Energy Technology Data Exchange (ETDEWEB)
Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China)
2013-01-01
A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.
Antennas in inhomogeneous media
Galejs, Janis; Fock, V A; Wait, J R
2013-01-01
Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media
Energy Technology Data Exchange (ETDEWEB)
Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
International Nuclear Information System (INIS)
Bulgadaev, S.A.; Kusmartsev, F.V.
2005-01-01
Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures
Equilibrium and stability in strongly inhomogeneous plasmas
International Nuclear Information System (INIS)
Mynick, H.E.
1978-10-01
The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability
Propagation of strong electromagnetic beams in inhomogeneous plasmas
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)
1980-09-01
We study some simple aspects of nonlinear propagation of relativistically strong electromagnetic beams in inhomogeneous plasmas, especially in connection with effects of beam self-trapping in extended extragalactic radio sources. The two effects of (i) long scale longitudinal and radial inhomogeneities inherent to the plasma and (ii) radial inhomogeneities produced by the ponderomotive force of the beam itself are investigated.
Traveltime approximations for inhomogeneous HTI media
Alkhalifah, Tariq Ali
2011-01-01
Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.
Theory of Thomson scattering in inhomogeneous media.
Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G
2016-04-12
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.
Microstructural evolution in inhomogeneous elastic media
International Nuclear Information System (INIS)
Jou, H.J.; Leo, P.H.; Lowengrub, J.S.
1997-01-01
We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs
Ray tracing for inhomogeneous media applied to the human eye
Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.
2017-08-01
Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.
Negative refraction of inhomogeneous waves in lossy isotropic media
International Nuclear Information System (INIS)
Fedorov, V Yu; Nakajima, T
2014-01-01
We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
DEFF Research Database (Denmark)
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei
2017-01-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine...
Dissipation of Alfven waves in compressible inhomogeneous media
International Nuclear Information System (INIS)
Malara, F.; Primavera, L.; Veltri, P.
1997-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona
Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media
International Nuclear Information System (INIS)
Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong
2008-01-01
Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through
Gaussian beam diffraction in weakly anisotropic inhomogeneous media
Energy Technology Data Exchange (ETDEWEB)
Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)
2009-08-10
Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.
Gaussian beam diffraction in weakly anisotropic inhomogeneous media
International Nuclear Information System (INIS)
Kravtsov, Yu.A.; Berczynski, P.; Bieg, B.
2009-01-01
Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.
Interactions between butterfly-shaped pulses in the inhomogeneous media
International Nuclear Information System (INIS)
Liu, Wen-Jun; Huang, Long-Gang; Pan, Nan; Lei, Ming
2014-01-01
Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived
Interactions between butterfly-shaped pulses in the inhomogeneous media
Energy Technology Data Exchange (ETDEWEB)
Liu, Wen-Jun [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Long-Gang; Pan, Nan [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, Ming, E-mail: mlei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2014-10-15
Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.
Methods of seismic tomography for strongly inhomogeneous environments
International Nuclear Information System (INIS)
Berryman, J.G.; Zucca, J.J.
1988-01-01
The authors have developed a new algorithm for inverting travel time data in media with strong ray bending. The results of this work will help to characterize sites for underground nuclear explosions and high-level waste disposal. The algorithm is based on the observation that Fermat's principle allows all of the trial rays being considered at any stage of reconstruction to be classified as one of two types: (1) nonfeasible rays - those rays with travel times shorter than the travel times measured, or (2) feasible rays - those rays with travel times as long as or longer than the travel times measured. The authors apply two different sets of corrections to the two types of rays: one that increases the wave slowness along nonfeasible ray paths and another that uses Fermat's principle to alter all feasible ray paths in order to find the paths with the shortest travel time. This algorithm can be applied to almost any least-squares travel time inversion problem
Design of three-dimensional nonimaging concentrators with inhomogeneous media
Minano, J. C.
1986-09-01
A three-dimensional nonimaging concentrator is an optical system that transforms a given four-parametric manifold of rays reaching a surface (entry aperture) into another four-parametric manifold of rays reaching the receiver. A procedure of design of such concentrators is developed. In general, the concentrators use mirrors and inhomogeneous media (i.e., gradient-index media). The concentrator has the maximum concentration allowed by the theorem of conservation of phase-space volume. This is the first known concentrator with such properties. The Welford-Winston edge-ray principle in three-dimensional geometry is proven under several assumptions. The linear compound parabolic concentrator is derived as a particular case of the procedure of design.
The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma
International Nuclear Information System (INIS)
Farid, T.; Mamun, A.A.; Shukla, P.K.
2000-01-01
An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-05-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-01-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor's series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor's series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Percolation for a model of statistically inhomogeneous random media
International Nuclear Information System (INIS)
Quintanilla, J.; Torquato, S.
1999-01-01
We study clustering and percolation phenomena for a model of statistically inhomogeneous two-phase random media, including functionally graded materials. This model consists of inhomogeneous fully penetrable (Poisson distributed) disks and can be constructed for any specified variation of volume fraction. We quantify the transition zone in the model, defined by the frontier of the cluster of disks which are connected to the disk-covered portion of the model, by defining the coastline function and correlation functions for the coastline. We find that the behavior of these functions becomes largely independent of the specific choice of grade in volume fraction as the separation of length scales becomes large. We also show that the correlation function behaves in a manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In particular, we show that the average location of the frontier appears to be related to the percolation threshold for homogeneous fully penetrable disks. copyright 1999 American Institute of Physics
Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing
Adamovsky, Grigory; Ida, Nathan
1997-01-01
Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.
International Nuclear Information System (INIS)
Bai, J.; Takahoshi, H.; Ito, H.; Rheem, Y.W.; Saito, H.; Ishio, S.
2004-01-01
We investigated the influence of the inhomogeneous coercivities on the media noise in a CoPtCr-SiO 2 granular perpendicular magnetic recording medium via ex situ and in situ magnetic force microscopy (MFM) techniques. The ex situ MFM analyses exhibited that transition zigzags contributed to strong magnetic clusters in noise images, and thus resulted in dominant component of the media noise. According to the in situ MFM measurements, it was suggested that an amount of magnetic grains inside a microscopic area reversed like one magnetic ''particle because of strong inter-grain exchange coupling, and that these microscopic areas showed their local magnetic switching behaviors. A mathematic transformation was used to obtain approximately the magnetization distribution in recording layer. And the individual microscopic areas inside recorded bits were compared quasi-quantitatively with those leading large transition zigzags in magnetization switching behaviors. It was indicated that the inhomogeneous coercivities is one of crucial reasons of the medium noise in the perpendicular magnetic recording
Gohn-Kreuz, Cristian; Rohrbach, Alexander
2016-03-21
Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.
Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter
Energy Technology Data Exchange (ETDEWEB)
Nowakowski, Daniel
2017-07-01
In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.
Bivariational calculations for radiation transfer in an inhomogeneous participating media
International Nuclear Information System (INIS)
El Wakil, S.A.; Machali, H.M.; Haggag, M.H.; Attia, M.T.
1986-07-01
Equations for radiation transfer are obtained for dispersive media with space dependent albedo. Bivariational bound principle is used to calculate the reflection and transmission coefficients for such media. Numerical results are given and compared. (author)
Diffraction traveltime approximation for TI media with an inhomogeneous background
Waheed, Umair bin; Alkhalifah, Tariq Ali; Stovas, A.
2013-01-01
Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.
Diffraction traveltime approximation for TI media with an inhomogeneous background
Waheed, Umair bin
2013-09-01
Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.
Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field
International Nuclear Information System (INIS)
Tereshonok, Dmitry V; Babaeva, Natalia Yu; Naidis, George V; Smirnov, Boris M
2016-01-01
We consider a hydrodynamical flow of dielectric liquid near a high voltage needle-shaped electrode in a strong inhomogeneous pulsed electric field. It was shown that under a small rise time, a negative pressure area (pressure is less than critical pressure) appears near the electrode leading to the formation of a cavity in which electric breakdown can develop. A comparison of the dependence of the velocity of fluid near an electrode for two cases (taking into account the dependence of dielectric permeability of the liquid on the electric field and without taking it into account) was made. A field-dependent dielectric coefficient leads to the appearance of two local maximums of the velocities and increases the minimum pressure, thus lowering the possibility of cavitation. While under the constant value of dielectric permeability only one local maximum appears. (paper)
International Nuclear Information System (INIS)
Gevorgyan, A.A.
2002-01-01
There has been considered the dispersion of electromagnetic waves in natural gyrotropic, inhomogeneous media. There has been discovered a new mechanism of waves non-reciprocality conditioned by simultaneous presence of one of the media gradients and natural gyrotropy. The non- reciprocality of waves in multilayer systems with gydrotropic layers has been investigated. It was considered a simple multilayer system glass (1)- cholesteric liquid crystal- glass(2) and demonstrated that non-reciprocality of waves in multilayer system offers good challenges for establishing simple systems with greater reciprocality. It has been shown that the multilayer systems with cholesteric liquid crystal layer can be used as optic diodes
High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
Zhao, Shan
2011-08-15
This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America
Dudorov, Vadim V.; Kolosov, Valerii V.
2003-04-01
The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.
Waheed, Umair bin; Psencik, Ivan; Cerveny, Vlastislav; Iversen, Einar; Alkhalifah, Tariq Ali
2013-01-01
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S' and R' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
Waheed, Umair bin
2013-09-01
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method
International Nuclear Information System (INIS)
Goel, N.S.; Gang, F.; Ko, Z.
1995-01-01
A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field
EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films
Energy Technology Data Exchange (ETDEWEB)
Oesteraas, Bjoern Helge [Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Hole, Eli Olaug [Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Malinen, Eirik [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)
2006-12-21
In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 {mu}m thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.
EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films
International Nuclear Information System (INIS)
Oesteraas, Bjoern Helge; Hole, Eli Olaug; Olsen, Dag Rune; Malinen, Eirik
2006-01-01
In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media
Xie, Bin
2018-01-01
In this paper, the main topic is to investigate the intermittent property of the one-dimensional stochastic heat equation driven by an inhomogeneous Brownian sheet, which is a noise deduced from the study of the catalytic super-Brownian motion. Under some proper conditions on the catalytic measure of the inhomogeneous Brownian sheet, we show that the solution is weakly full intermittent based on the estimates of moments of the solution. In particular, it is proved that the second moment of the solution grows at the exponential rate. The novelty is that the catalytic measure relative to the inhomogeneous noise is not required to be absolutely continuous with respect to the Lebesgue measure on R.
Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S
2017-10-01
An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT
Strong ground motion spectra for layered media
International Nuclear Information System (INIS)
Askar, A.; Cakmak, A.S.; Engin, H.
1977-01-01
This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy
Energy Technology Data Exchange (ETDEWEB)
Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx [Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas s/n, col. Las Campanas Querétaro, Qro. CP 76010 (Mexico); Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx [Department of Mathematics, CINVESTAV del IPN, Unidad Querétaro, Libramiento Norponiente # 2000 Fracc. Real de Juriquilla Querétaro, Qro., CP 76230 (Mexico)
2016-05-15
The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V. V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.
Otsuki, Soichi
2018-04-01
Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2007-01-01
Roč. 170, č. 3 (2007), s. 1253-1261 ISSN 0956-540X R&D Projects: GA ČR GA205/05/2182 Institutional research plan: CEZ:AV0Z30120515 Keywords : inhomogeneous media * seismic anisotropy * seismic waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.112, year: 2007
Kuklik, Pawel; Wong, Christopher X; Brooks, Anthony G; Zebrowski, Jan Jacek; Sanders, Prashanthan
2010-03-01
Atrial fibrillation is the most common type of arrhythmia to affect humans. One of the treatment modalities for atrial fibrillation is an electrical cardioversion. Electrical cardioversion can result in one of three outcomes: an immediate termination of arrhythmic activity, a delayed termination or unsuccessful termination. The mechanism of delayed termination is unknown. Here we present a model of an atrial fibrillation as a coexistence of several spiral waves pinned to the inhomogeneities in active media. We show that in inhomogeneous system delayed termination can be explained as the unpinning of a spiral wave from inhomogeneities and its termination after collision with the edge of the system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Noninvasive detection of inhomogeneities in turbid media with time-resolved log-slope analysis
International Nuclear Information System (INIS)
Wan, S.K.; Guo Zhixiong; Kumar, Sunil; Aber, Janice; Garetz, B.A.
2004-01-01
Detecting foreign objects embedded in turbid media using noninvasive optical tomography techniques is of great importance in many practical applications, such as in biomedical imaging and diagnosis, safety inspection on aircrafts and submarines, and LIDAR techniques. In this paper we develop a novel optical tomography approach based on slope analysis of time-resolved back-scattered signals collected at the medium boundaries where the light source is an ultrafast, short-pulse laser. As the optical field induced by the laser-pulse propagates, the detected temporal signals are influenced by the optical properties of the medium traversed. The detected temporal signatures therefore contain information that can indicate the presence of an inhomogeneity as well as its size and location relative to the laser source and detection systems. The log-slope analysis of the time-resolved back-scattered intensity is shown to be an effective method for extracting the information contained in the signal. The technique is validated by experimental results and by Monte Carlo simulations
Dissipative Vortex Solitons in Defocusing Media with Spatially Inhomogeneous Nonlinear Absorption
Lai, Xian-Jing; Cai, Xiao-Ou; Zhang, Jie-Fang
2018-02-01
In this paper, by solving a complex nonlinear Schrödinger equation, radially symmetric dissipative vortex solitons are obtained analytically and are tested numerically. We find that spatially inhomogeneous nonlinear absorption gives rise to the stability of dissipative vortex solitons in self-defocusing nonlinear medium in the presence of constant linear gain. Numerical simulation reveals the interaction effect among linear gain and nonlinear loss in the azimuthal modulation instabilities of these vortices suppression. Apart from the uniform linear gain indeed affects the stability of vortex in this media, another noticeable feature of current setup is that the steep spatial modulation of the nonlinear absorption can suppress sidelobes effectively and support stable vortex solitons in situations with uniform linear gain. Under appropriate conditions, the vortex solitons can propagate stably and feature no symmetry breaking, although the beams exhibit radical compression and amplification as they propagate. Supported by the National Natural Science Foundation of China under Grant No. 11705164 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ16A040003
Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media
Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai
2018-01-01
Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.
Strong Localization in Disordered Media: Analysis of the Backscattering Cone
Delgado, Edgar
2012-06-01
A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.
Coherent beam control through inhomogeneous media in multi-photon microscopy
Paudel, Hari Prasad
Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a
International Nuclear Information System (INIS)
Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.
2012-01-01
Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.
A scheme comparison of Autler-Townes based slow light in inhomogeneously broadened quantum dot media
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Mørk, Jesper
2010-01-01
We propose a method to achieve significant optical signal delays exploiting the effect of Autler–Townes splitting (ATS) in an inhomogeneously broadened quantum dot medium. The absorption and slowdown effects are compared for three schemes i.e., Ξ, V, and Λ, corresponding to different excitation c...
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
Averiyanov, Mikhail; Blanc-Benon, Philippe; Cleveland, Robin O; Khokhlova, Vera
2011-04-01
Finite amplitude acoustic wave propagation through atmospheric turbulence is modeled using a Khokhlov-Zabolotskaya-Kuznetsov (KZK)-type equation. The equation accounts for the combined effects of nonlinearity, diffraction, absorption, and vectorial inhomogeneities of the medium. A numerical algorithm is developed which uses a shock capturing scheme to reduce the number of temporal grid points. The inhomogeneous medium is modeled using random Fourier modes technique. Propagation of N-waves through the medium produces regions of focusing and defocusing that is consistent with geometrical ray theory. However, differences up to ten wavelengths are observed in the locations of fist foci. Nonlinear effects are shown to enhance local focusing, increase the maximum peak pressure (up to 60%), and decrease the shock rise time (about 30 times). Although the peak pressure increases and the rise time decreases in focal regions, statistical analysis across the entire wavefront at a distance 120 wavelengths from the source indicates that turbulence: decreases the mean time-of-flight by 15% of a pulse duration, decreases the mean peak pressure by 6%, and increases the mean rise time by almost 100%. The peak pressure and the arrival time are primarily governed by large scale inhomogeneities, while the rise time is also sensitive to small scales.
Onset of flows of weakly conducting media in an inhomogeneous electric field
International Nuclear Information System (INIS)
Kozyrenko, V.E.
1986-01-01
This paper attempts to take account of the effect of the inhomogeneous nature of the field occurring in real conditions on the onset of liquid flow. The electric field distribution in the liquid and the motion ensuing under its influence are described by a closed system of equations for the stationary case. The author considers the case when the field, induced by the space charge, is appreciably smaller than the applied field. The results obtained permit one to pass on to the determination of the velocity field. The procedures discussed can be considerably simplified
Energy Technology Data Exchange (ETDEWEB)
Matsushima, J; Rokugawa, S; Kato, Y [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T; Miyazaki, T [Geological Survey of Japan, Tsukuba (Japan); Ichie, Y [The University of Tokyo, Tokyo (Japan)
1996-10-01
Data processing techniques have been investigated for clarifying structures and physical properties of geothermal reservoirs in the deep underground by seismic exploration using multiple wells. They include the initial motion time-distance tomography, amplitude tomography, diffracted wave tomography, and structure imaging using reflected wave or scattered wave. When applying these data processing methods to observed records, weak and minor signals essentially required are canceled due to averaging the analytical fields. In this study, influence of inhomogeneous media on the wavefield was evaluated. Data were analyzed considering frequency by using wavelet transform by which time-frequency can be easily analyzed. From the time-frequency analysis using wavelet transform, it was illustrated that high frequency scattered waves, generated by scatterer like cracks or by irregularity on the reflection surface, arrive behind direct P-wave and direct S-wave. 5 refs., 8 figs.
International Nuclear Information System (INIS)
Li Biao; Chen Yong
2007-01-01
In this paper, the inhomogeneous nonlinear Schroedinger equation with the loss/gain and the frequency chirping is investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by employing the extended projective Riccati equation method. From our results, many previous known results of nonlinear Schroedinger equation obtained by some authors can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boomerang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) soliton propagation and DM solitons interaction
Persinger, R. R.; Stutzman, W. L.
1978-01-01
A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations.
Inverse random source scattering for the Helmholtz equation in inhomogeneous media
Li, Ming; Chen, Chuchu; Li, Peijun
2018-01-01
This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1988-01-01
The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index
An effective dead oil model for two-phase flow in inhomogeneous porous media
International Nuclear Information System (INIS)
Bourgeat, A.
1988-01-01
The authors are investigating displacement process of incompressible two phase flow miscible or immiscible in heterogeneous porous media, including capillary and gravity effects. The authors' aim is to derive rigorously a Global or Effective Model which then allow, in Numerical Simulations, to disconnect the numerical mesh size from the heterogeneities size inside the reservoir itself. The reservoir is assumed to be made of uniformly (or non uniformly) periodically repeated cells. Each cell being made with different types of porous media. Then, calling ε the ratio of the cell size to the Reservoir size, we get equations depending on the parameter ε because the Porosity and Permeabilities, say Phi/sup ε/ and Κ/sup ε/ are themselves rapidly oscillating. From these ε-parametrized equations the authors derive simpler ''Effective Equations'' no more dependant on ε, called ''Homongenized Equations by the mathematical technique of Homogenization. In these new equations, which are describing Global Displacement process throughout a Globally Equivallent homogenous media where now //Phi and Κ are no more depending on the space variable or ε
Directory of Open Access Journals (Sweden)
Shipilov Sergey
2018-01-01
Full Text Available In this paper, a method for detecting and mapping inhomogeneities in biological tissues using the radio-wave tomosynthesis method is presented. The proposed method of radio-wave tomosynthesis allows us to calculate the three-dimensional distribution of the permittivity of the space under study and, thereby, to detect tissue inhomogeneities and to determine their location and size. Due to their harmlessness for humans, these methods are suitable for dynamic observation of changes in the size of formation, in contrast to x-ray methods, for which regular doses of ionizing radiation are contraindicated. Therefore, the development of non-invasive methods for the search for inhomogeneities in biological media based on radio-wave sounding, which makes it possible to identify pathological formations, is now very relevant.
International Nuclear Information System (INIS)
Freericks, J. K.; Turkowski, V.
2009-01-01
Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Detection of strong attractors in social media networks.
Qasem, Ziyaad; Jansen, Marc; Hecking, Tobias; Hoppe, H Ulrich
2016-01-01
Detection of influential actors in social media such as Twitter or Facebook plays an important role for improving the quality and efficiency of work and services in many fields such as education and marketing. The work described here aims to introduce a new approach that characterizes the influence of actors by the strength of attracting new active members into a networked community. We present a model of influence of an actor that is based on the attractiveness of the actor in terms of the number of other new actors with which he or she has established relations over time. We have used this concept and measure of influence to determine optimal seeds in a simulation of influence maximization using two empirically collected social networks for the underlying graphs. Our empirical results on the datasets demonstrate that our measure stands out as a useful measure to define the attractors comparing to the other influence measures.
International Nuclear Information System (INIS)
Gadomsky, O. N.; Gadomskaya, I. V.
2015-01-01
We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range from 450 to 1000 nm
International Nuclear Information System (INIS)
Jones, Andrew Osler
2004-01-01
There is an increasing interest in the use of inhomogeneity corrections for lung, air, and bone in radiotherapy treatment planning. Traditionally, corrections based on physical density have been used. Modern algorithms use the electron density derived from CT images. Small fields are used in both conformal radiotherapy and IMRT, however, their beam characteristics in inhomogeneous media have not been extensively studied. This work compares traditional and modern treatment planning algorithms to Monte Carlo simulations in and near low-density inhomogeneities. Field sizes ranging from 0.5 cm to 5 cm in diameter are projected onto a phantom containing inhomogeneities and depth dose curves are compared. Comparisons of the Dose Perturbation Factors (DPF) are presented as functions of density and field size. Dose Correction Factors (DCF), which scale the algorithms to the Monte Carlo data, are compared for each algorithm. Physical scaling algorithms such as Batho and Equivalent Pathlength (EPL) predict an increase in dose for small fields passing through lung tissue, where Monte Carlo simulations show a sharp dose drop. The physical model-based collapsed cone convolution (CCC) algorithm correctly predicts the dose drop, but does not accurately predict the magnitude. Because the model-based algorithms do not correctly account for the change in backscatter, the dose drop predicted by CCC occurs farther downstream compared to that predicted by the Monte Carlo simulations. Beyond the tissue inhomogeneity all of the algorithms studied predict dose distributions in close agreement with Monte Carlo simulations. Dose-volume relationships are important in understanding the effects of radiation to the lung. The dose within the lung is affected by a complex function of beam energy, lung tissue density, and field size. Dose algorithms vary in their abilities to correctly predict the dose to the lung tissue. A thorough analysis of the effects of density, and field size on dose to the
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
... in arbitrarily inhomogeneous media will be presented on a fundamentally new, ... The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. ... Pramana – Journal of Physics | News.
Diazotisation of Weakly Basic Aromatic and Heterocyclic Amines in Strongly Acid Media
Godovikova, Tamara I.; Rakitin, Oleg A.; Khmel'nitskii, Lenor I.
1983-05-01
The review is devoted to the diazotisation of weakly basic aromatic amines. The methods of synthesis of diazonium salts based on these amines by non-traditional methods are examined. Data on the mechanism of the diazotisation reaction in strongly acid media are surveyed. Reactions of diazonium salts leading to the synthesis of new compounds are presented. The bibliography includes 75 references.
Directory of Open Access Journals (Sweden)
P. Good
2004-01-01
Full Text Available The use of PV equivalent latitude for assimilating stratospheric tracer observations is discussed - with particular regard to the errors in the equivalent latitude coordinate, and to the assimilation of sparse data. Some example measurements are assimilated: they sample the stratosphere sporadically and inhomogeneously. The aim was to obtain precise information about the isentropic tracer distribution and evolution as a function of equivalent latitude. Precision is important, if transport across barriers like the vortex edge are to be detected directly. The main challenges addressed are the errors in modelled equivalent latitude, and the non-ideal observational sampling. The methods presented allow first some assessment of equivalent latitude errors and a picture of how good or poor the observational coverage is. This information determines choices in the approach for estimating as precisely as possible the true equivalent latitude distribution of the tracer, in periods of good and poor observational coverage. This is in practice an optimisation process, since better understanding of the equivalent latitude distribution of the tracer feeds back into a clearer picture of the errors in the modelled equivalent latitude coordinate. Error estimates constrain the reliability of using equivalent latitude to make statements like 'this observation samples air poleward of the vortex edge' or that of more general model-measurement comparisons. The approach is demonstrated for ground-based lidar soundings of the Mount Pinatubo aerosol cloud, focusing on the 1991-92 arctic vortex edge between 475-520K. Equivalent latitude is estimated at the observation times and locations from Eulerian model tracers initialised with PV and forced by UK Meteorological Office analyses. With the model formulation chosen, it is shown that tracer transport of a few days resulted in an error distribution that was much closer to Gaussian form, although the mean error was not
National Research Council Canada - National Science Library
Oughstun, Kurt E; Cartwright, Natalie A
2007-01-01
.... Indeed, previous studies of ultrawideband electromagnetic pulse propagation through dispersive, nonconducting media has shown the existence of a so-called Brillouin precursor whose peak amplitude...
International Nuclear Information System (INIS)
Marinyuk, V V; Sheberstov, S V
2017-01-01
We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)
International Nuclear Information System (INIS)
Meglinskii, I V
2001-01-01
The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)
Big Bounce and inhomogeneities
International Nuclear Information System (INIS)
Brizuela, David; Mena Marugan, Guillermo A; Pawlowski, Tomasz
2010-01-01
The dynamics of an inhomogeneous universe is studied with the methods of loop quantum cosmology, via a so-called hybrid quantization, as an example of the quantization of vacuum cosmological spacetimes containing gravitational waves (Gowdy spacetimes). The analysis of this model with an infinite number of degrees of freedom, performed at the effective level, shows that (i) the initial Big Bang singularity is replaced (as in the case of homogeneous cosmological models) by a Big Bounce, joining deterministically two large universes, (ii) the universe size at the bounce is at least of the same order of magnitude as that of the background homogeneous universe and (iii) for each gravitational wave mode, the difference in amplitude at very early and very late times has a vanishing statistical average when the bounce dynamics is strongly dominated by the inhomogeneities, whereas this average is positive when the dynamics is in a near-vacuum regime, so that statistically the inhomogeneities are amplified. (fast track communication)
Instabilities in inhomogeneous plasma
International Nuclear Information System (INIS)
Mikhailovsky, A.B.
1983-01-01
The plasma inhomogeneity across the magnetic field causes a wide class of instabilities which are called instabilities of an inhomogeneous plasma or gradient instabilities. The instabilities that can be studied in the approximation of a magnetic field with parallel straight field lines are treated first, followed by a discussion of the influence of shear on these instabilities. The instabilities of a weakly inhomogeneous plasma with the Maxwellian velocity distribution of particles caused by the density and temperature gradients are often called drift instabilities, and the corresponding types of perturbations are the drift waves. An elementary theory of drift instabilities is presented, based on the simplest equations of motion of particles in the field of low-frequency and long-wavelength perturbations. Following that is a more complete theory of inhomogeneous collisionless plasma instabilities which uses the permittivity tensor and, in the case of electrostatic perturbations, the scalar of permittivity. The results are used to study the instabilities of a strongly inhomogeneous plasma. The instabilities of a plasma in crossed fields are discussed and the electromagnetic instabilities of plasma with finite and high pressure are described. (Auth.)
Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media
International Nuclear Information System (INIS)
Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei
2012-01-01
We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity
International Nuclear Information System (INIS)
Grammatin, A.P.; Degen, A.B.; Katranova, N.A.
1995-01-01
A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs
Focusing light through strongly scattering media using genetic algorithm with SBR discriminant
Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun
2018-02-01
In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.
International Nuclear Information System (INIS)
Tinkham, M.
1978-01-01
The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications
Nonlinear interaction of charged particles with strong laser pulses in a gaseous media
Directory of Open Access Journals (Sweden)
H. K. Avetissian
2007-07-01
Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1985-01-01
The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Comparison of strongly heat-driven flow codes for unsaturated media
International Nuclear Information System (INIS)
Updegraff, C.D.
1989-08-01
Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-10-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Electromagnetic Characterization of Inhomogeneous Media
2012-03-22
Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements...found in the laboratory data, fun is the code that contains the theatrical formulation of S11, and beta0 is the initial constitutive parameter estimate...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
Krimer, Dmitry O.; Hartl, Benedikt; Mintert, Florian; Rotter, Stefan
2017-10-01
Ensembles of quantum-mechanical spins offer a promising platform for quantum memories, but proper functionality requires accurate control of unavoidable system imperfections. We present an efficient control scheme for a spin ensemble strongly coupled to a single-mode cavity based on a set of Volterra equations relying solely on weak classical control pulses. The viability of our approach is demonstrated in terms of explicit storage and readout sequences that will serve as a starting point towards the realization of more demanding full quantum-mechanical optimal control schemes.
Borcherdt, Roger D.; Glassmoyer, Gary; Wennerberg, Leif
1986-10-01
A general computer code, developed to calculate anelastic reflection-refraction coefficients, energy flow, and the physical characteristics for general P, S-I, and S-II waves, quantitatively describes physical characteristics for wave fields in anelastic media that do not exist in elastic media. Consideration of wave fields incident on boundaries between anelastic media shows that scattered wave fields experience reductions in phase and energy speeds, increases in maximum attenuation and Q-1, and directions of maximum energy flow distinct from phase propagation. Each of these changes in physical characteristics are shown to vary with angle of incidence. Finite relaxation times for anelastic media result in energy flow due to interaction of superimposed radiation fields and contribute to energy flow across anelastic boundaries for all angles of incidence. Agreement of theoretical and numerical results with laboratory measurements argues for the validity of the theoretical and numerical formulations incorporating inhomogeneous wave fields. The agreement attests to the applicability of the model and helps confirm the existence of inhomogeneous body waves and their associated set of distinct physical characteristics in the earth. The existence of such body waves in layered, low-loss anelastic solids implies the need to reformulate some seismological models of the earth. The exact anelastic formulation for a liquid-solid interface with no low-loss approximations predicts the existence of a range of angles of incidence or an anelastic Rayleigh window, through which significant amounts of energy are transmitted across the boundary. The window accounts for the discrepancy apparent between measured reflection data presented in early textbooks and predictions based on classical elasticity theory. Characteristics of the anelastic Rayleigh window are expected to be evident in certain sets of wide-angle, ocean-bottom reflection data and to be useful in estimating Q-1 for some
Vriens, Eva; van Ingen, Erik
2017-01-01
We derive hypotheses from popular accounts of how use of social media affects our strong ties. Several authors have suggested that social media use erodes our strong ties by increasing the volume of social interactions and decreasing their depth. Using two-wave panel data representative of the Dutch
Full-wave solution of short impulses in inhomogeneous plasma
International Nuclear Information System (INIS)
Ferencz, Orsolya E.
2005-01-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
International Nuclear Information System (INIS)
Tsang, Chin-Fu.
1989-02-01
Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional strongly heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs
The mechanism of strong electric field effect on the dispersed media in the rarefied gas
International Nuclear Information System (INIS)
Gagarin, A.G.; Savchenko, Y.N.; Vigdonchik, V.H.
1985-01-01
This paper discusses two approaches to the description of the flow of fluids and gases, that is, a phenomenological method and a molecular-kinetic method. Four dispersed admixtures are described using the model of solid spheres as for molecules and a system of aerodynamic equations is obtained. In this system interactions between gas molecules and admixtures are taken into consideration already in the zero approximation. The paper is also concerned with the experimental study of the motion of dispersed particles in corona discharge which is a typical example of a strong nonuniform electric field with a volume discharge. From the comparison of experimental and calculated paths it was found that the particles move five to seven times faster than they would have done under the action of the Coulomb force alone at a real amount of charge of the particle. The result of comparison also shows that their motion primarily depends on the jet flow of electric wind
Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
El-Dib, Y O
2003-01-01
In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...
Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars
2018-02-01
Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Multicolour Observations, Inhomogeneity & Evolution
Hellaby, Charles
2000-01-01
We propose a method of testing source evolution theories that is independent of the effects of inhomogeneity, and thus complementary to other studies of evolution. It is suitable for large scale sky surveys, and the new generation of large telescopes. In an earlier paper it was shown that basic cosmological observations - luminosity versus redshift, area distance versus redshift and number counts versus redshift - cannot separate the effects of cosmic inhomogeneity, cosmic evolution and sourc...
Lee, M. A.; Lerche, I.
1974-01-01
Study illustrating how the presence of a high-intensity pulse of radiation can distort its own passage through a plane differentially shearing medium. It is demonstrated that the distortion is a sensitive function of the precise, and detailed, variation of the medium's refractive index by considering a couple of simple examples which are worked out numerically. In view of the high-intensity pulses observed from pulsars (approximately 10 to the 30th ergs per pulse), it is believed that the present calculations are of more than academic interest in helping unravel the fundamental properties of pulse production in, and propagating through, differentially sheared media - such as pulsars' magnetospheres within the so-called speed-of-light circle.
Energy Technology Data Exchange (ETDEWEB)
Nishizawa, O; Sato, T [Geological Survey of Japan, Tsukuba (Japan); Lei, X [Dia Consultants Company, Tokyo (Japan)
1996-05-01
In the study of seismic wave propagation, a model experimenting technique has been developed using a laser Doppler velocimeter (LDV) as the sensor. This technique, not dependent on conventional piezoelectric devices, only irradiates the specimen with laser to measure the velocity amplitude on the target surface, eliminating the need for close contact between the specimen and sensor. In the experiment, elastic penetration waves with their noise levels approximately 0.05mm/s were observed upon application of vibration of 10{sup 6}-10{sup 5}Hz. The specimen was stainless steel or rock, and waveforms caught by the LDV and piezoelectric device were compared. As the result, it was found that the LDV is a powerful tool for effectively explaining elastic wave propagation in inhomogeneous media. The piezoelectric device fails to reproduce accurately the waves to follow the initial one while the LDV detect the velocity amplitude on the specimen surface in a wide frequency range encouraging the discussion over the quantification of observed waveforms. 10 refs., 7 figs.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2015-01-01
Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure
International Nuclear Information System (INIS)
Lerche, I.
1978-01-01
A critical examination is made of some recent calculations by Ko and Chuang. They seek to show that original work by ourselves, and others, concerning the behavior of light propagating through differentially moving media is in error and that the fundamental structure of the results is, in fact, very different from the results we obtained: not excluding reversal of sign of some of the effects. We demonstrate that the results reported by Ko and Chuang are a consequence of two basic kinds of errors in their analysis. The first, and paramount, error is their use of fundamental basic kinds of errors in their analysis. The first, and paramount error is their use of fundamental relations in physics (such as the Kramers-Kronig dispersion relation) without due regard being given to the conditons imposed in arriving at the basic relationship in the first place, and thier use of particular relationships far outside their domains of validity as though they still held true.The second basic error is in a particular form of the refractive index, n, that Ko and Chuang use to illustrate their general points (which already suffer from the first basic error). The particular refractive index they use has the following unsatisfactory features: (i) it contains unstable modes in the upper half complex frequency plane: contrary to the conventional Kramers-Kronig relationship they invoke as a general principle; (ii) n 2 0 [n 2 (ω)-1]dω=0; (iii) the imaginary part of the dielectric positive (corresponding to absorption), yet the real part contains unstable modes, and the whole of the complex dielectric constant is nonanalytic in the upper half complex frequency plane; (iv) the form of n given by Ko and Chuang is purported to represent a warm, isotropic, Maxwellian plasma which is well known to be absolutely stable, so that no unstable modes can exist
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Mandal, Suvendu; Spanner-Denzer, Markus; Leitmann, Sebastian; Franosch, Thomas
2017-08-01
We provide an overview of recent advances of the complex dynamics of particles in strong confinements. The first paradigm is the Lorentz model where tracers explore a quenched disordered host structure. Such systems naturally occur as limiting cases of binary glass-forming systems if the dynamics of one component is much faster than the other. For a certain critical density of the host structure the tracers undergo a localization transition which constitutes a critical phenomenon. A series of predictions in the vicinity of the transition have been elaborated and tested versus computer simulations. Analytical progress is achieved for small obstacle densities. The second paradigm is a dense strongly interacting liquid confined to a narrow slab. Then the glass transition depends nonmonotonically on the separation of the plates due to an interplay of local packing and layering. Very small slab widths allow to address certain features of the statics and dynamics analytically.
Solitons of an envelope in an inhomogeneous medium
International Nuclear Information System (INIS)
Churilov, S.M.
1982-01-01
Solutions of the Schroedinger nonlinear equation (SNE) used for the description of evolution of a wave packet envelope has been investigated in inhomogeneous and nonstationary media. It is shown that the SNE solution possessing two important properties exists. Firstly, the wave packet remains localized when propagating in an inhomogeneous medium. Secondly, the soliton width and amplitude are determined only with local characteristics of medium and don't depend on the prehistory. Problem of limits of obtained result applicability has been considered
Radiation transfer in inhomogeneous exponential media
International Nuclear Information System (INIS)
Tezcan, C.; Akcay, H.
2006-01-01
The angular distribution of the radiation intensity and the related constants C and D* are calculated for a new choice of c(x) having the form of the Morse potential in quantum mechanics c(x)=1-a-be -2αx +de -αx . We use the modified Eddington method. The radiation intensity in this method is given in terms of the unknown even and odd functions of the space variable x and the direction cosine μ. The coefficients of these functions depend only on the space variables and satisfy second order differential equations. We solve the resulting second order differential equation using the Nikiforov-Uvarov method. The method provides exact analytical expressions and is not previously used to solve radiation problems. The numerical results are listed in a table for both the constants C and D* and the albedo and in the limiting cases are compared with the homogeneous values. (orig.)
Effects of nanoscale density inhomogeneities on shearing fluids
DEFF Research Database (Denmark)
Ben, Dalton,; Peter, Daivis,; Hansen, Jesper Schmidt
2013-01-01
It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system...... systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components....... This gives us a method for direct measurement of the coupling between the density and velocity fields and allows us to introduce various feedback control mechanisms which customize fluid behavior in individual Fourier components. We briefly discuss the role of temperature inhomogeneity and consider whether...
Inhomogeneous compact extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)
2017-10-01
We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.
The inhomogeneous Suslov problem
Energy Technology Data Exchange (ETDEWEB)
García-Naranjo, Luis C., E-mail: luis@mym.iimas.unam.mx [Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Apdo Postal 20-726, Mexico City 01000 (Mexico); Maciejewski, Andrzej J., E-mail: andrzej.j.maciejewski@gmail.com [J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland); Marrero, Juan C., E-mail: jcmarrero@ull.edu.es [ULL-CSIC, Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands (Spain); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland)
2014-06-27
We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. - Highlights: • We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. • We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation. • We show that the equations of motion possess an invariant measure whose density depends on the velocity variables. • We show that the reduced system is integrable due to the existence of a transcendental first integral. • We study the Painlevé property of the solutions.
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Cassidy, Tali; Bowman, Brett; McGrath, Chloe; Matzopoulos, Richard
2016-10-01
We present a brief report on a systematic review which identified, assessed and synthesized the existing evidence of the effectiveness of media campaigns in reducing youth violence. Search strategies made use of terms for youth, violence and a range of terms relating to the intervention. An array of academic databases and websites were searched. Although media campaigns to reduce violence are widespread, only six studies met the inclusion criteria. There is little strong evidence to support a direct link between media campaigns and a reduction in youth violence. Several studies measure proxies for violence such as empathy or opinions related to violence, but the link between these measures and violence perpetration is unclear. Nonetheless, some evidence suggests that a targeted and context-specific campaign, especially when combined with other measures, can reduce violence. However, such campaigns are less cost-effective to replicate over large populations than generalised campaigns. It is unclear whether the paucity of evidence represents a null effect or methodological challenges with evaluating media campaigns. Future studies need to be carefully planned to accommodate for methodological difficulties as well as to identify the specific elements of campaigns that work, especially in lower and middle income countries. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Nonlinear interaction of waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Istomin, Ya.N.
1988-01-01
Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered
Inhomogeneous microstructural growth by irradiation
DEFF Research Database (Denmark)
Krishan, K.; Singh, Bachu Narain; Leffers, Torben
1985-01-01
In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used...... to describe such evolution. Two aspects of the growth of such inhomogeneities are discussed. Firstly, it is shown that a local variation in the sink densities of the various microstructural defects will tend to enhance the inhomogeneity rather than remove it. Secondly, such inhomogeneities will lead to point...... defect fluxes that result in a spatial growth of the inhomogeneous region, which will be stopped only when the microstructural density around this region becomes large. The results have important implications in the formation of denuded zones and void formation in metals....
Curry, D. M.
1974-01-01
Numerical results of the heat and mass transfer in a porous matrix are presented. The coupled, nonlinear partial differential equations describing this physical phenomenon are solved in finite difference form for two dimensions, using a new iterative technique (the strongly implicit procedure). The influence of the external environment conditions (heating and pressure) is shown to produce two-dimensional flow in the porous matrix. Typical fluid and solid temperature distributions in the porous matrix and internal pressure distributions are presented.
Investigation of local optical inhomogeneities in flashlamp photolysis lasers
Energy Technology Data Exchange (ETDEWEB)
Alekhin, B V; Borovkov, V V; Lazhintsev, B V; Nor-Arenian, V A; Sukhanov, L V; Ustinenko, V A
1979-09-01
Local changes in the refractive index which occur in the active medium under flashlamp-excited photolysis laser action are examined experimentally. Under conditions of the inverse population storage and suppression of the laser action by a strong quencher, local inhomogeneities have been absent. It is shown that the stimulated emission is inhomogeneous over the active medium and features regular character with the radiation density modulation within 20-30 percent and with typical size of inhomogeneities of not greater than 0.5 mm. On the basis of experimental results and estimation, a conclusion is drawn that the local optical inhomogeneities are caused by gasdynamic displacements of the gas due to different heat evolutions in the regions of the radiation density maximum and minimum.
Particle creation in inhomogeneous spacetimes
International Nuclear Information System (INIS)
Frieman, J.A.
1989-01-01
We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Inclusions and inhomogeneities under stress
CSIR Research Space (South Africa)
Nabarro, FRN
1996-02-01
Full Text Available Some general theorems, new and old, concerning the behaviour of elastic inclusions and inhomogeneities in bodies without or with external stress, are assembled. The principal new result is that arbitrary external tractions cannot influence the shape...
Nature of inhomogeneous states in superconducting junctions
International Nuclear Information System (INIS)
Ivlev, B.I.; Kopnin, N.B.
1982-01-01
A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally
Strong mobility in weakly disordered systems
Energy Technology Data Exchange (ETDEWEB)
Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, Pavel [BOSTON UNIV
2009-01-01
We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle s grows superdiffusively with time t, {sigma}{approx}({epsilon}t){sup 2/3}, where {epsilon} is the disorder strength. Without disorder the particle displacement is subdiffusive, {sigma} {approx}t{sup 1/4}, and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime.
Physical model of optical inhomogeneities of water
Shybanov, E. B.
2017-11-01
The paper is devoted to theoretical aspects of the light scattering of water that does not contain suspended particles. To be consistent with current physical point of view the water as far as any liquid is regarded as a complex unstable nonergodic media. It was proposed that at fixed time the water as a condensed medium had global inhomogeneities similar to linear and planar defects in a solid. Anticipated own global inhomogeneities of water have been approximated by the system randomly distributed spherical clusters filling the entire water bulk. An analytical expression for the single scattered light has been derived. The formula simultaneously describes both the high anisotropy of light scattering and the high degree of polarization which one close to those for molecular scattering. It is shown that at general angles there is a qualitative coincidence with the two-component Kopelevich's model for the light scattering by marine particles. On the contrary towards to forwards angles the spectral law becomes much more prominent i.e. it corresponds to results for model of optically soft particles.
International Nuclear Information System (INIS)
Gražulevičiūtė, I; Garejev, N; Majus, D; Tamošauskas, G; A Dubietis; Jukna, V
2016-01-01
We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse. (paper)
Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.
2016-02-01
We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.
Inhomogeneous wire explosion in water
International Nuclear Information System (INIS)
Hwangbo, C.K.; Kong, H.J.; Lee, S.S.
1980-01-01
Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)
Dynamics of inhomogeneous chiral condensates
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
Parametric instabilities in inhomogeneous plasma
International Nuclear Information System (INIS)
Nicholson, D.R.
1975-01-01
The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)
The Prediction of Wave Competitions in Inhomogeneous Brusselator Systems
International Nuclear Information System (INIS)
Cui Xiao-Hua; Dong Yun-Xia; Huang Xiao-Qing; Li Ning
2015-01-01
The competition of waves has remained a hot topic in physics over the past few decades, especially the area of pattern control. Because of improved understanding of various dynamic behaviors, many practical applications have sprung up recently. The prediction of wave competitions is also very important and quite useful in these fields. This paper considers the behaviors of wave competitions in simple, inhomogeneous media which is modeled by Brusselator equations. We present a simple rule to judge the results of wave competitions utilizing the dispersion relation curves and the waves coming from different wave sources. Moreover, this rule can also be used to predict the results of wave propagation. It provides methods of obtaining the desired waves with given frequencies in inhomogeneous media. All our results are concluded and verified by computer simulations. (paper)
Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher
1998-01-01
The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...
Yi, WenJun; Wang, Ping; Fu, MeiCheng; Tan, JiChun; Zhu, Jubo; Li, XiuJian
2017-07-10
In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.
Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.
1995-01-01
The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs
Simple inhomogeneous cosmological (toy) models
International Nuclear Information System (INIS)
Isidro, Eddy G. Chirinos; Zimdahl, Winfried; Vargas, Cristofher Zuñiga
2016-01-01
Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.
Quasilinear diffusion in inhomogeneous plasmas
International Nuclear Information System (INIS)
Hooley, D.L.
1975-05-01
The problem of inhomogeneous diffusion in a plasma is considered with emphasis on its possible application to relativistic electron beams. A one-dimensional model with a background electrostatic field is used to illustrate the basic approach, which is then extended to a two-dimensional plasma with a background magnetic field. Only preliminary results are available. (U.S.)
A study of low-dimensional inhomogeneous systems
International Nuclear Information System (INIS)
Arredondo Leon, Yesenia
2009-01-01
While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K c , which characterizes its decay at large distances. (orig.)
Time-dependent inhomogeneous jet models for BL Lac objects
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-05-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
A study of low-dimensional inhomogeneous systems
Energy Technology Data Exchange (ETDEWEB)
Arredondo Leon, Yesenia
2009-01-15
While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)
Unified formulation for inhomogeneity-driven instabilities in the lower-hybrid range
International Nuclear Information System (INIS)
Silveira, O.J.G.; Ziebell, L.F.; Gaelzer, R.; Yoon, Peter H.
2002-01-01
A local dispersion relation that describes inhomogeneity-driven instabilities in the lower-hybrid range is derived following a procedure that correctly describes energy exchange between waves and particles in inhomogeneous media, correcting some inherent ambiguities associated with the standard formalism found in the literature. Numerical solutions of this improved dispersion relation show that it constitutes a unified formulation for the instabilities in the lower-hybrid range, describing the so-called modified two-stream instability, excited by the ion cross-field drift, including the ion Weibel instability, and also describing the lower-hybrid drift instability, which is due to inhomogeneity effects on the electron population
Inhomogeneous Markov point processes by transformation
DEFF Research Database (Denmark)
Jensen, Eva B. Vedel; Nielsen, Linda Stougaard
2000-01-01
We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....
<strong>Pervasive strong>technology> in the strong>classroom>
DEFF Research Database (Denmark)
Larsen, Lasse Juel; Majgaard, Gunver
2010-01-01
This paper discusses learning potentials of pervasive technology when used in the classroom setting. Explicitly this paper uses the research and development project “Octopus” as its point of departure and as the foundation for reflections on how learning takes place in intelligent contexts. We...... propose that pervasive and tangible media like the Octopus reshapes learning not only by utilizing the body as the epicenter for experiences, but also by changing the traditional temporal and vertical learning design (vertical refers to temporal gab between learned knowledge and applied knowledge......) normally associated with the traditional school system. Initial analyses on the research project “Octopus” indicate that the temporal and vertical learning patterns are replaced by spatial and simultaneous learning design. We suggest that this change signals a fundamental approach and at the same time...
Diffusion in inhomogeneous polymer membranes
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Inhomogeneities in a Friedmann universe
International Nuclear Information System (INIS)
Tauber, G.E.
1987-08-01
One of the outstanding problems in cosmology is the growth of inhomogeneities, which are characterized by an anisotropic pressure and density distribution. Following a method developed by McVittie (1967, 1968) it has been possible to find time-dependent spherically symmetric solutions of Einstein's field equations containing an arbitrary pressure and density distribution which connect smoothly to a Friedmann universe for any desired equation of state. (author). 5 refs
Quantification of inhomogeneities in malignancy grading of non-Hodgkin lymphoma with MR imaging
International Nuclear Information System (INIS)
Rehn, S.; Sperber, G.O.; Nyman, R.; Glimelius, B.; Hagberg, H.; Hemmingsson, A.
1993-01-01
In a previous study of 50 patients with non-Hodgkin lymphoma (NHL) it was shown that the inhomogeneous appearance of a tumor at MR imaging strongly indicated a high malignancy grade. In this study of 33 patients with NHL, the administration of an i.v. contrast medium, Gadolinium-DTPA, improved the subjective detectability of the inhomogeneities. A method of quantifying the degree of inhomogeneity in the tumors (inhomogeneity index, IH-index) was developed and tested. The mean value of IH-index in the T2-weighted image before contrast medium administration, and of the T1-weighted image after contrast medium administration, as well as the IH-index value in the T2-weighted image before contrast medium administration alone, was able to discriminate well between low- and high-grade NHL. This method of quantifiying the degree of inhomogeneity in tumors improved sensitivity in detecting high-grade NHL. (orig.)
Accretion from an inhomogeneous medium
International Nuclear Information System (INIS)
Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.
1986-01-01
The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)
Inhomogeneous Big Bang Nucleosynthesis Revisited
Lara, J. F.; Kajino, T.; Mathews, G. J.
2006-01-01
We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set baryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the b...
Sensitivity of resistive and Hall measurements to local inhomogeneities
DEFF Research Database (Denmark)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth
2014-01-01
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. ...... simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.......We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...
Casimir stress in an inhomogeneous medium
International Nuclear Information System (INIS)
Philbin, T.G.; Xiong, C.; Leonhardt, U.
2010-01-01
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.
International Nuclear Information System (INIS)
Jin Yaqiu; Liang Zichang
2005-01-01
To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed
Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection
Energy Technology Data Exchange (ETDEWEB)
Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)
2017-08-20
We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.
'Perfectly disordered' medium as a model for the description of micro-inhomogeneous mixtures
International Nuclear Information System (INIS)
Levin, V M; Markov, M G; Alvarez-Tostado, J M
2004-01-01
The correct description of the macroscopic (overall) physical properties of micro-inhomogeneous (composite) materials by micro-mechanics methods (the self-consistent schemes, for example) requires information about the microstructure and texture of such materials. Often, such information (of shapes inhomogeneities and peculiarities of their spatial distribution) is not available. In this paper, we suggest a method of calculation of the characteristics of micro-inhomogeneous materials that could be applied to a wide class of isotropic materials. This method assumes the absence of a closed order in the material microstructure (a 'perfectly disordered' (PD) medium). We used the PD approximation to predict the effective thermo- and poroelastic, electric and thermal properties of micro-inhomogeneous media. The expressions for the effective characteristics obtained by this method are always inside of the Hashin-Shtrikman universal bounds. For a two-phase material with fluid component, the effective bulk module satisfies Gassmann's relation for fluid-filled porous media and generalizes such a relation to inhomogeneous thermoelastic and poroelastic media. A comparison of the theoretical results with available experimental data shows a satisfactory coincidence even in the case of high contrast of the component properties. The simplicity of the numerical realization of the method makes it attractive for applications in the absence of detailed information about the material's microstructure
Large scale inhomogeneities and the cosmological principle
International Nuclear Information System (INIS)
Lukacs, B.; Meszaros, A.
1984-12-01
The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)
Inhomogeneous dusty Universes and their deceleration
Giovannini, Massimo
2006-01-01
Exact results stemming directly from Einstein equations imply that inhomogeneous Universes endowed with vanishing pressure density can only decelerate, unless the energy density of the Universe becomes negative. Recent proposals seem to argue that inhomogeneous (but isotropic) space-times, filled only with incoherent matter,may turn into accelerated Universes for sufficiently late times. To scrutinize these scenarios, fully inhomogeneous Einstein equations are discussed in the synchronous system. In a dust-dominated Universe, the inhomogeneous generalization of the deceleration parameter is always positive semi-definite implying that no acceleration takes place.
Directory of Open Access Journals (Sweden)
P.Kostrobii
2006-01-01
Full Text Available Nonequilibrium properties of an inhomogeneous electron gas are studied using the method of the nonequilibrium statistical operator by D.N. Zubarev. Generalized transport equations for the mean values of inhomogeneous operators of the electron number density, momentum density, and total energy density for weakly and strongly nonequilibrium states are obtained. We derive a chain of equations for the Green's functions, which connects commutative time-dependent Green's functions "density-density", "momentum-momentum", "enthalpy-enthalpy" with reduced Green's functions of the generalized transport coefficients and with Green's functions for higher order memory kernels in the case of a weakly nonequilibrium spatially inhomogeneous electron gas.
Estimating functions for inhomogeneous Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus
2006-01-01
Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples.......Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples....
The phase transition to an inhomogeneous condensate state
International Nuclear Information System (INIS)
Voskresensky, D.N.
1984-01-01
The Lagrangian (free energy) of the model with a complex scalar order parameter in which the phase transition to an inhomogeneous condensate state exists is constructed in the coordinate representation. In the case of condensation of charged particles (for example paired electrons) interaction with the electromagnetic field is included. The excitation spectrum in the presence of the condensate is found. The oscillations are strongly anisotropic. It is shown that superfluidity is absent for an uncharged system but that the charged one has the property of superconductivity. The important role of thermal fluctuations is demonstrated. They drastically change the behaviour of the condensate system. The condensation in a finite system is considered. A study is carried out for the behaviour of an inhomogeneous condensate in magnetic field. It is shown that the inhomogeneous condensate is a type II superconductor with Ginzburg-Landau parameter kappa >> 1, but that the structure of the mixed state of the system is unusual - consisting of plane layers of the normal phase, when Hsub(c1)< H< H'sub(c2). The distribution of condensate in the strong magnetic field H'sub(c2)< H< Hsub(c2) is also studied. (Auth.)
Electron-positron pair production in inhomogeneous electromagnetic fields
International Nuclear Information System (INIS)
Kohlfürst, C.
2015-01-01
The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de
García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada
2014-01-01
An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .
The influence of inhomogeneities on the dose distribution of fast electrons in radiotherapy
International Nuclear Information System (INIS)
Windemuth, M.
1985-01-01
Simple models are used to make a principal comparison between measured fast-electron dose distributions behind tissue inhomogeneities and those calculated by means of an irradiation planning system. The different organs were represented by water (for muscle), by cork (for the lungs) and by graphite (for bone). Corresponding to their density, inhomogeneities result, in principle, in a dose shift to a greater or smaller body depth which is correctly considered by the irradiation planning system. However, electron scattering transversal to beam direction will occur behind inhomogeneity edges which, in general, are not covered by the irradiation planning system, but which result in dose distributions deviating strongly from those expected as due to the shift. This is the reason for the limited accuracy of irradiation planning systems in complicated inhomogeneity distribution. The thesis demonstrates those cases which justify irradiation planning and those cases where they are not a reliable basis for irradiation. (orig./HP) [de
Inhomogenous loop quantum cosmology with matter
International Nuclear Information System (INIS)
Martín-de Bias, D; Mena Marugán, G A; Martín-Benito, M
2012-01-01
The linearly polarized Gowdy T 3 model with a massless scalar field with the same symmetries as the metric is quantized by applying a hybrid approach. The homogeneous geometry degrees of freedom are loop quantized, fact which leads to the resolution of the cosmological singularity, while a Fock quantization is employed for both matter and gravitational inhomogeneities. Owing to the inclusion of the massless scalar field this system allows us to modelize flat Friedmann-Robertson-Walker cosmologies filled with inhomogeneities propagating in one direction. It provides a perfect scenario to study the quantum back-reaction between the inhomogeneities and the polymeric homogeneous and isotropic background.
Inhomogeneous electric field air cleaner
International Nuclear Information System (INIS)
Schuster, B.G.
1976-01-01
For applications requiring the filtration of air contaminated with enriched uranium, plutonium or other transuranium compounds, it appears desirable to collect the material in a fashion more amenable to recovery than is now practical when material is collected on HEPA filters. In some instances, it may also be desirable to use an air cleaner of this type to substantially reduce the loading to which HEPA filters are subjected. A theoretical evaluation of such an air cleaner considers the interaction between an electrically neutral particle, dielectric or conducting, with an inhomogeneous electric field. An expression is derived for the force exerted on a particle in an electrode configuration of two concentric cylinders. Equations of motion are obtained for a particle suspended in a laminar flow of air passing through this geometry. An electrical quadrupole geometry is also examined and shown to be inferior to the cylindrical one. The results of two separate configurations of the single cell prototypes of the proposed air cleaner are described. These tests were designed to evaluate collection efficiencies using mono-disperse polystyrene latex and polydisperse NaCl aerosols. The advantages and problems of such systems in terms of a large scale air cleaning facility will be discussed
Fractal behaviour of flow of an inhomogeneous fluid over a smooth inclined surface
International Nuclear Information System (INIS)
Rouhani, S.; Maleki Jirsarani, N.; Ghane Motlagh, B.; Baradaran, S.; Shokrian, E.
2001-01-01
We have observed and analyzed fractal patterns made by the flow of an inhomogeneous fluid (a suspension) over an inclined smooth surface. We observed that if the angle of inclination is above a threshold (10 d eg C - 12 d eg C), the length of fractal clusters become infinity. We measured a fractal dimension of df=1.40 ± 0.05. This falls within the same general class of patterns of flow of water over an inhomogeneous surface. This observation is consistent with the results of theoretical modes for nonlinear fluid flow in random media
Inhomogeneous ensembles of radical pairs in chemical compasses
Procopio, Maria; Ritz, Thorsten
2016-11-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
Plasma waves in an inhomogeneous cylindrical plasma
International Nuclear Information System (INIS)
Pesic, S.S.
1976-01-01
The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied
Ehrenfest force in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.
2000-01-01
The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit
Impact of cosmic inhomogeneities on SNe observations
Kainulainen, Kimmo; Marra, Valerio
2010-06-01
We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.
Inhomogeneous inflation: The initial-value problem
International Nuclear Information System (INIS)
Laguna, P.; Kurki-Suonio, H.; Matzner, R.A.
1991-01-01
We present a spatially three-dimensional study for solving the initial-value problem in general relativity for inhomogeneous cosmologies. We use York's conformal approach to solve the constraint equations of Einstein's field equations for scalar field sources and find the initial data which will be used in the evolution. This work constitutes the first stage in the development of a code to analyze the effects of matter and spacetime inhomogeneities on inflation
Effective medium theories of inhomogeneous media from modern perspective
International Nuclear Information System (INIS)
Gubernatis, J.E.
1977-01-01
In the study of disordered alloys, theorists have stated the physics of the problem in terms of an integral equation and analyzed this equation by techniques developed in the quantum mechanical theory of scattering. The application of the scattering theory approach to the computation of the effective dielectric constant of a polycrystal is discussed. The problem is framed in the form of an integral equation. Several well-known intuitive approximations are recovered, and the connection of the approximations to perturbation theory is indicated
Dissipation of Alfven waves in compressible inhomogeneous media
Energy Technology Data Exchange (ETDEWEB)
Lepidi, S. [Istituto Nazionale di Geofisica, Rome (Italy); Villante, U. [L`Aquila Univ. (Italy). Dipt. di Fisica; Lazarus, A.J. [MIT Centre for Space Research, Cambridge, MA (United States)
1997-11-01
We examine 33 bow shock crossings by IMP8 and compare different methods to calculate the bow shock normal direction and speed using single spacecraft measurements. We find that the mixed equation by Abraham-Shrauner combined with the mass flux conservation equation and the minimum-variance technique applied to a limited set of the Rankine-Hugoniot conservation equations give very similar results that are in good agreement with theoretical predictions. The solutions obtained by the velocity co planarity theorem are reliable only for nearly perpendicular shocks, while poor results are obtained for such cases from the magnetic co planarity theorem. We also suggest that in some cases the time resolution of plasma measurements (about 60 s) may be too low to resolve the density behaviour close to the bow shock and to allow definite evaluation of the shock parameters.
Ray-optics analysis of inhomogeneous biaxially anisotropic media
Sluijter, M.; De Boer, D.K.G.; Urbach, H.P.
2009-01-01
Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial
Ray-optics analysis of inhomogeneous optically anisotropic media
Sluijter, M.
2010-01-01
When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the
Bayesian-based localization in inhomogeneous transmission media
DEFF Research Database (Denmark)
Nadimi, E. S.; Blanes-Vidal, V.; Johansen, P. M.
2013-01-01
In this paper, we propose a novel robust probabilistic approach based on the Bayesian inference using received-signal-strength (RSS) measurements with varying path-loss exponent. We derived the probability density function (pdf) of the distance between any two sensors in the network with heteroge......In this paper, we propose a novel robust probabilistic approach based on the Bayesian inference using received-signal-strength (RSS) measurements with varying path-loss exponent. We derived the probability density function (pdf) of the distance between any two sensors in the network...... with heterogeneous transmission medium as a function of the given RSS measurements and the characteristics of the heterogeneous medium. The results of this study show that the localization mean square error (MSE) of the Bayesian-based method outperformed all other existing localization approaches. © 2013 ACM....
Perturbed soliton excitations in inhomogeneous DNA
International Nuclear Information System (INIS)
Daniel, M.; Vasumathi, V.
2005-05-01
We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2018-01-01
of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...
Discharge characteristics in inhomogeneous fields under air flow
DEFF Research Database (Denmark)
Vogel, Stephan; Holbøll, Joachim
2017-01-01
the frequency and magnitude of partial discharges in the vicinity of the electrode due to an increased rate of space charge removal around the tip of the needle and in the gap. The positive polarity shows higher dependency on air flow compared to the negative polarity. It is shown that positive breakdown......This research investigates the impact of high velocity air flow on Partial Discharge (PD) patterns generated in strongly inhomogeneous fields. In the laboratory, a needle plane electrode configuration was exposed to a high electrical DC-field and a laminar air flow up to 22 ms. The needle...
Corrections to the apparent value of the cosmological constant due to local inhomogeneities
International Nuclear Information System (INIS)
Romano, Antonio Enea; Chen, Pisin
2011-01-01
Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inhomogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and true value of the cosmological constant. We establish the theoretical framework to calculate the corrections to the apparent value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB solution. Our assumption to be at the center of a spherically symmetric inhomogeneous matter distribution correspond to effectively calculate the monopole contribution of the large scale inhomogeneities surrounding us, which we expect to be the dominant one, because of other observations supporting a high level of isotropy of the Universe around us. By performing a local Taylor expansion we analyze the number of independent degrees of freedom which determine the local shape of the inhomogeneity, and consider the issue of central smoothness, showing how the same correction can correspond to different inhomogeneity profiles. Contrary to previous attempts to fit data using large void models our approach is quite general. The correction to the apparent value of the cosmological constant is in fact present for local inhomogeneities of any size, and should always be taken appropriately into account both theoretically and observationally
Radiance intensity enhanced by thin inhomogeneous lossy films
International Nuclear Information System (INIS)
Ben-Abdallah, Philippe; Ni Bo
2004-01-01
Basically, the classical radiative transfer theory assumes that the coherent component of the radiation field is equal to zero and heuristic considerations about energy conservation are used in the phenomenological derivation of the RTE. Here a self-consistent theory is presented to investigate radiative transport in the presence of diffraction processes within thin inhomogeneous films. The problem of linear optics about the transport of scalar radiation within film is solved, a new definition of the radiance is introduced in agreement with earlier definitions and a corresponding radiative transfer equation is derived. The influence of spatial variations of the bulk properties on the propagating mode is described in detail. It is analytically predicted that, unlike homogeneous media, an inhomogeneous film can enhance the radiance intensity in spite of the diffraction and the local extinction. From a practical point of view, the results of this work should be useful to perform the optimal design for many thermoelectric devices such as the new generations of photovoltaiec cells
Assessment of inhomogeneous ELF magnetic field exposures
International Nuclear Information System (INIS)
Leitgeb, N.; Cech, R.; Schroettner, J.
2008-01-01
In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts. (authors)
Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities
International Nuclear Information System (INIS)
Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.
1978-01-01
Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Emil Banning; Møller, Jan K.; Morales, Juan Miguel
2017-01-01
. Specifically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is defined by the time-varying probabilities of starting and ending a trip, and is justified due to the uncertainty associated with the use of the vehicle. The model is fitted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Jan Emil Banning; Møller, Jan Kloppenborg; Morales González, Juan Miguel
. Specically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is dened by the time-varying probabilities of starting and ending a trip and is justied due to the uncertainty associated with the use of the vehicle. The model is tted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
International Nuclear Information System (INIS)
Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.
2004-01-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices
The point ground electrode in vicinity of the semi-spherical inhomogenity
Directory of Open Access Journals (Sweden)
Cvetković Nenad N.
2005-01-01
Full Text Available Characterization of the point ground electrode placed in the surroundings or inside of the semi-spherical earth inhomogenity and fed by low frequency (LF current using isolated earthling conductor, is presented in this paper. The ground impedance (resistance and reactance and potential distribution on the ground surface are determined. Image theory for two-layer semi conducting media, as well as for the one point electrode placed nearby or inside of the spherical body is used during the analysis.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2016-01-01
Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots
International Nuclear Information System (INIS)
Rahmani, K; Zorkani, I; Jorio, A
2011-01-01
The binding energy and diamagnetic susceptibility χ dia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χ dia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy E b shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.
Transformation optics, isotropic chiral media and non-Riemannian geometry
International Nuclear Information System (INIS)
Horsley, S A R
2011-01-01
The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.
Effective permittivity of finite inhomogeneous objects
Raghunathan, S.B.; Budko, N.V.
2010-01-01
A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.
No hair theorem for inhomogeneous cosmologies
International Nuclear Information System (INIS)
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
We show that under very general conditions any inhomogeneous cosmological model with a positive cosmological constant, that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This is shown to be relevant in the context of inflationary models as it makes inflation very weakly dependent on initial conditions. 8 refs
Critical behavior in inhomogeneous random graphs
Hofstad, van der R.W.
2013-01-01
We study the critical behavior of inhomogeneous random graphs in the so-called rank-1 case, where edges are present independently but with unequal edge occupation probabilities. The edge occupation probabilities are moderated by vertex weights, and are such that the degree of vertex i is close in
Critical behavior in inhomogeneous random graphs
Hofstad, van der R.W.
2009-01-01
We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. We show that the critical behavior depends sensitively on the properties of the asymptotic degrees. Indeed, when the proportion of vertices with degree
Electron Beam interaction with an inhomogeneous
Energy Technology Data Exchange (ETDEWEB)
Zaki, N G; El-Shorbagy, Kh H [Plasma physics and Nuclear Fusion Dept. Nuclear Research Centre Atomic Energy Authority, Cairo, (Egypt)
1997-12-31
The linear and nonlinear interaction of an electron beam with an inhomogeneous semi bounded warm plasma is investigated. The amount of energy absorbed by the plasma is obtained. The formation of waves at double frequency at the inlet of the beam into the plasma is also considered.
Inhomogeneous Pre-Big Bang String Cosmology
Veneziano, Gabriele
1997-01-01
An inhomogeneous version of pre--Big Bang cosmology emerges, within string theory, from quite generic initial conditions, provided they lie deeply inside the weak-coupling, low-curvature regime. Large-scale homogeneity, flatness, and isotropy appear naturally as late-time outcomes of such an evolution.
MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMA
Energy Technology Data Exchange (ETDEWEB)
Kritz, A. H.
1962-11-15
Microwave interactions with inhomogeneous plasmas are often studied by employing a simplified electromagnetic approach, i.e., by representing the effects of the plasma by an effective dielectric coefficient. The problems and approximations associated with this procedure are discussed. The equation describing the microwave field in an inhomogeneous partially ionized plasma is derived, and the method that is applied to obtain the reflected, transmitted, and absorbed intensities in inhomogeneous plasmas is presented. The interactions of microwaves with plasmas having Gaussian electron density profiles are considered. The variation of collision frequency with position is usually neglected. In general, the assumption of constant collision frequency is not justified; e.g., for a highly ionized plasma, the electron density profile determines, in part, the profile of the electron-ion collision frequency. The effect of the variation of the collision frequency profile on the interaction of microwaves with inhomogeneous plasmas is studied in order to obtain an estimate of the degree of error that may result when constant collision frequency is assumed instead of a more realistic collision frequency profile. It is shown that the degree of error is of particular importance when microwave analysis is used as a plasma diagnostic. (auth)
Optical inhomogeneity developing in flashlamp photolysis lasers
Energy Technology Data Exchange (ETDEWEB)
Alekhin, B V; Borovkov, V V; Brodskii, A Ya; Lazhintsev, B V; Nor-Arevian, V A; Sukhanov, L V
1980-07-01
The paper discusses the dynamics of optical inhomogenity developing in the active medium of a high-power flashlamp-pumped photolysis laser in inverse population storage, fast inversion suppression, and free-running lasing regimes. A chemical component of the refractive index was found in a C3F7I photolysis experiment, along with the anomalous growth of a gas refractive index.
Axi-symmetric analysis of vertically inhomogeneous elastic multilayered systems
CSIR Research Space (South Africa)
Maina, JW
2009-06-01
Full Text Available primary resilient responses are investigated by way of worked examples of hypothetical three-layer system, which was analyzed by considering homogenous and inhomogeneous material properties in each of the three layers. Effect of a inhomogeneity parameter...
Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions
Tomer, D.; Rajput, S.; Li, L.
2017-04-01
Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96 ± 0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.
Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions
International Nuclear Information System (INIS)
Tomer, D; Rajput, S; Li, L
2017-01-01
Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS 2 to fabricate Schottky junctions. These junctions exhibit rectifying current–voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96 ± 0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions. (paper)
Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures
Directory of Open Access Journals (Sweden)
Song Jun
2008-06-01
Full Text Available Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI. MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
Metrical theorems on systems of small inhomogeneous linear forms
DEFF Research Database (Denmark)
Hussain, Mumtaz; Kristensen, Simon
In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....
Plasmons in inhomogeneously doped neutral and charged graphene nanodisks
Energy Technology Data Exchange (ETDEWEB)
Silveiro, Iván [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Javier García de Abajo, F., E-mail: javier.garciadeabajo@icfo.es [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona (Spain)
2014-03-31
We study plasmons in graphene nanodisks including the effect of inhomogeneity in the distribution of the doping charge. Specifically, we discuss the following two configurations: charged disks containing a fixed amount of additional carriers, which are self-consistently distributed along the surface to produce a uniform DC potential; and neutral disks exposed to a neighboring external point charge. A suitable finite-element method is elaborated to compute the charge density associated with the plasmons in the electrostatic limit. For charged disks, we find dipolar plasmons similar to those of uniformly doped graphene structures, in which the plasmon induced charge piles up near the edges. In contrast, in neutral disks placed near an external point charge, plasmons are strongly localized away from the edges. Surprisingly, a single external electron is enough to trap plasmons. The disks also display axially symmetric dark-plasmons, which can be excited through external illumination by coupling them to a neighboring metallic element. Our results have practical relevance for graphene nanophotonics under inhomogeneous doping conditions.
The two-qubit quantum Rabi model: inhomogeneous coupling
International Nuclear Information System (INIS)
Mao, Lijun; Huai, Sainan; Zhang, Yunbo
2015-01-01
We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)
Controlling translational motion of neutral molecules in inhomogeneous electric fields
International Nuclear Information System (INIS)
Yamakita, Yoshihiro
2006-01-01
Hydrogen molecules are excited to Rydberg states with n=16, 17 in the presence of inhomogeneous field of an electric dipole by a vacuum ultraviolet-ultraviolet double resonance scheme. The large dipole moment produced in Stark eigenstates leads to strong forces on the molecules in the inhomogeneous electric field. Deflection and deceleration are demonstrated for a pulsed supersonic beam containing the H 2 molecules in the n=16, 17, N + =2, M J =0 Rydberg states. The Rydberg states are found to survive for over 100 μs after the dipole field is switched off. The Rydberg states have a special stability with respect to decay by predissociation. Complete deceleration to the zero mean velocity is numerically demonstrated for H 2 molecules in the higher linear low-field-seeking n=16, M J =0 Rydberg states by using a symplectic integrator of the fourth order. The calculations show that the initial velocity of 900 ms -1 with translational temperature 1 K is decelerated to 0 ms -1 with 13 mK. (author)
Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain
International Nuclear Information System (INIS)
Daniel, M.; Amuda, R.
1994-11-01
We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs
Cantor, J
2000-08-01
Research on the effects of media violence is not well understood by the general public. Despite this fact, there is an overwhelming consensus in the scientific literature about the unhealthy effects of media violence. Meta-analyses show that media-violence viewing consistently is associated with higher levels of antisocial behavior, ranging from the trivial (imitative violence directed against toys) to the serious (criminal violence), with many consequential outcomes in between (acceptance of violence as a solution to problems, increased feelings of hostility, and the apparent delivery of painful stimulation to another person). Desensitization is another well-documented effect of viewing violence, which is observable in reduced arousal and emotional disturbance while witnessing violence, the reduced tendency to intervene in a fight, and less sympathy for the victims of violence. Although there is evidence that youth who are already violent are more likely to seek out violent entertainment, there is strong evidence that the relationship between violence viewing and antisocial behavior is bidirectional. There is growing evidence that media violence also engenders intense fear in children which often lasts days, months, and even years. The media's potential role in solutions to these problems is only beginning to be explored, in investigations examining the uses and effects of movie ratings, television ratings, and the V-chip, and the effects of media literacy programs and public education efforts. Future research should explore important individual differences in responses to media violence and effective ways to intervene in the negative effects.
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
Burov, V. A.; Morozov, S. A.
2001-11-01
Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
How Forest Inhomogeneities Affect the Edge Flow
DEFF Research Database (Denmark)
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas
2016-01-01
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...
Electron dynamics in inhomogeneous magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)
2010-06-30
This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)
A nonquasiclassical description of inhomogeneous superconductors
International Nuclear Information System (INIS)
Zaikin, A.D.; Panyukov, S.V.
1988-01-01
Exact microscopic equations are derived that make it possible to describe inhomogeneous superconductors when the quasi-classical approach is not suitable. These equations are simpler than the Gorkov equations. The authors generalize the derived equations for describing the nonequilibrium states of inhomogeneous superconductors. It is demonstrated that the derived equations (including the case of a nonequilibrium quasi particle distribution function) may be written in the form of linear differential equations for the simultaneous wave function μ, ν. The quasi-classical limit of such equations is examined. Effective boundary conditions are derived for the μ, ν functions that allow description of superconductors with a sharp change in parameters within the scope of the quasi-classical approach
Inhomogeneities from quantum collapse scheme without inflation
Energy Technology Data Exchange (ETDEWEB)
Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Cañate, Pedro, E-mail: pedro.canate@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico); Sudarsky, Daniel, E-mail: sudarsky@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico)
2015-04-09
In this work, we consider the problem of the emergence of seeds of cosmic structure in the framework of the non-inflationary model proposed by Hollands and Wald. In particular, we consider a modification to that proposal designed to account for breaking the symmetries of the initial quantum state, leading to the generation of the primordial inhomogeneities. This new ingredient is described in terms of a spontaneous reduction of the wave function. We investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities, and which are the dominant deviations that arise in the model as a consequence of the introduction of the collapse of the quantum state into that scenario.
Primordial inhomogeneities from massive defects during inflation
Energy Technology Data Exchange (ETDEWEB)
Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-10-01
We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.
Cosmic acceleration driven by mirage inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2006-03-21
A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.
Inflation and inhomogeneities: a hybrid quantization
International Nuclear Information System (INIS)
Olmedo, J; Fernández-Méndez, M; Mena Marugán, G A
2012-01-01
We provide a complete quantization of a homogeneous and isotropic spacetime with positive spatial curvature coupled to a massive scalar field in the framework of Loop Quantum Cosmology. The physical Hilbert space is constructed out of the space of initial data on the minimum volume section. By means of a perturbative treatment we introduce inhomogeneities and thereafter we adopt a hybrid quantum approach, in which these inhomogeneous degrees of freedom are described by a standard Fock quantization. For the considered case of compact spatial topology, the requirements of: i) invariance of the vacuum state under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a privileged set of canonical fields and a unique Fock representation (up to unitary equivalence).
Radiation transport in statistically inhomogeneous rocks
International Nuclear Information System (INIS)
Lukhminskij, B.E.
1975-01-01
A study has been made of radiation transfer in statistically inhomogeneous rocks. Account has been taken of the statistical character of rock composition through randomization of density. Formulas are summarized for sigma-distribution, homogeneous density, the Simpson and Cauchy distributions. Consideration is given to the statistics of mean square ranges in a medium, simulated by the jump Markov random function. A quantitative criterion of rock heterogeneity is proposed
Diffusion MRI: Mitigation of Magnetic Field Inhomogeneities
Czech Academy of Sciences Publication Activity Database
Marcon, P.; Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.
2012-01-01
Roč. 12, č. 5 (2012), s. 205-212 ISSN 1335-8871 R&D Projects: GA MŠk ED0017/01/01; GA ČR GAP102/11/0318; GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : correction * diffusion * inhomogeneity * eddy currents * magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.233, year: 2012
Cliques in dense inhomogenous random graphs
Czech Academy of Sciences Publication Activity Database
Doležal, Martin; Hladký, Jan; Máthé, A.
2017-01-01
Roč. 51, č. 2 (2017), s. 275-314 ISSN 1042-9832 R&D Projects: GA ČR GA16-07378S EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 Keywords : inhomogeneous random graphs * clique number Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.243, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/ rsa .20715/abstract
Controlling Charged Particles with Inhomogeneous Electrostatic Fields
Herrero, Federico A. (Inventor)
2016-01-01
An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.
Cliques in dense inhomogenous random graphs
Czech Academy of Sciences Publication Activity Database
Doležal, Martin; Hladký, Jan; Máthé, A.
2017-01-01
Roč. 51, č. 2 (2017), s. 275-314 ISSN 1042-9832 R&D Projects: GA ČR GA16-07378S EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 Keywords : inhomogeneous random graphs * clique number Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.243, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/rsa.20715/abstract
Process Modeling With Inhomogeneous Thin Films
Machorro, R.; Macleod, H. A.; Jacobson, M. R.
1986-12-01
Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.
Inhomogeneities and the Modeling of Radio Supernovae
Energy Technology Data Exchange (ETDEWEB)
Björnsson, C.-I.; Keshavarzi, S. T., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE–106 91 Stockholm (Sweden)
2017-05-20
Observations of radio supernovae (SNe) often exhibit characteristics not readily accounted for by a homogeneous, spherically symmetric synchrotron model; e.g., flat-topped spectra/light curves. It is shown that many of these deviations from the standard model can be attributed to an inhomogeneous source structure. When inhomogeneities are present, the deduced radius of the source and, hence, the shock velocity, is sensitive to the details of the modeling. As the inhomogeneities are likely to result from the same mechanism that amplify the magnetic field, a comparison between observations and the detailed numerical simulations now under way may prove mutually beneficial. It is argued that the radio emission in Type Ib/c SNe has a small volume filling factor and comes from a narrow region associated with the forward shock, while the radio emission region in SN 1993J (Type IIb) is determined by the extent of the Rayleigh–Taylor instability emanating from the contact discontinuity. Attention is also drawn to the similarities between radio SNe and the structural properties of SN remnants.
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Rotational inhomogeneities from pre-big bang?
International Nuclear Information System (INIS)
Giovannini, Massimo
2005-01-01
The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric
Inhomogeneous neutrino degeneracy and big bang nucleosynthesis
International Nuclear Information System (INIS)
Whitmire, Scott E.; Scherrer, Robert J.
2000-01-01
We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio η. Inhomogeneous degeneracy allows for little change in the lower bound on η, but the upper bound in this case can be as large as η=1.1x10 -8 (only ν e degeneracy) or η=1.0x10 -9 (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society
Rotational inhomogeneities from pre-big bang?
Energy Technology Data Exchange (ETDEWEB)
Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)
2005-01-21
The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.
On Electron Hole Evolution in Inhomogeneous Plasmas
Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.
2017-12-01
Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates
QCD under extreme conditions. Inhomogeneous condensation
Energy Technology Data Exchange (ETDEWEB)
Heinz, Achim
2014-10-15
Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase
Directory of Open Access Journals (Sweden)
Rupamanjari Majumder
2011-04-01
Full Text Available Cardiac arrhythmias, such as ventricular tachycardia (VT and ventricular fibrillation (VF, are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.
Spectroscopy and Raman imaging of inhomogeneous materials
International Nuclear Information System (INIS)
Maslova, Olga
2014-01-01
This thesis is aimed at developing methodologies in Raman spectroscopy and imaging. After reviewing the statistical instruments which allow treating giant amount of data (multivariate analysis and classification), the study is applied to two families of well-known materials which are used as models for testing the limits of the implemented developments. The first family is a series of carbon materials pyrolyzed at various temperatures and exhibiting inhomogeneities at a nm scale which is suitable for Raman-X-ray diffraction combination. Another results concern the polishing effect on carbon structure. Since it is found to induce Raman artifacts leading to the overestimation of the local structural disorder, a method based on the use of the G band width is therefore proposed in order to evaluate the crystallite size in both unpolished and polished nano-graphites. The second class of materials presents inhomogeneities at higher (micrometric) scales by the example of uranium dioxide ceramics. Being well adapted in terms of spatial scale, Raman imaging is thus used for probing their surfaces. Data processing is implemented via an approach combining the multivariate (principal component) analysis and the classical fitting procedure with Lorentzian profiles. The interpretation of results is supported via electron backscattering diffraction (EBSD) analysis which enables us to distinguish the orientation effects of ceramic grains from other underlying contributions. The last ones are mainly localized at the grain boundaries, that is testified by the appearance of a specific Raman mode. Their origin seems to be caused by stoichiometric oxygen variations or impurities, as well as strain inhomogeneities. The perspectives of this work include both the implementation of other mathematical methods and in-depth analysis of UO 2 structure damaged by irradiation (anisotropic effects, role of grain boundaries). (author) [fr
Curvaton and the inhomogeneous end of inflation
International Nuclear Information System (INIS)
Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein
2012-01-01
We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, f NL , recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late
Refractive index inhomogeneity within an aerogel block
International Nuclear Information System (INIS)
Bellunato, T.; Calvi, M.; Da Silva Costa, C.F.; Matteuzzi, C.; Musy, M.; Perego, D.L.
2006-01-01
Evaluating local inhomogeneities of the refractive index inside aerogel blocks to be used as Cherenkov radiator is important for a high energy physics experiment where angular resolution is crucial. Two approaches are described and compared. The first one is based on the bending of a laser beam induced by refractive index gradients along directions normal to the unperturbed optical path. The second method exploits the Cherenkov effect itself by shooting an ultra-relativistic collimated electron beam through different points of the aerogel surface. Local refractive index variations result in sizable differences in the Cherenkov photons distribution
Albedo and transmittance of inhomogeneous stratus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others
1996-04-01
A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.
Metric inhomogeneous Diophantine approximation in positive characteristic
DEFF Research Database (Denmark)
Kristensen, Simon
2011-01-01
We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here `almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine-Groshev Theorem and zero...
Metric inhomogeneous Diophantine approximation in positive characteristic
DEFF Research Database (Denmark)
Kristensen, S.
We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here 'almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine--Groshev Theorem and zero...
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
Fluctuations and transport in an inhomogeneous plasma
International Nuclear Information System (INIS)
Nevins, W.M.; Chen, L.
1979-11-01
A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/
OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE
Energy Technology Data Exchange (ETDEWEB)
Giblin, John T. Jr. [Department of Physics, Kenyon College, 201 N College Road Gambier, OH 43022 (United States); Mertens, James B.; Starkman, Glenn D. [CERCA/ISO, Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)
2016-12-20
How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.
OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE
International Nuclear Information System (INIS)
Giblin, John T. Jr.; Mertens, James B.; Starkman, Glenn D.
2016-01-01
How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.
Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film.
Germer, Thomas A; Sharma, Katelynn A; Brown, Thomas G; Oliver, James B
2017-11-01
We extend the theory of Kassam et al. [J. Opt. Soc. Am. A12, 2009 (1995)JOAOD60740-323210.1364/JOSAA.12.002009] for scattering by oblique columnar structure thin films to include the induced form birefringence and the propagation of radiation in those films. We generalize the 4×4 matrix theory of Berreman [J. Opt. Soc. Am.62, 502 (1972)JOSAAH0030-394110.1364/JOSA.62.000502] to include arbitrary sources in the layer, which are necessary to determine the Green function for the inhomogeneous wave equation. We further extend first-order vector perturbation theory for scattering by roughness in the smooth surface limit, when the layer is anisotropic. Scattering by an inhomogeneous medium is approximated by a distorted Born approximation, where effective medium theory is used to determine the effective properties of the medium, and strong fluctuation theory is used to determine the inhomogeneous sources. In this manner, we develop a model for scattering by inhomogeneous films, with anisotropic correlation functions. The results are compared with Mueller matrix bidirectional scattering distribution function measurements for a glancing-angle deposition (GLAD) film. While the results are applied to the GLAD film example, the development of the theory is general enough that it can guide simulations for scattering in other anisotropic thin films.
Influence of interface inhomogeneities in thin-film Schottky diodes
Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin
2017-11-01
The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.
Acoustic Streaming and Its Suppression in Inhomogeneous Fluids
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per
2018-01-01
We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...
Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains
Directory of Open Access Journals (Sweden)
Yingfei Gu, Andrew Lucas, Xiao-Liang Qi
2017-05-01
Full Text Available We compute the energy diffusion constant $D$, Lyapunov time $\\tau_{\\text{L}}$ and butterfly velocity $v_{\\text{B}}$ in an inhomogeneous chain of coupled Majorana Sachdev-Ye-Kitaev (SYK models in the large $N$ and strong coupling limit. We find $D\\le v_{\\text{B}}^2 \\tau_{\\text{L}}$ from a combination of analytical and numerical approaches. Our example necessitates the sharpening of postulated transport bounds based on quantum chaos.
Turbulent structure of stably stratified inhomogeneous flow
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
Robustness of inflation to inhomogeneous initial conditions
Energy Technology Data Exchange (ETDEWEB)
Clough, Katy; Lim, Eugene A. [Theoretical Particle Physics and Cosmology Group, Physics Department, Kings College London, Strand, London WC2R 2LS (United Kingdom); DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia, E-mail: katy.clough@kcl.ac.uk, E-mail: eugene.a.lim@gmail.com, E-mail: bsd86@physics.utexas.edu, E-mail: fischler@physics.utexas.edu, E-mail: flauger@physics.utexas.edu, E-mail: paban@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States)
2017-09-01
We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.
A theoretical description of inhomogeneous turbulence
International Nuclear Information System (INIS)
Turner, L.
2000-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In this LDRD, we have developed a highly compact and descriptive formalism that allows us to broach the theoretically formidable morass of inhomogeneous turbulence. Our formalism has two novel aspects: (a) an adaptation of helicity basis functions to represent an arbitrary incompressible channel flow and (b) the invocation of a hypothesis of random phase. A result of this compact formalism is that the mathematical description of inhomogeneous turbulence looks much like that of homogeneous turbulence--at the moment, the most rigorously explored terrain in turbulence research. As a result, we can explore the effect of boundaries on such important quantities as the gradients of mean flow, mean pressure, triple-velocity correlations and pressure velocity correlations, all of which vanish under the conventional, but artificial, assumption that the turbulence is statistically spatially uniform. Under suitable conditions, we have predicted that a mean flow gradient can develop even when none is initially present
The effect of inhomogeneity of microstructure on ducility in superplasticity
International Nuclear Information System (INIS)
Manonukul, A.; Dunne, F.P.E.
1996-01-01
Finite element cell models have been developed to represent inhomogeneous grain size fields that occur in commercial Ti-6Al-4V. The models are used to investigate the influence of microstructure on superplastic stress-strain behaviour, inhomogeneity of deformation, and on ductility in superplastic deformation. It is shown that increasing the level of initial microstructural inhomogeneity leads to increasing flow stress for given strain, and that the microstructural inhomogeneity leads to inhomogeneous deformation. As superplasticity proceeds, the level of microstructural inhomogeneity diminishes, but the inhomogeneity itself is preserved during the deformation. It is shown that the inhomogeneity of microstructure leads to strain localisation which increases in severity with deformation until material necking and failure occur. Increasing the initial microstructural inhomogeneity is shown to lead to a decrease in ductility, but the effect diminishes for grain size ranges in excess of 30 μm. An empirical relationship is presented that relates the ductility to the initial grain size range through a power law. (orig.)
Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.
Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik
2018-02-02
We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.
Spatial inhomogeneity in spectra and exciton dynamics in porphyrin ...
Indian Academy of Sciences (India)
inhomogeneity. This is elucidated by time-resolved confocal microscopy. ... dynamics of such supramolecular aggregates. Weisman ... protein scaffold and faithfully represents a biomimetic reminiscent .... increased intermolecular interactions.
Multi-Parameter Estimation for Orthorhombic Media
Masmoudi, Nabil; Alkhalifah, Tariq Ali
2015-01-01
Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.
Multi-Parameter Estimation for Orthorhombic Media
Masmoudi, Nabil
2015-08-19
Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.
International Nuclear Information System (INIS)
Wapenaar, Kees
2004-01-01
A correlation-type reciprocity theorem is used to show that the elastodynamic Green's function of any inhomogeneous medium (random or deterministic) can be retrieved from the cross correlation of two recordings of a wave field at different receiver locations at the free surface. Unlike in other derivations, which apply to diffuse wave fields in random media or irregular finite bodies, no assumptions are made about the diffusivity of the wave field. In a second version, it is assumed that the wave field is diffuse due to many uncorrelated sources inside the medium
WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer
Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich
2018-04-01
In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.
Nonstationary interference and scattering from random media
International Nuclear Information System (INIS)
Nazikian, R.
1991-12-01
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
Moessbauer spectroscopy of locally inhomogeneous systems
International Nuclear Information System (INIS)
Rusakov, V. S.; Kadyrzhanov, K. K.
2004-01-01
Substances with characteristic local inhomogeneities - with different from position to position neighborhood and properties of like atoms - gain recently increased scientific attention and wide practical application. We would call a system locally inhomogeneous if atoms in the system are in non-equivalent atomic locations and reveal different properties. Such systems are, first of all, variable composition phases, amorphous, multi-phase, admixture, defect and other systems. LIS are most convenient model objects for studies of structure, charge, and spin atomic states, interatomic interactions, relations between matter properties and its local characteristics as well as for studies of diffusion kinetics, phase formation, crystallization and atomic ordering; all that explains considerable scientific interest in such LIS. Such systems find their practical application due to wide spectrum of useful, and sometimes unique, properties that can be controlled varying character and degree of local inhomogeneity. Moessbauer spectroscopy is one of the most effective methods for investigation of LIS. Local character of obtained information combined with information on cooperative phenomena makes it possible to run investigations impossible for other methods. Moessbauer spectroscopy may provide with abundant information on peculiarities of macro- and microscopic state of matter including that for materials without regular structure. At the same time, analysis, processing and interpretation of Moessbauer spectra for LIS (that are sets of a large amount of partial spectra) face considerable difficulties. Development of computer technique is accompanied with development of mathematical methods used for obtaining physical information from experimental data. The methods make it possible to improve considerably, with some available a priori information, effectiveness of the research. Utilization of up-to-date mathematical methods in Moessbauer spectroscopy requires not only adaptation
Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron
International Nuclear Information System (INIS)
Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi
1990-01-01
The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
Microstructural inhomogeneity of electrical conductivity in subcutaneous fat tissue.
Directory of Open Access Journals (Sweden)
Ilja L Kruglikov
Full Text Available Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT after applying a radio-frequency (RF current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes and outside (extra-cellular matrix the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells' surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT.
Drift vortices in continuous media
International Nuclear Information System (INIS)
Chernousenko, V.M.; Chernenko, I.V.; Chernyshenko, S.V.
1989-01-01
The work is devoted to investigation into the problems of large-scale cortex drift and generation in continuous media based on the solution of notably non-linear differential equations. Using the capability of the modern computer technique it is possible to consider a series of cases with regard to medium viscosity and its inhomogeneity and with regard to three-dimensional vortex nature. Based on the solutions obtained the large-scale steady-state vortex generation processes are considered. The results can be used when studying non-linear phenomena in plasma and processes of substance and energy transfer in non-equilibrium media. 16 refs.; 5 figs
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...
Measurable inhomogeneities in stock trading volume flow
Cortines, A. A. G.; Riera, R.; Anteneodo, C.
2008-08-01
We investigate the statistics of volumes of shares traded in stock markets. We show that the stochastic process of trading volumes can be understood on the basis of a mixed Poisson process at the microscopic time level. The beta distribution of the second kind (also known as q-gamma distribution), that has been proposed to describe empirical volume histograms, naturally results from our analysis. In particular, the shape of the distribution at small volumes is governed by the degree of granularity in the trading process, while the exponent controlling the tail is a measure of the inhomogeneities in market activity. Furthermore, the present case furnishes empirical evidence of how power law probability distributions can arise as a consequence of a fluctuating intrinsic parameter.
Origin of Inhomogeneity in Glass Melts
DEFF Research Database (Denmark)
Jensen, Martin; Keding, Ralf; Yue, Yuanzheng
The homogeneity of a glass plays a crucial role in many applications as the inhomogeneities can provide local changes in mechanical properties, optical properties, and thermal expansion coefficient. Homogeneity is not a single property of the glass, instead, it consists of several factors...... such as bubbles, striae, trace element concentration, undissolved species, and crystallised species. As it is not possible to address all the factors in a single study, this work focuses on one of the major factors: chemical striae. Up to now, the quantification of chemical striae in glasses, particularly......, in less transparent glasses, has been a challenge due to the lack of an applicable method. In this study, we have established a simple and accurate method for quantifying the extent of the striae, which is based on the scanning and picture processing through the Fourier transformation. By performing...
Large sample neutron activation analysis of a reference inhomogeneous sample
International Nuclear Information System (INIS)
Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.
2011-01-01
A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)
MRI intensity inhomogeneity correction by combining intensity and spatial information
International Nuclear Information System (INIS)
Vovk, Uros; Pernus, Franjo; Likar, Bostjan
2004-01-01
We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic
Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth
1999-01-01
Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...
Bistable soliton states and switching in doubly inhomogeneously ...
Indian Academy of Sciences (India)
Dec. 2001 physics pp. 969–979. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers. AJIT KUMAR. Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. Abstract. Switching between the bistable soliton states in a doubly and inhomogeneously doped.
Scattering of a spherical pulse from a small inhomogeneity ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging Solutions)
Perturbations in elastic constants and density distinguish a volume inhomogeneity from its homoge- neous surroundings. The equation of motion for the first order scattering is studied in the perturbed medium. The scattered waves are generated by the interaction between the primary waves and the inhomogeneity.
Consideration of inhomogeneities in irradiation planning. Pt. 1
International Nuclear Information System (INIS)
Zwicker, H.; Felix, R.
1976-01-01
In radiation therapy, the focal doses during irradiation of a tumor are based on the values for water, since water has almost the same absorption coefficient as muscular tissue, even for different kinds and energies of radiation. But calculation of the tumor dose will become inaccurate if inhomogeneities in the ray path are not considered such as fat, bones, plaster, metal plates, Kuentscher nails, endoprotheses. These materials, having a density sigma different from water, represent inhomogeneities relative to water with regard to the absorption of high-energy radiation. The experiments yielded the following results: All measurements revealed that the change in the course of the depth dose curve caused by inhomogeneities in water depends essentially on the density sigma and on the thickness d of the inhomogeneity. If the density sigma of the inhomogeneity exceeds one, a shift of the depth dose curve in water results in the direction of the surface; if the density sigma is smaller than one, the depth dose curve will move towards greater depth because of the inhomogeneity. With Co-60 gamma radiation, the shift of the depth dose curve in water due to an inhomogeneity occurs almost parallel. A correlation obtained empirically allows a calculation of th extent of the shift the depth dose is subject to for different inhomogeneities. (orig./ORU) [de
Emergence of a higher energy structure in strong field ionization with inhomogeneous electric fields
Czech Academy of Sciences Publication Activity Database
Ortmann, L.; Perez-Hernandez, J.A.; Ciappina, Marcelo F.; Schoetz, J.; Chacon, A.; Zeraouli, G.; Kling, M.F.; Roso, L.; Lewenstein, M.; Landsman, A.S.
2017-01-01
Roč. 119, č. 5 (2017), s. 1-5, č. článku 053204. ISSN 0031-9007 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : radiation, * nanospheres, * laserfield Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 8.462, year: 2016
An efficient numerical method for evolving microstructures with strong elastic inhomogeneity
International Nuclear Information System (INIS)
Jeong, Darae; Lee, Seunggyu; Kim, Junseok
2015-01-01
In this paper, we consider a fast and efficient numerical method for the modified Cahn–Hilliard equation with a logarithmic free energy for microstructure evolution. Even though it is physically more appropriate to use a logarithmic free energy, a quartic polynomial approximation is typically used for the logarithmic function due to a logarithmic singularity. In order to overcome the singularity problem, we regularize the logarithmic function and then apply an unconditionally stable scheme to the Cahn–Hilliard part in the model. We present computational results highlighting the different dynamic aspects from two different bulk free energy forms. We also demonstrate the robustness of the regularization of the logarithmic free energy, which implies the time-step restriction is based on accuracy and not stability. (paper)
Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets
Energy Technology Data Exchange (ETDEWEB)
Samofalov, V.N. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)]. E-mail: samofalov@kpi.kharkov.ua; Ravlik, A.G. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine); Belozorov, D.P. [National Scientific Center Kharkov Institute of Physics and Techonology, NAS of Ukraine, 1 Akademicheskaja St., 61108 Kharkov (Ukraine); Avramenko, B.A. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)
2004-10-01
Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to10{sup 10}-10{sup 11}Oe{sup 2}/cm. Estimations of extremely achievable fields and their gradients are made.
International Nuclear Information System (INIS)
Ryutova, M.
1990-08-01
Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Salimullah, M.; Khan, M.I.U.; Amin, R.; Nitta, H.; Shukla, P.K.
2005-10-01
Detailed properties of the electrostatic Shukla-Nambu-Salimullah and the dynamical oscillatory wake potentials in an inhomogeneous dusty magnetoplasma in the presence of ion streaming, as in a laboratory discharge plasma, have been examined analytically. The potentials become sensitive functions of the external static magnetic field, the scale-length of inhomogeneity, and the deviation from the linear ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of the static modified shielding potential. For a strongly inhomogeneous dusty plasma, the effective length of the oscillatory wake potential increases with increasing deviation of the ion streaming velocity (u i0y ), but it does not depend on the external magnetic field. (author)
Orchestrating the Media Collage
Ohler, Jason
2009-01-01
Modern literacy has always meant being able to both read and write narrative in the media forms of the day, whatever they may be. Just being able to read is not sufficient. A new dimension of literacy is now in play--namely, the ability to adapt to new media forms and fit them into the overall media collage quickly and effectively. A strong case…
Excitons in InP/InAs inhomogeneous quantum dots
Assaid, E; Khamkhami, J E; Dujardin, F
2003-01-01
Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a sub c sub r sub i sub t and a sub 2 sub D , for which important changes of the exciton binding occur. The former critical value, a sub c sub r sub i sub t , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a ...
Excitons in InP/InAs inhomogeneous quantum dots
International Nuclear Information System (INIS)
Assaid, E; Feddi, E; Khamkhami, J El; Dujardin, F
2003-01-01
Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a crit and a 2D , for which important changes of the exciton binding occur. The former critical value, a crit , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a 2D , corresponds to a maximum of the exciton binding energy and to the most pronounced bidimensional character of the exciton
Induced Compton scattering of a laser in an inhomogeneous plasma
International Nuclear Information System (INIS)
Liu, C.S.; Tripathi, V. K.
2003-01-01
A laser propagating through a high temperature low density plasma undergoes induced Compton backscattering involving the coupling of the laser pump and the scattered electromagnetic wave via the resonant electrons or the resistive quasimode. The region of nonlinear interaction is localized due to plasma inhomogeneity. At short density scale lengths when the interaction region is strongly localized and resonant electrons quickly move out of it, the electron distribution function remains Maxwellian and Compton reflectivity is significant at laser intensity >10 16 W/cm 2 . In gentle density gradients the resonant electrons are trapped in the ponderomotive and self-consistent potential well of the quasimode as they enter the interaction region. The ones with velocity v z p (v p being the phase velocity of the ponderomotive wave propagating along z direction) are accelerated to v p while those with v z >v p are retarded to v p . Since the number of the former is more than that of the latter there is a net momentum transfer to electrons. Momentum and action conservation lead to a reflectivity, R, that initially goes as the square of pump intensity, then rises gradually at higher intensity. R decreases rapidly with v th /v p , where v th is the thermal velocity of electrons
Origin of the primordial inhomogeneities of the universe
International Nuclear Information System (INIS)
Kompaneets, D.A.; Lukash, V.N.; Novikov, I.D.
1984-01-01
This chapter proposes a general principle to determine the initial fluctuations of the metric in the hot Universe. The recently discovered process of amplification of density perturbations near the cosmological singularity is examined. The conclusions are applied to the problem of formation of the large-scale structure of the Universe. Topics considered include the equipartition hypothesis, a model of the initial state of the universe, and parametric amplification of the initial inhomogeneities. The equipartition hypothesis is based on the belief that at the initial moment to the energy of ''initial state'' was distributed equally over all physical degrees of freedom and modes of perturbations. It is demonstrated that the concepts of the equipartition hypothesis result in a quite different relation between physical mode amplitudes, and that due to the amplification effect the initial perturbations can be tens of orders smaller than it was earlier assumed and can be statistical or quantum fluctuations. A model of the early Universe is proposed that realizes the strong variant of the equipartition hypothesis (i.e. gives the thermal equipartition of all physical fields at the initial moment). It is concluded that the represented scenario is viable because it is based on the well established property of the conformal noninvariance of the field of density perturbations
Multi-parameters scanning in HTI media
Masmoudi, Nabil
2014-08-05
Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.
Multi-parameters scanning in HTI media
Masmoudi, Nabil; Alkhalifah, Tariq Ali
2014-01-01
Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.
RESPONSIBILITY CENTCOM COALITION MEDIA SOCIAL MEDIA NEWS ARTICLES PRESS RELEASES IMAGERY VIDEOS TRANSCRIPTS VISITORS AND PERSONNEL FAMILY CENTER FAMILY READINESS CENTCOM WEBMAIL SOCIAL MEDIA SECURITY ACCOUNTABILITY HomeMEDIASOCIAL MEDIA Social Media CENTCOM'S ENGLISH SOCIAL MEDIA ACCOUNTS There are many U.S. military commands
Evolution of vacuum bubbles embedded in inhomogeneous spacetimes
Energy Technology Data Exchange (ETDEWEB)
Pannia, Florencia Anabella Teppa [Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n B1900FWA, La Plata (Argentina); Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com [Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de Janeiro, CEP 20550-013, Rio de Janeiro, Brazil. (Brazil)
2017-03-01
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
Inhomogeneity of epidemic spreading with entropy-based infected clusters.
Wen-Jie, Zhou; Xing-Yuan, Wang
2013-12-01
Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.
Microinstabilities in a moderately inhomogeneous plasma
International Nuclear Information System (INIS)
Singer, C.E.
1977-01-01
We describe the onset of plasma instability due to heat conduction in a fully ionized hydrogen plasma with small temperature, pressure, and electric potential gradients. The effect of these gradients on plasma stability depends on a single inhomogeneity parameter B/sub t/, which is a measure of the ratio of the electron mean free path to the scale height of the plasma. A large value of vertical-barB/sub t/vertical-bar indicates that the plasma is collisionless. We find the least value of vertical-barB/sub t/vertical-bar needed to produce instability for the range of electron to hydrogen ion temperature ratios T and ion to magnetic pressure ratios β/sub i/, relevant to the solar wind and other plasmas. The wave parameters of the first unstable modes (the modes which become unstable for the least value of vertical-barB/sub t/vertical-bar) are described. The fast mode is the first unstable mode at high β/sub i/, the intermediate mode is the first unstable mode at low β/sub i/, and low temperature ratios, and the slow mode is the first unstable mode at low β/sub i/ and higher temperature ratios
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Inhomogeneity and the foundations of concordance cosmology
International Nuclear Information System (INIS)
Clarkson, Chris; Maartens, Roy
2010-01-01
The apparent accelerating expansion of the universe is forcing us to examine the foundational aspects of the standard model of cosmology-in particular, the fact that dark energy is a direct consequence of the homogeneity assumption. We discuss the foundations of the assumption of spatial homogeneity, in the case when the Copernican principle is adopted. We present results that show how (almost) homogeneity follows from (almost) isotropy of various observables. The analysis requires fully nonlinear field equations-i.e. it is not possible to use second- or higher-order perturbation theory, since one cannot assume a homogeneous and isotropic background. Then we consider what happens if the Copernican principle is abandoned in our Hubble volume. The simplest models are inhomogeneous but spherically symmetric universes which do not require dark energy to fit the distance modulus. Key problems in these models are to compute the CMB anisotropies and the features of large-scale structure. We review how to construct perturbation theory on a non-homogeneous cosmological background, and discuss the complexities that arise in using this to determine the growth of large-scale structure.
High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.
Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio
2010-01-01
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.
On the study of the interaction of inhomogeneous electron beam with plasma. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Amein, W H; Sayed, Y A [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt); El-Waraki, S A [Faculty of Science, Physics Department, Mansura University, Damuitta, (Egypt)
1996-03-01
The treatment of the beam-plasma instability usually studies the behaviour of the growth rate as a function of the parameters of the problem for one two oscillation modes which have the largest growth rate. however, these studies have not been completed, they did not investigate the effect of inhomogeneity of the electron beam-plasma interaction. In the present work, the linear interaction between the cold inhomogeneous electron beam-plasma system was considered. The field equation which describes the system is a differential equation of third order. In order to solve this equation to obtain the dispersion relation, the density and velocity of inhomogeneous beam in such form was considered. n{sub ob} = n{sub o} (1+X/L); V{sub ob} (X) = V{sub o} (1+X/L). Where; L is the length scale of the variation (L >>X). The growth rate of the instability was calculated. It is shown that waves are excited more strongly in this case compared to that for homogeneous beam.
Kiani, M.; Abdolali, A.; Safari, M.
2018-03-01
In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.
Thermal quantum discord of spins in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan
2011-01-01
In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.
Cyclotron spectra from inhomogeneous accretion columns. II. Polarization
International Nuclear Information System (INIS)
Wu, K.; Chanmugam, G.
1989-01-01
Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs
On the penetration of solar wind inhomogeneities into the magnetosphere
International Nuclear Information System (INIS)
Maksimov, V.P.; Senatorov, V.N.
1980-01-01
Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer
Anomalous transient behavior from an inhomogeneous initial optical vortex density
CSIR Research Space (South Africa)
Roux, FS
2011-04-01
Full Text Available . However, the decay curves contain oscillatory features that are counterintuitive: for a short while, the inhomogeneity actually increases. The author provides numerical simulations and analytic calculations to study the appearance of the anomalous features...
Detection of Buried Inhomogeneous Elliptic Cylinders by a Memetic Algorithm
Caorsi, Salvatore; Massa, Andrea; Pastorino, Matteo; Raffetto, Mirco; Randazzo, Andrea
2003-01-01
The application of a global optimization procedure to the detection of buried inhomogeneities is studied in the present paper. The object inhomogeneities are schematized as multilayer infinite dielectric cylinders with elliptic cross sections. An efficient recursive analytical procedure is used for the forward scattering computation. A functional is constructed in which the field is expressed in series solution of Mathieu functions. Starting by the input scattered data, the iterative minimiza...
Random field assessment of nanoscopic inhomogeneity of bone
Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu
2010-01-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quanti...
Radio frequency conductivity of plasma in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Itoh, Sanae; Nishikawa, Kyoji; Fukuyama, Atsushi; Itoh, Kimitaka.
1985-01-01
Nonlocal conductivity tensor is obtained to study the kinetic effects on propagation and absorption of radio frequency (rf) waves in dispersive plasmas. Generalized linear propagator in the presence of the inhomogeneity of magnetic field strength along the field line is calculated. The influence of the inhomogeneity to the rf wave-energy deposition is found to be appreciable. Application to toroidal plasmas is shown. (author)
Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)
2011-10-07
We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)
Off-center observers versus supernovae in inhomogeneous pressure universes
Balcerzak, Adam; Dabrowski, Mariusz P.; Denkiewicz, Tomasz
2013-01-01
Exact luminosity distance and apparent magnitude formulas are applied to Union2 557 supernovae sample in order to constrain possible position of an observer outside of the center of symmetry in spherically symmetric inhomogeneous pressure Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) void models. Two specific models are investigated. The first which allows a barotropic equation of state at the center of symmetry with no scale factor function...
Love waves in a structure with an inhomogeneous layer
International Nuclear Information System (INIS)
Ghazaryan, K.B.; Piliposyan, D.G.
2011-01-01
The problem of the propagation of Love type waves in a structure consisting of a finite inhomogeneous layer sandwiched between two isotropic homogeneous half spaces is investigated. Two types of inhomogeneity are considered. It is shown that in one case the amplitude of vibrations in the middle layer is a sinusoidal function of distance from the plane of symmetry, but that in the other case it may be non-sinusoidal for certain values of the parameters of the problem
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
International Nuclear Information System (INIS)
Kosevich, Yuriy A; Gann, Vladimir V
2013-01-01
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)
Minimum weight design of inhomogeneous rotating discs
International Nuclear Information System (INIS)
Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal
2005-01-01
There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far
Inhomogeneous initial data and small-field inflation
Marsh, M. C. David; Barrow, John D.; Ganguly, Chandrima
2018-05-01
We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities present at the would-be onset of inflation at τ = τi can disrupt the accelerated expansion. In this paper, we parametrise and evolve the inhomogeneities from an earlier time τIC at which the initial data were imprinted, and show that for a broad range of inflationary and pre-inflationary models, inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einstein's equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales H(τi) and H(τIC), and a few properties of the pre-inflationary cosmology. For initial data imprinted at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation leads to a novel, lower limit on the tensor-to-scalar ratio.
DEFF Research Database (Denmark)
Ohme, Jakob
as for different age groups, the thesis shows that digital and especially social media use can be a strong driver of citizen participation. Besides looking at immediate mobilizing effects, the book sheds light on how digital media use may shape participation patterns through a long-term change in citizenship......The use of news media is regarded as a driver for citizens’ engagement with society and their political participation. But as news media use increasingly shifts to digital platforms, it is crucial to understand the interplay between a changing media environment and recent patterns of political...... participation. Against the background of citizens’ diverse possibilities for receiving political information and being politically active nowadays, the book focuses on the impact of digital media on political participation in Denmark. By examining this relationship in election- and non-election times as well...
A real space calculation of absolutely unstable modes for two-plasmon decay in inhomogeneous plasma
International Nuclear Information System (INIS)
Powers, L.V.; Berger, R.L.
1986-01-01
Growth rates for absolute modes of two-plasmon decay are obtained by solving for eigenmodes of the coupled mode equations for obliquely scattered Langmuir waves in real space. This analysis establishes a connection both to previous analysis in Fourier transform space and to other parametric instabilities, the analysis of which is commonly done in real space. The essential feature of the instability which admits absolute modes in an inhomogeneous plasma is the strong spatial dependence of the coupling coefficients. Landau damping limits the perpendicular wavenumbers of the most unstable modes and raises the instability thresholds for background plasma temperatures above 1 keV. (author)
Scanning anisotropy parameters in complex media
Alkhalifah, Tariq Ali
2011-03-21
Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.
Scanning anisotropy parameters in complex media
Alkhalifah, Tariq Ali
2011-01-01
Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.
SECTIONING METHOD APPLICATION AT ELLIPSOMETRY OF INHOMOGENEOUS REFLECTION SYSTEMS
Directory of Open Access Journals (Sweden)
A. N. Gorlyak
2014-05-01
Full Text Available The paper deals with investigation of application peculiarities of ellipsometry methods and UF spectrophotometry at mechanical and chemical processing of optical engineering surface elements made of quartz glass. Ellipsometer LEF–3M–1, spectrophotometer SF–26 and interferometer MII–4 are used as experiment tools; they obtain widely known technical characteristics. Polarization characteristics of reflected light beam were measured by ellipsometry method; spectrophotometry method was used for measuring radiation transmission factor in UF spectrum area; by interference method surface layer thickness at quartz glass etching was measured. A method for HF–sectioning of inhomogeneous surface layer of polished quartz glass is developed based on ellipsometry equation for reflection system «inhomogeneous layer – inhomogeneous padding». The method makes it possible to carry out the measuring and analysis of optical characteristics for inhomogeneous layers system on inhomogeneous padding and to reconstruct optical profile of surface layers at quartz glass chemical processing. For definition of refractive index change along the layer depth, approximation of experimental values for polarization characteristics of homogeneous layers system is used. Inhomogeneous surface layer of polished quartz glass consists of an area (with thickness up to 20 nm and layer refractive index less than refractive index for quartz glass and an area (with thickness up to 0,1 μm and layer refractive index larger than refractive index for quartz glass. Ellipsometry and photometry methods are used for definition of technological conditions and optical characteristics of inhomogeneous layers at quartz glass chemical processing for optical elements with minimum radiation losses in UF spectrum area.
Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing
Directory of Open Access Journals (Sweden)
Yunfeng Zuo
2018-04-01
Full Text Available Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.
Elastic fracture in driven media
International Nuclear Information System (INIS)
Lung Chiwei; Wang Shenggang; Long Qiyi
1999-08-01
Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)
Spontaneous hedonic reactions to social media cues
Koningsbruggen, G.M. van; Hartmann, T.; Eden, A.; Veling, H.P.
2017-01-01
Why is it so difficult to resist the desire to use social media? One possibility is that frequent social media users possess strong and spontaneous hedonic reactions to social media cues, which, in turn, makes it difficult to resist social media temptations. In two studies (total N = 200), we
Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad
2008-01-01
The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.
Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.
Hilst, G. R.
1973-01-01
Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.
AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA. (R825225)
We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...
Deflection of slow light by magneto-optically controlled atomic media
International Nuclear Information System (INIS)
Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.
2007-01-01
We present a semiclassical theory for light deflection by a coherent Λ-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field
Strasburger, Victor C
2010-11-01
The American Academy of Pediatrics recognizes that exposure to mass media (eg, television, movies, video and computer games, the Internet, music lyrics and videos, newspapers, magazines, books, advertising) presents health risks for children and adolescents but can provide benefits as well. Media education has the potential to reduce the harmful effects of media and accentuate the positive effects. By understanding and supporting media education, pediatricians can play an important role in reducing harmful effects of media on children and adolescents.
Brownian motion probe for water-ethanol inhomogeneous mixtures
Furukawa, Kazuki; Judai, Ken
2017-12-01
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Transformation instability of oscillations in inhomogeneous beam-plasma system
International Nuclear Information System (INIS)
Kitsenko, A.B.
1985-01-01
Wave transformation is studied in a plasma system which was weak-inhomogeneous along beam velocity, in absence of external magnetic field. For the case of small density beam formulae are obtained which have set a coupling between the charge density beam wave amplitudes and the Langmuir wave on both sides of transformation point. It is shown that in collisionless plasma the wave production is a cause of the absorption of the charge density beam waves. Transformation mechanism of the absolute instability in the weak-inhomogeneous beam-plasma system is revealed
Reflection of oblique electron thermal modes in an inhomogeneous plasma
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.; Sanuki, H.
1980-04-01
In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)
Parallel application of plasma equilibrium fitting based on inhomogeneous platforms
International Nuclear Information System (INIS)
Liao Min; Zhang Jinhua; Chen Liaoyuan; Li Yongge; Pan Wei; Pan Li
2008-01-01
An online analysis and online display platform EFIT, which is based on the equilibrium-fitting mode, is inducted in this paper. This application can realize large data transportation between inhomogeneous platforms by designing a communication mechanism using sockets. It spends approximately one minute to complete the equilibrium fitting reconstruction by using a finite state machine to describe the management node and several node computers of cluster system to fulfill the parallel computation, this satisfies the online display during the discharge interval. An effective communication model between inhomogeneous platforms is provided, which could transport the computing results from Linux platform to Windows platform for online analysis and display. (authors)
Baryon inhomogeneity from the cosmic quark-hadron phase transition
International Nuclear Information System (INIS)
Kurki-Suonio, H.
1991-01-01
We discuss the generation of inhomogeneity in the baryon-number density during the cosmic quark-hadron phase transition. We use a simple model with thin-wall phase boundaries and ideal-gas equations of state. The nucleation of the phase transition introduces a new distance scale into the universe which will be the scale of the generated inhomogeneity. We review the estimate of this scale. During the transition baryon number is likely to collect onto a layer at the phase boundary. These layers may in the end be deposited as small regions of very high baryon density. 21 refs., 1 fig
Forces and energy dissipation in inhomogeneous non-equilibrium superconductors
International Nuclear Information System (INIS)
Poluehktov, Yu.M.; Slezov, V.V.
1987-01-01
The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given
Phase synchronization in inhomogeneous globally coupled map lattices
International Nuclear Information System (INIS)
Ho Mingchung; Hung Yaochen; Jiang, I-M.
2004-01-01
The study of inhomogeneous-coupled chaotic systems has attracted a lot of attention recently. With simple definition of phase, we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous globally coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are used to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external noise and parameter mismatch into consideration and present the results by numerical simulation
Dose inhomogeneities at various levels of biological organization
International Nuclear Information System (INIS)
Bond, V.P.
1988-01-01
Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of 10 B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels
International Nuclear Information System (INIS)
Guo Rui; Tian Bo; Lue Xing; Zhang Haiqiang; Xu Tao
2010-01-01
For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
DEFF Research Database (Denmark)
Westlund, Oscar; Bjur, Jakob
2014-01-01
This is a thorough investigation into contemporary young people and their media life. The article conceptualizes a typology of media life, drawing on a theoretical body involving the sociology of generations, life course research, media life and individualization. This empirically derived typology...... makes a strong instrument for an understanding of the media life of the young, furnishing insights into how they have constructed their use of media. The investigation is based on a robust national survey with Swedes born 1994–2001, conducted in 2010, and focusing on four media: television, gaming......, the Internet and mobile devices. Two of the findings are particularly surprising. Firstly, the results reveal that the young generally lead heterogeneous media lives, varying with age and sex. Secondly, although some young people literarily live their life in media, there are also de facto young who live...
International Nuclear Information System (INIS)
George, S.M.; Harris, C.B.
1982-01-01
The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes
Effect of Inhomogeneity correction for lung volume model in TPS
International Nuclear Information System (INIS)
Chung, Se Young; Lee, Sang Rok; Kim, Young Bum; Kwon, Young Ho
2004-01-01
The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21 g/cm 3 ), cork(0.23 g/cm 3 )) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed 0.8% on 2D and 0.5% on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed 12% on 2D and 5% on 3D, however, it is possible to
Inhomogeneous Spin Diffusion in Traps with Cold Atoms
DEFF Research Database (Denmark)
Heiselberg, Henning
2012-01-01
increases. The inhomogeneity and the smaller nite trap size signicantly reduce the spin diusion rate at low temperatures. The resulting spin diusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions...
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process
DEFF Research Database (Denmark)
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn
2011-01-01
models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
Material inhomogeneities and their evolution a geometric approach
Epstein, Marcelo
2007-01-01
Presents a unified treatment of the inhomogeneity theory using some of the tools of modern differential geometry. This book deals with the geometrical description of uniform bodies and their homogeneity conditions. It also develops a theory of material evolution and discusses its relevance in various applied contexts.
Flux and polarization signals of spatially inhomogeneous gaseous exoplanets
Karalidi, T.; Stam, D.M.; Guirado, D.
2013-01-01
Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.N.; Serra, P.; van Zanten, H.
2015-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.
2013-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is
An algorithm of computing inhomogeneous differential equations for definite integrals
Nakayama, Hiromasa; Nishiyama, Kenta
2010-01-01
We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.
Baryon inhomogeneities due to cosmic string wakes at the quark ...
Indian Academy of Sciences (India)
abundances of light elements if they persist up to the time of nucleosynthesis. These inhomogeneities ... the creation of compact baryon-rich objects as well as alter the abundances of light ele- ments if they persist up to the time ... The trajectories of collisionless particles bend while passing by the string. They overlap in the ...
Energy transfer rates in inhomogeneous van der Waals clusters
International Nuclear Information System (INIS)
Desfrancois, C.; Schermann, J.P.
1991-01-01
The internal energy exchange inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem. (orig.)
Effect of Inhomogeneity of the Universe on a Gravitationally Bound ...
Indian Academy of Sciences (India)
2012-04-16
Apr 16, 2012 ... on a gravitationally bound local system such as the solar system. We con- ... method to describe the large-scale inhomogeneity of the Universe. ..... is regular at the origin r = 0 where the central body is located, and that the test.
Optical coherent control in semiconductors: Fringe contrast and inhomogeneous broadening
DEFF Research Database (Denmark)
Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher
2001-01-01
in the interplay between the homogeneous and inhomogeneous broadenings are measured. Based on these experiments, a coherent control model describing the optical fringe contrast using different detection schemes, such as photoluminescence or four-wave mixing, is established. Significant spectral modulation...
Lower hybrid waves instability in a velocity–sheared inhomogenous ...
African Journals Online (AJOL)
An electrostatic linear kinetic analysis of velocity-sheared inhomogeneous charged dust streaming parallel to a magnetic field in plasma is presented. Excited mode and the growth rates are derived in the lower hybrid-like mode regime, with collisional effects included. In the case where the drift velocity u is very small the ...
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory
Aarts, G.; Smit, J.
2000-01-01
As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function
Threshold of decay instability in an inhomogeneous plasma (Leningrad 1973)
International Nuclear Information System (INIS)
Piliia, A.D.
It is shown that in a spatially inhomogeneous plasma there can exist an absolute decay instability with a threshold lower than that found earlier. This instability arises when two parametrically coupled waves have turning points inside the plasma layer. The cause of the instability is a positive inverse coupling, caused by a nonlinear conversion and a reflection of the waves
Cluster tails for critical power-law inhomogeneous random graphs
van der Hofstad, R.; Kliem, S.; van Leeuwaarden, J.S.H.
2018-01-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent τ∈ (3 , 4)
Jeans instability of an inhomogeneous streaming dusty plasma
Indian Academy of Sciences (India)
The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear ﬂow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the ﬂuctuations in the plasma may grow at the expense of the density ...
Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik
2016-01-01
, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip....
Electron-Bernstein Waves in Inhomogeneous Magnetic Fields
DEFF Research Database (Denmark)
Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans
1984-01-01
The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatia...
Measurements of weak localization of graphene in inhomogeneous magnetic fields
DEFF Research Database (Denmark)
Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.
2015-01-01
attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
DEFF Research Database (Denmark)
Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib
2017-01-01
PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...
Media Komunitas dan Media Literacy
Directory of Open Access Journals (Sweden)
Pawito .
2013-12-01
Full Text Available Abstract:This essay deals with community media in relation to media literacy. After a short discussion on a number of community media characters is made the essay goes further with somewhat detail theoretical presumptions of the roles of media community with respect primarily to the development as Amartya Sen mentioned about. The author suggests that community media may play some significant roles in the development including (a disseminating information (from varieties of perspective, (b facilitating public discussion, (c helping to reach solutions of problems, (d encouraging participations, and (e encouraging the development of media literacy. Regarding the last point the author remarks that media community may have a dual-roles i.e facilitating communityâ€™s member in media participation and facilitating communityâ€™s member in media education.
Observable relations in an inhomogeneous self-similar cosmology
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
An exact self-similar solution is taken in general relativity as a model for an inhomogeneous cosmology. The self-similarity property means (conceptually) that the model is scale-free and (mathematically) that its essential parameters are functions of only one dimensionless variable zeta (equivalentct/R, where R and t are distance and time coordinates and c is the velocity of light). It begins inhomogeneous (zeta=0 or t=0), and tends to a homogeneous Einstein--de Sitter type state as zeta (or t) →infinity. Such a model can be used (a) for evaluating the observational effects of a clumpy universe; (b) for studying astrophysical processes such as galaxy formation and the growth and decay of inhomogeneities in initially clumpy cosmologies; and (c) as a relativistic basis for cosmological models with extended clustering of the de Vaucouleurs and Peebles types. The model has two adjustable parameters, namely, the observer's coordinate zeta 0 and a constant α/sub s/ that fixes the effect of the inhomogeneity. Expressions are obtained for the redshift, Hubble parameter, deceleration parameter, magnitude-redshift relation, and (number density of objects) --redshift relation. Expected anisotropies in the 3 K microwave background are also examined. There is no conflict with observation if zeta 0 /α/sub s/> or approx. =10, and four tests of the model are suggested that can be used to further determine the acceptability of inhomogeneous cosmologies of this type. The ratio α/sub s//zeta 0 on presently available data is α/sub s//zeta 0 < or approx. =10% and this, loosely speaking, means that the universe at the present epoch is globally homogeneous to within about 10%
International Nuclear Information System (INIS)
Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.
1992-11-01
The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Irradiation and inhomogeneity effects on ductility and toughness of (ODS)-7 -13Cr steels
International Nuclear Information System (INIS)
Preininger, D.
2007-01-01
Full text of publication follows: The superimposed effect of irradiation defect and structural inhomogeneity formation on tensile ductility and dynamic toughness of ferritic-martensitic 7-13CrW(Mo)VTa(Nb) and oxide dispersion-strengthened (ODS)-7-13CrWVTa(Ti)- RAFM steels has been examined by work hardening and local stress/strain-induced ductile fracture models. Structural inhomogeneities which strongly promoting plastic instability and localized flow might be formed by the applied fabrication process, high dose irradiation and additionally further during deformation by enhanced local dislocation generation around fine particles or due to slip band formation with localized heating at high impact strain rates ε'. The work hardening model takes into account superimposed dislocation multiplication from stored dislocations, dispersions and also grain boundaries as well as annihilation by cross-slip. Analytical relations have been deduced from the model describing uniform ductility and ductile upper shelf energy (USE) observed from Charpy-impact testes. Especially, the influence of different irradiation defects like atomic clusters, dislocation loops and coherent chromium-rich α'- precipitates have been considered together with effects from strain rate as well as irradiation (TI) and test temperature TT. Strengthening by clusters and more pronounced by dislocation loops formed at higher TI>250 deg. C reduces uniform ductility and also distinctly stronger dynamic toughness USE. A superimposed hardening by the α'- formation in higher Cr containing 9-13Cr steels strongly reduces toughness assisted by a combined grain-boundary embrittlement with reduction of the ductile fracture stress. But that improves work hardening and uniform ductility as observed particularly due to nano-scale Y 2 O 3 - dispersions in ODS-RAFM steels. For ODS- steels additionally the strength-induced reduction of toughness is diminished by a combined microstructural-induced increase of the ductile
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
Mixtures of Strongly Interacting Bosons in Optical Lattices
International Nuclear Information System (INIS)
Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.
2008-01-01
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices
Wilken, Rowan
2014-01-01
Not only is locative media one of the fastest growing areas in digital technology, but questions of location and location-awareness are increasingly central to our contemporary engagements with online and mobile media, and indeed media and culture generally. This volume is a comprehensive account of the various location-based technologies, services, applications, and cultures, as media, with an aim to identify, inventory, explore, and critique their cultural, economic, political, social, and policy dimensions internationally. In particular, the collection is organized around the perception that the growth of locative media gives rise to a number of crucial questions concerning the areas of culture, economy, and policy.
DEFF Research Database (Denmark)
Khajeheian, Datis
2017-01-01
Media Entrepreneurship has been an ambiguous, unclear and controversial concept and despite of growing academic efforts in the last decade, it is still a poorly defined subject. This paper is an effort to fill this gap by providing a comprehensive definition of media entrepreneurship. Firstly......, a literature review conducted and entrepreneurship, media, opportunity and innovation as building blocks of media entrepreneurship explained. Then by using of a mixed of bibliographic method and a Delphi method with multi-stage analysis process, a consensual definition of media entrepreneurship proposed...... entrepreneurship....
DEFF Research Database (Denmark)
Pedersen, Rasmus T.
2017-01-01
The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....
Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma
International Nuclear Information System (INIS)
Berk, H.L.; Pfirsch, D.
1988-01-01
The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed
Dark energy and the inhomogeneous universe
Bull, Philip J.
2013-08-01
The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band
Directory of Open Access Journals (Sweden)
Malinowska Anna
2017-12-01
Full Text Available The paper engages with what we refer to as “sensitive media,” a concept associated with developments in the overall media environment, our relationships with media devices, and the quality of the media themselves. Those developments point to the increasing emotionality of the media world and its infrastructures. Mapping the trajectories of technological development and impact that the newer media exert on human condition, our analysis touches upon various forms of emergent affect, emotion, and feeling in order to trace the histories and motivations of the sensitization of “the media things” as well as the redefinition of our affective and emotional experiences through technologies that themselves “feel.”
Directory of Open Access Journals (Sweden)
Marina Ašković
2015-05-01
Full Text Available Does the trend in which electronic media are gradually becoming extension of human body have to move towards full enslavement of a human and his personality, or the same human will unpredictably, with the aid of his personal media literacy, exit the whirls of media and technological censorships? Personality crisis is closely related to the crisis of language no matter how contradicted to global ideology of transnational transhumanism it may seem. Considering the fact that recent media presentations of the world are based on commercialization of environmentalism, philosophical and aesthetic thought appears as an important subject of ecology. As media mediates, the scenery of civilized living increasingly becomes more appealing even though it derives from commercial and political background. Consequently, the future of humanity depends by large on the philosophy of media. Media have to truly ecologise returning the humanum to its essence making it into the extension of the natural world.
Big bang nucleosynthesis with Gaussian inhomogeneous neutrino degeneracy
International Nuclear Information System (INIS)
Stirling, Spencer D.; Scherrer, Robert J.
2002-01-01
We consider the effect of inhomogeneous neutrino degeneracy on big bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η, the effective number of additional neutrinos ΔN ν , the mean electron neutrino degeneracy parameter ξ-bar, and the rms fluctuation of the degeneracy parameter, σ ξ . We find that for fixed η, ΔN ν , and ξ-bar, the abundances of 4 He, D, and 7 Li are, in general, increasing functions of σ ξ . Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η. We show that this result can be generalized to a wide variety of distributions for ξ
Study of the thermal noise caused by inhomogeneously distributed loss
Yamamoto, K; Ando, M; Kawabe, K; Tsubono, K
2002-01-01
The normal modal expansion is the most frequently used method to estimate the thermal noise of interferometric gravitational wave detectors. However, the method does not agree with new estimation methods, direct approaches, when the loss is distributed inhomogeneously. We have checked the modal expansion and direct approaches experimentally using a mechanical oscillator, such as a mirror. The experiments showed that the modal expansion is invalid. On the other hand, the measured spectra are consistent with the direct approaches. We calculated the thermal noise of a real mirror with inhomogeneous loss using the direct approaches. This calculation showed that the thermal motions caused by loss in the reflective coating and at coil-magnet actuators are comparable with the sensitivity goals of future gravitational wave detector projects. In addition, according to our calculation, a mechanical loss may cause much larger or much smaller thermal motion than is expected in modal expansion, depending on the loss distr...
Toroidal inhomogeneity of the vertical field in a tokamak apparatus
International Nuclear Information System (INIS)
Sometani, Taro; Takashima, Hidekazu
1977-01-01
An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)
Effects of dipole magnet inhomogeneities on the beam ellipsoid
International Nuclear Information System (INIS)
Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.
1986-01-01
The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA
Institute of Scientific and Technical Information of China (English)
SONG Falun; CAO Jinxiang; WANG Ge
2004-01-01
The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.
Parametric trapping of electromagnetic waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Silin, V.P.; Starodub, A.N.
1977-01-01
Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2017-01-12
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Friction, slip and structural inhomogeneity of the buried interface
International Nuclear Information System (INIS)
Dong, Y; Wu, J; Martini, A; Li, Q
2011-01-01
An atomistic model of metallic contacts using realistic interatomic potentials is used to study the connection between friction, slip and the structure of the buried interface. Incommensurability induced by misalignment and lattice mismatch is modeled with contact sizes that are large enough to observe superstructures formed by the relative orientations of the surfaces. The periodicity of the superstructures is quantitatively related to inhomogeneous shear stress distributions in the contact area, and a reduced order model is used to clarify the connection between friction and structural inhomogeneity. Finally, the movement of atoms is evaluated before, during and after slip in both aligned and misaligned contacts to understand how the interfacial structure affects the mechanisms of slip and the corresponding frictional behavior
General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling
Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin
2018-03-01
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
Determination of critical exponents of inhomogeneous Gd films
Energy Technology Data Exchange (ETDEWEB)
Rosales-Rivera, A., E-mail: arosalesr@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Hovorka, O.; Idigoras, O.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain)
2012-08-15
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T{sub AN}=200, 400, and 500 Degree-Sign C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T{sub C} was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
Control of inhomogeneous atomic ensembles of hyperfine qudits
DEFF Research Database (Denmark)
Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.
2012-01-01
We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...
Determination of critical exponents of inhomogeneous Gd films
International Nuclear Information System (INIS)
Rosales-Rivera, A.; Salazar, N.A.; Hovorka, O.; Idigoras, O.; Berger, A.
2012-01-01
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T AN =200, 400, and 500 °C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T C was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
Neutrino emission in inhomogeneous pion condensed quark matter
International Nuclear Information System (INIS)
Huang, Xuguang; Wang, Qun; Zhuang, Pengfei
2008-01-01
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)
Electron acoustic vortices in the presence of inhomogeneous current
Energy Technology Data Exchange (ETDEWEB)
Haque, Q; Masood, W; Saleem, H [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar@pinstech.org.pk
2008-03-15
Linear and nonlinear dynamics of an electron acoustic wave in an inhomogeneous magnetized plasma are studied in the presence of non-uniform background current. The modified Rayleigh instability condition is found due to shear in the magnetic field and the current. A nonlinear stationary solution is also obtained in the form of tripolar vortices. The relevance of the present study to auroral and magnetotail plasmas is pointed out.
Characterization of residual stresses generated during inhomogeneous plastic deformation
DEFF Research Database (Denmark)
Lorentzen, T.; Faurholdt, T.; Clausen, B.
1998-01-01
Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...
Matrix product solution of an inhomogeneous multi-species TASEP
Arita, Chikashi; Mallick, Kirone
2013-03-01
We study a multi-species exclusion process with inhomogeneous hopping rates and find a matrix product representation for the stationary state of this model. The matrices belong to the tensor algebra of the fundamental quadratic algebra associated with the exclusion process. We show that our matrix product representation is equivalent to a graphical construction proposed by Ayyer and Linusson (2012 arXiv:1206.0316), which generalizes an earlier probabilistic construction due to Ferrari and Martin (2007 Ann. Prob. 35 807).
Ion-optical properties of Wien's filters with inhomogeneous fields
International Nuclear Information System (INIS)
Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.
1991-01-01
Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown
Scattering cross-section of an inhomogeneous plasma cylinder
International Nuclear Information System (INIS)
Jiaming Shi; Lijian Qiu; Ling, Y.
1995-01-01
Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated
Hydromagnetic modes in an inhomogeneous collisionless plasma of finite pressure
International Nuclear Information System (INIS)
Klimushkin, D.Yu.
2006-01-01
One studied three-dimensional structure and rate of growth of hydromagnetic waves. The mode is shown to be the Alfven modified inhomogeneity, finite pressure and plasma anisotropy. The mode structure transverse the magnetic shells may be of two types. Under some specific conditions one may observe image-drift waves in the magnetosphere. The described modes may be responsible for some types of geomagnetic field oscillations [ru
Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential
International Nuclear Information System (INIS)
Cao Daomin; Han Pigong
2010-01-01
In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.
Pair creation in inhomogeneous fields from worldline instantons
International Nuclear Information System (INIS)
Dunne, Gerald V.; Schubert, Christian
2006-01-01
We show how to do semiclassical nonperturbative computations within the worldline approach to quantum field theory using ''worldline instantons''. These worldline instantons are classical solutions to the Euclidean worldline loop equations of motion, and are closed spacetime loops parametrized by the proper-time. Specifically, we compute the imaginary part of the one loop effective action in scalar and spinor QED using worldline instantons, for a wide class of inhomogeneous electric field backgrounds
Inhomogeneous effects in the quantum free electron laser
International Nuclear Information System (INIS)
Piovella, N.; Bonifacio, R.
2006-01-01
We include inhomogeneous effects in the quantum model of a free electron laser taking into account the initial energy spread of the electron beam. From a linear analysis, we obtain a generalized dispersion relation, from which the exponential gain can be explicitly calculated. We determine the maximum allowed initial energy spread in the quantum exponential regime and we discuss the limit of large energy spread
Detection of detachments and inhomogeneities in frescos by Compton scattering
International Nuclear Information System (INIS)
Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palama, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.
2005-01-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'
Detection of detachments and inhomogeneities in frescos by Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cesareo, R. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy) and INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy)]. E-mail: cesareo@uniss.it; Buccolieri, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Donativi, M. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); Palama, F. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Quarta, S. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); De Nunzio, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy); Marabelli, M. [Istituto Centrale del Restauro, P.zza S. Francesco di Paola, 00184 Rome (Italy); Santamaria, U. [Laboratori dei Musei Vaticani, Citta del Vaticano, Rome (Italy)
2005-07-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'.
Two-step estimation for inhomogeneous spatial point processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus; Guan, Yongtao
This paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second order properties (K-function). Regression parameters are estimated using a Poisson likelihood score estimating function and in a second...... step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rain forests....
Non-Linear Instabilities in an Inhomogeneous Plasma
International Nuclear Information System (INIS)
Coppi, B.; Laval, G.; Pellat, R.; Khiet, Tu
1969-01-01
The low-frequency drift modes of a low-pressure isothermal inhomogeneous plasma can be stabilized if the shear of the magnetic field lines exceeds a critical value given by the expression r/L s = (1/2 √2) (a/r), where L s is the shear length, r the characteristic length of density variation, and a the ion Larmor radius. The authors first show that, even if r/L s [fr
On the motion of incompressible inhomogeneous Euler-Korteweg fluids
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Feireisl, Eduard; Málek, J.; Shvydkoy, R.
2010-01-01
Roč. 3, č. 3 (2010), s. 497-515 ISSN 1937-1632 R&D Projects: GA MŠk LC06052; GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Korteweg fluid * inhomogeneous Euler fluid * Korteweg stress * local-in-time well-posedness * smooth solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5226
Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.
Kanal, M.
1973-01-01
In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.
Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas
International Nuclear Information System (INIS)
Lewis, H.R.
1979-01-01
The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates
Random field assessment of nanoscopic inhomogeneity of bone.
Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu
2010-12-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy
Directory of Open Access Journals (Sweden)
Leandros Perivolaropoulos
2014-01-01
Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.
Control of inhomogeneous materials strength by method of acoustic emission
Directory of Open Access Journals (Sweden)
В. В. Носов
2017-08-01
Full Text Available The ambiguous connection between the results of acoustic emission control and the strength of materials makes acoustic-emission diagnosis ineffective and actualizes the problem of strength and metrological heterogeneity. Inhomogeneity is some deviation from a certain norm. The real object is always heterogeneous, homogeneity is an assumption that simplifies the image of the object and the solution of the tasks associated with it. The need to consider heterogeneity is due to the need to clarify a particular task and is a transition to a more complex level of research. Accounting for heterogeneity requires the definition of its type, criterion and method of evaluation. The type of heterogeneity depends on the problem being solved and should be related to the property that determines the function of the real object, the criterion should be informative, and the way of its evaluation is non-destructive. The complexity of predicting the behavior of heterogeneous materials necessitates the modeling of the destructive process that determines the operability, the formulation of the inhomogeneity criterion, the interpretation of the Kaiser effect, as showing inhomogeneity of the phenomenon of non-reproduction of acoustic emission (AE activity upon repeated loading of the examined object.The article gives an example of modeling strength and metrological heterogeneity, analyzes and estimates the informative effect of the Kaiser effect on the danger degree of state of diagnosed object from the positions of the micromechanical model of time dependencies of AE parameters recorded during loading of structural materials and technical objects.
Energy Technology Data Exchange (ETDEWEB)
Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.
Spontaneous Hedonic Reactions to Social Media Cues.
van Koningsbruggen, Guido M; Hartmann, Tilo; Eden, Allison; Veling, Harm
2017-05-01
Why is it so difficult to resist the desire to use social media? One possibility is that frequent social media users possess strong and spontaneous hedonic reactions to social media cues, which, in turn, makes it difficult to resist social media temptations. In two studies (total N = 200), we investigated less-frequent and frequent social media users' spontaneous hedonic reactions to social media cues using the Affect Misattribution Procedure-an implicit measure of affective reactions. Results demonstrated that frequent social media users showed more favorable affective reactions in response to social media (vs. control) cues, whereas less-frequent social media users' affective reactions did not differ between social media and control cues (Studies 1 and 2). Moreover, the spontaneous hedonic reactions to social media (vs. control) cues were related to self-reported cravings to use social media and partially accounted for the link between social media use and social media cravings (Study 2). These findings suggest that frequent social media users' spontaneous hedonic reactions in response to social media cues might contribute to their difficulties in resisting desires to use social media.
International Nuclear Information System (INIS)
Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao
2010-01-01
By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)
Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers
International Nuclear Information System (INIS)
Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd
2014-01-01
We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.
Energy Technology Data Exchange (ETDEWEB)
Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)
2013-07-29
Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.
International Nuclear Information System (INIS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO 2 -H 2 O- N 2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces. (paper)
Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
Červenka, Milan; Bednařík, Michal
2017-06-01
Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.
Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.
Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A
2010-11-26
The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.
Quantum effects in strong fields
International Nuclear Information System (INIS)
Roessler, Lars
2014-01-01
This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
DEFF Research Database (Denmark)
Kabel, Lars
2016-01-01
News and other kinds of journalistic stories, 16-17 hours a day, all year round, on all platforms, also the moderated social media. The key research thesis behind this article is that the continuous and speedy stream of news stories and media content now is becoming the centre of the production...... processes and the value creation in converged multimedia newsrooms. The article identify new methods and discuss editorial challenges in handling media flow....
First-order P-wave ray synthetic seismograms in inhomogeneous, weakly anisotropic, layered media
Czech Academy of Sciences Publication Activity Database
Pšenčík, Ivan; Farra, V.
2014-01-01
Roč. 198, č. 1 (2014), s. 298-307 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : body waves * seismic anisotropy * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.724, year: 2013
Subluminal and superluminal pulse propagation in inhomogeneous media of nonspherical particles
International Nuclear Information System (INIS)
Ma Yu; Gao Lei
2006-01-01
We study the pulse propagation through a metal/dielectric composites of nonspherical particles enclosed by two gold mirrors. To account for the shape effect, we first adopt Maxwell-Garnett type approximation to obtain the effective dielectric function of composites. Based on the group index, phase time and pulse shape calculations, we find that the particles' shape (characterized by the depolarization factor) plays an important role in determining the subluminal and superluminal pulse propagations through the system. When the inclusions' shape is not spherical, it is possible to observe significant superluminal behavior of the pulse propagation, although the volume fraction is the same. The shape-dependent critical volume fraction is predicted, above which superluminal propagation appears. Furthermore, the Hartman effect in such a system is also investigated
Boundary attenuation angles for inhomogeneous plane waves in anisotropic dissipative media
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2011-01-01
Roč. 76, č. 3 (2011), WA51-WA62 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional research plan: CEZ:AV0Z30120515 Keywords : attenuation angles * seismic waves * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.418, year: 2011
1989-08-01
6] give an excellent history of the major ones including a new suggestion of their own. Beam had one of the earliest methods, which was based on the...HE, mode- in particular, a " paranormal sub-mode" in keeping with Waldron’s denotation [31]. This idea seems reasonable since as the permittivity of
Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media
International Nuclear Information System (INIS)
Jeong, Hyun Jo; Cho, Sung Jong; Erdenetuya, Sharaa; Jung, Duck Yong
2011-01-01
In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds
Multilayer bimetallic media as protection method of radioactive radiation
International Nuclear Information System (INIS)
Borts, B.V.; Tkachenko, V.I.; Tkachenko, I.V.
2010-01-01
Multilayer bimetallic media as means of protection of the earth's space vehicle from radioactive space radiation is described in the proposed paper. Evaluation of radiation losses of electron energy in inhomogeneous media is carried out; these media may be formed by layers of materials with different dielectric constants or they may be simulated by dielectric permittivity varying in space by harmonic law. It is shown that in such media the radiation losses of electron are proportional to the square of parameter of inhomogeneity, that is the losses are low. In the case when in periodic laminar medium with sharp boundaries the conditions of parametric union of self-waves of medium are satisfied, the losses of electron are proportional to the inhomogeneity parameter to first power and are comparable with losses that are caused by elementary events of scattering. The mean length of radiation losses of electron with energy 2(6) MeV in multilayer bimetallic medium tungsten-aluminum with period L ∼ 0,3 ·10 -6 cm is comparable with mean path of electron in such medium. The characteristic angles of radiation have the discrete character and are directed from 0 to 180 degree C. The power of losses increases with the radiation angle increase and is maximal for characteristic angles approaching 90 degree C.
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
Bitcoin Meets Strong Consistency
Decker, Christian; Seidel, Jochen; Wattenhofer, Roger
2014-01-01
The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...
Strong gravity and supersymmetry
International Nuclear Information System (INIS)
Chamseddine, Ali H.; Salam, A.; Strathdee, J.
1977-11-01
A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group
African Journals Online (AJOL)
This can be summed up in a few words: Students can learn a great deal from any of the media. Under most of the conditions tested, they could learn as much as from ... Beyond physical conditions (deafness) there is little reason to expect a differential media. Scientia Militaria, South African Journal of Military Studies, Vol 13 ...
Peterson, Erin
2010-01-01
While institutions do not often have a hook as compelling as an eagerly awaited movie, great content is critical for media relations success--and coupling it with the right distribution channel can ensure the story finds the right audience. Even better, retooling it for several media platforms can extend the life and reach of a story. The changes…
Chalmers, Matthew
2008-01-01
He is the media-friendly face of particle physics, appearing on countless TV and radio shows in the run-up to the opening of CERN's Large Hadron Collider. Matthew Chalmers discovers how Brian Cox finds the time to be both a physicist and a media personality. (2 pages)
DEFF Research Database (Denmark)
Ekman, Ulrik
2015-01-01
environments, experience time, and develop identities individually and socially. Interviews with working media artists lend further perspectives on these cultural transformations. Drawing on cultural theory, new media art studies, human-computer interaction theory, and software studies, this cutting-edge book...... critically unpacks the complex ubiquity-effects confronting us every day....
Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.; Shaikh, D.
2006-01-01
A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly
Inhomogeneous target-dose distributions: a dimension more for optimization?
International Nuclear Information System (INIS)
Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de
1999-01-01
Purpose: To evaluate if the use of inhomogeneous target-dose distributions, obtained by 3D conformal radiotherapy plans with or without beam intensity modulation, offers the possibility to decrease indices of toxicity to normal tissues and/or increase indices of tumor control stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by optimization using an objective function with a biological and a physical component. The biological component included tumor control probability (TCP) for PTV1 (TCP1), PTV2 (TCP2), and normal tissue complication probability (NTCP) for lung, spinal cord, and heart. The physical component included the maximum and minimum dose as well as the standard deviation of the dose at PTV1. The most inhomogeneous target-dose distributions were obtained by using only the biological component of the objective function (biological optimization). By enabling the physical component in addition to the biological component, PTV1 inhomogeneity was reduced (biophysical optimization). As indices for toxicity to normal tissues, NTCP-values as well as maximum doses or dose levels to relevant fractions of the organ's volume were used. As indices for tumor control, TCP-values as well as minimum doses to the PTVs were used. Results: When optimization was performed with the biophysical as compared to the biological objective function, the PTV1 inhomogeneity decreased from 13 (8-23)% to 4 (2-9)% for the 3D-(p = 0.00009) and from 44 (33-56)% to 20 (9-34)% for the BIM
Examples of backreaction of small-scale inhomogeneities in cosmology
Green, Stephen R.; Wald, Robert M.
2013-06-01
In previous work, we introduced a new framework to treat large-scale backreaction effects due to small-scale inhomogeneities in general relativity. We considered one-parameter families of spacetimes for which such backreaction effects can occur, and we proved that, provided the weak energy condition on matter is satisfied, the leading effect of small-scale inhomogeneities on large-scale dynamics is to produce a traceless effective stress-energy tensor that itself satisfies the weak energy condition. In this work, we illustrate the nature of our framework by providing two explicit examples of one-parameter families with backreaction. The first, based on previous work of Berger, is a family of polarized vacuum Gowdy spacetimes on a torus, which satisfies all of the assumptions of our framework. As the parameter approaches its limiting value, the metric uniformly approaches a smooth background metric, but spacetime derivatives of the deviation of the metric from the background metric do not converge uniformly to zero. The limiting metric has nontrivial backreaction from the small-scale inhomogeneities, with an effective stress energy that is traceless and satisfies the weak energy condition, in accord with our theorems. Our second one-parameter family consists of metrics which have a uniform Friedmann-Lemaître-Robertson-Walker limit. This family satisfies all of our assumptions with the exception of the weak energy condition for matter. In this case, the limiting metric has an effective stress-energy tensor which is not traceless. We emphasize the importance of imposing energy conditions on matter in studies of backreaction.
Compression behavior of cellular metals with inhomogeneous mass distribution
International Nuclear Information System (INIS)
Foroughi, B.
2001-05-01
Mechanical behavior of two types of closed cell metals (ALULIGHT and ALPORAS) is investigated experimentally and numerically. Compressive tests performed on prismatic specimens indicate that inhomogeneities in the mass density distribution are a key factor in the deformation behavior of cellular metals. The three dimensional cellular structure of the investigated specimens is recorded using x-ray medical computed tomography (CT). A special procedure called density mapping method has been used to transfer the recorded CT data into a continuum by averaging over a certain domain (averaging domain). This continuum model is implemented using finite elements to study the effect of variations in local mass densities. The finite element model is performed by a simple regular discretization of a specimen's volume with elements which have constant edge length. Mechanical properties derived from compression tests of ALPORAS samples are assigned to the corresponding mesoscopic density value of each element. The effect of averaging domain size is studied to obtain a suitable dimension which fulfils the homogenization requirements and allows the evaluation of inhomogenities in the specimens. The formation and propagation of deformation band(s) and stress-strain responses of tested cellular metals are modeled with respect to their mass distribution. It is shown that the inhomogeneous density distribution leads to plastic strain localization and causes a monotonically increase of the stress in the plateau regime although no hardening response was considered for homogeneous material in this regime. The simulated plastic strain localization and the calculated stress-strain responses are compared with the experimental results. The stiffness values of experiment and simulation agree very well for both cellular materials. The values of plateau strength as well, but it differs in some cases of ALULIGHT samples, where the hardening response can be predicted at least qualitatively
Energy Technology Data Exchange (ETDEWEB)
Song, P.; Vasyliūnas, V. M., E-mail: paul_song@uml.edu [Space Science Laboratory and Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States)
2014-12-01
The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.
International Nuclear Information System (INIS)
Song, P.; Vasyliūnas, V. M.
2014-01-01
The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models
The confinement effect in spherical inhomogeneous quantum dots and stability of excitons
Directory of Open Access Journals (Sweden)
F. Benhaddou
2017-06-01
Full Text Available We investigate in this work the quantum confinement effect of exciton in spherical inhomogeneous quantum dots IQDs. The spherical core is enveloped by two shells. The inner shell is a semiconductor characterized by a small band-gap. The core and the outer shell are the same semiconductor characterized by a large band-gap. So there is a significant gap-offset creating a deep potential well where the excitons are localized and strongly confined. We have adopted the Ritz variational method to calculate numerically the excitonic ground state energy and its binding energy in the strong, moderate and low confinement regimes. The results show that the Ritz variational method is in good agreement with the perturbation method in strong confinement. There is a double confinement effect and dual control. The calculation checks the effective Rydberg R* at the asymptotic limit of bulk semiconductor when the thickness takes very large values. The excitonic binding energy increases, Thus giving the excitons a high stability even at ambient temperature. These nanosystems are promising in several applications: lighting, detection, biological labeling and quantum computing.
Reaction-diffusion fronts with inhomogeneous initial conditions
Energy Technology Data Exchange (ETDEWEB)
Bena, I [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Martens, K [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest (Hungary)
2007-02-14
Properties of reaction zones resulting from A+B {yields} C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.
Ventilation inhomogeneity in children with primary ciliary dyskinesia
DEFF Research Database (Denmark)
Green, Kent; Buchvald, Frederik F; Marthin, June Kehlet
2012-01-01
The lung clearance index (LCI) derived from the multiple breath inert gas washout (MBW) test reflects global ventilation distribution inhomogeneity. It is more sensitive than forced expiratory volume in 1 s (FEV(1)) for detecting abnormal airway function and correlates closely with structural lung...... damage in children with cystic fibrosis, which shares features with primary ciliary dyskinesia (PCD). Normalised phase III slope indices S(cond) and S(acin) reflect function of the small conducting and acinar airways, respectively. The involvement of the peripheral airways assessed by MBW tests has...
Two-step estimation for inhomogeneous spatial point processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus; Guan, Yongtao
2009-01-01
The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties (K-function). Regression parameters are estimated by using a Poisson likelihood score estimating function and in the ...... and in the second step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rainforests....
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
International Nuclear Information System (INIS)
Cramer, M.; Eisert, J.; Illuminati, F.
2004-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
Quantum quench in one dimension: coherent inhomogeneity amplification and "supersolitons".
Foster, Matthew S; Yuzbashyan, Emil A; Altshuler, Boris L
2010-09-24
We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.
Linearized theory of inhomogeneous multiple 'water-bag' plasmas
Bloomberg, H. W.; Berk, H. L.
1973-01-01
Equations are derived for describing the inhomogeneous equilibrium and small deviations from the equilibrium, giving particular attention to systems with trapped particles. An investigation is conducted of periodic systems with a single trapped-particle water bag, taking into account the behavior of the perturbation equations at the turning points. An outline is provided concerning a procedure for obtaining the eigenvalues. The results of stability calculations connected with the sideband effects are considered along with questions regarding the general applicability of the multiple water-bag approach in stability calculations.
Super-high magnetic fields in spatially inhomogeneous plasma
International Nuclear Information System (INIS)
Nastoyashchiy, Anatoly F.
2012-01-01
The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)
Dynamic modeling of presence of occupants using inhomogeneous Markov chains
DEFF Research Database (Denmark)
Andersen, Philip Hvidthøft Delff; Iversen, Anne; Madsen, Henrik
2014-01-01
on time of day, and by use of a filter of the observations it is able to capture per-employee sequence dynamics. Simulations using this method are compared with simulations using homogeneous Markov chains and show far better ability to reproduce key properties of the data. The method is based...... on inhomogeneous Markov chains with where the transition probabilities are estimated using generalized linear models with polynomials, B-splines, and a filter of passed observations as inputs. For treating the dispersion of the data series, a hierarchical model structure is used where one model is for low presence...
REB-instability with magneto-active inhomogeneous warm plasma
International Nuclear Information System (INIS)
El-Shorbagy, K.H.
2000-07-01
The beam-plasma heating due to a relativistic electron beam (REB) under the effect of an external static magnetic field is investigated. It is considered that a longitudinal 1-D oscillations exist in the plasma, which is inhomogeneous and bounded in the direction of the beam propagation. It is found that the variation in the plasma density has a profound effect on the spatial beam-plasma instability. Besides, the external static magnetic field and warmness of plasma electron leads to more power absorption from the electron beam, and consequently an auxiliary plasma heating. (author)
REB-Instability with Magneto-Active Inhomogeneous Warm Plasma
International Nuclear Information System (INIS)
El-Shorbagy, Kh.H.
2000-01-01
The beam-plasma heating due to a relativistic electron beam (REB) under the effect of an external static magnetic field is investigated. It is considered that a longitudinal 1-D oscillations exist in the plasma, which is inhomogeneous and bounded in the direction of the beam propagation. It is found that the variation in the plasma density has a profound effect on the spatial beam-plasma instability. Besides, the external static magnetic field and warmness of plasma electron leads to more power absorption from the electron beam, and consequently an auxiliary plasma heating
Estimation of geometrically undistorted B0 inhomogeneity maps
International Nuclear Information System (INIS)
Matakos, A; Balter, J; Cao, Y
2014-01-01
Geometric accuracy of MRI is one of the main concerns for its use as a sole image modality in precision radiation therapy (RT) planning. In a state-of-the-art scanner, system level geometric distortions are within acceptable levels for precision RT. However, subject-induced B 0 inhomogeneity may vary substantially, especially in air-tissue interfaces. Recent studies have shown distortion levels of more than 2 mm near the sinus and ear canal are possible due to subject-induced field inhomogeneity. These distortions can be corrected with the use of accurate B 0 inhomogeneity field maps. Most existing methods estimate these field maps from dual gradient-echo (GRE) images acquired at two different echo-times under the assumption that the GRE images are practically undistorted. However distortion that may exist in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate correction of clinical images. This work proposes a method for estimating undistorted field maps from GRE acquisitions using an iterative joint estimation technique. The proposed method yields geometrically corrected GRE images and undistorted field maps that can also be used for the correction of images acquired by other sequences. The proposed method is validated through simulation, phantom experiments and applied to patient data. Our simulation results show that our method reduces the root-mean-squared error of the estimated field map from the ground truth by ten-fold compared to the distorted field map. Both the geometric distortion and the intensity corruption (artifact) in the images caused by the B 0 field inhomogeneity are corrected almost completely. Our phantom experiment showed improvement in the geometric correction of approximately 1 mm at an air-water interface using the undistorted field map compared to using a distorted field map. The proposed method for undistorted field map estimation can lead to improved geometric
Estimation of geometrically undistorted B0 inhomogeneity maps
Matakos, A.; Balter, J.; Cao, Y.
2014-09-01
Geometric accuracy of MRI is one of the main concerns for its use as a sole image modality in precision radiation therapy (RT) planning. In a state-of-the-art scanner, system level geometric distortions are within acceptable levels for precision RT. However, subject-induced B0 inhomogeneity may vary substantially, especially in air-tissue interfaces. Recent studies have shown distortion levels of more than 2 mm near the sinus and ear canal are possible due to subject-induced field inhomogeneity. These distortions can be corrected with the use of accurate B0 inhomogeneity field maps. Most existing methods estimate these field maps from dual gradient-echo (GRE) images acquired at two different echo-times under the assumption that the GRE images are practically undistorted. However distortion that may exist in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate correction of clinical images. This work proposes a method for estimating undistorted field maps from GRE acquisitions using an iterative joint estimation technique. The proposed method yields geometrically corrected GRE images and undistorted field maps that can also be used for the correction of images acquired by other sequences. The proposed method is validated through simulation, phantom experiments and applied to patient data. Our simulation results show that our method reduces the root-mean-squared error of the estimated field map from the ground truth by ten-fold compared to the distorted field map. Both the geometric distortion and the intensity corruption (artifact) in the images caused by the B0 field inhomogeneity are corrected almost completely. Our phantom experiment showed improvement in the geometric correction of approximately 1 mm at an air-water interface using the undistorted field map compared to using a distorted field map. The proposed method for undistorted field map estimation can lead to improved geometric
Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects
Energy Technology Data Exchange (ETDEWEB)
Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)
2012-10-15
The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.
Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects
International Nuclear Information System (INIS)
Hassan, S.S.; Sharaby, Y.A.; Ali, M.F.M.; Joshi, A.
2012-01-01
The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.
Tailoring diffuse reflectance of inhomogeneous films containing microplatelets
Energy Technology Data Exchange (ETDEWEB)
Slovick, Brian A., E-mail: brian.slovick@sri.com; Baker, John M.; Flom, Zachary; Krishnamurthy, Srini [Applied Optics Laboratory, SRI International, Menlo Park, California 94025 (United States)
2015-10-05
We develop an analytical model for calculating the diffuse reflectance of inhomogeneous films containing aligned microplatelets with diameters much greater than the wavelength. The scattering parameters are derived by modeling the platelets as one-dimensional thin films, and the overall diffuse reflectance of the slab is calculated using the Kubelka-Munk model. Our model predicts that reflection minima and maxima arising from coherent interference within the platelets are preserved in the diffuse reflectance of the disordered slab. Experimental validation of the model is provided by reflectance measurements (0.3–15 μm) of a solid aerosol film of aligned hexagonal boron nitride platelets.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue
Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing
2018-02-01
Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M
2006-01-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes
Spontaneous electromagnetic emission from a strongly localized plasma flow.
Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E
2011-05-06
Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.
Interaction of a strong vortex with decaying turbulence
International Nuclear Information System (INIS)
Terry, P.W.
1988-01-01
The evolution of a localized, axially symmetric vortex under the action of shear stresses associated with decaying two-dimensional turbulent vorticity which is inhomogeneous in the presence of the vortex is studied analytically. For a vortex which is sufficiently strong relative to the coefficient of turbulent eddy viscosity, it is shown that turbulent fluctuations in the vortex interior and diffusion of coherent vorticity by the turbulence localize to the vortex periphery. It is also found that the coefficient of diffusion is small compared to the coefficient of eddy viscosity. 8 refs
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2006-05-28
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
International Nuclear Information System (INIS)
Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.
2013-01-01
We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
International Nuclear Information System (INIS)
Marier, D.
1992-01-01
This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders
Tinne, N.; Matthias, B.; Kranert, F.; Wetzel, C.; Krüger, A.; Ripken, T.
2016-03-01
The interaction effect of photodisruption, which is used for dissection of biological tissue with fs-laser pulses, has been intensively studied inside water as prevalent sample medium. In this case, the single effect is highly reproducible and, hence, the method of time-resolved photography is sufficiently applicable. In contrast, the reproducibility significantly decreases analyzing more solid and anisotropic media like biological tissue. Therefore, a high-speed photographic approach is necessary in this case. The presented study introduces a novel technique for high-speed photography based on the principle of chromatic encoding. For illumination of the region of interest within the sample medium, the light paths of up to 12 LEDs with various emission wavelengths are overlaid via optical filters. Here, MOSFET-electronics provide a LED flash with a duration diodes are externally triggered with a distinct delay for every LED. Furthermore, the different illumination wavelengths are chromatically separated again for detection via camera chip. Thus, the experimental setup enables the generation of a time-sequence of laser-tissue interaction inside anisotropic biological tissue and for the optimization of the surgical process with high-repetition rate fs-lasers. Additionally, this application is also suitable for the investigation of other microscopic, ultra-fast events in transparent inhomogeneous materials.
Silicon qubit performance in the presence of inhomogeneous strain
Jacobson, N. Tobias; Ward, Daniel R.; Baczewski, Andrew D.; Gamble, John K.; Montano, Ines; Rudolph, Martin; Nielsen, Erik; Carroll, Malcolm
While gate electrode voltages largely define the potential landscape experienced by electrons in quantum dot (QD) devices, mechanical strain also plays a role. Inhomogeneous strain established over the course of device fabrication, followed by mismatched contraction under cooling to cryogenic temperatures, may significantly perturb this potential. A recent investigation by Thorbeck & Zimmerman suggests that unintentional QDs may form as a result of the latter thermal contraction mismatch mechanism. In this work, we investigate the effects of inhomogeneous strain on QD tunnel barriers and other properties, from the perspective of QD and donor-based qubit performance. Through semiconductor process simulation, we estimate the relative magnitude of strain established during fabrication as compared with thermal expansion coefficient mismatch. Combining these predictions with multi-valley effective mass theory modeling of qubit characteristics, we identify whether strain effects may compel stricter than expected constraints on device dimensions. Finally, we investigate the degree to which strain and charge disorder effects may be distinguished. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Use of the shearing interferometry for dense inhomogeneous plasma diagnostics
International Nuclear Information System (INIS)
Zakharenkov, Yu.A.; Sklizkov, G.V.; Shikanov, A.S.
1980-01-01
Investigated is a possibility of applying the shearing interferometry for diagnostics of a dense inhomogeneous laser plasma which makes it possible to measure the electron density without losses in accuracy near the critical surface. A shearing interferogram is formed upon interference of two identical images of the object under study shifted at some fixed distance. The value of the interference band deflection inside phase inhomogeneity depends on the gradient of the index of refraction in the direction of shift. It has been found that for studying the inner region of the laser plasma a small shift should be used, and for the external one - a large one. The version of a radial shift interferometry is shown to be optimum. For the inner region of the interferogram the error of the electron density restoration does not exceed 10%, and for the external one the error is comparable with that for the version of standard interferometry. A systematic analysis of the optimum type interferometers shows advantages of shearing interferometers. The maximum electron density recorded in experiments makes up approximately equal to 10 20 cm -3 , which is 3-5 times higher than the corresponding value obtained by a standard double-slit type interferometer at equal limiting parameters of the optical system applied
Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.
2018-04-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.
Inhomogeneous magnetic phase in Co–Al–O spinel nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Sato, K., E-mail: sato.koichi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Naka, T., E-mail: naka.takashi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Nakane, T. [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Rangappa, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500-005 (India); Takami, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ohara, S. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Adschiri, T. [WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2014-01-15
We report on the crystallographic structure and magnetism of 5-nm Co–Al–O spinel nanocrystals synthesized under supercritical hydrothermal conditions. Structural examination using powder X-ray diffraction and chemical analysis showed the composition of the sample to be Co{sub 0.47}Al{sub 2.36}O{sub 4} rather than the stoichiometric composition of CoAl{sub 2}O{sub 4}. The site occupancy of Co on the A-site forming the diamond lattice was 0.47, which is slightly larger than the site percolation limit. Magnetization measurements showed that magnetic clusters emerged below 40 K. At temperatures below 40 K, a Griffiths-phase-like inhomogeneous state appeared in the sample in which magnetic clusters and paramagnetic spins coexisted. The dc-paramagnetic and ac-susceptibilities exhibited an anomaly below 7 K. - Highlights: • The synthesized sample had an Al-rich structure described by Co{sub 0.47}Al{sub 2.36}O{sub 4}. • The site occupancy of Co at the A-site is larger than the site percolation limit of the A-site. • The non-linearity of the magnetization appeared at T<40 K. • The paramagnetic component showed a peak at 7 K. • An inhomogeneous state is established in our Co–Al oxide nanocrystals.
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
Energy Technology Data Exchange (ETDEWEB)
Tsai, W-F.
2010-04-06
We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.
The cosmic microwave background in an inhomogeneous universe
Energy Technology Data Exchange (ETDEWEB)
Clarkson, Chris; Regis, Marco, E-mail: chris.clarkson@uct.ac.za, E-mail: regis.mrc@gmail.com [Astrophysics, Cosmology and Gravity Centre and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2011-02-01
The dimming of Type Ia supernovae could be the result of Hubble-scale inhomogeneity in the matter and spatial curvature, rather than signaling the presence of a dark energy component. A key challenge for such models is to fit the detailed spectrum of the cosmic microwave background (CMB). We present a detailed discussion of the small-scale CMB in an inhomogeneous universe, focusing on spherically symmetric 'void' models. We allow for the dynamical effects of radiation while analyzing the problem, in contrast to other work which inadvertently fine tunes its spatial profile. This is a surprisingly important effect and we reach substantially different conclusions. Models which are open at CMB distances fit the CMB power spectrum without fine tuning; these models also fit the supernovae and local Hubble rate data which favour a high expansion rate. Asymptotically flat models may fit the CMB, but require some extra assumptions. We argue that a full treatment of the radiation in these models is necessary if we are to understand the correct constraints from the CMB, as well as other observations which rely on it, such as spectral distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect or the Baryon Acoustic Oscillations.
NONLINEAR EVOLUTION OF BEAM-PLASMA INSTABILITY IN INHOMOGENEOUS MEDIUM
International Nuclear Information System (INIS)
Ziebell, L. F.; Pavan, J.; Yoon, P. H.; Gaelzer, R.
2011-01-01
The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a finding may be important in the quantitative analysis of the plasma emission process with application to solar type II and/or type III radio bursts.
Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.
Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji
2017-10-30
We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.
Trace element evidence for a laterally inhomogeneous moon
International Nuclear Information System (INIS)
Jovanovic, S.; Reed, G.W. Jr.
1978-01-01
A number of trace element interrelations support the concept of a laterally inhomogeneous moon based orginally in Cl/sub r//P 2 O 5 ratios. The correspondence between Cl/sub r//P 2 O 5 and Rb/Sr ratios in basalts are of special interest since the isotopic evolution of the latter pair of elements relates to the earliest history of the moon. This implies the times when the Cl/sub r//P 2 O 5 relations were established. The early magma ocean is conjectured to have been made up of nonintermixing seas resulting either from large convection cells or large body accretion. These mutually exclusive regions could be lunar geological provinces. It is proposed that the diversity of basalts from the Apollo 17 site is related to the lateral inhomogeneity of the moon. Ca/Na ratios in basalts show a trend which parallels that of Ru/Os and in a corresponding fashion may serve as a depth indicator. 4 figures, 4 tables, 12 references
Size effects on magnetoelectric response of multiferroic composite with inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Yue, Y.M. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Xu, K.Y., E-mail: kyxu@shu.edu.cn [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Chen, T. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Aifantis, E.C. [Laboratory of Mechanics and Materials (LMM), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); Michigan Technological University, Houghton, MI 49931 (United States); King Abdulaziz University, Jeddah 21589 (Saudi Arabia); School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); International Laboratory for Modern Functional Materials, ITMO University, St. Petersburg 191002 (Russian Federation)
2015-12-01
This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO{sub 3}), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe{sub 2}O{sub 3}). In a composite consisiting of a piezomagnetic matrix (CoFe{sub 2}O{sub 3}) reinforced with piezoelectric nanofibers (BaTiO{sub 3}), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.
Size effects on magnetoelectric response of multiferroic composite with inhomogeneities
Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.
2015-12-01
This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.
EBL Inhomogeneity and Hard-Spectrum Gamma-Ray Sources
Energy Technology Data Exchange (ETDEWEB)
Abdalla, Hassan; Böttcher, Markus [Centre for Space Research, North-West University, Potchefstroom 2520 (South Africa)
2017-02-01
The unexpectedly hard very-high-energy (VHE; E > 100 GeV) γ -ray spectra of a few distant blazars have been interpreted as evidence of a reduction of the γγ opacity of the universe due to the interaction of VHE γ -rays with the extragalactic background light (EBL) compared to the expectation from current knowledge of the density and cosmological evolution of the EBL. One of the suggested solutions to this problem involves the inhomogeneity of the EBL. In this paper, we study the effects of such inhomogeneity on the energy density of the EBL (which then also becomes anisotropic) and the resulting γγ opacity. Specifically, we investigate the effects of cosmic voids along the line of sight to a distant blazar. We find that the effect of such voids on the γγ opacity, for any realistic void size, is only of the order of ≲1% and much smaller than expected from a simple linear scaling of the γγ opacity with the line-of-sight galaxy underdensity due to a cosmic void.
Inhomogeneity of optical turbulence over False Bay (South Africa)
Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin
2017-09-01
Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.
Spatially inhomogeneous acceleration of electrons in solar flares
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
Modelling of the inhomogeneous interior of polymer gels
International Nuclear Information System (INIS)
Shew, C-Y; Iwaki, Takafumi
2006-01-01
A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel
Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology
International Nuclear Information System (INIS)
Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.
2015-01-01
We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)
Fermionic renormalization group methods for transport through inhomogeneous Luttinger liquids
International Nuclear Information System (INIS)
Meden, V; Schoeller, H; Andergassen, S; Enss, T; Schoenhammer, K
2008-01-01
We compare two fermionic renormalization group (RG) methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a poor man's method set-up to resum 'leading-log' divergences of the effective transmission at the Fermi momentum. Generically the resulting equations can be solved analytically. The second approach is based on the functional RG (fRG) method and leads to a set of differential equations which can only for certain set-ups and in limiting cases be solved analytically, while in general it must be integrated numerically. Both methods are claimed to be applicable for inhomogeneities of arbitrary strength and to capture effects of the two-particle interaction, such as interaction dependent exponents, up to leading order. We critically review this for the simplest case of a single impurity. While on first glance the poor man's approach seems to describe the crossover from the 'perfect' to the 'open chain fixed point' we collect evidence that difficulties may arise close to the 'perfect chain fixed point'. Due to a subtle relation between the scaling dimensions of the two fixed points this becomes apparent only in a detailed analysis. In the fRG method the coupling of the different scattering channels is kept which leads to a better description of the underlying physics
Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning
Directory of Open Access Journals (Sweden)
Indra J Das
2016-01-01
Full Text Available Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body with the help of tissue characterization based on computed tomography (CT number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV, reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak, FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH, dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2% in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.
From Augmentation Media to Meme Media.
Tanaka, Yuzuru
Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…
General multimode polarization splitter design in uniaxial media
Teixeira, Poliane A.; Silva, Daniely G.; Gabrielli, Lucas H.; Spadoti, Danilo H.; Junqueira, Mateus A. F. C.
2018-03-01
Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters. The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devices are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of 64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength range.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
The dynamics of short envelope solitons in media with controlled dispersion
International Nuclear Information System (INIS)
Aseeva, N.V.; Gromov, E.M.; Tyutin, V.V.
2007-01-01
The dynamics of short envelope solitons in media with controlled dispersion is investigated in the framework of the third-order nonlinear Schroedinger equation. Evolution of the solitons amplitude is analyzed in the adiabatic approximation. The existence of short envelope solitons independent from linear dispersion inhomogeneity is shown
Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J
2013-01-01
Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.
International Nuclear Information System (INIS)
Gorenstein, M. I.; Gazdzicki, M.
2011-01-01
Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions
Tomer, Dushyant
Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect
Nonlocal Free Energy of a Spatially Inhomogeneous Superconductor
International Nuclear Information System (INIS)
Grigorishin, K.V.; Lev, B.I.
2012-01-01
The microscopic approach is developed for obtaining of the free energy of a superconductor based on direct calculation of the vacuum amplitude. The free energy functional of the spatially inhomogeneous superconductor in a magnetic field is obtained with help of the developed approach. The obtained functional is generalization of Ginzburg-Landau functionals for any temperature, for arbitrary spatial variations of the order parameter and for the nonlocality of a magnetic response and the order parameter. Moreover, the nonlocality of the magnetic response is the consequence of order parameter's nonlocality. The extremals of this functional are considered in the explicit form in the low- and high-temperature limit at the condition of slowness of spatial variations of the order parameter. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Inhomogeneous electrochemiluminescence. II Markovian encounter theory of the phenomenon
International Nuclear Information System (INIS)
Gladkikh, V.; Burshtein, A.I.
2005-01-01
The free energy dependence of the electro-chemiluminescence quantum yield is specified, with the Markovian encounter theory accounting for the reversibility of triplet production competing with the irreversible recombination to the ground state. It is shown that diffusional ion recombination is highly inhomogeneous in space. It proceeds at either large positive ionization free energy (mainly to the triplet product) or at large negative free energy when recombination to the ground state dominates. On the contrary at medium free energies, the quasi-resonant generation of triplets is under kinetic control and therefore much more homogeneous. In this case, both recombination products are generated in comparable amounts. The multiple reversible ionization is shown to act as an independent quenching mechanism previously unknown. The role of the triplet quenching at the electrode is also specified. These effects reduce noticeably the luminescence quantum yield but only at larger triplet life times and in different free energy regions
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
International Nuclear Information System (INIS)
Marcori, Oton H.; Pereira, Thiago S.
2017-01-01
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.
Sensitivity of resistive and Hall measurements to local inhomogeneities
DEFF Research Database (Denmark)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth
2013-01-01
We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four-point...... probe measurements on an infinite plane and to symmetric, circular van der Pauw discs, obtaining functions consistent with published results. These new expressions speed up calculation of the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace equation boundary......-value problems of the order of N3 calculations, rather than N2 problems of total order N5, and in a few cases produces an analytic expression for the sensitivity. These functions provide an intuitive, visual explanation of how, for example, measurements can predict the wrong carrier type in n-type ZnO....
Study of plasma-maser instability in an inhomogeneous plasma
International Nuclear Information System (INIS)
Singh, Mahinder
2006-01-01
The plasma-maser, an interesting nonlinear process in plasmas, is an effective means of energy up-conversion in frequency from low-frequency turbulence to a high-frequency wave. A theoretical study is made of the amplification mechanism of an electrostatic Bernstein mode wave in presence of Langmuir wave turbulence in a magnetized inhomogeneous plasma on the basis of a plasma-maser interaction. It is shown that a test high-frequency electrostatic Bernstein mode wave is unstable in the presence of low-frequency Langmuir wave turbulence. The growth rate of a test high-frequency Bernstein mode wave is calculated with the involvement of a spatial density gradient parameter. A comparative study on the role of density gradient in the generation of the Bernstein mode on the basis of the plasma-maser effect is presented
Non-Hermitian spin chains with inhomogeneous coupling
Energy Technology Data Exchange (ETDEWEB)
Bytsko, Andrei G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2009-11-15
An open U{sub q}(sl{sub 2})-invariant spin chain of spin S and length N with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter {gamma} are determined for which the spectrum of the model is real. For a certain range of {gamma}, a universal metric operator is constructed and thus the quasi-Hermiticity of the model is established. The constructed metric operator is non-dynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous U{sub q}(sl{sub 2})-invariant integrable spin chains with nearest-neighbour interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite dimensional space is discussed. (orig.)
Large-scale brightness inhomogeneities in the solar atmosphere
International Nuclear Information System (INIS)
Mitchell, W.E. Jr.
1982-01-01
The intensity residuals are analyzed from a series of solar limb-darkening measurements in the wavelength range 5656 to 2997 A. The lengths of residual strings of the same sign exceed expectation by several orders of magnitude. The power spectrum fo the residuals shows a weak excess around 6000 km. For further study the 34000 limb-darkening residuals are subdivided into 5100 bright and faint cells. The frequency distribution of cell sizes peaks around 4500 km and increases from center to limb, the faint cells showing the greater center-limb effect. The cells are also studied as to contrast. A synoptic view indicates that only 12% of the cells are identifiable after a half hour. Phenomena that may combine to produce the observed wide spectrum of brightness inhomogeneities are briefly discussed. (orig.)
Strict calculation of electron energy distribution functions in inhomogeneous plasmas
International Nuclear Information System (INIS)
Winkler, R.
1996-01-01
It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)
Inhomogeneous oscillatory electric field time-of-flight mass spectrometer
International Nuclear Information System (INIS)
Carrico, J.P.
1977-01-01
The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)
Calculating observables in inhomogeneous cosmologies. Part I: general framework
Hellaby, Charles; Walters, Anthony
2018-02-01
We lay out a general framework for calculating the variation of a set of cosmological observables, down the past null cone of an arbitrarily placed observer, in a given arbitrary inhomogeneous metric. The observables include redshift, proper motions, area distance and redshift-space density. Of particular interest are observables that are zero in the spherically symmetric case, such as proper motions. The algorithm is based on the null geodesic equation and the geodesic deviation equation, and it is tailored to creating a practical numerical implementation. The algorithm provides a method for tracking which light rays connect moving objects to the observer at successive times. Our algorithm is applied to the particular case of the Szekeres metric. A numerical implementation has been created and some results will be presented in a subsequent paper. Future work will explore the range of possibilities.
Improved MR imaging in extremely inhomogenous radiofrequency fields
International Nuclear Information System (INIS)
Bansal, N.; Nunnally, R.L.
1989-01-01
A previous study developed a method for acquiring images in extremely inhomogeneous radio-frequency fields with use of adiabatic pulses. Since adiabatic pulses most suited to section selection are the inversion type, the method is prone to artifacts from receiver and analog-to-digital converter (ADC) saturation and subtraction errors. These problems are substantially reduced by using a pseudo-noise-modulated selective (PNMS) prepulse to randomize the unwanted spin magnetization. To compute the PNMS pulse shape, the frequency spectrum of a wave form with constant amplitude and random phase was determined by means of Fourier transformation and then inverted after a consecutive number of points were set to zero in the center. The performance of the prepulse with the imaging sequence was tested on a 1.8-T system. Results are presented
Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes
Directory of Open Access Journals (Sweden)
Ilya Grigorenko
2013-01-01
Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.
Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.
Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer
2016-10-05
The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.
Collisionless emission of radiation by an inhomogeneous plasma
International Nuclear Information System (INIS)
Mejerovich, B.Eh.
1976-01-01
Collisionless emission of radiation by an inhomogeneous plasma due to the finite motion of charges in the field of external forces and collective interaction forces is studied. The intensity of the radiation is inversely proportional to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the radiation from a vacuum spark and other relativitstic beams compressed to a small size by collective interaction forces. The intensity of the collisionless radiation is calculated by taking into account Fermi statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, reaches a maximum at the frequency of the finite motion of the emitters and then decreases. Measurement of collisionless radiation emission by a plasma compressed to a small size by the pinch effect is a natural way of diagnosing the plasma
Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab
International Nuclear Information System (INIS)
Deutsch, R.; Kaeppeler, H.J.
1980-07-01
In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)
Radioactive diffusion gaseous probe technique for study adsorbent structure inhomogeneity
International Nuclear Information System (INIS)
Zyuzin, A.Yu.; Korobkov, V.I.; Bekman, I.N.
1990-01-01
One of the versions of the method of diffusion gaseous probe - method of longitudinal shear in combination with autoradiography (ARG) - was used for characterising sorbents and catalysts, which are considered to be promising for reprocessing of sulfur-containing natural gases. Hydrogen sulfide, labelled with 35 S was used as diffusion radioactive probe. Zeolite granules of 4A type and granulated adsorbents on the basis of CR and AM aluminium oxides, which are industrial catalysts of Clauss reaction developed at SNEA company, were used as objects under investigation. It is shown that technique for fabrication of 4A zeolite granules leads to asymmetrical pore distribution over the granule diameter. Technique for AM granule fabrication leads to occuRrence of local inhomogeneities of the structure in the form of narrow coaxial rings with decreased or increased local adsorption ability. Granules of adsorbent of CR type are characterized by rather homogeneous structure. It is recommended to use the mentioned method for industrial adsorbent diagnosis