Toulon, CPT UMR 7332, Marseille (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay (France); Ocariz, Jose [Sorbonne Universites, UPMC Univ. Paris 06, UMR 7585, LPNHE, Paris (France); Universite Paris Diderot, LPNHE UMR 7585, Sorbonne Paris Cite, Paris (France); Perez Perez, Alejandro [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (France); Collaboration: For the CKMfitter Group
2017-08-15
Dalitz-plot analyses of B → Kππ decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of B → K*(→ Kπ)π decay amplitudes is presented exploiting available amplitude analyses performed at the BaBar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties. (orig.)
International Nuclear Information System (INIS)
Blobel, V.; Laven, H.; Boeckmann, K.; Heilmann, H.G.; Holt, K. von; Idschok, U.; Nussbaumer, H.; Roedel, R.
1977-11-01
Quasi- and total inclusive rho + , rho - and rho 0 cross sections have been studied, using data of a π + p and a pp bubble chamber experiment at 16 and 24 GeV/c, respectively. In pp collisions it is found that the total inclusive cross sections for rho + , rho - and rho - production are about equal. This equality also holds for the differential cross sections dsigma/dy*, all showing the characteristics of dominantly central production. In the π + p reactions the rho - are mainly produced centrally, whereas there are strong additional contributions in the beam fragmentation region for rho + and rho 0 mesons. In the central region, however, the cross sections for rho + , rho - and rho 0 production are almost equal within errors. All our findings agree with what is expected from quark model predictions. (orig.) [de
The vector resonance triplet with the direct coupling to the third quark generation
Energy Technology Data Exchange (ETDEWEB)
Gintner, Mikulas [University of Zilina, Physics Department, Zilina (Slovakia); Czech Technical University in Prague, Institute of Experimental and Applied Physics, Prague (Czech Republic); Juran, Josef [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Prague (Czech Republic); Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2013-10-15
The effective Lagrangian with scalar and vector resonances that might result from new strong physics beyond the SM is formulated and studied. In particular, the scalar resonance representing the recently discovered 125-GeV boson is complemented with the SU(2){sub L+R} triplet of hypothetical vector resonances. Motivated by experimental and theoretical considerations, the vector resonance is allowed to couple directly to the third quark generation only. The coupling is chiral-dependent and the interaction of the right top quark can differ from that of the right bottom quark. To estimate the applicability range of the effective Lagrangian the unitarity of the gauge boson scattering amplitudes is analyzed. The experimental fits and limits on the free parameters of the vector resonance triplet are investigated. (orig.)
Universal seesaw mechanism for quarks and leptons
International Nuclear Information System (INIS)
Sogami, I.S.; Shinohara, Tadatomi
1991-01-01
Universal seesaw mechanism (USM) is implemented in a left-right symmetric unified theory of extended color and electroweak interactions to solve the problems of fermion mass hierarchies and generation mixings. The gauge group has the structure SU(4) cL x SU(4) cR x SU(2) L x SU(2) R x U(1) X in which the lepton number is treated as the fourth color and the U(1) X group is generated by a new charge X. Colored and non-colored Higgs fields induce USM between ordinary fermion multiplets and exotic electroweak singlets. USM is singly applied to the charged fermion sectors to suppress their average mass below the electroweak mass scale. On the other hand, USM applied doubly to the neutral fermion sector works to make neutrinos superlight. Prodigious gap between vanishingly small neutrino masses and the 10 2 GeV scale of the yet-undiscovered top quark is explained without presuming unnaturally huge mass scales. A global horizontal U(1) A symmetry is introduced so as to circumvent the strong CP violation and to restrict the Yukawa coupling constants. Colored Higgs quartets break the extended color symmetry SU(4) cL x SU(4) cR down to SU(3) cL x SU(3) cR by making the color interaction of lepton to be superweak. It is three kinds of colored Higgs bi-quartets which degrade the left-right symmetric color interaction into the conventional color interaction of vector type and play at the same time the roles to cause the USM and the generation mixing leading to a realistic variety in each sector of the fermion mass spectrum. Characteristics of mass spectra of charged fermions and the quark mixing matrix are described by adjusting the Yukawa coupling constants over a reasonable range of values. (author)
Quark-hadron duality in electron scattering
International Nuclear Information System (INIS)
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified
Quark-Hadron Duality in Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
Quarks and gluons in nuclear and particle physics
International Nuclear Information System (INIS)
Van Hove, L.
1988-01-01
This paper provides a broad overview of strong interactions, or nuclear forces, as ones understanding has expanded over the past 25 years. The major particles and models are briefly touched upon. The author expands upon the field theories which have evolved to explain the experimental work, and the present model of quarks and gluons which form the components of hadrons. The standard model has been very successful in explaining much of the newly acquired experimental data. But the property of confinement, where the partons, (quarks and gluons), are not observed seperately has precluded observation of these particles. He touches on the manifestation of these particles in high energy physics, where they model the observed particles and resonances, and are responsible for the production of hadronic jets. However in nuclear physics, one does not need to postulate the existance of these particles to explain the properties of nuclei, until one deals with interaction energies in the range of GeV. The author then touches on the area of ultra-relativistic nuclear physics, where the partons must play a role in the effects which are observed. In particular he discusses deep inelastic lepton scattering on nuclei, the Drell-Yan process in nuclei, and ultra-relativistic nuclear collisions. Finally he gives a brief discussion of the quark-gluon plasma, which is postulated to form during very high energy collisions, manifesting itself as a brief deconfinement of the partons into an equilibrium plasma
Quasinuclear colored quark model for hadrons
International Nuclear Information System (INIS)
Lipkin, H.J.
1978-09-01
Lectures are presented in which a quasinuclear constituent quark model in which constituent quarks are assumed to be made of constituent interacting with a two-body color-exchange logarithmic potential is considered. The color degree of freedom is discussed in detail. Some properties of the logarithmic potential and the definition of the quasinuclear model and its validity, and a comparison of some of its predictions with experiment are described. 31 references
Quark masses: An environmental impact statement
International Nuclear Information System (INIS)
Jaffe, Robert L.; Jenkins, Alejandro; Kimchi, Itamar
2009-01-01
We investigate worlds that lie on a slice through the parameter space of the standard model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers capable of measuring those quark masses depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses via first-order perturbation theory in flavor SU(3) breaking. We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons, we develop a generalized Weizsaecker semiempirical mass formula, in which strong kinematic flavor symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against fission, strong particle emission (analogous to α decay), and weak nucleon emission. For two light quarks with charges 2/3 and -1/3 , we find a band of congeniality roughly 29 MeV wide in their mass difference, with our own world lying comfortably
International Nuclear Information System (INIS)
Santilli, R.M.
1981-01-01
A primary objective of the research is the achievement of clear experimental knowledge on the intrinsic characteristics of particles (such as magnetic moment, spin, space parity, etc.) under strong interactions. These characteristics, when known, have been measured a number of times, but all times for particles under long range electromagnetic interactions (e.g., for bubble chamber techniques). The same characteristics are then generally assumed to persist under the different physical conditions of the strong interactions, while no direct or otherwise final measurement under strong interactions exists at this time. The advocated physical knowledge is clearly important for controlled fusion, as well as for a serious study of the foundations of strong interactions. The paper initiates the study by considering the following alternatives. A: the electromagnetic characteristics of particles persist in the transition to the strong; or B: variations in these characteristics are physically conceivable, mathematically treatable, and experimentally detectable. The need to conduct additional experiments, and achieve a final resolution of the issue, is stressed throughout the paper. In the hope of contributing toward this future goal, the paper then reviews the quantitative treatment of possible deviations via the Lie-admissible generalization of Lie's theory, with particular reference to the Lie-admissible generalizations of Lie group, Lie algebras, and enveloping associative algebras. A generalized notion of extended particle under nonlocal nonpotential strong interactions emerge from these studies. The theory is applied to the re-elaboration of the data on the spinor symmetry via neutron interferometers. It is shown that the data are indeed consistent with a breaking of the SU(2)-spin symmetry due to nonlocal nonpotential forces. A number of experiments for the future resolution of the issue are indicated
Lyubarsky, Yuri
2018-02-01
This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.
International Nuclear Information System (INIS)
Boreham, B. W.; Hora, H.
1997-01-01
We have recently developed a correspondence principle for electromagnetic interaction. When applied to laser interactions with electrons this correspondence principle identifies a critical laser intensity I*. This critical intensity is a transition intensity separating classical mechanical and quantum mechanical interaction regimes. In this paper we discuss the further application of I* to the interaction of bound electrons in atoms. By comparing I* with the ionisation threshold intensities as calculated from a cycle-averaged simple-atom model we conclude that I* can be usefully interpreted as a lower bound to the classical regime in studies of ionisation of gas atoms by intense laser beams
Doubly Heavy Baryons, Heavy Quark-DiQuark Symmetry and NRQCD
Energy Technology Data Exchange (ETDEWEB)
Sean Fleming; Thomas Mehen
2005-09-27
In the heavy quark limit, properties of heavy mesons and doubly heavy baryons are related by heavy quark-diquark symmetry. This problem is reanalyzed in the framework of Non-Relativistic QCD (NRQCD). We introduce a novel method for deriving Potential NRQCD (pNRQCD) Lagrangians for composite fields from vNRQCD, which contains quarks and antiquarks as explicit degrees of freedom and maintains manifest power counting in the velocity via a label formalism. A Hubbard-Stratonovich transformation is used to eliminate four quark interactions in vNRQCD and then quarks and antiquarks are integrated out to get effective Lagrangians for composite fields. This method is used to rederive Lagrangians for the Q\\bar Q and QQ sectors of pNRQCD and give a correct derivation of the O(1/m_Q) prediction for the hyperfine splitting of doubly heavy baryons.
Hadron properties within the model of quasi-independent quarks
International Nuclear Information System (INIS)
Dorokhov, A.E.
1980-01-01
The spectrum of families of rho, PSI and Y mesons and electromagnetic characteristics of baryons are calculated, based on the model of quasi-independent quarks and assuming the independence of the scalar interaction potential of quark quantum numbers (including ''flavour''). Mesons that are bounded states of the different mass quarks are treated by introducing the concept of ''averaged quarks''. The case is also considered when the interaction potential behaves, with respect to the Lorentz group, as the fourth vector component. Good agreement of the calculation with the experimental data is observed
Uncovering new strong dynamics via topological interactions at the 100 TeV collider
DEFF Research Database (Denmark)
Molinaro, Emiliano; Sannino, Francesco; Thomsen, Anders Eller
2017-01-01
In models of composite Higgs dynamics, new composite pseudoscalars can interact with the Higgs and electroweak gauge bosons via anomalous interactions, stemming from the topological sector of the underlying theory. We show that a future 100 TeV proton-proton collider (FCC-pp) will be able to test...
Directory of Open Access Journals (Sweden)
ZHANG Yi
2015-10-01
Full Text Available It is recently known that strong magnetic fields may lead to highly nontrivial effects on strongly interacting matter,including the color-flavor-locked phase of dense quark matter.Dense quark matter provides various kind of topological solitons such as vortices,domain walls,monopoles,kinks,boojums etc.,it is hence natural to expect that the magnetic field can also affect these topological solitons.In this mini-review,we update our recent progress on the studies of magnetic field effects in the color-flavor-locked quark matter.The particular emphasis is given on the non-Abelian vortices since they are the most fundamental string-like topological excitations under certain circumstance.Their relevant properties (e.g.,the profile function and the tension energy and the magnetic-field dependence are investigated with the Ginzburg-Landau framework.
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Observation of Electroweak Single Top-Quark Production with the CDF II Experiment
Energy Technology Data Exchange (ETDEWEB)
Lueck, Jan [Karlsruhe Inst. of Technology (Germany)
2009-07-24
The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks [19]. Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element |V_{tb}|, which is expected to be |V_{tb}| ~ 1 in the SM. Significant deviations from unity could be an indication of a fourth quark generation, a production mode via flavor-changing neutral currents, and other new phenomena, respectively. There are two dominating electroweak top-quark production modes at the Fermilab Tevatron: the t-channel exchange of a virtual W boson striking a b quark and the s-channel production of a timelike W boson via the fusion of two quarks. In proton-antiproton-collisions the third electroweak production mode, the associated Wt production of an on-shell W boson in conjunction with a top quark has a comparatively negligible small
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Energy Technology Data Exchange (ETDEWEB)
Lacroix, Florent [Clermont-Ferrand U.
2008-12-01
The standard model of particle physics describes the matter as elementary particles interacting via strong and electroweak interactions. The top quark is the heaviest quark described by this model and has been discovered in 1995 by CDF and D collaborations in proton-antiproton collisions at the Tevatron. This thesis is devoted to the measurement of the top pair production cross-section via the strong interaction, in a final state composed of one lepton, one hadronic tau, two b-jets and missing transverse energy. This analysis uses the 1,2 fb
Heavy quark production by neutrinos and antineutrinos
International Nuclear Information System (INIS)
Scott, D.M.; Tanaka, K.
1979-01-01
The rate for producing t- and b-quarks in, respectively, neutrino and antineutrino interactions with nucleons are estimated. Experimental quark parton distribution functions, SU(2) x SU(2) x U(1) gauge group mixing angles, and threshold suppression through rescaling are used in the calculation. The ratios to total cross sections of b-quark production by anti nu, R/sub b//sup anti nu/, and t-quark production by ν, R/sub t//sup nu/, are, respectively, R/sub b//sup anti nu/ approximately equal to 10 -4 and R/sub t//sup nu/ approximately equal to 10 -5 for an incident energy of 200 GeV. 13 references
Quark bag coupling to finite size pions
International Nuclear Information System (INIS)
De Kam, J.; Pirner, H.J.
1982-01-01
A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)
Moreno Llacer, Maria; The ATLAS collaboration
2016-01-01
Production of top quark pairs in association with heavy Standard Model bosons or with heavy flavour quark-pairs is important both as a signal and a background in several ATLAS analyses. Strong constraints on such processes cannot at present be obtained from data, and therefore their modeling by Monte Carlo simulation as well as the associated uncertainties are important. This poster documents the Monte Carlo samples currently being used in ATLAS for the ttH and ttV (V=W,Z vector bosons) and tt+bottom and charm quark pairs processes for sqrt(s)=13 TeV proton-proton collisions.
Heavy barions as bound states of three quarks
International Nuclear Information System (INIS)
D'Oliveira, A.B.; Carvalho, H.F. de; Gerck, E.
1982-01-01
The mass spectrum of heavy baryons as non relativistic bound states of three quark is calculated, using phenomenological potentials for the quark quark interactions derived from QQ sup(-) effective potentials obtained from fits of the J/psi and UPSILON families. Schroedinger's equation is solved according to Flugge and Zickendraht's prescription, using a method developed specially for confining potentials. Results are compared for several types of confining potentials. (Author) [pt
Scale-up of Λ3 : Massive gravity with a higher strong interaction scale
Gabadadze, Gregory
2017-10-01
Pure massive gravity is strongly coupled at a certain low scale, known as Λ3. I show that the theory can be embedded into another one, with new light degrees of freedom, to increase the strong scale to a significantly larger value. Certain universal aspects of the proposed mechanism are discussed, notably that the coupling of the longitudinal mode to a stress tensor is suppressed, thus making the linear theory consistent with the fifth-force exclusion. An example of the embedding theory studied in detail is five-dimensional anti-de Sitter massive gravity, with a large cosmological constant. In this example, the four-dimensional (4D) strong scale can be increased by 19 orders of magnitude. Holographic duality then suggests that the strong scale of the 4D massive gravity can be increased by coupling it to a 4D nonlocal conformal field theory, endowed with a UV cutoff; however, the five-dimensional classical gravity picture appears to be more tractable.
International Nuclear Information System (INIS)
Walecka, J.D.
1983-01-01
Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model
Veljković, Dušan Ž
2018-03-01
Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Metal-insulator transition in SrIrO3 with strong spin-orbit interaction.
Wu, Fei-Xiang; Zhou, Jian; Zhang, L Y; Chen, Y B; Zhang, Shan-Tao; Gu, Zheng-Bin; Yao, Shu-Hua; Chen, Yan-Feng
2013-03-27
The thickness-dependent metal-insulator transition is observed in meta-stable orthorhombic SrIrO3 thin films synthesized by pulsed laser deposition. SrIrO3 films with thicknesses less than 3 nm demonstrate insulating behaviour, whereas those thicker than 4 nm exhibit metallic conductivity at high temperature, and insulating-like behaviour at low temperature. Weak/Anderson localization is mainly responsible for the observed thickness-dependent metal-insulator transition in SrIrO3 films. Temperature-dependent resistance fitting shows that electrical-conductivity carriers are mainly scattered by the electron-boson interaction rather than the electron-electron interaction. Analysis of the magneto-conductance proves that the spin-orbit interaction plays a crucial role in the magneto-conductance property of SrIrO3.
Strongly interacting vector bosons at the CERN LHC Quartic anomalous couplings
Belyaev, A; González-Garciá, M Concepción; Mizukoshi, J K; Novaes, S F; Zacharov, I E
1999-01-01
We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector--boson interactions through the production of vector--boson pairs accompanied by jets. In the framework of $SU(2)_L \\otimes U(1)_Y$ chiral Lagrangians, we examine all effective operators of order $p^4$ that lead to new four--gauge--boson interactions but do not alter trilinear vertices. In our analyses, we perform the full tree level calculation of the processes leading to two jets plus vector--boson pairs, $W^+W^-$, $W^\\pm W^\\pm$, $W^\\pm Z$, or $ZZ$, taking properly into account the interference between the standard model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible new couplings.
A model-independent description of few-body system with strong interaction
International Nuclear Information System (INIS)
Simenog, I.V.
1985-01-01
In this contribution, the authors discuss the formulation of equations that provide model-independent description of systems of three and more nucleons irrespective of the details of the interaction, substantiate the approach, estimate the correction terms with respect to the force range, and give basic qualitative results obtained by means of the model-independent procedure. They consider three nucleons in the doublet state (spin S=I/2) taking into account only S-interaction. The elastic nd-scattering amplitude may be found from the model-independent equations that follow from the Faddeev equations in the short-range-force limit. They note that the solutions of several model-independent equations and basic results obtained with the use of this approach may serve both as a standard solution and starting point in the discussion of various conceptions concerning the details of nuclear interactions
The strong interaction at the collider and cosmic-rays frontiers
d'Enterria, David; Pierog, Tanguy; Ostapchenko, Sergey; Werner, Klaus
2012-01-01
First data on inclusive particle production measured in proton-proton collisions at the Large Hadron Collider (LHC) are compared to predictions of various hadron-interaction Monte Carlos (QGSJET, EPOS and SIBYLL) used commonly in high-energy cosmic-ray physics. While reasonable overall agreement is found for some of the models, none of them reproduces consistently the sqrt(s) evolution of all the measured observables. We discuss the implications of the new LHC data for the modeling of the non-perturbative and semihard parton dynamics in hadron-hadron and cosmic-rays interactions at the highest energies studied today.
Drag force on heavy quarks and spatial string tension
Andreev, Oleg
2018-02-01
Heavy quark transport coefficients in a strongly coupled Quark-Gluon Plasma can be evaluated using a gauge/string duality and lattice QCD. Via this duality, one can argue that for low momenta the drag coefficient for heavy quarks is proportional to the spatial string tension. Such a tension is well-studied on the lattice that allows one to straightforwardly make non-perturbative estimates of the heavy quark diffusion coefficients near the critical point. The obtained results are consistent with those in the literature.
Thermalization of the quark-gluon plasma and dynamical formation of Bose-Einstein Condensate
Liao, Jinfeng
2012-01-01
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the pre-equilibrium gluonic matter (``glasma'') is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scatterin...
Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang
2013-10-01
Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.
Spectral asymptotics of a strong delta ' interaction on a planar loop
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Jex, M.
2013-01-01
Roč. 46, č. 34 (2013), s. 345201 ISSN 1751-8113 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrodinger operators * strong coupling asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.687, year: 2013 http://iopscience.iop.org/1751-8121/46/34/345201/pdf/1751-8121_46_34_345201.pdf
Maria J. Lombardero; Matthew P. Ayres; Richard W. Hofstetter; John C. Moser; Kier D. Lepzig
2003-01-01
Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites...
Numerical investigation into strong axis bending shear interaction in rolled I-shaped steel sections
Dekker, R.W.A.; Snijder, B.H.; Maljaars, J.
2016-01-01
Clause 6.2.8 of EN 1993-1-1 covers the design rules on bending-shear resistance, taking presence of shear into account by a reduced yield stress for the shear area. Numerical research on bending-shear interaction by means of the Abaqus Finite Element modelling soft-ware is presented. The numerical
Surface structure of quark stars with magnetic fields
Indian Academy of Sciences (India)
We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...
Frixione, Stefano; Nason, Paolo; Ridolfi, Giovanni
1997-01-01
We review the present theoretical and experimental status of heavy quark production in high-energy collisions. In particular, we cover hadro- and photoproduction at fixed target experiments, at HERA and at the hadron colliders, as well as aspects of heavy quark production in e+e- collisions at the Z0 peak.
International Nuclear Information System (INIS)
Cartwright, Susan
1992-01-01
Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred
Laenen, E.
2012-01-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Indian Academy of Sciences (India)
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully ...
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.
2016-11-01
We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.
Quark search in high energy experiments
Energy Technology Data Exchange (ETDEWEB)
Valenti, G.
1981-02-01
Results on free quark searches, in cosmic rays (Vertical BarQ<1), proton-nucleon interactions (Vertical BarQVertical Bar 1/3, 4/3) and neutrino (antineutrino)-nucleon interactions (Vertical BarQVertical Bar 1/3) presented to this conference are reviewed.
Scattering amplitudes with off-shell quarks
van Hameren, A.; Kutak, K.; Salwa, T.
2013-11-01
We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {, {}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the numerator of the eikonal propagators to 1. Formulated as above, however, the prescription is more straightforward and
Continuum strong QCD: Confinement and dynamical chiral symmetry breaking
International Nuclear Information System (INIS)
Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions. Herein the author provides a Dyson-Schwinger equation perspective, focusing on qualitative aspects of confinement and dynamical chiral symmetry breaking in cold, sparse QCD, and also elucidating consequences of the axial-vector Ward-Takahashi identity and features of the heavy-quark limit
Strong electron-phonon interaction in the high-Tc superconductors: Evidence from the infrared
International Nuclear Information System (INIS)
Timusk, T.; Porter, C.D.; Tanner, D.B.
1991-01-01
We show that low-frequency structure in the infrared reflectance of the high-temperature superconductor YBa 2 Cu 3 O 7 results from the electron-phonon interaction. Characteristic antiresonant line shapes are seen in the phonon region of the spectrum and the frequency-dependent scattering rate of the mid-infrared electronic continuum has peaks at 150 cm -1 (19 meV) and at 360 cm -1 (45 meV) in good agreement with phonon density-of-states peaks in neutron time-of-flight spectra that develop in superconducting samples. The interaction between the phonons and the charge carriers can be understood in terms of a charged-phonon model
Application of the CIP Method to Strongly Nonlinear Wave-Body Interaction Problems
Zhu, Xinying
2006-01-01
Water entry and exit, green water on deck, sloshing in tanks and capsizing in intact and damaged conditions are examples on violent fluid motion. The combination of model tests, theoretical analysis and Computational Fluid Dynamics (CFD) methods is emphasized in treating these problems. Because mixing of air and liquid may occur, the interaction between the flow in the air and in the liquid ought to be considered in numerical simulations. Further, the mixing of air and liquid represents a sca...
On the starting process of strongly nonlinear vortex/Rayleigh-wave interactions
BROWN, P. G.; BROWN, S. N.; SMITH, F. T.; TIMOSHIN, S. N.
1993-01-01
An oncoming two-dimensional laminar boundary layer that develops an unstable inflection point and becomes three-dimensional is described by the Hall-Smith (1991) vortex/wave interaction equations. These equations are now examined in the neighbourhood of the position where the critical surface starts to form. A consistent structure is established in which an inviscid core flow is matched to a viscous buffer-layer solution where the appropriate jump condition on the transverse shear stress is s...
Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime
Ota, Miki; Stringari, Sandro
2018-03-01
Using Landau's theory of two-fluid hydrodynamics, we investigate first and second sounds propagating in a two-dimensional (2D) Bose gas. We study the temperature and interaction dependence of both sound modes and show that their behavior exhibits a deep qualitative change as the gas evolves from the weakly interacting to the strongly interacting regime. Special emphasis is placed on the jump of both sounds at the Berezinskii-Kosterlitz-Thouless transition, caused by the discontinuity of the superfluid density. We find that the excitation of second sound through a density perturbation becomes weaker and weaker as the interaction strength increases as a consequence of the decrease in the thermal expansion coefficient. Our results could be relevant for future experiments on the propagation of sound on the Bose-Einstein condensate (BEC) side of the BCS-BEC crossover of a 2D superfluid Fermi gas.
Bertini, Lorenzo; Cirillo, Emilio N. M.; Olivieri, Enzo
1999-12-01
In this paper we study a renormalization-group map: the block averaging transformation applied to Gibbs measures relative to a class of finite-range lattice gases, when suitable strong mixing conditions are satisfied. Using a block decimation procedure, cluster expansion, and detailed comparison between statistical ensembles, we are able to prove Gibbsianness and convergence to a trivial (i.e., Gaussian and product) fixed point. Our results apply to the 2D standard Ising model at any temperature above the critical one and arbitrary magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Quinn, John
2009-11-30
Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.
Strong electromagnetic pulses generated in high-intensity laser-matter interactions
Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.
2018-01-01
Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.
Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siccama, I; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G
1996-01-01
Using data accumulated by DELPHI during the November 1995 LEP run at 130~GeV -- 136~GeV, searches have been made for events with jets or leptons in conjunction with missing momentum. The results are interpreted in terms of limits on the production of neutralinos, scalar leptons, and scalar quarks.
Lifetimes and heavy quark expansion
Lenz, Alexander
2015-04-01
Kolya Uraltsev was one of the inventors of the Heavy Quark Expansion (HQE), that describes inclusive weak decays of hadrons containing heavy quarks and in particular lifetimes. Besides giving a pedagogic introduction to the subject, we review the development and the current status of the HQE, which just recently passed several non-trivial experimental tests with an unprecedented precision. In view of many new experimental results for lifetimes of heavy hadrons, we also update several theory predictions: τ (B+)/τ (Bd) = 1.04+0.05-0.01 ± 0.02 ± 0.01, τ(Bs)/τ(Bd) = 1.001 ±0.002, τ(Λb)/τ(Bd) = 0.935 ±0.054 and \\bar {τ } (Ξ b0)/\\bar {τ } (Ξ b+) = 0.95 ± 0.06. The theoretical precision is currently strongly limited by the unknown size of the non-perturbative matrix elements of four-quark operators, which could be determined with lattice simulations.
Metastability and avalanche dynamics in strongly correlated gases with long-range interactions
Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman
2018-03-01
We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.
Relaxation of strongly coupled Coulomb systems after rapid changes of the interaction potential
Gericke, D O; Semkat, D; Bonitz, M; Kremp, D
2003-01-01
The relaxation of charged particle systems after sudden changes of the pair interaction strength is investigated. As examples, we show the results for plasmas after ionization and after a rapid change of screening. Comparisons are made between molecular dynamics simulation and a kinetic description based on the Kadanoff-Baym equations. We found the latter very sensitive to the way the scattering cross section is treated. We also predict the new equilibrium state requiring only conservation of energy. In this case, the correlation energy is computed using the hypernetted chain approximation.
Energy Technology Data Exchange (ETDEWEB)
Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.
2016-03-10
The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges
International Nuclear Information System (INIS)
Yu Zengqiang; Zhai Hui; Zhang Shizhong
2011-01-01
We study the properties of dilute bosons immersed in a single-component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution, and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)
2016-04-28
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.
Wan, Sijie; Peng, Jingsong; Li, Yuchen; Hu, Han; Jiang, Lei; Cheng, Qunfeng
2015-10-27
Graphene is the strongest and stiffest material, leading to the development of promising applications in many fields. However, the assembly of graphene nanosheets into macrosized nanocomposites for practical applications remains a challenge. Nacre in its natural form sets the "gold standard" for toughness and strength, which serves as a guide to the assembly of graphene nanosheets into high-performance nanocomposites. Here we show the strong, tough, conductive artificial nacre based on graphene oxide through synergistic interactions of hydrogen and covalent bonding. Tensile strength and toughness was 4 and 10 times higher, respectively, than that of natural nacre. The exceptional integrated strong and tough artificial nacre has promising applications in aerospace, artificial muscle, and tissue engineering, especially for flexible supercapacitor electrodes due to its high electrical conductivity. The use of synergistic interactions is a strategy for the development of high-performance nanocomposites.
Directory of Open Access Journals (Sweden)
Hanna Björkelund
Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.
Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes
Directory of Open Access Journals (Sweden)
Bellantuono Loredana
2016-01-01
Full Text Available The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.
Nonlinear interaction of charged particles with strong laser pulses in a gaseous media
Directory of Open Access Journals (Sweden)
H. K. Avetissian
2007-07-01
Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.
Strongly coupled interaction between a ridge of fluid and an inviscid airflow
Paterson, C.
2015-07-01
© 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.
Strong interaction between graphene layer and Fano resonance in terahertz metamaterials
Xiao, Shuyuan; Wang, Tao; Jiang, Xiaoyun; Yan, Xicheng; Cheng, Le; Wang, Boyun; Xu, Chen
2017-05-01
Graphene has emerged as a promising building block in modern optics and optoelectronics due to its novel optical and electrical properties. In the mid-infrared and terahertz (THz) regime, graphene behaves like metals and supports surface plasmon resonances (SPRs). Moreover, the continuously tunable conductivity of graphene enables active SPRs and gives rise to a range of active applications. However, the interaction between graphene and metal-based resonant metamaterials has not been fully understood. In this work, a simulation investigation on the interaction between the graphene layer and THz resonances supported by the two-gap split ring metamaterials is systematically conducted. The simulation results show that the graphene layer can substantially reduce the Fano resonance and even switch it off, while leaving the dipole resonance nearly unaffected, which is well explained with the high conductivity of graphene. With the manipulation of graphene conductivity via altering its Fermi energy or layer number, the amplitude of the Fano resonance can be modulated. The tunable Fano resonance here together with the underlying physical mechanism can be strategically important in designing active metal-graphene hybrid metamaterials. In addition, the ‘sensitivity’ to the graphene layer of the Fano resonance is also highly appreciated in the field of ultrasensitive sensing, where the novel physical mechanism can be employed in sensing other graphene-like two-dimensional materials or biomolecules with the high conductivity.
DEFF Research Database (Denmark)
Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.
2016-01-01
We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....
Meson properties in magnetized quark matter
Wang, Ziyue; Zhuang, Pengfei
2018-02-01
We study neutral and charged meson properties in the magnetic field. Taking the bosonization method in a two-flavor Nambu-Jona-Lasinio model, we derive effective meson Lagrangian density with minimal coupling to the magnetic field, by employing derivative expansion for both the meson fields and Schwinger phases. We extract from the effective Lagrangian density the meson curvature, pole and screening masses. As the only Goldstone mode, the neutral pion controls the thermodynamics of the system and propagates the long range quark interaction. The magnetic field breaks down the space symmetry, and the quark interaction region changes from a sphere in vacuum to a ellipsoid in magnetic field.
A class of exact strange quark star model
Indian Academy of Sciences (India)
sion of the bag model, assuming quarks are massless and non-interacting, we have quark pressure pq = 1 ... by linear bag model whereas a polytropic EOS may represent a hybrid star which have cores composed of ..... Now we shall compare the density profile of this model with that of the reported poly- tropic model [42] ...
Energy Technology Data Exchange (ETDEWEB)
Hinzmann, Andreas Dominik
2011-10-07
The Large Hadron Collider (LHC) at the Conseil Europeen pour la Recherche Nucleaire (CERN) allows to study the interactions of quarks and gluons in a yet unexplored energy regime. In 2010, the LHC delivered an integrated luminosity of more than 36 pb{sup -1} of proton-proton collisions at a center-of-mass energy of {radical}(s)=7 TeV. In these proton-proton collisions, the interactions of the constituent quarks and gluons produced a considerable amount of jets of particles with transverse momenta above 1 TeV. Well suited for the study of these jet processes is the Compact Muon Solenoid (CMS) experiment situated at the LHC point 5 as it can measure jets with the necessary energy and angular resolutions over a large range of transverse momentum ({proportional_to}30 GeV
quarks (quark compositeness). Models describing quarks as bound states of constituent particles may be able to explain the number of quark generations, quark masses and charges. A common signature of these models are additional contact interactions between quarks in high-momentum-transfer interactions, observable in the cross section of jet processes. Inspired by the Rutherford experiment, the scattering angle of two-jet processes (dijets) is measured to study the point-like quark and gluon scattering processes predicted by QCD. The dijet scattering angle is expressed in terms of {chi}{sub dijet} = e {sup vertical} {sup stroke} {sup y{sub 1}-y
Quark confinement and the quark model
International Nuclear Information System (INIS)
Kuti, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists and introduction to the theoretical aspects of recent advances in elementary particle physics. The purpose of the lectures contained in this paper is to discuss recent work on the quark model and its applications to hadron spectroscopy and some high-energy phenomena. (Auth.)
Top Quark Properties at Tevatron
Energy Technology Data Exchange (ETDEWEB)
Lysák, Roman [Prague, Inst. Phys.
2017-11-27
The latest CDF and D0 experiment measurements of the top quark properties except the top quark mass are presented. The final combination of the CDF and D0 forward-backward asymmetry measurements is shown together with the D0 measurements of the inclusive top quark pair cross-section as well as the top quark polarization.
Fritzsch, Harald
1983-01-01
Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan
2018-01-01
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova
Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan
2012-01-01
We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.
DEFF Research Database (Denmark)
Jochumsen, Nicholas; Marvig, Rasmus Lykke; Pedersen, Søren Damkiær
2016-01-01
Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequen......Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole......-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five...... independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher...
Voltage-Controlled Switching of Strong Light-Matter Interactions using Liquid Crystals.
Hertzog, Manuel; Rudquist, Per; Hutchison, James A; George, Jino; Ebbesen, Thomas W; Börjesson, Karl
2017-12-22
We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-N str vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Top quark measurements at ATLAS
AUTHOR|(INSPIRE)INSPIRE-00041686; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, it allows us to probe the properties of bare quarks at the Large Hadron Collider. Highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data will be presented: top-quark pair and single top production cross sections including differential distributions will be presented alongside measurements of top-quark properties, including results using boosted top quarks, probe our understanding of top-quark production in the TeV regime. Measurements of the top-quark mass and searches for rare top quark decays are also presented.
Top quark measurements at ATLAS
Grancagnolo, Sergio; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
International Nuclear Information System (INIS)
Sherman, A.; Schreiber, M.
1995-01-01
We use the Eliashberg formalism for calculating T c in a model of cuprate perovskites with pairing mediated by both magnons and apex-oxygen vibrations. The influence of strong correlations on the energy spectrum is taken into account in the spin-wave approximation. It is shown that the hole-magnon interaction alone cannot yield high T c . But together with a moderate hole-phonon interaction it does lead to d-wave superconductivity at temperatures and hole concentrations observed in cuprates. High T c are connected with a large density of states due to extended Van Hove singularities, a conformity of the two interactions for the d symmetry, and high phonon frequencies
Powers, Lydia
The National Museum of Play at The Strong's Dancing Wings Butterfly Garden is a tropical rainforest that allows visitors to step into the world of butterflies, but lacks a more comprehensive educational element to teach visitors additional information about butterflies. Flutter-by Interactive Butterfly is a thesis project designed to enhance younger visitors' experience of the Dancing Wings Butterfly Garden with an interactive educational application that aligns with The Strong's mission of encouraging learning, creativity, and discovery. This was accomplished through a series of fun and educational games and animations, designed for use as a kiosk outside the garden and as a part of The Strong's website. Content, planning, and organization of this project has been completed through research and observation of the garden in the following areas: its visitors, butterflies, best usability practices for children, and game elements that educate and engage children. Flutter-by Interactive Butterfly teaches users about the butterfly's life cycle, anatomy, and characteristics as well as their life in the Dancing Wings Butterfly Garden. Through the use of the design programs Adobe Illustrator, Flash, and After Effects; the programming language ActionScript3.0; a child-friendly user interface and design; audio elements and user takeaways, Flutter-by Interactive Butterfly appeals to children of all ages, interests, and learning styles. The project can be viewed at lydiapowers.com/Thesis/FlutterByButterfly.html
T -matrix approach to quark-gluon plasma
Liu, Shuai Y. F.; Rapp, Ralf
2018-03-01
A self-consistent thermodynamic T -matrix approach is deployed to study the microscopic properties of the quark-gluon plasma (QGP), encompassing both light- and heavy-parton degrees of freedom in a unified framework. The starting point is a relativistic effective Hamiltonian with a universal color force. The input in-medium potential is quantitatively constrained by computing the heavy-quark (HQ) free energy from the static T -matrix and fitting it to pertinent lattice-QCD (lQCD) data. The corresponding T -matrix is then applied to compute the equation of state (EoS) of the QGP in a two-particle irreducible formalism, including the full off-shell properties of the selfconsistent single-parton spectral functions and their two-body interaction. In particular, the skeleton diagram functional is fully resummed to account for emerging bound and scattering states as the critical temperature is approached from above. We find that the solution satisfying three sets of lQCD data (EoS, HQ free energy, and quarkonium correlator ratios) is not unique. As limiting cases we discuss a weakly coupled solution, which features color potentials close to the free energy, relatively sharp quasiparticle spectral functions and weak hadronic resonances near Tc, and a strongly coupled solution with a strong color potential (much larger than the free energy), resulting in broad nonquasiparticle parton spectral functions and strong hadronic resonance states which dominate the EoS when approaching Tc.
Diffractive dissociation and new quarks
International Nuclear Information System (INIS)
White, A.R.
1983-04-01
We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered
Measurement of the Single Top Quark Production Cross Section at $\\sqrt {s} = 1.96$ TeV
Energy Technology Data Exchange (ETDEWEB)
Padilla, Mark Anthony [Univ. of California, Riverside, CA (United States)
2011-01-01
Within the standard model top quarks are predicted to be most often produced in pairs via the strong interaction. However they can also be produced singly through the weak interation. This is a rarer process with many experimental challenges. It is interesting because it provides a new window to search for evidence of physics beyond the standard model picture, such as a fourth generation of quarks or to search for insight into the Higgs Mechanism. Single top production also provides a direct way to calculate the CKM matrix element V_{tb}. This thesis presents new measurements for single top quark production in the s+t, s and t channels using 5.4 fb^{-1} of data collected at the DØ detector at Fermilab in Batavia, IL. The analysis was performed using Boosted decision trees to separate signal from background and Bayesian statistcs to calculate all the cross sections.
Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.
Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna
2016-05-26
We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.
AUTHOR|(SzGeCERN)655637
The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...
and density-dependent quark mass model
Indian Academy of Sciences (India)
V K Gupta et al gas of electrons and muons necessary to maintain charge neutrality. This strange quark matter (SQM) may in fact be the true ground state of matter [5–7]. ... Since a fair proportion of such dense proto stars are likely to be magnetized PSS, it would be interesting to study the effect of a strong magnetic field on ...