Effective Induction Heating around Strongly Magnetized Stars
Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.
2018-05-01
Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.
Heat transfer models for fusion blanket first walls
International Nuclear Information System (INIS)
Fillo, J.A.
1977-01-01
In the development of magnetically confined fusion reactors, the ability to cool the first wall, i.e., the first material surface interfacing the plasma, appears to be a critical factor involved in establishing the wall load limit. In order to understand the thermal behavior of the first wall time-dependent, one-dimensional heat conduction models are reviewed with differing modes of heat extraction and cooling
Heat transfer characteristics of building walls using phase change material
Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.
2017-03-01
Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.
Influence of strong perturbations on wall-bounded flows
Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.
2018-01-01
Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is
Orbit losses of strongly ICRF-heated ions
International Nuclear Information System (INIS)
Anderson, A.; Dillner, Oe.; Lisak, M.
1992-01-01
An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs
Development of strongly coupled FSI technology involving thin walled structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2011-01-01
Full Text Available A strongly coupled finite volume-finite element fluid-structure interaction (FSI) scheme is developed. Both an edge-based finite volume and Galerkin finite element scheme are implemented and evaluated for modelling the mechanics of solids...
International Nuclear Information System (INIS)
Baek, Seong Gu; Park, Seung O.
2003-01-01
This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions
Enhanced heat sink with geometry induced wall-jet
Energy Technology Data Exchange (ETDEWEB)
Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)
2016-07-12
Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.
Selective Internal Heat Distribution in Modified Trombe Wall
Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda
2017-12-01
At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.
ICRF heating in JET during initial operations with the ITER-like wall
Energy Technology Data Exchange (ETDEWEB)
Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ (Germany); Campergue, A-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Mlynar, J. [Association EURATOM-IPP.CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Collaboration: JET-EFDA Contributors
2014-02-12
In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed
Study of an active wall solar heating system
International Nuclear Information System (INIS)
Kassem, Talal
2006-01-01
An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)
International Nuclear Information System (INIS)
Satoh, Isao; Kurosaki, Yasuo
1987-01-01
This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)
International Nuclear Information System (INIS)
Riera, S; Barrau, J; Rosell, J I; Omri, M; Fréchette, L G
2013-01-01
In this work, an experimental study of a novel microfabricated heat sink configuration that tends to uniform the wall temperature, even with increasing flow temperature, is presented. The design consists of a series of microchannel sections with stepwise varying width. This scheme counteracts the flow temperature increase by reducing the local thermal resistance along the flow path. A test apparatus with uniform heat flux and distributed wall temperature measurements was developed for microchannel heat exchanger characterisation. The energy balance is checked and the temperature distribution is analysed for each test. The results show that the wall temperature decreases slightly along the flow path while the fluid temperature increases, highlighting the strong impact of this approach. For a flow rate of 16 ml/s, the mean thermal resistance of the heat sink is 2,35·10 −5 m 2 ·K/W which enhances the results compared to the millimeter scale channels nearly three-fold. For the same flow rate and a heat flux of 50 W/cm 2 , the temperature uniformity, expressed as the standard deviation of the wall temperature, is around 6 °C
Study of heat transfer in the heating wall during nucleate pool boiling
International Nuclear Information System (INIS)
Bergez, W.
1991-12-01
The subject of this these is to show the role of heat transfer in the wall during saturated pool boiling. This effect, usually neglected in the modelizations of boiling, can explain some behaviours of the ebullition cycle and of the activities of nucleation sites. Il has been found that the ebullition cycle can be described by two steps: (1) during bubble growth, the wall temperature decreases due to the evaporation of the micro-layer at the base of the bubble; (2) initial superheat is re-established mainly by radial heat conduction in the wall. It is then possible to account for the variations of the wall temperature displayed by liquid crystals put a the bottom of the heating surface, and for the influence of the contact angle on the heat transfer. In the case of the infinitely thick wall the main results are that the thermal transfer during the growth of the bubble depends on the thermal properties of both wall and liquid and that the time separating the detachment of a bubble and its replacement by a new one is proportional to the cross-section of the bubble and to the thermal diffusivity of the wall
International Nuclear Information System (INIS)
Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.
1987-01-01
The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section
An analytical solution to the heat transfer problem in thick-walled hunt flow
International Nuclear Information System (INIS)
Bluck, Michael J; Wolfendale, Michael J
2017-01-01
Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.
An analytical wall-function for turbulent flows and heat transfer over rough walls
International Nuclear Information System (INIS)
Suga, K.; Craft, T.J.; Iacovides, H.
2006-01-01
This paper reports the development of a refined wall-function strategy for the modelling of turbulent forced convection heat transfer over smooth and rough surfaces. In order to include the effects of fine-grain surface roughness, the present study extends a more fundamental work by Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002. Progress in the generalisation of wall-function treatment. Int. J. Heat Fluid Flow 23, 148-160] on the development of advanced wall-functions of general applicability. The presently proposed model is validated through comparisons with data available for internal flows through channels and for external flows over flat and curved plates with both smooth and rough surfaces. Then, its further validation in separating flows over a sand dune and a sand-roughened ramp is discussed. The validation results suggest that the presently proposed form can be successfully applied to a wide range of attached and separated turbulent flows with heat transfer over smooth and fine-grain rough surfaces
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
International Nuclear Information System (INIS)
Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio
1996-01-01
To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)
Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter
Directory of Open Access Journals (Sweden)
Li Sun
2014-01-01
Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.
Causes of strong ocean heating during glacial periods
Zimov, N.; Zimov, S. A.
2013-12-01
are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
International Nuclear Information System (INIS)
Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.
2015-01-01
Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees
Positioning a thin-wall round wrapper within a heavy wall out-of-round shell of a heat exchanger
International Nuclear Information System (INIS)
Hargrove, H.G.; Thompson, E.G.; Bayless, J.R.
1983-01-01
A thin-wall, generally round wrapper is installed within a heavy wall, rolled heat exchanger shell which has greater out-of-round tolerances than the wrapper and the wrapper is maintained in its round state by utilizing a plurality of jacks disposed adjacent spaced tube support plates within the wrapper. (author)
Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji
2017-11-01
With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.
2018-06-01
Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.
Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes
International Nuclear Information System (INIS)
Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio
2010-01-01
In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.
Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate
Energy Technology Data Exchange (ETDEWEB)
Feng, Ya; Zhu, Jie, E-mail: zhujie@iet.cn; Tang, Da-Wei
2015-02-06
In this paper, non-equilibrium molecular dynamics simulations were performed to investigate the heat transport between a vertically aligned single-walled carbon nanotube (SWNT) and Si substrate, to find out the influence of temperature and system sizes, including diameter and length of SWNT and measurements of substrate. Results revealed that high temperature hindered heat transport in SWNT itself but was a beneficial stimulus for heat transport at interface of SWNT and Si. Furthermore, the system sizes strongly affected the peaks in vibrational density of states of Si, which led to interfacial thermal conductance dependent on system sizes. - Highlights: • NEMD is performed to simulate the heat transport from SWNT to Si substrate. • We analyze both interfacial thermal conductance and thermal conductivity of SWNT. • High temperature is a beneficial stimulus for heat transport at the interface. • Interfacial thermal conductance strongly depends on the sizes of SWNT and substrate. • We calculate VDOS of C and Si atoms to analyze phonon couplings between them.
Slow Impacts on Strong Targets Bring on the Heat
Melosh, H. J.; Ivanov, B. A.
2018-03-01
An important new paper by Kurosawa and Genda (2017, https://doi.org/10.1002/2017GL076285) reports a previously overlooked source of heating in low velocity meteorite impacts. Plastic deformation of the pressure-strengthened rocks behind the shock front dissipates energy, which appears as heat in addition to that generated across the shock wave itself. This heat source has surprisingly escaped explicit attention for decades: First, because it is minimized in the geometry typically chosen for laboratory experiments; and second because it is most important in rocks, and less so for the metals usually used in experiments. Nevertheless, modern numerical computer codes that include strength do compute this heating correctly. This raises the philosophical question of whether we can claim to understand some process just because our computer codes compute the results correctly.
Directory of Open Access Journals (Sweden)
C. N. B. Rao
1982-01-01
Full Text Available Laminar natural convection flow and heat transfer of a viscous incompressible fluid confined between two long vertical wavy walls has been analysed taking the fluid properties constant and variable. In particular, attention is restricted to estimate the effects of viscous dissipation and wall waviness on the flow and heat transfer characteristics. Use has been made of a linearization technique to simplify the governing equations and of Galerkin's method in the solution. The solutions obtained for the velocity and the temperature-fields hold good for all values of the Grashof number and wave number of the wavy walls.
The Heat Transfer Coefficient of Recycled Concrete Bricks Combination with EPS Insulation Board Wall
Directory of Open Access Journals (Sweden)
Jianhua Li
2015-01-01
Full Text Available Four tectonic forms samples were conducted to test their heat transfer coefficients. By analyzing and comparing the test values and theoretical values of the heat transfer coefficient, a corrected-value calculation method for determining the heat transfer coefficient was proposed; the proposed method was proved to be reasonably correct. The results indicated that the recycled concrete brick wall heat transfer coefficient is higher than that of the clay brick wall, the heat transfer coefficient of recycled concrete brick wall could be effectively reduced when combined with the EPS insulation board, and the sandwich insulation type was better than that of external thermal insulation type.
Prediction of strongly-heated internal gas flows
International Nuclear Information System (INIS)
McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki
1997-01-01
The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions
Conjugate heat transfer effects on wall bubble nucleation in subcooled flashing flows
International Nuclear Information System (INIS)
Peterson, P.F.; Hijikata, K.
1990-01-01
A variety of models have been proposed to explain observations that large liquid superheat is required to initiate nucleation in flashing flows of subcooled liquids in nozzles, cracks and pipes. In such flows an abrupt change in the fluid temperature occurs downstream of the nucleating cavities. This paper examines the subcooling of the nucleating cavities due to conjugate heat transfer to the cold downstream fluid. This examination suggests a mechanism limiting the maximum active cavity size. Simple analysis shows that, of the total superheat required to initiate flashing, a substantial portion results from conjugate wall subcooling, which decreases the cavity vapor pressure. The specific case of flashing critical nozzle flow is examined in detail. Here boundary-layer laminarization due to the strong favorable pressure gradient aids the analysis of conjugate heat transfer
International Nuclear Information System (INIS)
Wang Liangbi; Zhang Qiang; Li Xiaoxia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer
Colliding winds: Interaction regions with strong heat conduction
International Nuclear Information System (INIS)
Imamura, J.N.; Chevalier, R.A.
1984-01-01
The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind
Long, Linshuang; Ye, Hong
2016-04-07
A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.
Development of platform to compare different wall heat transfer packages for system analysis codes
International Nuclear Information System (INIS)
Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik; Shin, Sung Gil
2016-01-01
System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future
Strong contributions of local background climate to urban heat islands
Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith
2014-07-01
The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.
A new wall function boundary condition including heat release effect for supersonic combustion flows
International Nuclear Information System (INIS)
Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian
2016-01-01
Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-10-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
International Nuclear Information System (INIS)
Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.
2016-01-01
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
Energy Technology Data Exchange (ETDEWEB)
Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)
2016-01-15
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.
2016-01-01
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.
International Nuclear Information System (INIS)
Hajmohammadi, M.R.; Poozesh, S.; Rahmani, M.; Campo, A.
2013-01-01
This paper explores the bearing that a non-uniform distribution of heat flux used as a wall boundary condition exerts on the heat transfer improvement in a round pipe. Because the overall heat load is considered fixed, the heat transfer improvement is viewed through a reduction in the maximum temperature (‘hot spot’) by imposing optimal distribution of heat flux. Two cases are studied in detail 1) fully developed and 2) developing flow. Peak temperatures in the heated pipe wall are calculated via an analytical approach for the fully developed case, while a numerical simulation based on CFD is employed for the developing case. By relaxing the heat flux distribution on the pipe wall, the numerical results imply that the optimum distribution of heat flux, which minimizes the peak temperatures corresponds with the ‘descending’ distribution. Given that the foregoing approach is quite different from the ‘ascending’ heat flux distribution recommended in the literature by means of the entropy generation minimization (EGM) method, it is inferred that the optimization of heat transfer and fluid flow, in comparison with the thermodynamic optimization, may bring forth quite different guidelines for the designs of thermal systems under the same constraints and circumstances. -- Highlights: • Considered the bearing of non-uniform distribution of heat flux on the hot spots. • Determined the optimal distribution of heat flux that minimizes the hot spots. • Results are compared with those obtained by EGM method
Wall ablation of heated compound-materials into non-equilibrium discharge plasmas
Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing
2017-02-01
The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results
On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.
Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements
Iglesias, Marco; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul; Wood, Christopher
2017-01-01
and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal
International Nuclear Information System (INIS)
Goldston, R.J.
1984-02-01
Recent results from confinement scaling experiments on tokamaks with ohmic and strong auxiliary heating are reviewed. An attempt is made to draw these results together into a low-density ohmic confinement scaling law, and a scaling law for confinement with auxiliary heating. The auxiliary heating confinement law may also serve to explain the saturation in tau/sub E/ vs anti n/sub e/ observed in some ohmic heating density scaling experiments
Investigation and assessment of wall heat transfer correlations in SPACE code
International Nuclear Information System (INIS)
Kim, Jung Woo; Kim, Kyung Doo; Moon, Sang Ki; Choi, Ki Yong; Park, Hyun Sik
2010-06-01
SPACE, which is a safety analysis code for nuclear power plants, has been developed to analyze the multidimensional, two-component and three-field flow. This code can be applied to safety analysis for approval which is thermal-hydraulic analysis to support the nuclear power station design, establishment of accident ease strategy, development of operating guide line, experiment plan and analysis. To do so, SPACE code has 12 wall heat transfer mode and the corresponding models and correlations to deal with the physical heat transfer phenomenon in wall surface. In this report, the physical correlation models regarding the wall heat transfer are explained and their performance is assessed against several SET
International Nuclear Information System (INIS)
Chamkha, Ali J.; Ismael, Muneer A.
2013-01-01
The conjugate natural convection-conduction heat transfer in a square domain composed of nano-fluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature T c . Equations governing the heat transfer in the triangular wall and heat and nano-fluid flow, based on the Darcy model, in the nano-fluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nano-fluids properties model is adopted. Three nano-particle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nano-particles volume fraction φ (0-0.2), Rayleigh number Ra (10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular wall thickness D (0.1-1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of 4, are observed and accounted. (authors)
Optimal laser heating of plasmas confined in strong solenoidal magnetic fields
International Nuclear Information System (INIS)
Vitela, J.; Akcasu, A.Z.
1987-01-01
Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)
On the Partitioning of Wall Heat Flux in Subcooled Flow Boiling
International Nuclear Information System (INIS)
Chu, In-Cheol; Hoang, Nhan Hien; Euh, Dong-Jin; Song, Chul-Hwa
2015-01-01
This region has been treated successfully by two-fluid model coupled with a population balance model or interfacial area transport equation (IATE). The second region is near-wall heat transfer which has been commonly described by a wall heat flux partitioning model coupled with models of nucleation site density (NSD), bubble departure diameter and bubble release frequency. Since the phase change process in the near-wall heat transfer is really complex, comprising different heat transfer mechanisms, bubble dynamics, bubble nucleation and thermal response of heated surface, the modeling of the second region is still a great challenge despite intensive efforts. Numerous models and correlations have been proposed to aim for computing the near-wall heat transfer. The models of nucleation site density, bubble departure diameter and bubble release frequency are used to quantify these components. The models closely related to each other. The heat flux partitioning model controls the wall and liquid temperatures. Then, it turns to control the boiling parameters, i.e. nucleation site density, bubble departure diameter and bubble release frequency. In this study, the partitioning of wall heat flux is taken into account. The existing issues occurred with previous models of the heat flux partitioning are pointed out and then a new model which considers the heat transfer caused by evaporation of superheated liquid at bubble boundary and the actual period of transient conduction term is formulated. The new model is then validated with a collected experimental database. This paper presented a new heat flux partitioning model in which the heat transfer by evaporation of the superheated liquid at the bubble boundary and the active period of the transient conduction were considered. The new model was validated with the experimental data of the subcooled flow boiling of water obtained by Phillips
Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle
Energy Technology Data Exchange (ETDEWEB)
Krauss, T.; Meyer, L. [Forschungszentrum Karlsruhe (Germany)
1995-09-01
Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.
Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid
2018-02-01
Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.
Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature
International Nuclear Information System (INIS)
Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F.
2013-01-01
Highlights: • Measurement techniques are combined to characterize the heat lost due to liquid vaporization. • The wall heat flux is estimated by infrared thermography associated with inverse heat conduction. • The liquid heating is characterized by the two-color Laser-Induced Fluorescence thermometry. • Results reveal how the heat fluxes vary with the droplet sizes and the Weber number. -- Abstract: This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence thermometry (2cLIF) which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the sensible heat removed by the liquid. Measurements are performed at wall conditions well above the Leidenfrost temperature. Different values of the Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparisons between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number
Heat transfer of pulsating laminar flow in pipes with wall thermal inertia
International Nuclear Information System (INIS)
Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang
2016-01-01
The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)
Numerical simulation of induction heating thick-walled tubes
Directory of Open Access Journals (Sweden)
Lenhard Richard
2018-01-01
Full Text Available In the paper is shown the connection of two toolboxes in an Ansys Workbench solution for induction heating. In Ansys Workbench, Maxwell electromagnetism programs and Fluent have been linked. In Maxwell, a simulation of electromagnetic induction was performed, where data on the magnetic field distribution in the heated material was obtained and then transformed into the Fluent program in which the induction heating simulation was performed.
Energy Technology Data Exchange (ETDEWEB)
Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)
2000-05-01
An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lyczkowski, R. W. [Institute of Gas Technology, Chicago, IL (United States); Solbrig, C. W. [Commonwealth Edison Co., Chicago, IL (United States); Gidaspow, D. [Illinois Inst. of Technology, Chicago, IL (United States)
1980-01-01
A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition.
International Nuclear Information System (INIS)
Kim, Kyoung-Hoon; Ko, Hyung-Jong; Kim, Kyoungjin; Kim, Yong-Wook; Cho, Kie-Joo
2009-01-01
In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.
Heat release from wood wall assemblies using oxygen consumption method
Hao C. Tran; Robert E. White
1990-01-01
The concept of heat release rate is gaining acceptance in the evaluation of fire performance of materials and assemblies. However, this concept has not been incorporated into fire endurance testing such as the ASTM E-119 test method. Heat release rate of assemblies can be useful in determining the time at which the assemblies start to contribute to the controlled fire...
Chen, Ming-Ming; Faghri, Amir
1990-01-01
A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.
The strong effect of gaps on the required shaping of the ITER first wall
International Nuclear Information System (INIS)
Stangeby, Peter
2011-01-01
Divertor tokamaks such as ITER also need limiters, namely for startup, rampdown, as well as protection of the main wall from normal and off-normal loads during the diverted phase. In future fusion devices the volume within the magnetic coils will be at a premium and it will be important to make the limiters as thin as possible. A continuous, or almost continuous, wall-limiter can be made thinner than a set of well spaced discrete limiters. The need to be able to remove and replace the components of a wall-limiter requires that its individual panels in fact be discrete but the gaps between the panels should be made as small as possible relative to the panel width to maximize the wall coverage and to minimize the extent of exposed panel edges. The modularity of a wall-limiter leads inevitably to misalignments. The gaps and misalignments reduce the power-handling capability of a modular wall-limiter relative to an ideal wall-limiter, i.e. one without any gaps or misalignments. It is shown that even small gaps and radial misalignments between the individual panels of a modular wall-limiter can require so much shaping, i.e. chamfering, of the panels in order to protect the panel edges that the peak deposited power flux density on the panel face considerably exceeds that for an ideal wall-limiter, typically by an order of magnitude. Nevertheless, compared with a set of discrete limiters which are separated by gaps larger than the limiter toroidal size, a modular, small-gap wall-limiter can still be thinner and can have lower peak deposited power flux densities (MW m -2 ), for a given total power load (MW).
International Nuclear Information System (INIS)
Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves
2014-01-01
This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested
Effect of wall conductances on hydromagnetic flow and heat transfer in a rotating channel
International Nuclear Information System (INIS)
Mazumder, B.S.
1977-01-01
Wall conductance effects on the hydromagnetic flow and heat transfer between two parallel plates in a rotating frame of reference has been studied when the liquid is permeated by a transverse magnetic field. An exact solution of the governing equation has been obtained. It is found that the velocity current density and the temperature depend only on the sum of the wall conductances phi 1 + phi 2 = phi but magnetic field depends on the individual values of phi 1 and phi 2 where phi 1 and phi 2 are respectively the wall conductance ratios of the upper and lower walls. (Auth.)
Random generation of bubble sizes on the heated wall during subcooled boiling
International Nuclear Information System (INIS)
Koncar, B.; Mavko, B.
2003-01-01
In subcooled flow boiling, a locally averaged bubble diameter significantly varies in the transverse direction to the flow. From the experimental data of Bartel, a bent crosssectional profile of local bubble diameter with the maximum value shifted away from the heated wall may be observed. In the present paper, the increasing part of the profile (near the heated wall) is explained by a random generation of bubble sizes on the heated wall. The hypothesis was supported by a statistical analysis of different CFD simulations, varying by the size of the generated bubble (normal distribution) and the number of generated bubbles per unit surface. Local averaging of calculated void fraction distributions over different bubble classes was performed. The increasing curve of the locally averaged bubble diameter in the near-wall region was successfully predicted. (author)
Modeling of heat transfer in wall-cooled tubular reactors
Koning, G.W.; Westerterp, K.R.
1999-01-01
In a pilot scale wall-cooled tubular reactor, temperature profiles have been measured with and without reaction. As a model reaction oxidation of carbon monoxide in air over a copper chromite catalyst has been used. The kinetics of this reaction have been determined separately in two kinetic
Heat transfer modelling of first walls subject to plasma disruption
International Nuclear Information System (INIS)
Fillo, J.A.; Makowitz, H.
1981-01-01
A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile
On the challenge of plasma heating with the JET metallic wall
Mayoral, M. L.; Bobkov, V.; Czarnecka, A.; Day, I.; Ekedahl, A.; Jacquet, P.; Goniche, M.; King, R.; Kirov, K.; Lerche, E.; J. Mailloux,; Van Eester, D.; Asunta, O.; Challis, C.; Ciric, D.; Coenen, J. W.; Colas, L.; Giroud, C.; Graham, M.; Jenkins, I.; Joffrin, E.; Jones, T.; King, D.; Kiptily, V.; Klepper, C. C.; Maggi, C.; Maggiora, R.; Marcotte, F.; Matthews, G.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Neu, R.; Ongena, J.; T. Puetterich,; Riccardo, V.; Rimini, F.; Strachan, J.; Surrey, E.; Thompson, V.; van Rooij, G. J.
2014-01-01
The major aspects linked to the use of the JET auxiliary heating systems: NBI, ICRF and LHCD, in the new JET ITER-like wall are presented. We show that although there were issues related to the operation of each system, efficient and safe plasma heating was obtained with room for higher power. For
CSIR Research Space (South Africa)
Baloyi, J
2016-07-01
Full Text Available . The irreversibilities generated were arrived at by computing the entropy generation rates due to the combustion and frictional pressure drop processes. For the combustor where the wall condition was changed from adiabatic to negative heat flux (that is heat leaving...
Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature
International Nuclear Information System (INIS)
Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki
1994-09-01
A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)
Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls
International Nuclear Information System (INIS)
Kuznetsov, E A; Poniaev, S A
2015-01-01
Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)
Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls
Kuznetsov, E. A.; Poniaev, S. A.
2015-12-01
Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.
Study of the Relap5/mod3.2 wall heat flux partitioning model
International Nuclear Information System (INIS)
Hari, S.; Hassan, Y.A.
2001-01-01
The performance of the subcooled boiling model adapted in RELAP5/MOD3.2 computer code has been assessed in detail for low-pressure conditions and it has been found that the void fraction profile is under-predicted. In general, any subcooled boiling model is composed of individual sub-models that account for the different physical mechanism that govern the overall process, as the wall vapor generation, interfacial shear and condensation etc. The wall heat flux partitioning model is one of the important sub-models that is a constituent of any subcooled boiling model. The function of this model is to apportion the wall heat flux to the different components (as the single/two phase fluid or bubble), as the case may be, in a two-phase flow-boiling scenario adjacent to a heated wall. The ''pumping factor'' approach is generally followed by most of the wall heat flux partitioning models, for partitioning the wall heat flux. In this work, the wall heat flux partitioning model of RELAP5/MOD3.2 computer code is studied; in particular, the ''pumping factor'' formulation in the present code version is assessed for its performance under low-pressure conditions. In addition, three different ''pumping factor'' formulations available in the literature have been introduced into the RELAP5/MOD3.2 code. Simulations of two low-pressure subcooled flow boiling experiments were performed with the refined code versions to determine the appropriate pumping factor to be used under these conditions. (author)
Heat transfer enhancement of free surface MHD-flow by a protrusion wall
International Nuclear Information System (INIS)
Hulin Huang; Bo Li
2010-01-01
Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.
Bayesian inference of the heat transfer properties of a wall using experimental data
Iglesias, Marco
2016-01-06
A hierarchical Bayesian inference method is developed to estimate the thermal resistance and volumetric heat capacity of a wall. We apply our methodology to a real case study where measurements are recorded each minute from two temperature probes and two heat flux sensors placed on both sides of a solid brick wall along a period of almost five days. We model the heat transfer through the wall by means of the one-dimensional heat equation with Dirichlet boundary conditions. The initial/boundary conditions for the temperature are approximated by piecewise linear functions. We assume that temperature and heat flux measurements have independent Gaussian noise and derive the joint likelihood of the wall parameters and the initial/boundary conditions. Under the model assumptions, the boundary conditions are marginalized analytically from the joint likelihood. ApproximatedGaussian posterior distributions for the wall parameters and the initial condition parameter are obtained using the Laplace method, after incorporating the available prior information. The information gain is estimated under different experimental setups, to determine the best allocation of resources.
Energy Technology Data Exchange (ETDEWEB)
Lawson, Michael J.; Thole, Karen A. [Mechanical and Nuclear Engineering Department, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-15
Delta winglets are known to induce the formation of streamwise vortices and increase heat transfer between a working fluid and the surface on which the winglets are placed. This study investigates the use of delta winglets to augment heat transfer on the tube surface of louvered fin heat exchangers. It is shown that delta winglets placed on louvered fins produce augmentations in heat transfer along the tube wall as high as 47% with a corresponding increase of 19% in pressure losses. Manufacturing constraints are considered in this study whereby piercings in the louvered fins resulting from stamping the winglets into the louvered fins are simulated. Comparisons of measured heat transfer coefficients with and without piercings indicate that piercings reduce average heat transfer augmentations, but significant increases still occur with respect to no winglets present. (author)
International Nuclear Information System (INIS)
Sugiyama, Hitoshi; Watanabe, Chiriki
2003-01-01
Numerical analysis has been performed for three-dimensional developing turbulent flow in the U-bend of strong curvature with rib-roughened walls by using an algebraic Reynolds stress model. In this calculation, the algebraic Reynolds stress model is adopted in order to predict preciously Reynolds stresses and boundary fitted-coordinate system is introduced as the method for coordinate transformation to set exactly boundary conditions along complicated shape in rib-roughed walls. Calculated results of mean velocity and Reynolds stresses are compared with the experimental data in order to examine the validity of the presented numerical method and the algebraic Reynolds stress model. It has been pointed out as a characteristic feature from the experimental result that the maximum velocity appears near the inner wall of curved duct, which phenomenon is not recognized in mild curved duct. The present method could predict such velocity profiles correctly and reproduce the separated flow generated near the outlet cross section of curved duct. Adding to this, calculated results show clearly that the generation of maximum velocity near a inner wall is caused by pressure driven secondary flow which moves to inner wall from outer wall along symmetrical axis. As for the comparison of Reynolds stresses, the present turbulent model relatively predicts the experimental data well except for the flow separated region which is located near the outlet cross section of curved duct. (author)
Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket
Energy Technology Data Exchange (ETDEWEB)
Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie
2016-04-15
Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.
National Research Council Canada - National Science Library
Schieb, Daniel
1997-01-01
This research effort investigated the effects of evaporation of water on the heat transferred to the wall of the diverging portion of a porous walled nozzle The AFIT High Pressure Shock Tube was used...
CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.
International Nuclear Information System (INIS)
Park, Hyun Sik; Choi, Ki Yong; Moon, Sang Ki; Kim, Jung Woo; Kim, Kyung Doo
2009-01-01
The wall condensation heat transfer models are developed for the SPACE code and are assessed for various condensation conditions. Both default and alternative models were selected through an extensive literature survey. For a pure steam condensation, a maximum value among the Nusselt, Chato, and Shah's correlations is used in order to consider the geometric and turbulent effects. In the presence of non-condensable gases, the Colburn-Hougen's diffusion model was used as a default model and a non-iterative condensation model proposed by No and Park was selected as an alternative model. The wall condensation heat transfer models were assessed preliminarily by using arbitrary test conditions. Both wall condensation models could simulate the heat transfer coefficients and heat fluxes in the vertical, horizontal and turbulent conditions quite reasonably for a pure steam condensation. Both the default and alternative wall condensation models were also verified for the condensation heat transfer coefficient and heat flux in the presence of noncondensable gas. However, some improvements and further detailed verification are necessary for the condensation phenomena in the presence of noncondensable gas
Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiansheng; Gao, Xiaoming; Li, Weiyi [Tianjin University, Tianjin (Switzerland)
2015-11-15
The effect of wall geometry on the flow and heat transfer in a channel with one lower furrowed and an upper flat wall kept at a uniform temperature is investigated by large eddy simulation. Three channels, one with sinusoidal wavy surface having the ratio (amplitude to wavelength) α/λ=0.05 and the other two with furrowed surface derived from the sinusoidal curve, are considered. The numerical results show that the streamwise vortices center is located near the lower wall and vary along the streamwise on various furrow surfaces. The furrow geometry increases the pressure drag and decreases the friction drag of the furrowed surface compared with that of the smooth surface; consequently, the total drag is increased for the augment of pressure drag. As expected, the heat transfer performance has been improved. Finally, a thermal performance factor is defined to evaluate the performance of the furrowed wall.
Dense strongly non-ideal plasma generation by laser isobaric heating
International Nuclear Information System (INIS)
Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.
1975-01-01
A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)
2016-12-15
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.
Stochastic modelling of conjugate heat transfer in near-wall turbulence
International Nuclear Information System (INIS)
Pozorski, Jacek; Minier, Jean-Pierre
2006-01-01
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data
Stochastic modelling of conjugate heat transfer in near-wall turbulence
Energy Technology Data Exchange (ETDEWEB)
Pozorski, Jacek [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80952 Gdansk (Poland)]. E-mail: jp@imp.gda.pl; Minier, Jean-Pierre [Research and Development Division, Electricite de France, 6 quai Watier, 78400 Chatou (France)
2006-10-15
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
International Nuclear Information System (INIS)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum
2016-01-01
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition
Type I ELM filament heat fluxes on the KSTAR main chamber wall
Directory of Open Access Journals (Sweden)
M.-K. Bae
2017-08-01
Full Text Available Heat loads deposited on the first wall by mitigated Type I ELMs are expected to be the dominant contributor to the total thermal plasma wall load of the International Thermonuclear Experimental Reactor (ITER, particularly in the upper main chamber regions during the baseline H-mode magnetic equilibrium, due to the fast radial convective heat propagation of ELM filaments before complete loss to the divertor. Specific Type I ELMing H-mode discharges have been performed with a lower single null magnetic geometry, where the outboard separatrix position is slowly (∼7s scanned over a radial distance of 7cm, reducing the wall probe–separatrix distance to a minimum of ∼9cm, and allowing the ELM filament heat loss to the wall to be analyzed as a function of radial propagation distance. A fast reciprocating probe (FRP head is separately held at fixed position toroidally close and 4.7cm radially in front of the wall probe. This FRP monitors the ELM ion fluxes, allowing an average filament radial propagation speed, found to be independent of ELM energy, of 80–100ms−1 to be extracted. Radial dependence of the peak filament wall parallel heat flux is observed to be exponential, with the decay length of λq, ELM ∼25 ± 4mm and with the heat flux of q∥, ELM= 0.05MWm−2 at the wall, corresponding to q∥ ∼ 7.5MWm−2 at the second separatrix. Along with the measured radial propagation speed and the calculated radial profile of the magnetic connection lengths across the SOL, these data could be utilized to analyze filament energy loss model for the future machines.
Energy Technology Data Exchange (ETDEWEB)
Labuthe, A [Dassault Aviation, 92 - Saint Cloud (France)
1997-12-31
In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)
1996-12-31
In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)
First wall thermal stress analysis for suddenly applied heat fluxes
International Nuclear Information System (INIS)
Dalessandro, J.A.
The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
An analytical wall-function for recirculating and impinging turbulent heat transfer
International Nuclear Information System (INIS)
Suga, K.; Ishibashi, Y.; Kuwata, Y.
2013-01-01
Highlights: ► Improvement of the analytical wall-function is proposed. ► Strain parameter dependency is introduced to the prescribed eddy viscosity profile of the analytical wall-function. ► The model performance is evaluated in turbulent pipe, channel, back-step, abrupt expansion pipe and plane impinging flows. ► Generally improved heat transfer is obtained in all the test cases with the standard k-e model. -- Abstract: The performance of the analytical wall-function (AWF) of Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002, Progress in the generalisation of wall-function treatments. Int. J. Heat Fluid Flow 23, 148–160.] is improved for predicting turbulent heat transfer in recirculating and impinging flows. Since constant parameters of the eddy viscosity formula were used to derive the AWF, the prediction accuracy of the original AWF tends to deteriorate in complex flows where those parameters need changing according to the local turbulence. To overcome such shortcomings, the present study introduces a functional behaviour on the strain parameter into the coefficient of the eddy viscosity of the AWF. The presently modified version of the AWF is validated in turbulent heat transfer of pipe flows, channel flows, back-step flows, pipe flows with abrupt expansion and plane impinging slot jets. The results confirm that the present modification successfully improves the performance of the original AWF for all the flows and heat transfer tested
Options for a high heat flux enabled helium cooled first wall for DEMO
Energy Technology Data Exchange (ETDEWEB)
Arbeiter, Frederik, E-mail: f.arbe@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der
2017-06-15
Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An
Conjugate heat transfer for turbulent flow in a thick walled plain pipe
Directory of Open Access Journals (Sweden)
Canli Eyub
2018-01-01
Full Text Available Laminar and turbulent flow have their own characteristics in respect of heat transfer in pipes. While conjugate heat transfer is a major concern for a thick walled pipe with laminar flow inside it, there are limited studies about a turbulent flow in a thick walled plain pipe considering the conjugate heat transfer. In order to conduct such a work by means of in-house developed code, it was desired to make a preliminary investigation with commercially available CFD codes. ANSYS CFD was selected as the tool since it has a positive reputation in the literature for reliability. Defined heat transfer problem was solved with SIMPLE and Coupled Schemes for pressure velocity coupling and results are presented accordingly.
International Nuclear Information System (INIS)
Seki, Nobuhiro; Fukusako, Shoichiro; Inaba, Hideo
1978-01-01
In the present study the behavior of heat transfer in a rectangular cavity with one isothermal vertical wall heated and the other cooled is investigated. Heat transfer coefficients on the vertical walls are measured for fluids with Prandtl number Pr of 3 to 40,000 in case of aspect-ratio H/W from 5 to 47.5 and their correlated results are presented for laminar, transition and turbulent regions, respectively. It is shown that the present arrangement (Nu sub(H) - Ra sub(H)) using the height of cavity as a representative length may significantly be useful in the various heat transfer modes accompanied with flow patterns of them. (auth.)
Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger
International Nuclear Information System (INIS)
Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric
2017-01-01
Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.
Optimal wall spacing for heat transport in thermal convection
Energy Technology Data Exchange (ETDEWEB)
Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)
2016-11-01
The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.
Energy Technology Data Exchange (ETDEWEB)
Lyczkowski, R. W.; Solbrig, C. W.; Gidaspow, D.
1980-01-01
A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.
Calculation of local bed to wall heat transfer in a fluidized-bed
International Nuclear Information System (INIS)
Kilkis, B.I.
1987-01-01
Surface to bed heat transfer in a fluidized-bed largely depends upon its local and global hydrodynamical behavior including particle velocity, particle trajectory, gas velocity, and void fraction. In this study, a computer program was developed in order to calculate the local bed to wall heat transfer, by accounting for the local and global instantaneous hydrodynamics of the bed. This is accomplished by utilizing the CHEMFLUB computer program. This information at a given location is interpreted so that the most appropriate heat transfer model is utilized for each time increment. These instantaneous heat transfer coefficient for the given location. Repeating the procedure for different locations, a space average heat transfer coefficient is also calculated. This report briefly summarizes the various heat transfer models employed and gives sample computer results reporting the case study for Mickley - Trilling's experimental set-up. Comparisons with available experimental data and correlations are also provided in order to compare and evaluate the computer results
International Nuclear Information System (INIS)
Tskhakaya, D. D.; Kos, L.
2014-01-01
The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths λ D (electron Debye length), ρ i (ion gyro-radius), and ℓ (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering λ D ≪ρ i ≪ℓ, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ε Dm (λ D /ρ i )→0 and ε mc (ρ i /ℓ)→0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the ε Dm →0 and ε mc →0 approximations. The MPS entrance and the related kinetic form of the Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities
Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.
Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements
Numerical calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds
Kuipers, J.A.M.; Prins, W.; van Swaaij, W.P.M.
1992-01-01
A computer model for a hot gas-fluidized bed has been developed. The theoretical description is based on a two-fluid model (TFM) approach in which both phases are considered to be continuous and fully interpenetrating. Local wall-to-bed heat-transfer coefficients have been calculated by the
Prediction of vertical expansion pressure stresses in coke oven heating walls
Energy Technology Data Exchange (ETDEWEB)
Duerselen, H; Janicka, J
1987-08-01
The paper describes an accurate method developed by Krupp Koppers for calculating stresses in the central areas of coke oven heating walls. The results of this calculation model have provided the following conclusions for the design of coke ovens: 1) a rising pre-stressing of the heating walls caused by the weight of the top deck of the coke oven leads - compared with the stress limits of W. Ahlers - to lower permissible expansion pressures. 2) A given heating wall width has its corresponding maximum feasible oven height. Heating wall width and top deck weight are not interchangeable parameters. 3) The dependence of the permissible expansion pressure on the stretcher brick thickness should not be overlooked. Stretcher brick thicknesses of under 90 mm are not recomended for tall ovens and heavily swelling coal. 4) The capacity of mortar to absorb tensile stresses is ultimately an undesirable property, because the stresses at the points where the mortar is not holding are higher than in a straightforward stretch of brickwork.
Optimum diameter of a circulating fluidised bed combustor with negative wall heat flux
CSIR Research Space (South Africa)
Baloyi, J
2015-07-01
Full Text Available on irreversibilities in a 7 m circulating fluidised bed combustor with a negative wall heat flux, firing a mixture of air and solid pitch pine wood, was investigated. An analytical expression was derived that predicts the entropy generation rate, thereby...
Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction
Georgiou, Michail; Papalexandris, Miltiadis V.
2017-11-01
In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.
Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium
Directory of Open Access Journals (Sweden)
M. Dayyan
2013-01-01
Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.
Energy Technology Data Exchange (ETDEWEB)
Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr
2011-07-01
Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.
International Nuclear Information System (INIS)
de Lemos, M.J.S.
1982-01-01
The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%
TRAC-BDl/MOD1 post-dryout wall heat transfer
International Nuclear Information System (INIS)
Shumway, R.W.
1984-01-01
A comparison of TRAC-BWR heat transfer package with 766 data points is presented. On the average, TRAC-BWR provides a better prediction of the data compared to any single correlation although there is still a large scatter in TRAC-BWR prediction. Regarding any potential changes in the TRAC-BD1/MOD1 wall heat transfer package, it is concluded that no significant improvement in the film boiling area can be made until data with better measurements are obtained and analyzed. Specifically, data is needed which has a wide range of accurately measured void fractions. Heated tube data is also needed which addresses the countercurrent flow transition conditions
International Nuclear Information System (INIS)
Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.
2008-01-01
In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study
Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler
Directory of Open Access Journals (Sweden)
Błaszczuk Artur
2014-06-01
Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.
Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements
Iglesias, Marco
2017-09-20
The assessment of the thermal properties of walls is essential for accurate building energy simulations that are needed to make effective energy-saving policies. These properties are usually investigated through in situ measurements of temperature and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal diffusivity parameter using different synthetic data sets. In this work, we adapt this methodology to an experimental study conducted in an environmental chamber, with measurements recorded every minute from temperature probes and heat flux sensors placed on both sides of a solid brick wall over a five-day period. The observed time series are locally averaged, according to a smoothing procedure determined by the solution of a criterion function optimization problem, to fit the required set of noise model assumptions. Therefore, after preprocessing, we can reasonably assume that the temperature and the heat flux measurements have stationary Gaussian noise and we can avoid working with full covariance matrices. The results show that our technique reduces the bias error of the estimated parameters when compared to other approaches. Finally, we compute the information gain under two experimental setups to recommend how the user can efficiently determine the duration of the measurement campaign and the range of the external temperature oscillation.
Effects of radiation and high heat flux on the performance of first-wall components. Final report
International Nuclear Information System (INIS)
Wolfer, W.G.
1985-10-01
The performance of high-heat-flux components in present and future fusion devices is strongly affected by materials properties and their changes with radiation exposure and helium content. In addition, plasma disruptions and thermal fatigue are major life-limiting aspects. A multidisciplinary approach is therefore required in the performance analysis, and the following results have been accomplished. An equation of state for helium has been derived and applied to helium bubble formation by various growth processes. Models for various radiation effects have been developed and perfected to analyze radiation-induced swelling and embrittlement for high-heat flux materials. Computer codes have been developed to predict melting, evaporation, and melt-layer stability during plasma disruptions. A structural analysis code was perfected to evaluate the stress distribution and crack propagation in a high-heat-flux component or first wall. This code was applied to a duplex structure consisting of a beryllium coating on a copper substrate. It was also used to compare the lifetimes of a first wall in a tokamak reactor made of ferritic or austenitic steel
International Nuclear Information System (INIS)
Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.
1995-01-01
Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs
Development of laser cladding system to repair wall thinning of 1-inch heat exchanger tube
International Nuclear Information System (INIS)
Terada, Takaya
2013-01-01
We developed a laser cladding system to repair the inner wall wastage of heat exchanger tubes. Our system, which is designed to repair thinning tube walls within 100 mm from the edge of a heat exchanger tube, consists of a fiber laser, a composite-type optical fiberscope, a coupling device, a laser processing head, and a wire-feeding device. All of these components were reconfigured from the technologies of FBR maintenance. The laser processing head, which has a 15-mm outer diameter, was designed to be inserted into a 1-inch heat exchanger tube. We mounted a heatproof broadband mirror for laser cladding and fiberscope observation with visible light inside the laser processing head. The wire-feeding device continuously supplied 0.4-mm wire to the laser irradiation spot with variable feeding speeds from 0.5 to 20 mm/s. We are planning to apply our proposed system to the maintenance of aging industrial plants. (author)
Methods for monitoring heat flow intensity in the blast furnace wall
Directory of Open Access Journals (Sweden)
L'. Dorčák
2010-04-01
Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
Energy Technology Data Exchange (ETDEWEB)
Domalapally, Phani, E-mail: p_kumar.domalapally@cvrez.cz
2016-11-01
Highlights: • Performance of Hypervapotron heat sink was tested for First wall limiter application. • Two different materials were tested Eurofer 97 and CuCrZr at PWR conditions. • Simulations were performed to see the effect of the different inlet conditions and materials on the maximum temperature. • It was found that CuCrZr heat sink performance is far better than Eurofer heat sink at the same operating conditions. - Abstract: Among the proposed First Wall (FW) cooling concepts for European Demonstration Fusion Power Plant (DEMO), water cooled FW is one of the options. The heat flux load distribution on the FW of the DEMO reactor is not yet precisely defined. But if the heat loads on the FW are extrapolated from ITER conditions, the numbers are quite high and have to be handled none the less. The design of the FW itself is challenging as the thermal conductivity ratio of heat sink materials in ITER (CuCrZr) and in DEMO (Eurofer 97) is ∼10–12 and the operating conditions are of Pressurized Water Reactor (PWR) in DEMO instead of 70 °C and 4 MPa as in ITER. This paper analyzes the performance of Hypervapotron (HV) heat sink for FW limiter application under DEMO conditions. Where different materials, temperatures, heat fluxes and velocities are considered to predict the performance of the HV, to establish its limits in handling the heat loads before reaching the upper limits from temperature point of view. In order to assess the performance, numerical simulations are performed using commercial CFD code, which was previously validated in predicting the thermal hydraulic performance of HV geometry. Based on the results the potential usage of HV heat sink for DEMO will be assessed.
Operation experiences of the JT-60 first walls during high-power additional heating experiments
International Nuclear Information System (INIS)
Takatsu, H.; Ando, T.; Yamamoto, M.; Arai, T.; Kodama, K.; Suzuki, M.; Shimizu, M.
1989-01-01
JT-60 started its operation in May 1985 with TiC-coated molybdenum or Inconel 625 first walls. They provided very clean surfaces as well as superior plasma characteristics during Joule heating discharges. Though 20 μm-thick TiC coatings showed good adhesion characteristics, melting of the TiC coating and also the molybdenum or Inconel 625 substrate was observed at some specific spots, and an influx of heavy metals to the main plasma was inevitable during discharges. Initial results of the additional heating experiments showed degrading effects of locally melted TiC-coated molybdenum or Inconel 625 on plasma operation. Therefore, about a half of the TiC-coated first walls were removed and new graphite first walls were installed during the venting period from April to May 1987. The start-up of the discharge conditioning after installation of a significant number of graphite tiles was very rapid. Flexibility in plasma operation was increased, and JT-60 extended the operation region beyond its original specifications. The graphite first walls of the main chamber performed admirably and maintained their integrity under the conditions of plasma current and additional heating power up to 3.2 MA and 30 MW, respectively. On the other hand, the number of damaged divertor plates was much larger than that expected. The reason of unexpected failure is now under examination. (orig.)
An assessment of CFD-based wall heat transfer models in piston engines
Energy Technology Data Exchange (ETDEWEB)
Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)
2017-04-26
The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.
International Nuclear Information System (INIS)
Chang, C.S.; Colestock, P.
1989-05-01
The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs
Study on the L–H transition power threshold with RF heating and lithium-wall coating on EAST
DEFF Research Database (Denmark)
Chen, Leifeng; Xu, G.S.; Nielsen, Anders Henry
2016-01-01
The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency (RF) heating and lithium-wall coating is investigated experimentally on EAST for two sets of walls: an all carbon wall (C) and molybdenum chamber and a carbon divertor (Mo/C). For both sets of walls...... Ploss increases with neutral density near the lower X-point in EAST with the Mo/C wall, consistent with previous results in the C wall (Xu et al 2011 Nucl. Fusion 51 072001). These findings suggest that the edge neutral density, the ion ∇B drift as well as the divertor pumping capability play important...
Influence of Joule heating on current-induced domain wall depinning
Energy Technology Data Exchange (ETDEWEB)
Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo [University of Salamanca, Plaza de los Caidos, 37008 Salamanca (Spain)
2016-06-07
The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. In agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Soo Whan; Lee, Myung Sung [Dept. of Mechanical System Engineering, Institute of Marine Industry, Gyeongsang National University, Jinju (Korea, Republic of)
2015-10-15
The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios D{sub ho}/D{sub hi} of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.
Improvement and validation of the wall heat transfer package of RELAP5/MOD3.3
International Nuclear Information System (INIS)
Wu, Pan; Xiong, Xiaofei; Shan, Jianqiang; Gou, Junli; Zhang, Bin; Zhang, Bo
2016-01-01
Highlights: • A new heat transfer package has been developed. • It has been incorporated into RELAP5/MOD3.3 to verify its advantages. • The results of modified code were compared with available experimental data. • The results showed that higher prediction accuracy was achieved. - Abstract: The process of energy transfer from heat structure to control volume is determined by the wall-to-fluid heat transfer package, which is crucial for nuclear reactor safety analysis codes. The current logic for selection of heat transfer modes of RELAP5/MOD3.3 code is too complex and may result in incorrect heat transfer mode judgment. Also, the narrow application scope of film boiling heat transfer correlations may result in large errors in film boiling region which is of paramount importance for the predicted peak clad temperatures during hypothetical LB-LOCAs in PWRs. In this study, a new heat transfer package has been developed and incorporated into the RELAP5/MOD3.3 code. Differing from the original package, the modified one consists of twelve heat transfer modes and proposes a new logic for selection of heat transfer modes. For each mode, the models in the existing safety analysis codes and the leading models in literature have been reviewed in order to determine the best model which can easily be applicable to the RELAP5/MOD3.3 code. Particularly (1) a new package of heat transfer correlations are produced; (2) a new logic for selection of film boiling and transition boiling heat transfer modes is proposed which use minimum film boiling temperature and critical heat flux temperature as distinguished points. The modified code has been validated by comparing the analysis results with available experimental data from tube post dryout experiments and loss-of-fluid test (LOFT) facility. The calculation results showed that the improved package could better predict the experimental phenomena with higher prediction accuracy.
Improvement and validation of the wall heat transfer package of RELAP5/MOD3.3
Energy Technology Data Exchange (ETDEWEB)
Wu, Pan; Xiong, Xiaofei; Shan, Jianqiang, E-mail: jqshan@mail.xjtu.edu.cn; Gou, Junli; Zhang, Bin; Zhang, Bo
2016-12-15
Highlights: • A new heat transfer package has been developed. • It has been incorporated into RELAP5/MOD3.3 to verify its advantages. • The results of modified code were compared with available experimental data. • The results showed that higher prediction accuracy was achieved. - Abstract: The process of energy transfer from heat structure to control volume is determined by the wall-to-fluid heat transfer package, which is crucial for nuclear reactor safety analysis codes. The current logic for selection of heat transfer modes of RELAP5/MOD3.3 code is too complex and may result in incorrect heat transfer mode judgment. Also, the narrow application scope of film boiling heat transfer correlations may result in large errors in film boiling region which is of paramount importance for the predicted peak clad temperatures during hypothetical LB-LOCAs in PWRs. In this study, a new heat transfer package has been developed and incorporated into the RELAP5/MOD3.3 code. Differing from the original package, the modified one consists of twelve heat transfer modes and proposes a new logic for selection of heat transfer modes. For each mode, the models in the existing safety analysis codes and the leading models in literature have been reviewed in order to determine the best model which can easily be applicable to the RELAP5/MOD3.3 code. Particularly (1) a new package of heat transfer correlations are produced; (2) a new logic for selection of film boiling and transition boiling heat transfer modes is proposed which use minimum film boiling temperature and critical heat flux temperature as distinguished points. The modified code has been validated by comparing the analysis results with available experimental data from tube post dryout experiments and loss-of-fluid test (LOFT) facility. The calculation results showed that the improved package could better predict the experimental phenomena with higher prediction accuracy.
Experimental investigation into heating and airflow in trombe walls and solar chimneys
International Nuclear Information System (INIS)
Habib, A.; Burek, S.
2006-01-01
Trombe Walls and solar chimneys are examples of passive solar air heating systems. However, the airflow and thermal efficiency characteristics of this type of system are not well understood, and partly for this reason, they are not commonly utilised. This paper reports on an experimental investigation into buoyancy-driven convection in a test rig designed to simulate the operation of a passive solar collector. The test rig comprised a vertical open-ended channel, approximately 1a square, heated from one side. The channel depth could be varied from 20mm to 110mm, and heating inputs varied from 200W to 1000W. Temperatures and airflow rates were measured and recorded, to characterise both steady-state and transient performance. The principal findings are: 1. Time constants (for heating)ranged typically between 30 and 70 minutes. 2. Flow regimes were mainly laminar (Reynolds number varing from ∼500 to ∼4000, depending on heat input and channel depth. 3. The thermal efficiency (as a solar collector and the heat transfer coefficient were functions of heat input, and were not depended on the channel depth. 4. The mass flow rate through the channel increased bath as the heat input increased and as the channel depth increased. The paper presents these findings and discusses their implications in more detail.(Author)
Flow patterns and thermal comfort in a room with panel, floor and wall heating
Energy Technology Data Exchange (ETDEWEB)
Myhren, Jonn Are; Holmberg, Sture [Fluid and Climate Technology, Department of Constructional Engineering and Design, KTH, School of Technology and Health, Marinens vaeg 30, SE-13640 Haninge-Stockholm (Sweden)
2008-07-01
Thermal comfort aspects in a room vary with different space heating methods. The main focus in this study was how different heating systems and their position affect the indoor climate in an exhaust-ventilated office under Swedish winter conditions. The heat emitters used were a high and a medium-high temperature radiator, a floor heating system and large wall heating surfaces at low temperature. Computational fluid dynamics (CFD) simulations were used to investigate possible cold draught problems, differences in vertical temperature gradients, air speed levels and energy consumption. Two office rooms with different ventilation systems and heating needs were evaluated. Both systems had high air exchange rates and cold infiltration air. The general conclusions from this study were that low temperature heating systems may improve indoor climate, giving lower air speeds and lower temperature differences in the room than a conventional high temperature radiator system. The disadvantage with low temperature systems is a weakness in counteracting cold down-flow from ventilation supply units. For that reason the location of heat emitters and the design of ventilation systems proved to be of particular importance. Measurements performed in a test chamber were used to validate the results from the CFD simulations. (author)
Symmetry Methods of Flow and Heat Transfer between Slowly Expanding or Contracting Walls
Directory of Open Access Journals (Sweden)
Gabriel Magalakwe
2013-01-01
Full Text Available An analysis has been carried out for the flow and heat transfer of an incompressible laminar and viscous fluid in a rectangular domain bounded by two moving porous walls which enable the fluid to enter or exit during successive expansions or contractions. The basic equations governing the flow are reduced to the ordinary differential equations using Lie-group analysis. Effects of the permeation Reynolds number , porosity , and the dimensionless wall dilation rate on the self-axial velocity are studied both analytically and numerically. The solutions are represented graphically. The analytical procedure is based on double perturbation in the permeation Reynolds number and the wall expansion ratio , whereas the numerical solution is obtained using Runge-Kutta method with shooting technique. Results are correlated and compared for some values of the physical parameters. Lastly, we look at the temperature distribution.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
Energy Technology Data Exchange (ETDEWEB)
Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)
2011-10-01
Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.
International Nuclear Information System (INIS)
Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.
2011-01-01
Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.
Directory of Open Access Journals (Sweden)
Arkadiusz Urzędowski
2017-06-01
Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.
Improving the conductivity of single-walled carbon nanotubes films by heat treatment
Energy Technology Data Exchange (ETDEWEB)
Wang Jiaping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Sun Jing, E-mail: jingsun@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Gao Lian, E-mail: liangaoc@online.sh.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Liu Yangqiao; Wang Yan; Zhang Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro [Advanced Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)
2009-10-19
A simple heat treatment method was applied to remove surfactants remaining in the single-walled carbon nanotubes (SWNTs) films at 300 deg. C for 5 h in air. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and reflected light interference microscope (RLIM) were employed to verify the elimination of surfactants. The comprehensive performance, especially the conductivity, could be improved by more than one order after heat treatment. For example, using SDBS as dispersant, the sheet resistance decreased from 782,600 OMEGA/square to 40,460 OMEGA/square with the transmittance of about 99.5% at 550 nm.
Heat-affected-zone toughness in heavy wall pipe: Final report
Energy Technology Data Exchange (ETDEWEB)
Dyck, K.; Glover, A.G.; Varo, D.B.
1988-02-01
The objective of this program has been to determine the significance of low toughness regions on the service performance of heat-affected zones in heavy wall pipe materials. The low temperature HAZ toughness of welds in microalloyed and quenched and tempered materials at two heat inputs was established, a test technique to produce fatigue cracks in the HAZ was developed, and four full scale fracture tests were completed at /minus/49/degree/F. Publication available from the American Gas Association Order Processing Department, 1515 Wilson Boulevard, Arlington, Virginia 22209-2470 (703/841-8558). 17 refs. (JL)
The effects of heat generation and wall interaction on freezing and melting in a finite slab
International Nuclear Information System (INIS)
Cheung, F.B.; Chawla, T.C.; Pedersen, D.R.
1984-01-01
The processes of freezing and melting occurring in a heat-generating slab bounded by two semi-infinite cold walls is studied numerically. The method of collocation is employed to solve the various sets of governing equations describing the unsteady behavior of the system during different periods of time. Depending on the rate of internal heat generation and the thermal properties of the wall and the slab, several changes may take place in the system. These changes, as indicated by the transient locations of the solid-liquid interface, include transitions from freezing directly to melting, from freezing to cooling with phase change, from cooling to heating without phase change, and from heating to melting. Numerical predictions of the occurrence of these transitions, the rates of freezing and melting, and the duration of the transients are obtained as functions of several controlling dimensionless parameters of the system. Comparison is made with the case of a heat-generating sphere to further explore the effect of system geometry. (author)
Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U
International Nuclear Information System (INIS)
Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.
1995-01-01
In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))
HELCZA-High heat flux test facility for testing ITER EU first wall components.
Czech Academy of Sciences Publication Activity Database
Prokůpek, J.; Samec, K.; Jílek, R.; Gavila, P.; Neufuss, S.; Entler, Slavomír
2017-01-01
Roč. 124, November (2017), s. 187-190 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : HELCZA * High heat flux * Electron beam testing * Test facility * Plasma facing components * First wall * Divertora Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 www.sciencedirect.com/science/article/pii/S0920379617302818
Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.
2017-01-01
Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements of 1.24 kWh/kg ethanol. However, these economic benefits are possible only if this highly integrated system is also controllable to ensure operational availability. This paper is the first to addre...
Computation of wall bounded flows with heat transfer in the framework of SRS approaches
Gritskevich, M. S.; Garbaruk, A. V.; Menter, F. R.
2014-12-01
A detailed assessment of Scale Adaptive Simulation (SAS) and Improved Delayed Detached Eddy Simulation (IDDES) is performed for prediction of heat transfer for several wall bounded flow. For that purpose a zero pressure gradient boundary layer, a backward facing step, and a thermal mixing in a T-Junction test cases are considered. The results, obtained with the use of ANSYS-FLUENT, show that both approaches are capable to predict both mean and RMS velocity and temperature with sufficient accuracy.
Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall
Czech Academy of Sciences Publication Activity Database
Jacquet, P.; Bobkov, V.; Colas, L.; Czarnecka, A.; Lerche, E.; Mayoral, M.-L.; Monakhov, I.; Van-Eester, D.; Arnoux, G.; Brezinsek, S.; Brix, M.; Campergue, A.-L.; Devaux, S.; Drewelow, P.; Graham, M.; Klepper, C.C.; Meigs, A.; Milanesio, D.; Mlynář, Jan; Pütterich, T.; Sirinelli, A.
2014-01-01
Roč. 21, č. 6 (2014), 061510-061510 ISSN 1070-664X. [Topical conference on radio frequency power in plasmas/20./. Sorrento, 25.06.2013-28.06.2013] Institutional support: RVO:61389021 Keywords : JET * ITER-like wall * ICRF heating * impurities * sawtooth * simulation * transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/6/10.1063/1.4884354
Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer
International Nuclear Information System (INIS)
Pozorski, Jacek; Waclawczyk, Marta; Minier, Jean-Pierre
2004-01-01
The temperature field in a heated turbulent flow is considered as a dynamically passive scalar. The probability density function (PDF) method with down to the wall integration is explored and new modelling proposals are put forward, including the explicit account for the molecular transport terms. Two variants of the approach are considered: first, the scalar PDF method with the use of externally-provided turbulence statistics; and second, the joint (stand-alone) velocity-scalar PDF method where a near-wall model for dynamical variables is coupled with a model for temperature. The closure proposals are formulated in the Lagrangian setting and resulting stochastic evolution equations are solved with a Monte Carlo method. The near-wall region of a heated channel flow is taken as a validation case; the second-order thermal statistics are of a particular interest. The PDF computation results agree reasonably with available DNS data. The sensitivity of results to the molecular Prandtl number and to the thermal wall boundary condition is accounted for
International Nuclear Information System (INIS)
Lyu, T.; Mudawar, I.
1990-01-01
This paper reports on a technique for measuring the thickness of liquid films that was developed and tested. The feasibility of this technique was demonstrated in stagnant liquid films as well as in liquid jets. A procedure for in-situ calibration of the thickness probe was developed, allowing the adaptation of the probe to measurements of wavy liquid films. The thickness probe was constructed from a platinum-rhodium wire that was stretched across the film. A constant DC current was supplied through the probe wire, and film thickness was determined from variations in the probe voltage drop resulting from the large differences in the electrical resistances of the wetted and unwetted segments of the wire. Unlike electrical admittance thickness probes, the new probe did not require dissolving an electrolyte in the liquid, making the new probe well suited to studies involving sensible heating of a film of pure dielectric liquid that is in direct contact with a current- carrying wall. Also presented is a composite probe that facilitated simultaneous measurements of temperature profile across a wavy liquid film and film thickness. Experimental results demonstrate a strong influence of waviness on liquid temperature in a film of deionized water falling freely on the outside wall of a vertical, electrically heated tube for film Reynolds numbers smaller than 10,000
LES of fluid and heat flow over a wall-bounded short cylinder at different inflow conditions
Energy Technology Data Exchange (ETDEWEB)
Borello, D [Dipartmento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome (Italy); Hanjalic, K, E-mail: borello@dma.ing.uniroma1.it [Department of Multi-scale Physics, Delft University of Technology (Netherlands)
2011-12-22
We report on LES studies of flow patterns, vortical structures and heat transfer in flows over a short single cylinder of diameter D placed in a plane channel of height h = 0.4D in which the bottom wall is heated. The Reynolds number of 6150, based on D, corresponds to the water experiments reported by Sahin et al. (2008). For the basic computational domain of 24 Multiplication-Sign 14 Multiplication-Sign 0.4D three different inflow conditions have been considered: a non-turbulent flow with a uniform initial velocity developing along the channel (NT), a fully developed channel flows (FD) (generated a priori) and periodic conditions (PC). The latter boundary conditions have also been considered for two shorter domain lengths of 6D and 3D corresponding to a cylinder in a compact matrix. For the long domain, despite the length of the channel of 9.5 D before (and after) the cylinder, the inlet conditions show strong effects on the formation and evolution of the multiple vortex systems both in front and behind the cylinder, influencing significantly also friction and heat transfer. Simulations show some agreement with experimental data though the comparison is impaired by the uncertainty in the experimental inflow conditions. For the shortest cylinder spacing the wake never closes and the flow shows enhanced unsteadiness and turbulence level. Interestingly, the comparison for the same short domain (3Dx3D) using the mean temperature at the inflow to this domain as a reference shows the lowest average base-wall Nusselt number in the PC 3D case that corresponds to compact heat exchangers.
Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.
2012-06-01
Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.
On the characteristics and application of thin wall welded titanium tubes for heat transfer
International Nuclear Information System (INIS)
Nishimura, Takashi; Miyamoto, Yoshiyuki
1985-01-01
Because of the excellent corrosion resistance, thin wall welded titanium tubes have become to be used in large number as the heat transfer tubes of condensers and seawater desalting plants using seawater in place of conventional copper alloy tubes. Especially in nuclear power plants, the all titanium condensers using thin wall welded titanium tubes and titanium tube plates were adopted in the almost all plants under construction or expected to be constructed. In this report, the various characteristics of thin wall welded titanium tubes required for using them as heat transfer tubes, such as corrosion resistance, heat transfer characteristics, fatigue strength and expanding characteristics, are outlined, and the state of use is described. At first, relatively thick seamless titanium tubes were used for chemical industry, but thereafter, due to the advance of the mass production techniques, the welded titanium tubes of less than 0.7 mm thickness and high quality have become to be supplied at low cost. In 1969, titanium tubes were used for the first time in Japan for the air cooler in the condenser of Akita Power Station, Tohoku Electric Power Co., Inc. The features of titanium are small specific gravity, small linear expansion coefficient and small Young's modulus. (Kako, I.)
Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition
International Nuclear Information System (INIS)
Satapathy, Ashok K.
2009-01-01
In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.
International Nuclear Information System (INIS)
Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.
2012-01-01
Document available in extended abstract form only. ANDRA has launched several heating experiments in the Meuse-Haute Marne Underground Laboratory (e.g. TER and TED). In these experiments, the heater-rock contact was ensured by a metal tubing that prevented any convergence of the heating borehole. The Thermal Free Wall experiment was run by ANDRA to investigate whether the rock behaviour around an un-cased borehole was similar as in the previous experiments. Additionally, the temperature increase in the TFW was applied faster than in the previous experiments in order to investigate the rock response to a heavier thermal load. It consists in a main borehole containing the heater and two instrumentation boreholes equipped with a temperature and a pore water pressure sensor each. The sensors installed in borehole TER1906 are at approximately 40 cm from the heater borehole wall in the bedding plane. The TER1907 sensors are in the direction perpendicular to the bedding planes at about 70 cm from the heater borehole. The boreholes were drilled from the GEX gallery in the direction of the major in situ stress (16 MPa). The heater has an effective heating length of 3.29 m and is located between 7 and 10 m from the GEX gallery. It was emplaced on a base to centre it in the borehole and to have a void between the heater and the rock mass for free convergence. Heating started on 10 January 2011 and lasted 56 days. One of the requirements of the experiment was to apply a relatively fast heating ramp in comparison with the previous tests in order to investigate the rock behaviour under stronger thermal load. The increase from 21 C to 90 C at the external heater wall was achieved in 14 hours. The initial pore water pressure is about 3.2 MPa, somewhat lower than the undisturbed pore water pressure at the level of the laboratory (4.5 MPa). This difference is attributed to the presence of the GEX gallery that was excavated in July-September 2005. In this work, we present the
Evaluation of Thermo-Fluid Performance of Compact Heat Exchanger with Corrugated Wall Channels
International Nuclear Information System (INIS)
Tak, Nam Il; Lee, Won Jae
2006-01-01
One of the key components of an indirect nuclear hydrogen production system is an intermediate heat exchanger (IHX). For the IHX, a printed circuit heat exchanger (PCHE) is known as one of the promising types due to its compactness and ability to operate at high temperatures and under high pressures. The PCHE is a relatively new heat exchanger. It has been commercially manufactured only since 1985 and solely by one British vendor, HeatricTM. Due to its short history and limited production, sufficient information about the PCHE is not available for the design of the IHX in open literatures. The predominant shape of flow channels of the PCHE is laterally corrugated. The flow in a corrugated wall channel is very interesting since a variety of flow phenomena can be considered by changing the amplitude-to-wavelength ratio. In the present paper, thermo-fluid performance of a heat exchanger with a typical PCHE geometry has been evaluated. Computational fluid dynamics (CFD) analysis was performed to analyze a gas flow behavior in a corrugated wall channel
High heat load experiments for first wall materials by high power ion beams
Energy Technology Data Exchange (ETDEWEB)
Kuroda, Tsutomu; Kaneko, Osamu; Sakurai, Keiichi; Oka, Yoshihide; Shibui, Masanao; Ohmori, Junji
1985-09-01
Preliminary results are presented with some analytical calculations for thermal shock fractures of first-wall material candidates under plasma disruption heating conditions. A 120 keV - 90 A ion source has been used as an energy source to heat large specimens with heat fluxes of about 9 kW/cm/sup 2/ for pulse length of about 57 msec. Materials examined here are graphite (POCO), SiC, AlN, TiC-coated graphite, and sus 304. The SiC and AlN specimens were completely broken by only one thermal shock. The web-like surface cracks with a depth of about 0.6 mm were created in the tungsten specimen during five shots. No apparent destructive changes were observed in the graphite specimen.
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
Beam heat load due to geometrical and resistive wall impedance in COLDDIAG
Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.
2012-11-01
One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.
Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes
Boncel, Sławomir; Zniszczoł, Aurelia; Pawlyta, Mirosława; Labisz, Krzysztof; Dzido, Grzegorz
2018-02-01
The main challenge in the use of multi-wall carbon nanotube (MWCNT) as key components of nanofluids is to transfer excellent thermal properties from individual nanotubes into the bulk systems. We present studies on the performance of heat transfer nanofluids based on ultra-long ( 2 mm), curly MWCNTs - in the background of various other nanoC-sp2, i.e. oxidized MWCNTs, commercially available Nanocyl™ MWCNTs and spherical carbon nanoparticles (SCNs). The nanofluids prepared via ultrasonication from water and propylene glycol were studied in terms of heat conductivity and heat transfer in a scaled up thermal circuit containing a copper helical heat exchanger. Ultra-long curly MWCNT (1 wt.%) nanofluids (stabilized with Gum Arabic in water) emerged as the most thermally conducting ones with a 23-30%- and 39%-enhancement as compared to the base-fluids for water and propylene glycol, respectively. For turbulent flows ( Re = 8000-11,000), the increase of heat transfer coefficient for the over-months stable 1 wt.% ultra-long MWCNT nanofluid was found as high as >100%. The findings allow to confirm that longer MWCNTs are promising solid components in nanofluids and hence to predict their broader application in heat transfer media.
Resistive wall heating due to image current on the beam chamber for a superconducting undulator.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. H. (Accelerator Systems Division (APS))
2012-03-27
The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.
Caspers, Friedhelm; Ruggiero, F; Tan, J
1999-01-01
An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.
Sarris, Theo S.; Close, Murray; Abraham, Phillip
2018-03-01
A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1985-01-01
The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Comparison of strongly heat-driven flow codes for unsaturated media
International Nuclear Information System (INIS)
Updegraff, C.D.
1989-08-01
Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-10-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
International Nuclear Information System (INIS)
Zniber, K.; Oubarra, A.; Lahjomri, J.
2005-01-01
An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers
Convective heat transfer from a heated elliptic cylinder at uniform wall temperature
Energy Technology Data Exchange (ETDEWEB)
Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)
2013-07-01
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.
Erosion simulation of first wall beryllium armour under ITER transient heat loads
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.
2009-04-01
The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.
Erosion simulation of first wall beryllium armour under ITER transient heat loads
Energy Technology Data Exchange (ETDEWEB)
Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)
2009-04-30
The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.
A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating
Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.
2018-05-01
A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.
Erosion simulation of first wall beryllium armour under ITER transient heat loads
International Nuclear Information System (INIS)
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.
2009-01-01
The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.
Role of wall heat transfer and other system variables on fuel compaction and recriticality
International Nuclear Information System (INIS)
Dhir, V.K.; Castle, J.N.; Catton, I.; Kastenberg, W.E.; Doshi, J.B.
1976-01-01
The assessment of the molten fuel gaining recriticality after a hypothetical core disruptive accident in a fast reactor is an important safety consideration. Recriticality of the disrupted core can be envisioned to occur, if the fuel rearranges itself into a denser configuration either due to gravity slumping of the molten fuel or due to pressure or heat transfer driven compaction of the earlier dispersed fuel. In this paper the role played by wall heat transfer, internal radiation and the bottle pressure on the physical state of the molten fuel pool is discussed. It is suggested that in the absence of a solid crust the heat transfer process from the molten fuel to the surrounding steel will be very efficient because of melting and buoyancy driven removal of less dense steel through the pool of heavier UO 2 . The internal radiation at the high fuel temperature significantly increase the effective thermal conductivity of the molten fuel and lead to increased heat transfer in situations where a solid crust of UO 2 exists between molten UO 2 and molten steel. IN a boiled-up bottled pool, the pool pressure is shown to increase very rapidly with time and thus necessitate higher fission heating of the fuel to maintain it in a certain boiled up state. Finally, the results of the above discussion are applied to study the recriticality of a fuel pool formed during a hypothetical core disrupted accident in a fast reactor
Simplified model for determining local heat flux boundary conditions for slagging wall
Energy Technology Data Exchange (ETDEWEB)
Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre
2009-07-15
In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.
Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes
International Nuclear Information System (INIS)
Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.
2009-01-01
Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes
Energy Technology Data Exchange (ETDEWEB)
Chen, Z.D.; Li, Y.; Mahoney, J. [CSIRO Building, Construction and Engineering, Advanced Thermo-Fluids Technologies Lab., Highett, VIC (Australia)
2001-05-01
A simple multi-layer stratification model is suggested for displacement ventilation in a single-zone building driven by a heat source distributed uniformly over a vertical wall. Theoretical expressions are obtained for the stratification interface height and ventilation flow rate and compared with those obtained by an existing model available in the literature. Experiments were also carried out using a recently developed fine-bubble modelling technique. It was shown that the experimental results obtained using the fine-bubble technique are in good agreement with the theoretical predictions. (Author)
Strong source heat transfer simulations based on a GalerKin/Gradient - least - squares method
International Nuclear Information System (INIS)
Franca, L.P.; Carmo, E.G.D. do.
1989-05-01
Heat conduction problems with temperature-dependent strong sources are modeled by an equation with a laplacian term, a linear term and a given source distribution term. When the linear-temperature-dependent source term is much larger than the laplacian term, we have a singular perturbation problem. In this case, boundary layers are formed to satisfy the Dirichlet boundary conditions. Although this is an elliptic equation, the standard Galerkin method solution is contaminated by spurious oscillations in the neighborhood of the boundary layers. Herein we employ a Galerkin/Gradient-least-squares method which eliminates all pathological phenomena of the Galerkin method. The method is constructed by adding to the Galerkin method a mesh-dependent term obtained by the least-squares form of the gradient of the Euler-Lagrange equation. Error estimates, numerical simulations in one-and multi-dimensions are given that attest the good stability and accuracy properties of the method [pt
Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.
2012-01-01
An accurate prediction of the flow and the thermal boundary layer is required to properly simulate gas to wall heat transfer in a turbulent flow. This is studied with a view to application to gas turbine combustors. A typical gas turbine combustion chamber flow presents similarities with the
Heat transfer enhancement in a tube using circular cross sectional rings separated from wall
International Nuclear Information System (INIS)
Ozceyhan, Veysel; Gunes, Sibel; Buyukalaca, Orhan; Altuntop, Necdet
2008-01-01
A numerical study was undertaken for investigating the heat transfer enhancement in a tube with the circular cross sectional rings. The rings were inserted near the tube wall. Five different spacings between the rings were considered as p = d/2, p = d, p = 3d/2, p = 2d and p = 3d. Uniform heat flux was applied to the external surface of the tube and air was selected as working fluid. Numerical calculations were performed with FLUENT 6.1.22 code, in the range of Reynolds number 4475-43725. The results obtained from a smooth tube were compared with those from the studies in literature in order to validate the numerical method. Consequently, the variation of Nusselt number, friction factor and overall enhancement ratios for the tube with rings were presented and the best overall enhancement of 18% was achieved for Re = 15,600 for which the spacing between the rings is 3d
'Eco-house 99' - Full-scale demonstration of solar walls with building integrated heat storages
Energy Technology Data Exchange (ETDEWEB)
Hummelshoej, R.M.; Rahbek, J.E. [COWI Consulting Engineers and Planners AS (Denmark)
2000-07-01
A critical issue for solar systems in northern latitudes is the economic profitability. It is often said that the techniques for solar utilisation are expensive and unprofitable. This is, however, not always the case. A new project with 59 low energy terrace houses was carried out in Kolding, Denmark. The houses are designed as ecological buildings with emphasis on total economy based on low operation and maintenance costs, energy conservation and passive/hybrid solar utilisation. Besides direct solar gain through windows, each house has a solar wall of 6-8.5 m{sup 2} on the south facade. The solar walls are used both for heating of ventilation air and for space heating. The solar walls deliver heat to the dwellings during the heating season. To optimise the energy utilisation from the solar walls, the energy is stored internally in building integrated heat storages. Two different new types of prefabricated heat storages are built into the houses. One is an internal concrete wall with embedded ventilation pipes, and the other is a hollow concrete element with integrated stone bed. The heat storages are mainly designed to store solar energy from the day to the evening and the night. Because the solar walls and the heat storages have been a part of the design process from the start, the additional expenses are as low as 30-140 Euro/m{sup 2} solar wall compared with the alternative facade. This is far less than what it costs to add a solar wall on an existing building. Measurements over one year show that the yield of the solar walls is in the range of 115-125 kWh/m{sup 2}/year as expected. With the actual financing, the annual payment of the additional expenses for the solar systems is between 1-6 Euro/m{sup 2} solar wall, while the annual savings are about 5 Euro/year/m{sup 2} (with an energy price of 0.042 Euro/kWh). Dependent on which alternative facade construction the solar wall system is compared with, the profit of the system is in the range of 1 to +4 Euro
Experimental facility design for a gap heat transfer in a double wall tube
International Nuclear Information System (INIS)
Nam, Ho Yun; Hong, Jong Gan; Kim, Jong Man; Kim, Jong Bum; Jeong, Ji Young
2012-01-01
A reliable steam generator design is one of the most critical issues in developing a sodium cooled fast reactor (SFR), and various efforts to avoid potential sodium water reaction (SWR) have been made. For this reason, SFR steam generators have been developed to improve its reliability using a double wall tube (DWT), which has two barriers between the sodium and water. Most steam generators for SFRs are the shell and tube type. Steam at high pressure and low temperature flows inside the inner tubes, which are heated by the shell side sodium at low pressure and high temperature. Since the inner and outer tubes of conventional DWTs are made of identical materials, the degree of thermal expansion is somewhat different between the two concentric tubes owing to their temperature difference. Therefore, a greater temperature difference results in less contact pressures between the inner and outer tubes. This feature results in a deterioration of the heat transfer capability of DWTs. Current developments are focused on an improvement of heat transfer capability by investigating the gap conductance between the two concentric tubes. To improve the heat transfer capability of DWTs, it is preferable to use different tube materials (Fig. 1). It is recommended to choose the inner tube material whose thermal expansion coefficient is greater than that of the outer tube by 10 to 15%
Heat and mass transfer in a liquid pool with wall ablation and composition effects
International Nuclear Information System (INIS)
Pham, Q.T.
2013-01-01
This work deals with the thermal-hydraulics of a melt pool coupled with the physical chemistry for the purpose of describing the behaviour of mixtures of materials (non-eutectic). Evolution of transient temperature in a liquid melt pool heated by volumetric power dissipation has been described with solidification on the cooled wall. The model has been developed and is validated for the experimental results given by LIVE experiment, performed at Karlsruhe Institute of Technology (KIT) in Germany. Under the conditions of these tests, it is shown that the interface temperature follows the liquidus temperature (corresponding to the composition of the liquid bath) during the whole transient. Assumption of interface temperature as liquidus temperature allows recalculating the evolution of the maximum melt temperature as well as the local crust thickness. Furthermore, we propose a model for describing the interaction between a non-eutectic liquid melt pool (subjected to volumetric power dissipation) and an ablated wall whose melting point is below the liquidus temperature of the melt. The model predictions are compared with results of ARTEMIS 2D tests. A new formulation of the interface temperature between the liquid melt and the solid wall (below liquidus temperature) has been proposed. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Werner, A.; Ney, K. [Doyma GmbH und Co., Oyten (Germany)
1998-04-01
Flexible sealing systems are necessary to provide permanent protection of transmitted-heat pipe wall penetrations against the ingress of water. Unlike the rigid sealing methods in widespread use, flexible sealing systems are capable of absorbing thermally induced pipe movements and thus of preventing leaks around such piercings. The following article provides an introduction to the subject and offers practical suggestions for the ideal design of transmitted-heat pipe wall penetrations. Sealing system variants with a range of degrees of flexibility are discussed, in addition to measures which need to be taken into account as early as the installation of the pipe itself. Prime attention is devoted not to methods already practised, but to recent, potentially marketable developments. (orig.) [Deutsch] Um Mauerdurchfuehrungen von Fernwaermeleitungen dauerhaft gegen das Eindringen von Wasser zu schuetzen, sind flexible Abdichtsysteme notwendig. Im Gegensatz zu den verbreiteten starren Abdichtungsmethoden koennen flexible Systeme die thermisch bedingten Rohrbewegungen aufnehmen und damit Undichtigkeiten im Bereich der Durchfuehrungen verhindern. Der folgende Beitrag fuehrt in die Thematik ein und gibt praktische Hinweise, wie eine Mauerdurchfuehrung von Fernwaermeleitungen idealerweise gestaltet werden sollte. Neben Massnahmen, die bereits bei der Rohrverlegung zu beachten sind, werden Abdichtvarianten mit unterschiedlichem Flexibilitaetsgrad skizziert. Schwerpunkt der Untersuchung liegt hier nicht nur auf bereits bekannten Verfahren sondern auch auf marktfaehigen Neuentwicklungen. (orig.)
Directory of Open Access Journals (Sweden)
Nagornova Tatiana
2017-01-01
Full Text Available The results of a numerical study of the process of heat transfer from the gas infrared emitters in the heated accommodation are represented. Simulation was conducted taking into account the heat withdrawal in the enclosing constructions and of heat exchange with the environment. The estimation of the average values of temperatures of air indoors in the dependence on the different intensity of heat withdrawal into the vertical walls is carried out (when the layer of insulation is present, and without it.
Erosion simulation of first wall beryllium armour under ITER transient heat loads
Energy Technology Data Exchange (ETDEWEB)
Bazylev, B.; Janeschitz, G. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Karlsruhe (Germany); Loarte, A. [EFDA Close Support Unit Garching, Garching bei Munchen(Germany)
2007-07-01
Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10{sup 4} ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m{sup 2} and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m{sup 2} in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be
Erosion simulation of first wall beryllium armour under ITER transient heat loads
International Nuclear Information System (INIS)
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.
2007-01-01
Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10 4 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m 2 in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m 2 and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m 2 in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be FW macro
Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.
2018-04-01
Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.
Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.
2018-04-01
The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.
International Nuclear Information System (INIS)
Jin Qiang; Liu Songlin; Li Min; Wang Weihua
2012-01-01
As an important component of Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM), the first wall (FW) must withstand and remove the heat flux from the plasma (q″ = 0.3 MW/m 2 ) and high nuclear power deposited in the structure at normal plasma operation scenario of ITER. In this paper the transverse ribs arranged along the plasma facing inner wall surface were used to enhance the heat transfer capability. After the validation compared with empirical correlations the Standard k–ω model was employed to do the numerical simulation using FLUENT code to investigate the heat transfer efficiency and flow performance of coolant in the ribbed channel preliminarily. The perforation on the bottom of rib was proposed near the lower heat transfer area (LHTA) to improve the heat transfer performance according to results of analyses.
International Nuclear Information System (INIS)
Biage, M.
1983-04-01
A heat transfer problem in parallel plates with infinite with has been solved, with axial heat conduction in the fluid and in the wall, considering steady-state laminar flow for a Newtonian fluid and a fully developed velocity profile. The duct consists of an infinite inicial part, insulated on both plates, an intermediale part of finite length, with a prescribed heat flux in the upper plate and insulated on the botton plate, and by another infinite part also insulated on both plates. The problem has been solved by a numerical combination of the integral equation method and the variational method. Both, the performance of the numerical technique employed and results obtained are analyzed in this work. It is demostrated that the heat conduction in the wall significantly modifies the heat transfer parameters. (Author) [pt
Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin
2015-07-07
Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.
Simulations of the near-wall heat transfer at medium prandtl numbers
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2003-01-01
A heat transfer from a wall to a fluid at low Reynolds and Prandtl numbers can be described by means of Direct Numerical Simulation (DNS). At higher Prandtl numbers (Pr > 20) so-called under-resolved DNS can be performed to carry out turbulent heat transfer. Three different under-resolved DNSs of the fully developed turbulent flow in the channel at Reynolds number Re = 4580 and at Prandtl numbers Pr = 100, Pr = 200 and Pr 500 are presented in this paper. These simulations describe all velocity scales, but they are not capable to describe smallest temperature scales. However, very good agreement of heat transfer coefficients was achieved with the correlation of Hasegawa [1] or with the correlation of Papavassiliou [2], who performed DNS by means of Lagrangian method instead of Eulerian method, which was applied in our simulations. We estimate that under resolved DNS simulations based on Eulerian method are useful up to approximately Pr = 200, whereas at Pr = 500 instabilities appear due to the unresolved smallest thermal scales. (author)
International Nuclear Information System (INIS)
Sanli, Ali; Ozsezen, Ahmet N.; Kilicaslan, Ibrahim; Canakci, Mustafa
2008-01-01
In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions
Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md
2013-01-01
In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
Energy Technology Data Exchange (ETDEWEB)
Sanli, Ali; Kilicaslan, Ibrahim [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Ozsezen, Ahmet N.; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)
2008-08-15
In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions. (author)
International Nuclear Information System (INIS)
Wharton, C.B.
1977-01-01
A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating
International Nuclear Information System (INIS)
Kurganov, V.A.; Gladuntsov, A.I.
1977-01-01
Analysed are the experimental data obtained for heat transfer to gaseous dissociating ammonium (NH 3 ) under heating in round pipes (steel Kh18N10T) at developed eddying input flow and marginal condition of heat supply gsub(c) approximately equal to const in the ranges of the following parameters: p=3-10 atm; Tsub(input)=310-720 K; Tsub(c) ( 3 ; gsub(c)/-anti rho W 8.8 kJ/kg; gsub(c)/(anti rho WCsub(p) sub(input)Tsub(input)) (<=) 0.0104; 1/d (<=) 150 (where Tsub(c) is the wall temperature, gsub(c) the heat flow density on wall, and anti rho W velocity). The discussion involves phenomena of worsened heat transfer at high heat loads. The authors show the basic relationship between these phenomena and laminarization of the near-wall flow at the input site of the pipe. The regularities of heat transfer were noted to undergo substantial transformation under laminarized flow
Directory of Open Access Journals (Sweden)
Mousa Farhadi
2011-01-01
Full Text Available In this paper Lattice Boltzmann Method (LBM was employed for investigation the effect of the heater location on flow pattern, heat transfer and entropy generation in a cavity. A 2D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations were performed for Rayleigh numbers from 103 to 106 at Pr = 0.71. The study was carried out for heater length of 0.4 side wall length which is located at the right side wall. Results are presented in the form of streamlines, temperature contours, Nusselt number and entropy generation curves. Results show that the location of heater has a great effect on the flow pattern and temperature fields in the enclosure and subsequently on entropy generation. The dimensionless entropy generation decreases at high Rayleigh number for all heater positions. The ratio of averaged Nusselt number and dimensionless entropy generation for heater located on vertical and horizontal walls was calculated. Results show that higher heat transfer was observed from the cold walls when the heater located on vertical wall. On the other hand, heat transfer increases from the heater surface when it located on the horizontal wall.
Energy Technology Data Exchange (ETDEWEB)
Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)
2012-08-15
Highlights: ► Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ► Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ► Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.
Energy Technology Data Exchange (ETDEWEB)
Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)
2015-12-01
This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.
International Nuclear Information System (INIS)
Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.
2015-01-01
This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number
Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the presence of a transverse magnetic field is investigated. Least square method (LSM for computing approximate solutions of nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number and Eckert number on non-dimensional velocity and temperature profiles are considered. The results show analytical present method is very close to numerically method. In general, increasing the Reynolds and Hartman number is reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the Prandtl and Eckert number will increase the maximum amount of theta.
View factor for radiation heat exchange between the wall and end of a cylinder
International Nuclear Information System (INIS)
Al-Bahadili, H.; Wood, J.
1991-01-01
In a paper by previous authors (Carlson and Garcia (1984) Ann. Nucl. Energy Vol 11, No 4), a numerical integration technique (trapezoidal rule) is developed for the approximate calculation of view factors for radiant heat transfer, for both internal and external radiation, from the curved surface of a right circular cylinder. In that paper the variation of view factor for internal radiation (wall to bottom of cylinder) with height, H, of the cylinder, is shown to reach a maximum value of about 0.36 when H is about 0.3. This behaviour is remarked upon in the text. We wish to make two points: (i) the internal view factors for the cylinder can be determined analytically (ii) the view factor behavior shown is erroneous. In fact, the view factor decreases monatonically as H increases, achieving its greatest value (0.5) as H tends to zero. H is normalised to a radius of unity. (author)
Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes
Directory of Open Access Journals (Sweden)
M. Muthee
2011-12-01
Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.
HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE
Directory of Open Access Journals (Sweden)
Loganina Valentina Ivanovna
2016-05-01
Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.
Curry, D. M.
1974-01-01
Numerical results of the heat and mass transfer in a porous matrix are presented. The coupled, nonlinear partial differential equations describing this physical phenomenon are solved in finite difference form for two dimensions, using a new iterative technique (the strongly implicit procedure). The influence of the external environment conditions (heating and pressure) is shown to produce two-dimensional flow in the porous matrix. Typical fluid and solid temperature distributions in the porous matrix and internal pressure distributions are presented.
Directory of Open Access Journals (Sweden)
I E. Lobanov
2017-01-01
Full Text Available Objectives. The aim of present work was to carry out mathematical modelling of heat transfer with symmetrical heating in flat channels and round pipes with rough walls.Methods. The calculation was carried out using the L'Hôpital-Bernoulli's method. The solution of the problem of intensified heat transfer in a round tube with rough walls was obtained using the Lyon's integral.Results. Different from existing theories, a methodology of theoretical computational heat transfer determination for flat rough channels and round pipes with rough walls is developed on the basis of the principle of full viscosity superposition in a turbulent boundary layer. The analysis of the calculated heat transfer and hydroresistivity values for flat rough channels and round rough pipes shows that the increase in heat transfer is always less than the corresponding increase in hydraulic resistance, which is a disadvantage as compared to channels with turbulators, with all else being equal. The results of calculating the heat transfer for channels with rough walls in an extended range of determinant parameters, which differ significantly from the corresponding data for the channels with turbulators, determine the level of heat exchange intensification.Conclusion. An increase in the calculated values of the relative average heat transfer Nu/NuGL for flat rough channels and rough pipes with very high values of the relative roughness is significantly contributed by both an increase in the relative roughness height and an increase in the Reynolds number Re. In comparison with empirical dependencies, the main advantage of solutions for averaged heat transfer in rough flat channels and round pipes under symmetrical thermal load obtained according to the developed theory is that they allow the calculation of heat exchange in rough pipes to be made in the case of large and very large relative heights of roughness protrusions, including large Reynolds numbers, typical for pipes
International Nuclear Information System (INIS)
Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.
1997-03-01
Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs
International Nuclear Information System (INIS)
Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka
2013-01-01
Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are
Directory of Open Access Journals (Sweden)
Egemen Tekkanat
2017-08-01
Full Text Available Today energy conservation is a very important issue in the world and Turkey. The aim of this study is to minimize the heat abduction, thus to save energy by utilizing the factors to prevent the heat abduction on the walls of buildings. First of all, a back-propagation network model with artificial neural network model was used for the factors that can cause heat loss on the walls. Whether the walls have insulation were considered. After that, Decision Support Systems were used for heat insulation to select the appropriate materials. A Decision Support Model with Analytic Hierarchy Process (AHP was recommended to meet the needs of a customer best and to make better decisions for the selection of the materials. The method was used by construction firms for their decision processes for the best materials and the results were evaluated. After the evaluations were done, the factors that cause heat loss were considered and it became clear which factors were more important for the prevention of heat loss.
International Nuclear Information System (INIS)
Janos, A.C.; Fredrickson, E.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.
1992-01-01
The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number (>100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode
Trapalis, Menelaos; Li, Song Feng; Parish, Roger W
2017-07-01
The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Jian; Lu, Chen; Liu, Hongmei
2015-01-01
The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.
Directory of Open Access Journals (Sweden)
Jian Ma
Full Text Available The aircraft environmental control system (ECS is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.
Wall-to-bed heat transfer in gas-solid fluidized beds: a computational and experimental study
Patil, D.J.; Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.
2006-01-01
The wall-to-bed heat transfer in gas-solid fluidized beds is mainly determined by phenomena prevailing in a thermal boundary layer with a thickness in the order of magnitude of the size of a single particle. In this thermal boundary layer the temperature gradients are very steep and the local
International Nuclear Information System (INIS)
Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.
1982-01-01
A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior. (orig.)
International Nuclear Information System (INIS)
Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.
1980-01-01
A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior
Energy Technology Data Exchange (ETDEWEB)
Lyczkowski, R W [Institute of Gas Technology, Chicago, IL (USA); Solbrig, C W [EG and G Idaho, Inc., Idaho Falls (USA); Gidaspow, D [Illinois Inst. of Tech., Chicago (USA). Dept. of Chemical Engineering
1982-02-01
A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.
International Nuclear Information System (INIS)
Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata
2016-01-01
The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)
International Nuclear Information System (INIS)
Jana, Amiya K.
2016-01-01
Highlights: • A novel heat integrated configuration is proposed for batch distillation. • The shell is divided into two closed semi-cylinders by a metal wall. • An open-loop variable manipulation policy is formulated. • The column improves its energy efficiency and economic performance. - Abstract: This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.
Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts
International Nuclear Information System (INIS)
Youssef, M.Z.; Abdou, M.A.
2000-01-01
The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield
Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section
International Nuclear Information System (INIS)
Jeong, Yong Hoon; Chang, Soon Heung; Baek, Won-Pil
2005-01-01
The critical heat flux (CHF) on the reactor vessel outer wall was measured using the two-dimensional slice test section. The radius and the channel area of the test section were 2.5 m and 10 cm x 15 cm, respectively. The flow channel area and the heater width were smaller than those of the ULPU experiments, but the radius was greater than that of the ULPU. The CHF data under the inlet subcooling of 2 to 25 deg. C and the mass flux 0 to 300 kg/m 2 .s had been acquired. The measured CHF value was generally slightly lower than that of the ULPU. The difference possibly comes from the difference of the test section material and the thickness. However, the general trend of CHF according to the mass flux was similar with that of the ULPU. The experimental CHF data were compared with the predicted values by SULTAN correlation. The SULTAN correlation predicted well this study's data only for the mass flux higher than 200 kg/m 2 .s, and for the exit quality lower than 0.05. The local condition-based correlation was developed, and it showed good prediction capability for broad quality (-0.01 to 0.5) and mass flux ( 2 .s) conditions with a root-mean-square error of 2.4%. There were increases in the CHF with trisodium phosphate-added water
Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation
Kahouadji, L.; Houchens, B. C.; Witkowski, L. Martin
2011-10-01
The effect of rotation on the stability of thermocapillary driven flow in a laterally heated liquid bridge is studied numerically using the full-zone model of the floating-zone crystal growth technique. A small Prandtl number (0.02) fluid, relevant for semiconductor melts, is studied with an aspect ratio (height to diameter of the melt) equal to one. Buoyancy is neglected. A linear stability analysis of three-dimensional perturbations is performed and shows that for any ratio of angular velocities, a weak rotation rate has the surprising effect of destabilizing the base flow. By systematically varying the rotation rate and ratio of angular velocities, the critical threshold and azimuthal wave number of the most unstable mode is found over a wide range of this two parameter space. Depending on these parameters, the leading eigenmode is a wave propagating either in the positive or negative azimuthal direction, with kinetic energy typically localized close to one of the end walls. These results are of practical interest for industrial crystal growth applications, where rotation is often used to obtain higher quality crystals.
Effect of design geometry of the demo first wall on the plasma heat load
Directory of Open Access Journals (Sweden)
Yu. Igitkhanov
2016-12-01
Full Text Available In this work we analyse the effect of W armour surface shaping on the heat load on the W/EUROFER DEMO sandwich type first wall blanket module with the water coolant. The armour wetted area is varied by changing the inclination and height of the «roof» type armor surface. The deleterious effect of leading edge at the tiles corner caused by misalignment is replaced in current design by rounded corners. Analysis has been carried out by means of the MEMOS code to assess the influence of the thickness of the layers and effect of the magnetic field inclination. Calculations show the evolution of the maximum temperatures in the tungsten, EUROFER, Cu allow and the stainless-steel water tube for different level of surface inclination (chamfering and in the case of rounded corners used in the current design. It is shown that the blanket module materials remain within a proper temperature range only at shallow incident angle if the width of EUROFER is reduced at list twice compare with the reference case.
Production of Cu/diamond composites for first-wall heat sinks
International Nuclear Information System (INIS)
Nunes, D.; Correia, J.B.; Carvalho, P.A.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, L.C.; Hanada, K.; Osawa, E.
2011-01-01
Due to their suitable thermal conductivity and strength, copper-based materials have been considered appropriate heat sinks for first wall panels in nuclear fusion devices. However, increased thermal conductivity and mechanical strength are demanded and the concept of property tailoring involved in the design of metal matrix composites advocates for the potential of nanodiamond dispersions in copper. Copper-nanodiamond composite materials can be produced by mechanical alloying followed by a consolidation operation. Yet, this powder metallurgy route poses several challenges: nanodiamond presents intrinsically difficult bonding with copper; contamination by milling media must be closely monitored; and full densification and microstructural homogeneity should be obtained with consolidation. The present line of work is aimed at an optimization of the processing conditions of Cu-nanodiamond composites. The challenges mentioned above have been addressed, respectively, by incorporating chromium in the matrix to form a stable carbide interlayer binding the two components; by assessing the contamination originating from the milling operation through particle-induced X-ray emission spectroscopy; and by comparing the densification obtained by spark plasma sintering with hot-extrusion data from previous studies.
International Nuclear Information System (INIS)
Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae
2013-01-01
A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube
Local heat transfer around a wall-mounted cube at 45 deg. to flow in a turbulent boundary layer
International Nuclear Information System (INIS)
Nakamura, Hajime; Igarashi, Tamotsu; Tsutsui, Takayuki
2003-01-01
The flow and local heat transfer around a wall-mounted cube oriented 45 deg. to the flow is investigated experimentally in the range of Reynolds number 4.2 x 10 3 -3.3 x 10 4 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1-2)x10 4 . Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1-2)x10 4 over that of a cube aligned perpendicular to the flow
International Nuclear Information System (INIS)
Nariai, H.; Ishiguro, H.; Nagata, S.; Yabe, A.
1991-01-01
This paper reports on the augmentation effect of electrohydrodynamically (EHD) induced flow disturbance on forced-convection heat transfer in a channel that was experimentally investigated in order to determine the applicability of the enhanced heat transfer into a low- pressure drop heat exchanger, such as a high-performance oil cooler. The investigation is mainly based on the study carried out on the unique point where the flow is disturbed actively and controllably by applying electric fields between the wall and array of wire electrodes installed near the wall along the main stream. The liquid mixture of refrigerant R113 (96 wt %) and ethanol (4 wt %), called Fronsorubu AE, was selected as a working fluid. Heat transfer was found to be promoted intensely in the turbulent flow as well as in the laminar flow, up to a factor of about twenty-three in the case of laminar flow. It is noteworthy that the rate of increase in heat transfer coefficient is larger compared to that in the pressure drop. From a measurement of velocities by a laser Doppler velocimeter, it was made clear that the electrohydrodynamically induced flow disturbance brings about large heat transfer coefficients
Materials for heat flux components of the first wall in fusion reactors
International Nuclear Information System (INIS)
Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.
1985-08-01
Materials of the First Wall in near-fusion plasma machines are subjected to a complex load system resulting from the plasma-wall interaction. The materials for their part also influence the plasma. Suitable materials must be available in order to ensure that the wall components achieve a sufficiently long dwell time and that their effects on the plasma remain small and controllable. The present report discusses relations between the plasma-wall interaction, the reactions of the materials and testing and examination methods for specific problems in developing and selecting suitable materials for highly stressed components on the First Wall of fusion reactors. (orig.)
Xin, Zhuohang; Kinouchi, Tsuyoshi
2013-05-01
Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.
Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.
Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte
2016-08-01
The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
International Nuclear Information System (INIS)
Tongmin Liou; Jennjiang Hwang; Shihhui Chen
1993-01-01
This paper performs a numerical and experimental analysis to investigate the heat transfer and fluid flow behaviour in a rectangular channel flow with streamwise-periodic ribs mounted on one of the principal walls. The k --A PDM turbulence model together with a smoothed hybrid central/skew upstream difference scheme (SCSUDS) and the PISO pressure-velocity coupling algorithm was applied to solving the accelerated, separated and recirculating flows. The real-time holographic interferometry technique was adopted to measure the time-dependent temperature field in the ribbed duct. The predicted fluid flow and temperature field were tested by previous laser-Doppler velocimetry measurements and present holographic interferometry data, and reasonable agreement was achieved. By the examination of the local wall temperature distribution for the uniform wall heat flux (UHF) boundary condition the regions susceptible to the hot spots are identified. Moreover, the study provided the numerical solution to investigate the effect of geometry and flow parameters on the local as well as average heat transfer coefficients. The compact correlation of the average heat transfer coefficient was further developed and accounted for the rib height, rib spacing, and Reynolds number. (Author)
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Lejsek, David; Kulzer, André; Hammer, Jürgen
2010-11-01
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the worldwide stringent emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the engine control unit makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. For this running mode of the engine the current models for calculation of the transient wall heat fluxes were found to be misleading. With a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis. Based on the measurements of transient wall heat transfer densities during the start-up presented in a former work (Lejsek and Kulzer in Investigations on the transient wall heat transfer at start-up for SI engines with gasoline direct injection. SAE Paper), the paper describes the development of adaptations to the known correlations by Woschni (MTZ 31:491, 1970), Hohenberg (Experimentelle Erfassung der Wandwärme von Kolbenmotoren. TU Graz, Habil., 1980) and Bargende (Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. TH Darmstadt, PhD-Thesis, 1991) for the application during engine start-up. To demonstrate the high accuracy of the model, the results of the cyclic resolved thermodynamic analysis using the presented novel approaches were compared with the results of the measurements. It is shown, that the novel heat flux models for the engine start-up process gives a cyclic resolved thermodynamic analysis to optimize the engine start-up pretty efficient.
Iwai, H; Ishii, T; Satoh, S
2001-10-01
When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.
International Nuclear Information System (INIS)
Aziz, Abdul; Beers-Green, Arlen B.
2009-01-01
This paper investigates the performance and optimum design of a longitudinal rectangular fin attached to a convectively heated wall of finite thickness. The exposed surfaces of the fin lose heat to the environmental sink by simultaneous convection and radiation. The tip of the fin is assumed to lose heat by convection and radiation to the same sink. The analysis and optimization of the fin is conducted numerically using the symbolic algebra package Maple. The temperature distribution, the heat transfer rates, and the fin efficiency data is presented illustrating how the thermal performance of the fin is affected by the convection-conduction number, the radiation-conduction number, the base convection Biot number, the convection and radiation Biot numbers at the tip, and the dimensionless sink temperature. Charts are presented showing the relationship between the optimum convection-conduction number and the optimum radiation-conduction number for different values of the base convection Biot number and dimensionless sink temperature and fixed values of the convection and radiation Biot numbers at the tip. Unlike the few other papers which have applied the Adomian's decomposition and the differential quadrature element method to this problem but give illustrative results for specific fin geometry and thermal variables, the present graphical data are generally applicable and can be used by fin designers without delving into the mathematical details of the computational techniques.
Groot, Maartje P; Kubisch, Alexander; Ouborg, N Joop; Pagel, Jörn; Schmid, Karl J; Vergeer, Philippine; Lampei, Christian
2017-08-01
Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi
2018-02-01
This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.
Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas
Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang
2012-10-01
Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.
Using sonic anemometer temperature to measure sensible heat flux in strong winds
Directory of Open Access Journals (Sweden)
S. P. Burns
2012-09-01
Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (T_{s}', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with T_{s} to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s^{−1}, the agreement was around ±30 W m^{−2}. However, for U ≈ 8 m s^{−1}, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m^{−2} at U ≈ 18 m s^{−1}. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus T_{s} in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this T_{s} error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of T_{s}; however, a T_{s} error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the T_{s} error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.
Directory of Open Access Journals (Sweden)
Miroslav M Živković
2010-01-01
Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions
International Nuclear Information System (INIS)
Hetsroni, G.; Mosyak, A.; Rozenblit, R.; Yarin, L.P.
1998-01-01
The present work deals with an experimental study of a temperature field on the wall in turbulent flow. The measurements of the local, instantaneous and average temperature of the wall were carried out by the hot-foil infrared technique. The detailed data on the average and fluctuation temperature distributions are presented. It is shown that temperature fluctuations, as normalized by the difference between the temperatures of the undisturbed fluid and the wall, do not change
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)
A strongly heated neutron star in the transient z source MAXI J0556-332
Energy Technology Data Exchange (ETDEWEB)
Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)
2014-11-10
We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of
International Nuclear Information System (INIS)
Torabi, Mohsen; Zhang, Kaili
2015-01-01
Highlights: • First and second laws of thermodynamics have been investigated in a composite wall. • Convective–radiative heat transfer is assumed on both surfaces. • Optimum interface location is calculated to minimize the total entropy generation rate. • Thermal conductivities ratio has great effects on the temperature and entropy generation. - Abstract: Composite geometries have numerous applications in industry and scientific researches. This work investigates the temperature distribution, and local and total entropy generation rates within two-layer composite walls using conjugate convection and radiation boundary conditions. Thermal conductivities of the materials of walls are assumed temperature-dependent. Temperature-dependent internal heat generations are also incorporated into the modeling. The differential transformation method (DTM) is used as an analytical technique to tackle the highly nonlinear system of ordinary differential equations. Thereafter, the local and total entropy generation rates are calculated using the DTM formulated temperature distribution. An exact analytical solution, for the temperature-independent model without radiation effect, is also derived. The correctness and accuracy of the DTM solution are checked against the exact solution. After verification, effects of thermophysical parameters such as location of the interface, convection–conduction parameters, radiation–conduction parameters, and internal heat generations, on the temperature distribution, and both local and total entropy generation rates are examined. To deliver the minimum total entropy generation rate, optimum values for some parameters are also found. Since composite walls are widely used in many fields, the abovementioned investigation is a beneficial tool for many engineering industries and scientific fields to minimize the entropy generation, which is the exergy destruction, of the system
International Nuclear Information System (INIS)
Ahmed, Mashud; Meade, Oliver; Medina, Mario A.
2010-01-01
A general estimate shows that 80% of communities across the United States receive their goods exclusively by transport trucks, of which a significant number are climate-controlled because they carry perishable goods, pharmaceutical items and many other temperature-sensitive commodities. Keeping the inside of a truck trailer at a constant temperature and relative humidity requires exact amounts of heat and/or moisture management throughout the shipment period, which is regulated via small refrigeration units, placed outside the truck, that operate by burning fuel. These trucks, known as refrigerated truck trailers, are the focus of this paper. In the research presented herein, the conventional method of insulation of the refrigerated truck trailer was modified using phase change materials (PCMs). The limited research carried out in refrigerated transport compared to other refrigeration processes has left spaces for innovative solutions in this area. The research investigated the inclusion of paraffin-based PCMs in the standard trailer walls as a heat transfer reduction technology. An average reduction in peak heat transfer rate of 29.1% was observed when all walls (south, east, north, west, and top) were considered. For individual walls, the peak heat transfer rate was reduced in the range of 11.3-43.8%. Overall average daily heat flow reductions into the refrigerated compartment of 16.3% were observed. These results could potentially translate into energy savings, pollution abatement from diesel-burning refrigeration units, refrigeration equipment size reduction, and extended equipment operational life. The research and its results will help to better understand the scope of this technology.
International Nuclear Information System (INIS)
Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.
2013-01-01
Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)
2016-01-15
The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.
Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles
Directory of Open Access Journals (Sweden)
R. Mitteau
2017-08-01
Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta
Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.
2018-03-01
The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.
RESEARCH OF EFFICIENCY OF WALL-MOUNTED BOILERS WITH SEALED CHAMBERS USED AS FLAT HEATING SYSTEMS
Directory of Open Access Journals (Sweden)
Khavanov Pavel Aleksandrovich
2012-12-01
the heating system analysis and to define the area of application of various systems of heat supply. The principal decision based on the basis of the above analysis is the decision to install an independent or a centralized system of heat supply.
Detailed Dynamic Heat Transfer in Thick Brick Walls Typical of Lille Metropolis
Directory of Open Access Journals (Sweden)
Antczak E.
2012-10-01
Full Text Available The study of thermal transfer in old houses massive walls offers a big interest permitting the understanding of their specificities and the choice of a suitable material for their eventual insulation. We propose to study the thermal transfer in massive brick walls that characterize the Northern Europe old houses. To do so, we will begin by defining the thermal transfer mode: we proved that the transfer mode can be reduced to a unidirectional transfer. Then, an experimental wall is built and submitted to two different solicitation types (constant temperature in steady state mode and sinusoidal temperature through a wooden insulated box containing a radiator. The interest of these solicitations is to determine the thermal properties of the wall: the steady-state regime permits to determine the thermal resistances of the system when the harmonic regime permits to determine the thermal capacities of the system.
Directory of Open Access Journals (Sweden)
Ternik Primož
2014-01-01
Full Text Available The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles’ volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid’s (i.e. water Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.
International Nuclear Information System (INIS)
Dilmac, Sukran; Guner, Abdurrahman; Senkal, Filiz; Kartal, Semiha
2007-01-01
The international standards for calculation of energy consumption for heating are ISO 9164 and EN 832. Although they are based on similar principles, there are significant differences in the calculation procedure of transmission heat loss coefficient, H T , especially in the evaluation of thermal bridges. The calculation of H T and the way thermal bridges are to be taken into consideration are explained in detail in EN 832 and in a series of other linked standards. In ISO 9164, the parameters used in the relevant equations are cited, but there is a lack of explanation about how they will be determined or calculated. Although in ISO 6946-2, the earlier version of the same standard, the calculation methods of these quantities were explained for column-wall intersections; in the revised ISO 6946, these explanations have been removed. On the other hand, these parameters had never been defined for floor/beam-wall intersections. In this paper, a new method is proposed for calculation of the parameters cited in ISO 9164 for floor/beam-wall intersections. The results obtained by the proposed method for typical floor with beam sections are compared with the results obtained by the methods stated in EN 832/EN 13789/EN ISO 14683 and the results obtained from 2D analysis. Different methods are evaluated as to their simplicity and agreement
Zhou, Jian; Li, Er Qiang; Lubineau, Gilles; Thoroddsen, Sigurdur T; Mulle, Matthieu
2016-01-01
A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.
Zhou, Jian
2016-06-09
A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.
Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working
International Nuclear Information System (INIS)
Lauprecht, W.; Imgrund, H.; Coldren, P.
1975-01-01
A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good
International Nuclear Information System (INIS)
Takahashi, Minoru; Momozaki, Yoichi
2000-01-01
For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall
International Nuclear Information System (INIS)
Kornienko, Y.
2000-01-01
The purpose has been to describe an approach suggested for constructing generalized closure relationships for local and subchannel wall friction, heat and mass transfer coefficients, with not only axial and transversal parameters taken into account, but azimuthal substance transfer effects as well. These constitutive relations that are primary for description of one- and two-phase one-dimensional flow models can be derived from the initial 3-D drift flux formulation. The approach is based on the Reynolds flux, boundary layer and generalized coefficient of substance transfer. One more task has been to illustrate the validity of the 'conformity principle' for the limiting cases. The method proposed is based on the similarity theory, boundary layer model, and a phenomenological description of the regularities of the substance transfer (momentum, heat, and mass), as well as on an adequate simulation of the forms of flow structure by a generalized approach to build (an integrated in form and semi-empirical in maintenance structure) analytical relationships for wall friction, heat and mass transfer coefficients. (author)
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2006-01-01
In this paper, we perform a numerical investigation of laminar steady natural convection flows in a two-dimensional horizontal channel containing heating rectangular blocks, periodically mounted on its lower wall. The blocks are heated at a constant temperature, T H ' and connected with adiabatic surfaces. The upper wall of the channel is maintained at a cold temperature T C ' . The parameters governing the problem are the Rayleigh number (10 2 = 6 ), the geometric parameter C (0.25=< C=l'/H'=<0.75) and the relative height of the blocks (1/8=< B=h'/H'=<1/2). The effect of the computational domain choice on the multiplicity of solutions is also investigated. The results obtained using air (Pr=0.72) as the working fluid show that the parameters B and C have a significant effect on the fluid flow and temperature fields. The symmetry of the flow is not always maintained although the boundary conditions for this problem are symmetrical, and the difference between two multiple solutions in terms of heat transfer may reach 34% for a given set of the governing parameters
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2016-03-01
Full Text Available This paper examines numerically the thermal and flow field characteristics of the laminar steady mixed convection flow in a square lid-driven enclosure filled with water-based micropolar nanofluids by using the finite volume method. While a uniform heat source is located on a part of the bottom of the enclosure, both the right and left sidewalls are considered adiabatic together with the remaining parts of the bottom wall. The upper wall is maintained at a relatively low temperature. Both the upper and left sidewalls move at a uniform lid-driven velocity and four different cases of the moving lid ordinations are considered. The fluid inside the enclosure is a water based micropolar nanofluid containing different types of solid spherical nanoparticles: Cu, Ag, Al2O3, and TiO2. Based on the numerical results, the effects of the dominant parameters such as Richardson number, nanofluid type, length and location of the heat source, solid volume fractions, moving lid orientations and dimensionless viscosity are examined. Comparisons with previously numerical works are performed and good agreements between the results are observed. It is found that the average Nusselt number along the heat source decreases as the heat source length increases while it increases when the solid volume fraction increases. Also, the results of the present study indicate that both the local and the average Nusselt numbers along the heat source have the highest value for the fourth case (C4. Moreover, it is observed that both the Richardson number and moving lid ordinations have a significant effect on the flow and thermal fields in the enclosure.
Zhou, Tianle; Wei, Hao; Tan, Huaping; Wang, Xin; Zeng, Haibo; Liu, Xiaoheng; Nagao, Shijo; Koga, Hirotaka; Nogi, Masaya; Sugahara, Tohru; Suganuma, Katsuaki
2018-07-01
Thin-film wearable electronics are required to be directly laminated on to human skin for reliable, sensitive bio-sensing but with minimal irritation to the user after long-time use. Excellent heat management films with strongly anisotropic thermal conductivity (K) and adequate breathability are increasingly desirable for shielding the skin from heating while allowing the skin to breathe properly. Here, interfacial self-assembly of a graphene oxide (GO) film covering an ambient-dried bacterial cellulose aerogel (AD-BCA) film followed by laser reduction was proposed to prepare laser-reduced GO (L-rGO)/AD-BCA bilayered films. The AD-BCA substrate provides low cross-plane K (K ⊥ ≈ 0.052 W mK‑1), high breathability, and high compressive and tensile resistance by ‘partially’ inheriting the pore structure from bacterial cellulose (BC) gel. The introduction of an upper L-rGO film, which is only 0.31 wt% content, dramatically increases the in-plane K (K // ) from 0.3 W mK‑1 in AD-BCA to 10.72 W mK‑1 owing to the highly in-plane oriented, continuous, uniform assembling geometry of the GO film; while K ⊥ decreases to a lower value of 0.033 W mK‑1, mainly owing to the air pockets between L-rGO multilayers caused by the laser reduction. The bilayered films achieve a K // /K ⊥ of 325, which is substantially larger even than that of graphite and similar polymer composites. They permit high transmission rates for water vapor (416.78 g/m2/day, >204 g/m2/day of normal skin) and O2 (449.35 cm3/m2/day). The combination of strongly anisotropic thermal conductivity and adequate breathability facilitates applications in heat management in on-skin electronics.
Simulations of heat transfer through the cabin walls of rail vehicle
Directory of Open Access Journals (Sweden)
Schuster M.
2007-10-01
Full Text Available This paper deals with industrial application of numerical methods to the prediction of thermal situation in the rail vehicle interior. Basic principles of heat transfer are summarised to explain both theoretical background of simulations and engineering approach to solving temperature conditions in the vehicle interior. The main part of the contribution describes the solution of the locomotive driver’s cabin heating and controlling the temperature levels. This contribution is a brief overview of both possibilities of engineering modelling of heat transfer modes and results in the simulation of the real locomotive cabin heating/ventilation system design.
International Nuclear Information System (INIS)
Cheng, C.-Y.
2006-01-01
This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid
DEFF Research Database (Denmark)
Wang, H.; Xu, G.; Guo, H.
The EAST tokamak has achieved, for the rst time, the ELMy H-mode at a connement improvement factor HITER89P 1:7, with dominant RF heating and active wall conditioning by lithium evaporation and real-time injection of Li powder. During the H-mode phase, a new small-ELM regime has been observed wit......-III ELMy crash enhances the radial electric field Er and turbulence driven Reynolds stress. Furthermore, the lament-like structure of type-III ELMs has clearly been identified as multiple peaks on the ion saturation and floating potential measurements....
Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup
CSIR Research Space (South Africa)
Skosana, PJ
2014-10-01
Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...
Kenjeres, S.; Zinsmeester, R.; Pyrda, L.; Fornalik-Wajs, E.; Szmyd, J.
2015-01-01
We present combined experimental and numerical studies of the heat transfer of paramagnetic or diamagnetic fluid inside a differentially heated cubical enclosure subjected to the magnetic field gradients of different strength and orientation. In contrast to the previously reported studies in
International Nuclear Information System (INIS)
Mazzeo, D.; Oliveti, G.; Arcuri, N.
2016-01-01
Highlights: • Dynamic behaviour of building walls subjected to sinusoidal and actual loadings. • The joint action of more temperature and heat flux loadings has been considered. • Dynamic parameters were defined by the internal and external fluctuating heat flux. • Use of the Total Harmonic Distortion to determine the number of harmonics required. • Study of the influence of external and internal loadings on dynamic parameters. - Abstract: The dynamic behaviour of opaque components of the building envelope in steady periodic regime is investigated using parameters defined by the fluctuating heat flux that is transferred in the wall. The use of the heat flux allows for the joint action of the loadings that characterise both the outdoor environment and the indoor air-conditioned environment to be taken into account. The analysis was developed in sinusoidal conditions to determine the frequency response of the wall and in non-sinusoidal conditions to identify the actual dynamic behaviour of the wall. The use of non-dimensional periodic thermal transmittance is proposed for the sinusoidal analysis in order to evaluate the decrement factor and the time lag that the heat flux undergoes in crossing the wall as well as the efficiency of heat storage. In the presence of non-sinusoidal loadings, the identification of the dynamic behaviour of the wall is obtained using several dynamic parameters: the decrement factor in terms of energy, defined as the ratio between the energy in a semi-period entering and exiting the wall; the decrement factor and the time lag in terms of heat flux, considering the maximum peak and the minimum peak. These parameters allow for the identification of how the form of the heat flux trend crossing the wall is modified. The number of harmonics to be considered for an accurate representation of heat fluxes is determined by means of the introduction of the Total Harmonic Distortion (THD), which quantifies the distortion of a non
Directory of Open Access Journals (Sweden)
F. X. Wang
2018-04-01
Full Text Available A series of multi-walled carbon nanotube (MWCNT/epoxy composite films with a thickness of ~700 µm is prepared by a sequential process of premixing, post dispersing, film casting, and thermal curing. The effects of the physical shear dispersion on the properties of conductive polymer composites as the electric heating element are investigated. The scanning electron microscope (SEM images show that highly efficient conductive networks form with shear dispersions of MWCNTs in the polymer matrix. The electrical resistivity decreases sharply from ~1015 Ω·cm for the neat epoxy resin to ~102 Ω·cm for the composite film with 2.0 wt% MWCNTs in accordance with the percolation behaviour, and a low percolation threshold of ~0.018 wt% is fitted. The electric heating behaviour of the composite film is observed at a low MWCNT content of 0.05 wt% due to the high electrical conductivity. For the composite film with 2.0 wt% MWCNTs, an equilibrium temperature of 115 °C is reached at an applied voltage of 40 V within 30 s. The excellent electric heating behaviour, including the rapid temperature response, electric heating efficiency, and operational stability, is primarily related to the conductive two-dimensional networks consisting of MWCNTs and the thermodynamically stable polymer matrix.
Flow and heat transfer of MHD graphene oxide-water nanofluid between two non-parallel walls
Directory of Open Access Journals (Sweden)
Azimi Mohammadreza
2017-01-01
Full Text Available The steady 2-D heat transfer and flow between two non-parallel walls of a graphene oxide nanofluid in presence of uniform magnetic field are investigated in this paper. The analytical solution of the non-linear problem is obtained by Galerkin optimal homotopy asymptotic method. At first a similarity transformation is used to reduce the partial differential equations modeling the flow and heat transfer to ordinary non-linear differential equation systems containing the semi angle between the plate’s parameter, Reynolds number, the magnetic field strength, nanoparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained analytical results have been compared with results achieved from previous works in some cases.
Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.
Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.
2016-02-01
As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.
Directory of Open Access Journals (Sweden)
Ömer KAYNAKLI
2016-06-01
Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.
International Nuclear Information System (INIS)
Yamazaki, Seiichiro; Uno, Masayoshi; Seki, Masahiro.
1989-01-01
Experimental and numerical studies were performed to investigate crack initiation behavior near a surface of stainless steel and tungsten when subjected to extremely high heat flux. The improved electron beam test facility was used as the heat source. Two-dimensional thermal and elasto-plastic stress analyses were also performed. From the results for stainless steel, micro-cracks about 0.1 mm deep only initiated in the resolidified layer along dendrites. No cracks propagated into the non-melted zone, and repeated heating of up to 20 times did not affect the depth and population of the cracks. According to the elasto-plastic stress analyses, no fatigue cracks were expected. Cracks with a depth of more than a few millimeters were observed in a tungsten plate. The cracks initiated at a boundary between heated and unheated areas. They grew into the non-melted zone, and curved towards the center part of the heated area. The elasto-plastic stress analyses indicated that the cracks were initiated due to the residual tensile strain after heated at the surface of the test specimen. When the heat flux was repeated, the cracks propagated and penetrated to the rear side of the test specimen in several repetition. (author)
International Nuclear Information System (INIS)
Wilson, K.L.
1985-10-01
This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well
Ranjit, N. K.; Shit, G. C.
2017-09-01
This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).
Energy Technology Data Exchange (ETDEWEB)
Coz Diaz, J.J. del; Betegon Biempica, C.; Prendes Gero, M.B. [Edificio Departamental Viesques, No 7, 33204 Gijon (Asturias) (Spain); Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo (Asturias) (Spain)
2007-06-15
Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed. (author)
International Nuclear Information System (INIS)
Coz Diaz, J.J. del; Garcia Nieto, P.J.; Betegon Biempica, C.; Prendes Gero, M.B.
2007-01-01
Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed
Some results of heating of a thick-walled cylinder fragment
International Nuclear Information System (INIS)
Zholdak, G.I.; Solov'ev, A.P.
1977-01-01
The effect of heat cycles on a reinforced concrete structure has been experimentally investigated. A reinforced concrete ring structure, reinforced on two sides, has been subjected to heat treatment by a complex heating cycle within a temperature range of from 20 to 300 deg C. The heating rate being 20 deg/hour and the total number of the cooling-heating cycles - 300. The cracking behaviour has been studied by ultrasonic inspection. In theoretical treatment, the principal relationships of the theory of elasticity have been used with account for the variations in the physico-mechanical properties of concrete and the development of nonelastic strains. The results have demonstrated both the applicability of the underlying theoretical calculations and the very feasibility of using reinforced concrete under cyclic heating conditions. The effect of cracks in the structure can be easily taken into account as it is remembered that the crack depth is 500 to 700 times greater than their mean exposure on the tensile surface of concrete
International Nuclear Information System (INIS)
Takenaga, H.; Asakura, N.; Higashijima, S.; Nakano, T.; Kubo, H.; Konoshima, S.; Oyama, N.; Isayama, A.; Ide, S.; Fujita, T.; Miura, Y.
2005-01-01
Long time scale variation of plasma-wall interactions and its impact on particle balance, main plasma performance and particle behavior have been investigated in ELMy H-mode plasmas by extending the discharge pulse and the neutral beam heating pulse to 65 s and 30 s, respectively. The wall pumping rate starts to decrease in the latter phase by repeating the long-pulse discharges with 60% of Greenwald density sustained by gas-puffing. After several discharges, the wall inventory is saturated in the latter phase and, consequently, the density increases with neutral beam fuelling only. The edge pressure in the main plasma is reduced and ELMs are close to the type III regime under conditions of wall saturation. The intensities of C II emission near the X-point and CD band emission in the inner divertor start to increase before the wall saturates and continue to increase after the wall is saturated
Impact of a narrow limiter SOL heat flux channel on the ITER first wall panel shaping
Czech Academy of Sciences Publication Activity Database
Kocan, M.; Pitts, R.A.; Arnoux, G.; Balboa, I.; de Vries, P.C.; Dejarnac, Renaud; Furno, I.; Goldston, R.J.; Gribov, Y.; Horáček, Jan; Komm, Michael; Labit, B.; LaBombard, B.; Lasnier, C.J.; Mitteau, R.; Nespoli, F.; Pace, D.; Pánek, Radomír; Stangeby, P.C.; Terry, J.L.; Tsui, C.; Vondráček, Petr
2015-01-01
Roč. 55, č. 3 (2015), 033019-033019 ISSN 0029-5515 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : plasma * tokamak * ITER * first wall panel Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/0029-5515/55/3/033019/pdf/0029-5515_55_3_033019.pdf
Heat transfer phenomena in the first wall of the RFX fusion experiment
International Nuclear Information System (INIS)
Oliveira Pauletti, R.M. de
1988-12-01
The thermal analysis of the first wall (FW) of the RFX machine is presented. RFX is a large fusion experiment under construction at Padua, Italy. The RFX FW is briefly described, together with the critical thermal conditions. The numerical analyses performed to predict the FW thermal behaviour are presented. 1-D and 2-D finite element models give accurate predictions of the FW temperatures and of the thermal exchanges in the machine environment. (author) [pt
Indication chamber of liquid metal fired steam generators with double wall for heat transfer
International Nuclear Information System (INIS)
Matal, O.; Martoch, J.
1982-01-01
The double wall of the steam generator consists of inner and outer tubes anchored in a tube plate. Between the tubes are indication spaces which end in recesses formed at least in one of the tube plates and coaxial with the outer tubes. The recesses interconnected with channels form the indication chamber to which is connected at least one sensor of the alarm signal equipment. (B.S.)
Regional wall movement of the left ventricle in coronary heat diseases
International Nuclear Information System (INIS)
Schad, N.
1979-01-01
The regional wall movement of the left ventriculus is a substantial criterion for the treatment of coronary heart diseases. The non-invasive and riskless intravenous injections of a bolus of Technetium 99m-Pertechnetat and the recording of the first passage through the heart allow to present the regional wall movement of the left ventriculus and, in addition, to make a statement on the haemodynamic feed back effects on lungs and the right heart. The congruency with the wall movement determined invasively, in the contrast substance angiocardiogram, is high both for the normokinesis and for hypo-, A - and dyskinesis (90-92%). The examination proved good in following groups of patients and makes the decision on the further proceding easier: 1) After myocardial infarction. 2) In ishaemia-ECG or persistent ST-elevation. 3) In unstable progressive angina pectoris. 4) In unclear breast aches and negative ECG on exertion. 5) For course control after conservative and surgial therapy. The myocardial reserve can be shown using a after nitroglycerin administration. An investigation on exertion can find out affected vessel territories in the circulation. (orig.) [de
Meda, Adimurthy; Katti, Vadiraj V.
2017-08-01
The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.
International Nuclear Information System (INIS)
Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.
2013-01-01
Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling
International Nuclear Information System (INIS)
Karabulut, Halit; Ipci, Duygu; Cinar, Can
2016-01-01
Highlights: • A numerical method has been developed for fully developed flows with constant wall temperature. • The governing equations were transformed to boundary fitted coordinates. • The Nusselt number of parabolic duct has been investigated. • Validation of the numerical method has been made by comparing published data. - Abstract: In motor-vehicles the use of more compact radiators have several advantages such as; improving the aerodynamic form of cars, reducing the weight and volume of the cars, reducing the material consumption and environmental pollutions, and enabling faster increase of the engine coolant temperature after starting to run and thereby improving the thermal efficiency. For the design of efficient and compact radiators, the robust determination of the heat transfer coefficient becomes imperative. In this study the external heat transfer coefficient of the radiator has been investigated for hydrodynamically and thermally fully developed flows in channels with constant wall temperature. In such situation the numerical treatment of the problem results in a trivial solution. To find a non-trivial solution the problem is treated either as an eigenvalue problem or as a thermally developing flow problem. In this study a numerical solution procedure has been developed and the heat transfer coefficients of the fully developed flow in triangular and parabolic air channels were investigated. The governing equations were transformed to boundary fitted coordinates and numerically solved. The non-trivial solution was obtained by means of guessing the temperature of any grid point within the solution domain. The correction of the guessed temperature was performed via smoothing the temperature profile on a line passing through the mentioned grid point. Results were compared with literature data and found to be consistent.
International Nuclear Information System (INIS)
Bolstad, J.W.; Foster, R.D.; Gregory, W.S.
1983-01-01
A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data
MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux
International Nuclear Information System (INIS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2009-01-01
The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow
Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR
Energy Technology Data Exchange (ETDEWEB)
Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin
2016-02-15
Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.
Numerical study of evaporation in a vertical annulus heated at the inner wall
International Nuclear Information System (INIS)
Ben Radhia, R.; Ben Jabrallah, S.; Ben Jabrallah, S.; Corriou, J.P.; Harmand, S.
2011-01-01
Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water. (authors)
Energy Technology Data Exchange (ETDEWEB)
Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S. [LPP-ERM/KMS, Association Euratom-Belgian State, TEC Partner, Brussels (Belgium); Jacquet, P.; Graham, M.; Kiptily, V.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Noble, C.; Rimini, F.; Solano, E. R. [Euratom-CCFE Fusion Association, Culham Science Centre (United Kingdom); Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T. [MPI für Plasmaphysik Euratom Assoziation, Garching (Germany); Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Coenen, J. W. [IEK-4, EURATOM-FZJ, TEC Partner, Jülich (Germany); and others
2014-02-12
The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.
First-wall heat-flux measurements during ELMing H-mode plasma
International Nuclear Information System (INIS)
Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.
1994-01-01
In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection
International Nuclear Information System (INIS)
Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar
2009-01-01
A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length
Studies of Gas Turbine Heat Transfer Airfoil Surface and End-Wall Cooling Effects.
1988-03-01
SYMBOL ’ HENRY E HELIN. CAPTAIN, USAF 202-767-0471 AFOSR/NA D FORM 1473, 84 MAR 83 APR edition mi,,, .% vd .r*iI exhaustec’. Allother i ooete. SECURIY... pitot tube in the w*6% I ’~~~~.r-r~ F~,-jv ~ . ’, ’ V V_ . . V . , J ,-Wv’¢R,’, 7J, . - v,,’- ,, .. -. ,,-,, -rw 4 heated flow, and mean and
Transient heat conduction in multi-layer walls: An efficient strategy for Laplace's method
Energy Technology Data Exchange (ETDEWEB)
Maestre, Ismael R.; Cubillas, Paloma R. [Escuela Politecnica Superior de Algeciras, University of Cadiz, Algeciras (Spain); Perez-Lombard, Luis [Escuela Superior de Ingenieros, University of Seville (Spain)
2010-04-15
Enhancing load calculation tools into building simulation programs requires an in-depth revision and fine tuning of the load calculation assumptions prior to the addition of the HVAC system modelling routines. It is of special interest the analysis of transient heat conduction through multi-layer walls where, in order to improve the coupling between the passive elements of the building and the HVAC systems, an improvement of the time resolution in the calculation becomes critical. Several methods have been historically used, although recently Laplace's method has been displaced by the State Space method. This paper proposes a new strategy for fine time resolution on the calculation of the response factors through Laplace's method considering a comparison with the performance of the State Space method when used to calculate conduction transfer functions. Our analysis shows that in order to achieve similar accuracy with both approaches, the State Space method requires significant additional computational time. (author)
Directory of Open Access Journals (Sweden)
A. Sami Bataineh
2016-09-01
Full Text Available In this paper, we present an approximate solution method for the problem of magnetohydrodynamic (MHD flow and heat transfer of a second grade fluid in a channel with a porous wall. The method is based on the Bernstein polynomials with their operational matrices and collocation method. Under some regularity conditions, upper bounds of the absolute errors are given. We apply the residual correction procedure which may estimate the absolute error to the problem. We may estimate the absolute error by using a procedure depends on the sequence of the approximate solutions. For some certain cases, we apply the method to the problem in the numerical examples. Moreover, we test the impact of changing the flow parameters numerically. The results are consistent with the results of Runge-Kutta fourth order method and homotopy analysis method.
Energy Technology Data Exchange (ETDEWEB)
Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.
2013-07-01
Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2008-01-01
Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained
International Nuclear Information System (INIS)
Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.
2004-01-01
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m 2 ). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce
Two-phase flow in the localized boiling field adjacent to a heated wall
International Nuclear Information System (INIS)
Bonetto, F.J.; Clausse, A.; Converti, J.
1991-01-01
An experiment performed in a small horizontal heater immersed in refrigerant FC-72 is presented. The spatial distribution of the vapor is measured using a hot wire anemometer located over the heater, for different heat power inputs. The experimental data is analyzed using a probabilistic model to obtain information about the void fraction, bubble size and vapor velocity. A theoretical model based in conservation equations is derived which accounts for a comprehensive description of the experimental results. Moreover, a unified explanation of the interrelation between the mechanisms of nucleate boiling and boiling crisis is concluded. (Author)
International Nuclear Information System (INIS)
Kovar-Panskus, A.; Moulinneuf, L.; Savory, E.; Abdelqari, A.; Sini, J.-F.; Rosant, J.-M.; Robins, A.; Toy, N.
2002-01-01
A wind tunnel study has been undertaken to assess the influence of solar-induced wall heating on the airflow pattern within a street canyon under low-speed wind conditions. This flow is normally dominated by large-scale vortical motion, such that the wind moves downwards at the downstream wall. In the present work the aim has been to examine whether the buoyancy forces generated at this wall by solar-induced heating are of sufficient strength to oppose the downward inertial forces and, thereby, change the canyon flow pattern. Such changes will also influence the dispersion of pollutants within the street. In the experiments the windward-facing wall of a canyon has been uniformly heated to simulate the effect of solar radiation.Four different test cases, representing different degrees of buoyancy (defined by a test Froude number, Fr), have been examined using a simple, 2-D, square-section canyon model in a wind tunnel. For reference purposes, the neutral case (no wall heating), has also been studied. The approach flow boundary layer conditions have been well defined, with the wind normal to the main canyon axis, and measurements have been taken of canyon wall and air temperatures and profiles of mean velocities and turbulence intensities.Analysis of the results shows clear differences in the flow patterns. As Fr decreases from the neutral case there are reductions of up to 50% in the magnitudes of the reverseflow velocities near the ground and in the upward motion near the upstream wall. A marked transition occurs at Fr ∼ 1, where the single dominant vortex, existing at higher Fr values, weakens and moves upwards whilst a lower region of relatively stagnant flow appears. This transition had previously been observed in numerical model predictions but at a Fr at least an order of magnitude higher
Energy Technology Data Exchange (ETDEWEB)
Worth Longest, P. [Virginia Commonwealth University, Richmond, VA (United States). Dept. of Mechanical Engineering; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering
2004-10-01
Individual and interacting effects of uniform flow, plane shear, and near-wall proximity on spherical droplet heat and mass transfer have been assessed for low Reynolds number conditions beyond the creeping flow regime. Validated resolved volume simulations were used to compute heat and mass transfer surface gradients of two-dimensional axisymmetric droplets and three-dimensional spherical droplets near planar wall boundaries for conditions consistent with inhalable aerosols (5 {<=} d {<=} 300 {mu}m) in the upper respiratory tract. Results indicate that planar shear significantly impacts droplet heat and mass transfer for shear-based Reynolds numbers greater than 1, which occur for near-wall respiratory aerosols with diameters in excess of 50 {mu}m. Wall proximity is shown to significantly enhance heat and mass transfer due to conduction and diffusion at separation distances less than five particle diameters and for small Reynolds numbers. For the Reynolds number conditions of interest, significant non-linear effects arise due to the concurrent interaction of uniform flow and shear such that linear superposition of Sherwood or Nusselt number terms is not allowable. Based on the validated numeric simulations, multivariable Sherwood and Nusselt number correlations are provided to account for individual flow characteristics and concurrent non-linear interactions of uniform flow, planar shear, and near-wall proximity. These heat and mass transfer correlations can be applied to effectively compute condensation and evaporation rates of potentially toxic or therapeutic aerosols in the upper respiratory tract, where non-uniform flow and wall proximity are expected to significantly affect droplet transport, deposition, and vapor formation. (author)
Directory of Open Access Journals (Sweden)
Saim Memon
2017-06-01
Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.
Heat transfer in MHD unsteady stagnation point flow with variable wall temperature
Digital Repository Service at National Institute of Oceanography (India)
Soundalgekar, V.M.; Murty, T.V.R.; Takhar, H.S.
stream_size 8739 stream_content_type text/plain stream_name Indian_J_Pure_Appl_Math_21_384.pdf.txt stream_source_info Indian_J_Pure_Appl_Math_21_384.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8.... Soc. A224 (1954), 1-23. 2. S. I. Cheng and D. Elliott, Heat Transfer and Fluid Mech. IlIstitUfl?, S:anfoni University. Stanford (CA). 1956, p.p.221-38. 3. S. I. Cheng, Quart. appl. Math. 14 (1956-1957), 337-52. (\\ K. T. Yang, J. Appl. Mecll. (Tr. ASME...
Micro Injection Molding of Thin Walled Geometries with Induction Heating System
DEFF Research Database (Denmark)
Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano
2014-01-01
To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness...... and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios...... of small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...
Energy Technology Data Exchange (ETDEWEB)
Tynan, George [Univ. of California, San Diego, CA (United States)
2018-01-09
This was a collaboration between UCSD and MIT to study the effective application of ion-cyclotron heating (ICRH) on the EAST tokamak, located in China. The original goal was for UCSD to develop a diagnostic that would allow measurement of the steady state, or DC, convection pattern that develops on magnetic field lines that attach or connect to the ICRH antenna. This diagnostic would then be used to develop techniques and approaches that minimize or even eliminate such DC convection during application of strong ICRH heating. This was thought to then indicate reduction or elimination of parasitic losses of heating power, and thus be an indicator of effective RF heating. The original plan to use high speed digital gas-puff imaging (GPI) of the antenna-edge plasma region in EAST was ultimately unsuccessful due to limitations in machine and camera operations. We then decided to attempt the same experiment on the ALCATOR C-MOD tokamak at MIT which had a similar instrument already installed. This effort was ultimately successful, and demonstrated that the underlying idea of using GPI as a diagnostic for ICRH antenna physics would, in fact, work. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced E x B flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E-r were observed to increase with the toroidal magnetic field strength B and the ICRF power. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the probe measurements of poloidal phase velocity. The results suggest that effective ICRH heating with reduced impurity production is possible when the antenna/box system is designed so as to reduce the RF-induced image currents that flow in the grounded conducting antenna frame elements that surround the RF antenna current straps.
Correlation for prediction of growing and detaching bubble contact diameter on a heating wall
International Nuclear Information System (INIS)
Chen Deqi; Pan Liangming; Huang Yanping
2011-01-01
Phenomenal and theoretical analysis on the evolution of bubble contact diameter during bubble growing is presented in this paper, and it was found that the bubble contact diameter is dependent on the bubble growth rate and bubble radius strongly. By analyzing the regarding experimental data published in the literature, the relation between dimensionless bubble contact diameter, and dimensionless bubble growth time is obtained, based on this relation, a correlation relative to dimensionless bubble growth rate and dimensionless bubble radius are proposed for prediction of bubble contact diameter. With proper values of coefficients, a w and n w , this correlation can well predict the bubble contact diameter data published in the literature, with an error within ±20%. (authors)
International Nuclear Information System (INIS)
Ebrardt, Jacques
1981-01-01
As a technique is necessary for the instantaneous measurement of a liquid temperature at the immediate vicinity of a wall submitted to a quick unsteady heating, this research thesis reports the development of such a technique, and its use for the determination of the temperature reached by the liquid before boiling in unsteady regime. After a report of a literature survey on the unsteady heating of liquid (by thermal shock or progressive heating), and on various theoretical aspects, the author reports the use of a measurement installation which is based on the use of optical interferometry, and on the exploitation of raw experimental data. Results of overheating at boiling initiation are interpreted [fr
Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage
Lucas, S. S.; Barroso de Aguiar, J. L.
2018-02-01
Mortars, one of the most common construction materials, have not received any substantial modification for many decades. This has changed in recent years; new compositions are now being developed, with new properties, using nano-additives, fibres and capsules. In this work, surfaces with new and innovative functionalities that promote energy savings and improve air quality have been developed and studied. Incorporation of phase change materials (PCM) and titanium dioxide (TiO2) nanoparticles in construction products is currently under study by different research groups. However, these studies only address their incorporation separately. Adding new additives into the mortar’s matrix can be complex—due to microstructural modifications that will influence both fresh and hardened state properties. Moving from a single additive to multiple additions, as in this study, increases the system’s complexity. Only with a good understanding of the microstructural properties, it is possible to add multiple additives (including nano and microparticles) to mortars, without damaging its final quality. This work demonstrates that a higher additive content is not always a guarantee of better results; lower additions can often provide a better compromise between performance and final mechanical properties. The results presented in this paper confirmed this and show that combining PCM microcapsules and TiO2 nanoparticles open a new path in the development of mortars with multiple functionalities. In this study, a new material with depolluting, self-cleaning and heat storage was created. For the development of new and innovative mortars, a proper balance of multiple additives, supported by the study of microstructural changes, can lead to an optimization of the compositions, ensuring that the mortar’s final properties are not affected.
Progress in the design of Normal Heat Flux First Wall panels for ITER
Energy Technology Data Exchange (ETDEWEB)
Cicero, Tindaro, E-mail: Tindaro.Cicero@f4e.europa.eu [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Jimenez, Marc; D’Amico, Gabriele; Pou, Jordi Ayneto; Dellopoulos, Georges; Alvaro, Elena; Cardenes, Sabas; Banetta, Stefano; Bellin, Boris; Zacchia, Francesco [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Calcagno, Barbara; Chappuis, Philippe; Gicquel, Stefan; Mitteau, Raphael; Raffray, Rene [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St., Paul Lez Durance Cedex (France)
2015-10-15
Highlights: • Improved detail design of several NHF FW panels for ITER. • Implemented design solutions to improve the manufacturing of NHF FW panels. • Performed FEM simulations for the overall assessment of NHF FW panels. • Performed detailed analyses for integration of diagnostics in the NHF FW panels. - Abstract: A typical NHF FW panel consists of a series of fingers, which represent the elementary plasma facing units and are designed to withstand 15,000 cycles at 2 MW/m{sup 2}. The fingers are mechanically joined and supported by a back structural element or “supporting beam”. The structure of a finger is made of three different materials: stainless steel for the supporting structure, copper chromium zirconium for the heat sink, and beryllium as armour material. Due to their location and to the interfaces with other systems (e.g. Diagnostics, Remote Handling), the NHF FW panels are divided in different main and minor variants. The aim of this paper is to present the design work performed towards the PA signature. CAD detailed models have been created in CATIA for main and minor variants. Examples of local design solutions, as well as design work to achieve the global configuration of specific modules are provided. Finite Element (FE) analyses have been carried out, in order to simulate the operational scenario of ITER and assess the thermo-mechanical behaviour of the most important FW panels against the required design criteria. This design and analyses activity is required to progress towards the finalization of the detailed design of the NHF FW main and minor variants.
Progress in the design of Normal Heat Flux First Wall panels for ITER
International Nuclear Information System (INIS)
Cicero, Tindaro; Jimenez, Marc; D’Amico, Gabriele; Pou, Jordi Ayneto; Dellopoulos, Georges; Alvaro, Elena; Cardenes, Sabas; Banetta, Stefano; Bellin, Boris; Zacchia, Francesco; Calcagno, Barbara; Chappuis, Philippe; Gicquel, Stefan; Mitteau, Raphael; Raffray, Rene
2015-01-01
Highlights: • Improved detail design of several NHF FW panels for ITER. • Implemented design solutions to improve the manufacturing of NHF FW panels. • Performed FEM simulations for the overall assessment of NHF FW panels. • Performed detailed analyses for integration of diagnostics in the NHF FW panels. - Abstract: A typical NHF FW panel consists of a series of fingers, which represent the elementary plasma facing units and are designed to withstand 15,000 cycles at 2 MW/m"2. The fingers are mechanically joined and supported by a back structural element or “supporting beam”. The structure of a finger is made of three different materials: stainless steel for the supporting structure, copper chromium zirconium for the heat sink, and beryllium as armour material. Due to their location and to the interfaces with other systems (e.g. Diagnostics, Remote Handling), the NHF FW panels are divided in different main and minor variants. The aim of this paper is to present the design work performed towards the PA signature. CAD detailed models have been created in CATIA for main and minor variants. Examples of local design solutions, as well as design work to achieve the global configuration of specific modules are provided. Finite Element (FE) analyses have been carried out, in order to simulate the operational scenario of ITER and assess the thermo-mechanical behaviour of the most important FW panels against the required design criteria. This design and analyses activity is required to progress towards the finalization of the detailed design of the NHF FW main and minor variants.
International Nuclear Information System (INIS)
Yan, Yunfei; Wang, Haibo; Pan, Wenli; Zhang, Li; Li, Lixian; Yang, Zhongqing; Lin, Changhai
2016-01-01
Highlights: • Combustion in heat recuperation micro-combustors with different materials was studied. • Heat concentration is more obvious with thermal conductivity decreasing. • Combustor with copper baffles has uniform temperature distribution and best preheating effectiveness. • Influence of wall thermal conductivity is negligible on OH(s) coverage. • Methane conversion rate firstly increases and then decreases with h increasing. - Abstract: Premixed combustion of methane/air mixture in heat recuperation micro-combustors made of different materials (corundum, quartz glass, copper and ferrochrome) was investigated. The effects of wall parameters on the combustion characters of a CH 4 /air mixture under Rhodium catalyst as well as the influence of wall materials and convection heat transfer coefficients on the stable combustion limit, temperature field, and free radicals was explored using numerical analysis methodology. The results show that with a decrease of thermal conductivity of wall materials, the temperature of the reaction region increases and hot spots becomes more obvious. The combustor with copper baffles has uniform temperature distribution and best preheating effectiveness, but when inlet velocity is too small, the maximum temperature in the combustor with copper or ferrochrome baffles is well beyond the melting point of the materials. With an increase in thermal conductivity, the preheat zone for premixed gas increases, but the influence of thermal conductivity on OH(s) coverage is negligible. With an increase of the wall convection heat transfer coefficient, the methane conversion rate firstly increases, then decreases reaching a maximum value at h = 8.5 W/m 2 K, however, the average temperature of both the axis and exterior surface of the combustor decrease.
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Joaquim Manoel [Escola Tecnica Federal de Santa Catarina, Sao Jose, SC (Brazil)]. E-mail: joaquim@nrva.ufsc.br; Melo, Claudio; Vieira, Luis Antonio Torquato [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica
2000-07-01
This paper approaches the heat transfer in permanent regimen trough the walls of a no-frost refrigerator with two compartments with forced internal ventilation. The presented methodology allows the determination of thermal resistances of the walls externally. Also, the heating effect due to the compressor, the condenser and the air distribution between the compartments are investigated.
International Nuclear Information System (INIS)
Barbian, O.A.; Goedecke, H.; Krieg, W.
1992-01-01
A test system for district heating pipes (laid above ground or in the ground or in the offshore field) is introduced, a so-called 'intelligent' test 'pig' which, like in a pneumatic tube, floats through the pipe with the medium during operation and finds out any corrosion damage. The equipment works on the principle of ultrasonic wall thickness testing in immersed technique, and is equipped with a large number of test heads in order to scan the pipe surface completely in one run-through. The data processing in the pig with the aid of microprocessors and the type of data collection in mass memories is briefly described. The test results are clearly shown by coloured graphics, which makes efficient assessment and evaluation of the faults possible. The ability of the system to supply information (data collection, data storage, assessment and evaluation) is demonstrated by a series of typical faults, which were found worldwide in oil and gas pipes. (orig./HP) [de
International Nuclear Information System (INIS)
Nygren, R.E.
1992-04-01
The Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups typically hold a joint meeting each year to provide a forum for discussion of technical issues of current interest as well as an opportunity for program reviews by the Department of Energy (DOE). At the meeting in September 1990, reported here, research programs in support of the International Thermonuclear Experimental Reactor (ITER) were highlighted. The first part of the meeting was devoted to research and development (R ampersand D) for ITER on plasma facing components plus introductory presentations on some current projects and design studies. The balance of the meeting was devoted to program reviews, which included presentations by most of the participants in the Small Business Innovative Research (SBIR) Programs with activities related to plasma wall interactions. The Task Groups on Plasma/Wall Interaction and on High Heat Flux Materials and Components were chartered as continuing working groups by the Division of Development and Technology in DOE's Magnetic Fusion Program. This report is an addition to the series of ''blue cover'' reports on the Joint Meetings of the Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups. Among several preceding meetings were those in October 1989 and January 1988
Energy Technology Data Exchange (ETDEWEB)
Braun, T.
2004-07-01
Today, German nuclear power plants are leading in safety standards worldwide. Increasing potentials arise continuously along with improvements in technology. One of these potentials is the best-estimate simulation of fission product transport in case of a severe accident. A main part of the fission products is allocated on aerosols. Therefore, the aerosol behavior before containment leakage is important for the radioactive source term to the environment. Having a good knowledge about the main aerosol phenomena, it is possible to simulate them numerically. This enables to develop and test safety measures to limit damages before accidents occur. Within this study, the main aerosol phenomena have been ascertained and accordingly classified into formation, transport and reduction. On this basis, simulations of one- and multi-component aerosol experiments of the KAEVER series have been performed with the COCOSYS code. Due to an overprediction of the computed volume condensation rate, the results showed an overestimation of the reduction rate of insoluble aerosols. The reason was found to be the underestimation of the wall condensation rate. Based on an additional plain thermal hydraulic multi compartment experiment, these uncertainties in the wall heat transfer correlations were investigated in detail. The results show a strong dependency between the wall condensation rate and the convective heat transfer, resp. the characteristic length. In case of mainly forced convection, correct values for the characteristic length led to an underestimation of the calculated heat transfer coefficients. The analysis of the heat transfer models show an inconsistency in the coupling of free and forced convection. Therefore, an improved and consistent convection model has been developed and implemented. Both models have been tested on different experiments. Although the new model shows only minor improvements, it could be proven that the influence for forced convection is significant
International Nuclear Information System (INIS)
Golovnya, V.N.; Kolykhan, L.I.
1983-01-01
The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions
International Nuclear Information System (INIS)
Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki
2008-01-01
For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)
International Nuclear Information System (INIS)
Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.
2012-01-01
A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)
Directory of Open Access Journals (Sweden)
Qiaoxia Yang
2015-01-01
Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.
Energy Technology Data Exchange (ETDEWEB)
De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)
2017-04-01
Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.
Autolysis and extension of isolated walls from growing cucumber hypocotyls
Cosgrove, D. J.; Durachko, D. M.
1994-01-01
Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.
International Nuclear Information System (INIS)
Houze, M.
2002-12-01
Thermoelectric power measurement (TEP) is a very potential non destructive evaluation method considered to follow ageing under neutron irradiation of pressure vessel steel of nuclear reactor. Prior to these problems, the aim of this study is to establish correlations between TEP variations and microstructural evolutions of pressure vessel steels during heat treatments. Different steels, permitting to simulate heterogeneities of pressure vessel steels and to deconvoluate main metallurgical phenomenons effects were studied. This work allowed to emphasize effect on TEP of: austenitizing and cooling conditions and therefore of microstructure, metallurgical transformations during tempering (recovery, precipitation of alloying elements), and particularly molybdenum precipitation associated to secondary hardening, residual austenite amount or partial austenitizing. (author)
Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.
2016-01-01
Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.
International Nuclear Information System (INIS)
Omori, Junji.
1991-01-01
Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)
International Nuclear Information System (INIS)
Shurygin, R. V.; Morozov, D. Kh.
2014-01-01
Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li 0 atoms and Li +1 ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li +1 ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li 0 atoms and Li +1 ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li 0 atoms on the wall are obtained. The calculations show that the presence of Li +1 ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li +1 density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma
International Nuclear Information System (INIS)
Aoyama, Yoshiyuki; Kunugi, Tomoaki
2002-01-01
Convection heat transfer in a swirl tube was numerically analyzed so as to investigate a characteristic of heat removal when the cooling fluid flows within the swirl tube mounted in a solid structure represented as like a slab. Since the condition of heat inflow was treated as being transmitted only on the one-side surface of the structure, heat conduction through the structure was analyzed in linkage with the convection. Some results for the change in the coefficient of heat transmission along the tube axis are shown. The performance of heat removal was found to be strengthened due to the continuous renovation of thermal boundary layer close to the inside tube surface because the fluid flows in helical motion to shift the range alternate higher and lower temperature. (author)
International Nuclear Information System (INIS)
Jiang, Kecheng; Ma, Xuebin; Cheng, Xiaoman; Liu, Songlin
2016-01-01
Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m"2 as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Kecheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230037 (China); Ma, Xuebin; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2016-03-15
Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m{sup 2} as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.
Energy Technology Data Exchange (ETDEWEB)
Hussain, Salam Hadi; Jabbar, Mohammed Yousif; Mohamad, Ahmad Saddy [Mechanical Engineering Department, College of Engineering, Babylon University, Babylon Province (Iraq)
2011-09-15
The main objective of this study is to investigate the effect of presence of insulated inclined centered baffle and corrugation frequency on the steady natural convection in a sinusoidal corrugated enclosure. The present study is based on such a configuration where the two vertical sinusoidal walls are maintained at constant low temperature whereas a constant heat flux source whose length is 80% of the width of the enclosure is discretely embedded in the bottom wall. The remaining parts of the bottom wall and the top wall are adiabatic. The finite volume method has been used to solve the governing Navier-Stokes and the energy conservation equations of the fluid medium in the enclosure in order to investigate the effects of baffle inclination angles, corrugation frequencies and Grashof numbers on the fluid flow and heat transfer in the enclosure. The values of the governing parameters are the Grashof number Gr (10{sup 3}-10{sup 6}), the corrugation frequencies CF (1, 2 and 3), baffle inclination angles (0 deg. {<=} {phi} {<=} 150 deg.) and Prandtl number Pr (0.71). Results are presented in the form of streamline and isotherm plots. The results of this investigation are illustrated that the average Nusselt number increases with increase in both the Grashof number and corrugation frequency for different baffle inclination angles and the presence of inclined baffle and increasing the corrugation frequency have significant effects on the average Nusselt numbers, streamlines and isotherms inside the enclosure. The obtained numerical results have been compared with literature ones, and it gives a reliable agreement. (authors)
Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli
2016-10-01
This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.
Energy Technology Data Exchange (ETDEWEB)
Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)
2004-07-01
This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.
International Nuclear Information System (INIS)
Badeau, J.P.; Poitrault, I.S.; De Badereau, A.; Blondeau, R.P.
1986-01-01
The manufacturing of thick-wall components, such as shells, for petrochemical reactors normally requires the 2.25Cr-1Mo(SA 336 F22) steel. This paper deals with: 1. Experienced difficulties in producing thick-wall forgings up to a thickness of 500 mm with standard 2.25Cr-1Mo steel. 2. The solutions offered by Le Creusot Heavy Forge. The studies discussed are: (1) the effect of the structure; (2) the effect of the chemical composition on hardenability and temper embrittlement in steel making; and (3) the effect of austenitization conditions. Some examples concerning industrial forgings are presented, among them: 1. The manufacturing of shells for the petrochemical industry. 2. A thick-wall shell from a 146-metric ton hollow ingot
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.
1993-01-01
Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.
1993-01-01
Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed
Tan, R. P.; Carrey, J.; Respaud, M.
2014-12-01
Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately
Ungar, Eugene K.
2014-01-01
The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.
International Nuclear Information System (INIS)
Banetta, S.; Zacchia, F.; Lorenzetto, P.; Bobin-Vastra, I.; Boireau, B.; Cottin, A.; Mitteau, R.; Eaton, R.; Raffray, R.
2014-01-01
This paper describes the manufacturing development and fabrication of reduced scale ITER First Wall (FW) mock-ups of the Normal Heat Flux (NHF) design, including a “semi-prototype” with a dimension of 305 mm × 660 mm, corresponding to about 1/6 of a full-scale panel. The activity was carried out in the framework of the pre-qualification of the European Domestic Agency (EU-DA or F4E) for the supply of the European share of the ITER First Wall. The hardware consists of three Upgraded (2 MW/m 2 ) Normal Heat Flux (U-NHF) small-scale mock-ups, bearing 3 beryllium tiles each, and of one Semi-Prototype, representing six full-scale fingers and bearing a total of 84 beryllium tiles. The manufacturing process makes extensive use of Hot Isostatic Pressing, which was developed over more than a decade during ITER Engineering Design Activity phase. The main manufacturing steps for the semi-prototype are described, with special reference to the lessons learned and the implications impacting the future fabrication of the full-scale prototype and the series which consists of 218 panels plus spares. In addition, a “tile-size” mock-up was manufactured in order to assess the performance of larger tiles. The use of larger tiles would be highly beneficial since it would allow a significant reduction of the panel assembly time
International Nuclear Information System (INIS)
Ruivo, C.R.; Vaz, D.C.
2015-01-01
Highlights: • The transient thermal behaviour of external multilayer walls of buildings is studied. • Reference results for four representative walls, obtained with a numerical model, are provided. • Shortcomings of approaches based on the Mackey-and-Wright method are identified. • Handling full-feature excitations with Fourier series decomposition improves accuracy. • A simpler, yet accurate, promising novel approach to predict heat gain is proposed. - Abstract: Nowadays, simulation tools are available for calculating the thermal loads of multiple rooms of buildings, for given inputs. However, due to inaccuracies or uncertainties in some of the input data (e.g., thermal properties, air infiltrations flow rates, building occupancy), the evaluated thermal load may represent no more than just an estimate of the actual thermal load of the spaces. Accordingly, in certain practical situations, simplified methods may offer a more reasonable trade-off between effort and results accuracy than advanced software. Hence, despite the advances in computing power over the last decades, simplified methods for the evaluation of thermal loads are still of great interest nowadays, for both the practicing engineer and the graduating student, since these can be readily implemented or developed in common computational-tools, like a spreadsheet. The method of Mackey and Wright (M&W) is a simplified method that upon values of the decrement factor and time lag of a wall (or roof) estimates the instantaneous rate of heat transfer through its indoor surface. It assumes cyclic behaviour and shows good accuracy when the excitation and response have matching shapes, but it involves non negligible error otherwise, for example, in the case of walls of high thermal inertia. The aim of this study is to develop a simplified procedure that considerably improves the accuracy of the M&W method, particularly for excitations that noticeably depart from the sinusoidal shape, while not
Sobhani, M.; Behzadmehr, A.
2018-05-01
This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.
Zhang, Kai; Hou, Hu; Bu, Lin; Li, Bafang; Xue, Changhu; Peng, Zhe; Su, Shiwei
2017-03-01
The sensory texture of sea cucumber ( Apostichopus japonicus ) was dramatically affected by heat treatment. In this study, sea cucumbers were heated under different thermal conditions (HSC), and divided into five groups (HSC-80, HSC-90, HSC-100, HSC-110, and HSC-120) according to the heating temperature (from 80 to 120 °C). The changes in texture, moisture, gel structure, and biochemical parameters of the HSC were investigated. With increasing heating time (from 10 to 80 min), the hardness and gel structure changed slightly, and the water activity decreased as the proportion of T 21 increased by 133.33, 55.56, and 59.09% in the HSC-80, HSC-90, and HSC-100 groups, respectively. This indicated that moderate heating conditions (below 100 °C) caused gelation of sea cucumbers in HSC-80, HSC-90, and HSC-100 groups. However, as the water activity increased, the hardness declined rapidly by 2.56 and 2.7% in the HSC-110 and HSC-120 groups, with heating time increased from 10 to 80 min. Meanwhile, free hydroxyproline and ammonia nitrogen contents increased by 81.24 and 63.16% in the HSC-110 group; and by 63.09 and 54.99% in the HSC-120 group, as the gel structure of the sea cucumbers decomposed in these two groups. These results demonstrated that, severe heat treatment (above 100 °C) destroyed the chemical bonds, triggered the disintegration of collagen fibers and the gel structure of sea cucumbers, and transformed the migration and distribution of moisture, finally causing the deterioration of the sensory texture of the sea cucumbers.
Energy Technology Data Exchange (ETDEWEB)
Campo, Antonio [Idaho State Univ., Nuclear Engineering Dept., Pocatello, ID (United States); Sanchez, Alejo [Universidad de los Andes, Depto. de Ingenieria Mecanica, Merida (Venezuela)
1998-03-01
A semi-analytical analysis was conducted for the prediction of the mean bulk- and interface temperatures of gaseous and liquid fluids moving laminarly at high pressures inside thick-walled metallic tubes. The outer surfaces of the tubes are isothermal. The central goal of this article is to critically examine the thermal response of this kind of in-tube flows utilizing two versions of the 1-D lumped model: one is differential-numerical while the other is differential-algebraic. For the former, the local Nusselt number characterizing an inactive, isothermal tube was taken from correlation equations reported in the heat transfer literature. For the latter, a streamwise-mean Nusselt number associated with an active, isothermal tube was taken from standard correlation equations that appear in text-books on basic heat transfer. For the two different versions of the 1-D lumped model tested, the computed results consistently demonstrate that the differential-algebraic, provides accurate estimates of both the mean bulk- and the interface temperatures when compared with those temperature results computed with formal 2-D differential models. (author)
Energy Technology Data Exchange (ETDEWEB)
You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)
2014-04-15
Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.
Energy Technology Data Exchange (ETDEWEB)
Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)
2009-10-15
Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant
International Nuclear Information System (INIS)
Ezato, Koichiro; Shimizu, Akihiko; Kunugi, Tomoaki.
1995-01-01
Numerical simulations are presented on the flow and heat transfer characteristics of an impinging round jet of argon plasma with atmospheric pressure. The target slab with finite thickness upon which plasma jet impinges is assumed to be as SiC which is a candidate material for plasma facing material of fusion reactor. The plasma jet is treated by use of a magnetohydrodynamics model that takes its two-temperature non-equilibrium state into account. The rear side of the target slab is assumed to be cooled by a gas-solid suspension impinging round jet. The result shows that the plasma is in non-equilibrium state in which the electron temperature is higher than the heavy particle in the outer region of plasma jet core and that the heat flux to the target slab is over 8 MW/m 2 in the region of the plasma jet core contacts. (author)
International Nuclear Information System (INIS)
Aydin, O.; Uenal, A.; Ayhan, T.
1999-01-01
Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum
Iglesias, Marco
2017-11-26
In this work, we present the ensemble-marginalized Kalman filter (EnMKF), a sequential algorithm analogous to our previously proposed approach [1,2], for estimating the state and parameters of linear parabolic partial differential equations in initial-boundary value problems when the boundary data are noisy. We apply EnMKF to infer the thermal properties of building walls and to estimate the corresponding heat flux from real and synthetic data. Compared with a modified Ensemble Kalman Filter (EnKF) that is not marginalized, EnMKF reduces the bias error, avoids the collapse of the ensemble without needing to add inflation, and converges to the mean field posterior using $50\\\\%$ or less of the ensemble size required by EnKF. According to our results, the marginalization technique in EnMKF is key to performance improvement with smaller ensembles at any fixed time.
Directory of Open Access Journals (Sweden)
K.V.S. Raju
2014-06-01
Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2002-01-01
Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in the two-dimensional turbulent channel flow was performed for friction Reynolds number Reτ = 150 and Prandtl number Pr 0.71. Two thermal boundary conditions (BCs), isothermal and isoflux, were carried out. The main difference between two ideal types of boundary conditions is in temperature fluctuations, which retain a nonzero value on the wall for isoflux BC, and zero for isothermal BC. Very interesting effect is seen in streamwise temperature auto-correlation functions. While the auto-correlation function for isothermal BC decreases close to zero in the observed computational domain, the decrease of the auto-correlation function for the isoflux BC is slower and remains well above zero. Therefore, another DNS at two times longer computational domain was performed, but results did not show any differences larger than the statistical uncertainty.(author)
International Nuclear Information System (INIS)
Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.
2009-01-01
Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3
International Nuclear Information System (INIS)
You, Jeong-Ha
2014-01-01
Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage
Kakwere, Hamilton
2015-04-03
Herein we prepare nanohybrids by incorporating iron oxide nanocubes (cubic-IONPs) within a thermo-responsive polymer shell that can act as drug carriers for doxorubicin(doxo). The cubic-shaped nanoparticles employed are at the interface between superparamagnetic and ferromagnetic behavior and have an exceptionally high specific absorption rate (SAR) but their functionalization is extremely challenging compared to bare superparamagnetic iron oxide nanoparticles as they strongly interact with each other. By conducting the polymer grafting reaction using reversible addition-fragmentation chain transfer (RAFT) polymerization in a viscous solvent medium, we have here developed a facile approach to decorate the nanocubes with stimuli-responsive polymers. When the thermo-responsive shell is composed of poly(N-isopropyl acrylamide-co-polyethylene glycolmethylether acrylate), nanohybrids have a phase transition temperature, the lower critical solution temperature (LCST), above 37 °C in physiological conditions. Doxo loaded nanohybrids exhibited a negligible drug release below 37 °C but showed a consistent release of their cargo on demand by exploiting the capability of the nanocubes to generate heat under an alternating magnetic field (AMF). Moreover, the drug free nanocarrier does not exhibit cytotoxicity even when administered at high concentration of nanocubes (1g/L of iron) and internalized at high extent (260 pg of iron per cell). We have also implemented the synthesis protocol to decorate the surface of nanocubes with poly(vinylpyridine) polymer and thus prepare pH-responsive shell coated nanocubes.
Kakwere, Hamilton; Pernia Leal, Manuel; Materia, Maria-Elena; Curcio, Alberto; Guardia, Pablo; Niculaes, Dina; Marotta, Roberto; Falqui, Andrea; Pellegrino, Teresa
2015-01-01
Herein we prepare nanohybrids by incorporating iron oxide nanocubes (cubic-IONPs) within a thermo-responsive polymer shell that can act as drug carriers for doxorubicin(doxo). The cubic-shaped nanoparticles employed are at the interface between superparamagnetic and ferromagnetic behavior and have an exceptionally high specific absorption rate (SAR) but their functionalization is extremely challenging compared to bare superparamagnetic iron oxide nanoparticles as they strongly interact with each other. By conducting the polymer grafting reaction using reversible addition-fragmentation chain transfer (RAFT) polymerization in a viscous solvent medium, we have here developed a facile approach to decorate the nanocubes with stimuli-responsive polymers. When the thermo-responsive shell is composed of poly(N-isopropyl acrylamide-co-polyethylene glycolmethylether acrylate), nanohybrids have a phase transition temperature, the lower critical solution temperature (LCST), above 37 °C in physiological conditions. Doxo loaded nanohybrids exhibited a negligible drug release below 37 °C but showed a consistent release of their cargo on demand by exploiting the capability of the nanocubes to generate heat under an alternating magnetic field (AMF). Moreover, the drug free nanocarrier does not exhibit cytotoxicity even when administered at high concentration of nanocubes (1g/L of iron) and internalized at high extent (260 pg of iron per cell). We have also implemented the synthesis protocol to decorate the surface of nanocubes with poly(vinylpyridine) polymer and thus prepare pH-responsive shell coated nanocubes.
International Nuclear Information System (INIS)
Eifler, W.; Shepherd, I.M.
1983-01-01
During the ''severe-fuel-damage'' experiments of the SUPER SARA test program radiation heat transfer will play an important part. For the analysis of these experiments it should be modelled therefore in a particularly appropriate manner. Based on the same engineering type principles which are used in the radiation model of the TRAC code version for boiling water reactors a new model has been developed. This model is less computer time consuming than the TRAC model and particularly appropriate for the use in the subchannel - type bundle computer code which is planned to be developed for the analysis of the ''severe-fuel-damage'' experiments. Sample calculations for the ''severe-fuel-damage'' test array show that the difference between the results obtained with the new model and those obtained with the TRAC model is in general not significant
Application of dynamic slip wall modeling to a turbine nozzle guide vane
Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi
2015-11-01
Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).
Energy Technology Data Exchange (ETDEWEB)
Tony, Voo Chung Sung; Voon, Chun Hong; Lee, Chang Chuan and others, E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering, University Malaysia (Malaysia)
2017-11-15
Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO{sub 2} and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO{sub 2} and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO{sub 2} in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO{sub 2} and MWCNTs to SiCNTs was achieved for blend of SiO{sub 2} and MWCNTs in molar ratio of 1:3. (author)
Directory of Open Access Journals (Sweden)
D.V. Kovalenko
2017-08-01
Full Text Available The paper presents the main results of numerous experiments carried out over the past 10 years at QSPA-T and QSPA-Be plasma guns in support of ITER. Special targets made of pure W, W-1%La2O3 and two types of Be (TGP-56FW and S65-C were tested under the series of repeated plasma stream and photonic flux impact. Maximum heat load on the target surface was up to 2.5MJ/m2 in the case of plasma testing and was equal to 0.5MJ/m2 in the case of photonic flux testing. Pulse waveform was rectangular with tpulse= 0.5ms. It was found that the main erosion mechanisms of W and Be under plasma stream impact are the melt layer movement, the ejection of droplets and the cracks formation. As a result of repeated photonic fluxes a regular, “corrugated” structure are eventually formed on the Be target surface. Study of erosion products of W formed under plasma stream impact on the W target has shown that the D/W atomic ratio in the deposited W films during pulsed events may be the same or even higher than that for stationary processes.
Evaluation of heat transfer correlations for HCCI engine modeling
Soyhan, H.S.; Yasar, H.; Walmsley, H.; Head, B.; Kalghatgi, G.T.; Sorusbay, C.
2009-01-01
Combustion in HCCI engines is a controlled auto-ignition of well-mixed fuel, air and residual gas. The thermal conditions of the combustion chamber are governed by chemical kinetics strongly coupled with heat transfer from the hot gas to the walls. The heat losses have a critical effect on HCCI
Directory of Open Access Journals (Sweden)
Fei Jiang
Full Text Available Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu and heat shock protein 70 (HSP 70 are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70, IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.
Energy Technology Data Exchange (ETDEWEB)
Li, Zhengqi; Jing, Jianping; Liu, Guangkui; Chen, Zhichao; Liu, Chunlong [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)
2010-04-15
We measured various operational parameters of a 200-MW{sub e}, wall-fired, lignite utility boiler under different loads. The parameters measured were gas temperature, gas species concentration, char burnout, component release rates (C, H and N), furnace temperature, heat flux, and boiler efficiency. Cold air experiments of a single burner were conducted in the laboratory. A double swirl flow pulverized-coal burner has two ring recirculation zones that start in the secondary air region of the burner. With increasing secondary air flow, the air flow axial velocity increases, the maximum values for the radial velocity, tangential velocity, and turbulence intensity all increase, and there are slight increases in the air flow swirl intensity and the recirculation zone size. With increasing load gas, the temperature and CO concentration in the central region of burner decrease, while O{sub 2} concentration, NO{sub x} concentration, char burnout, and component release rates of C, H, and N increase. Pulverized-coal ignites farther into the burner, in the secondary air region. Gas temperature, O{sub 2} concentration, NO{sub x} concentration, char burnout and component release rates of C, H, and N all increase. Furthermore, CO concentration varies slightly and pulverized-coal ignites closer. In the side wall region, gas temperature, O{sub 2} concentration, and NO{sub x} concentration all increase, but CO concentration varies only slightly. In the bottom row burner region the furnace temperature and heat flux increase appreciably, but the increase become more obvious in the middle and top row burner regions and in the burnout region. Compared with a 120-MW{sub e} load, the mean NO{sub x} emission at the air preheater exits for 190-MW{sub e} load increases from 589.5 mg/m{sup 3} (O{sub 2} = 6%) to 794.6 mg/m{sup 3} (O{sub 2} = 6%), and the boiler efficiency increases from 90.73% to 92.45%. (author)
Energy Technology Data Exchange (ETDEWEB)
Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering
2009-07-15
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.
Plasma interactions with the outboard chamber wall in DIII-D
International Nuclear Information System (INIS)
Rudakov, D.L.; Boedo, J.A.; Yu, J.H.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Lasnier, C.J.; McLean, A.G.; Moyer, R.A.; Stangeby, P.C.; Tynan, G.R.; Wampler, W.R.; Watkins, J.G.; West, W.P.; Wong, C.P.C.; Bastasz, R.J.; Buchenauer, D.; Whaley, J.
2009-01-01
Erosion of the main chamber plasma-facing components is of concern for ITER. Plasma interaction with the outboard chamber wall is studied in DIII-D using Langmuir probes and optical diagnostics. Fast camera data shows that edge localized modes (ELMs) feature helical filamentary structures propagating towards the outboard wall. Upon reaching the wall, filaments result in regions of local intense plasma-material interaction (PMI) where peak incident particle and heat fluxes are up to two orders of magnitude higher than those between ELMs. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. A moderate change of the gap between the separatrix and the outer wall strongly affects PMI intensity at the wall. Material samples exposed near the outboard wall showed net carbon deposition in high-density discharges (near the Greenwald limit) and tendency towards net erosion in lower density discharges (∼0.45 of the Greenwald limit).
Energy Technology Data Exchange (ETDEWEB)
Gschwendtner, M.
2000-07-01
The Eckert number phenomenon - theoretically investigated by Geropp in 1969 - describes a turnover in heat transfer at a moving wall at an Eckert number EC=1. This report is the first to confirm the Eckert number phenomenon experimentally. Heat transfer on a heated, vertically rotating cylinder in a crossflow was investigated at extreme rotational speeds, i.e. in the range where the predicted phenomenon will occur. A heating concept had to be developed which allowed an input of heating power independent of rotational speed and which therefore had to be contact-free. The complex thermofluiddynamic processes in the boundary layer around the rotating cylinder were investigated and measured using predominantly optical measuring techniques. The results show that the temperature difference between the wall and the surrounding fluid had a significant effect on the predicted turnover of heat transfer at the wall. Moreover, maximum heat transfer occurs at an Eckert number Ec=0.3, which is of great importance for the cooling of hot surfaces in an airstream. [German] Das Eckert-Zahl-Phaenomen - von Geropp 1969 theoretisch untersucht - beschreibt den Umschlag des Waermeueberganges an einer bewegten Wand bei einer Eckert-ZahlEc{approx}1. In der vorliegenden Arbeit wird das Eckert-Zahl-Phaenomen zum ersten Mal experimentell bestaetigt. Dazu wurde der Waermeuebergang am Modellfall eines queransgestroemten, beheizten, vertikalrotierenden Zylinders untersucht. Aufgrund der fuer die Experimente notwendigen extremen Drehzahlen musste fuer die Zylinderheizung ein Konzept entwickelt werden, das eine beruehrungsfreie und damit drehzahlunabhaengige Leistungseinspeisung erlaubte. Mit vorwiegend optischen Messmethoden wurden die komplexen thermofluiddynamischen Vorgaenge in der Grenzschicht um den rotierenden Zylinder untersucht und vermessen. Die Ergebnisse zeigen u.a., dass die Temperaturdifferenz zwischen Wand und Umgebung von entscheidender Bedeutung fuer die Richtungsumkehr des
Energy Technology Data Exchange (ETDEWEB)
Godolphin, D.
1985-05-01
An unusual solar mass wall is described. At the turn of a handle it can change from a solar energy collector to a heat-blocker. An appropriate name for it might be the rotating prism wall. An example of the moving wall is at work in an adobe test home in Sede Boqer. Behind a large south-facing window stand four large adobe columns that are triangular in plan. One face of each of them is painted black to absorb sunlight, a second is covered with panels of polystyrene insulation, and a third is painted to match the room decor. These columns can rotate. On winter nights, the insulated side faces the glass, keeping heat losses down. The same scheme works in summer to keep heat out of the house. Small windows provide ventilation.
International Nuclear Information System (INIS)
Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.
2004-01-01
This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is discussed and analysed in the context of explaining the physical mechanisms that influence the casing heat flux. The physical size of the measurement domain was one nozzle guide vane-pitch and from -20% to +80% rotor axial chord. Additionally, measurements of the time-resolved adiabatic wall temperature are presented. The time-mean data from the same set of experiments is presented and discussed in Part I of this article. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The data reveal large temporal variations in heat transfer characteristics to the casing wall that are associated with blade-tip passing events and in particular the blade over-tip leakage flow. The highest instantaneous heat flux to the casing wall occurs within the blade-tip gap, and this has been found to be caused by a combination of increasing flow temperature and heat transfer coefficient. The time-resolved static pressure measurements have enabled a detailed understanding of the tip-leakage aerodynamics to be established, and the physical mechanisms influencing the casing heat load have been determined. In particular, this has focused on the role of the unsteady blade lift distribution that is produced by upstream vane effects. This has been seen to modulate the tip-leakage flow and cause subsequent variations in casing heat flux. The novel experimental techniques employed in these experiments have allowed the measurement of the time-resolved adiabatic wall temperature on the casing wall. These data clearly show the falling flow temperatures as work is extracted from the gas
Energy Technology Data Exchange (ETDEWEB)
Bushell, J., E-mail: joe.bushell@amec.com [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Sherlock, P. [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Mummery, P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, England (United Kingdom); Bellin, B.; Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona (Spain)
2015-10-15
Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.
International Nuclear Information System (INIS)
Bushell, J.; Sherlock, P.; Mummery, P.; Bellin, B.; Zacchia, F.
2015-01-01
Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, H.; Igarashi, T.; Tsutsui, T. [National Defense Academy, Kanagawa (Japan)
1999-11-25
An experimental study was performed to investigate the local heat transfer around a cube mounted on the wall. The cube lied in the turbulent boundary layer. The flow angle of attack to the cube was 15 degree. The Reynolds number ranged from 4.2 x 10{sup 3} to 3.3 x 10{sup 4}. The surface temperature distributions around time cube were measured with thermocouples tinder the condition of a constant heat flux. The local h eat transfer is very high near the front corner on the top face of the cube. This high heat transfer region extends from the front corner to downstream along both edges. This is caused by the formation of lamb horn vortex. The local heat transfer is also high in time region of horseshoe vortex formed a round the cube. On the wall behind the cube, there is a pair of minimum heat transfer region. The average Nusselt number on each face of the cube is given as a function of Reynolds number. The overall Nusselt number of time cube is expressed by Nu{sub m}=0.43Re{sup 0.58}. (author)
First wall of thermonuclear device
International Nuclear Information System (INIS)
Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.
1990-01-01
The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)
International Nuclear Information System (INIS)
Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.
1986-01-01
A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)
Hot spot formation on different tokamak wall materials
International Nuclear Information System (INIS)
Nedospasov, A.V.; Bezlyudny, I.V.
1998-01-01
The thermal contraction phenomenon and generation of 'hot spots' due to thermoemission were described. The paper consider non-linear stages of heat contraction on the graphite, beryllium, tungsten and vanadium wall. It is shown that on the beryllium surface hot spot can't appear due to strong cooling by sublimation. For other materials the conditions of hot spot appearance due to local superheating of the wall have been calculated and their parameters were found: critical surface temperature, size of spots and their temperature profiles, heat fluxes from plasma to the spots. It have been calculated fluxes of sublimating materials from spots to the plasma. It is noticed that nominal temperature of the grafite divertor plate, accepted in ITER's project to being equal 1500 C, is lower then critical temperature of the development heat contraction due to thermoemission. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2015-02-10
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
Moisture Research - Optimizing Wall Assemblies
Energy Technology Data Exchange (ETDEWEB)
Arena, L.; Mantha, P.
2013-05-01
The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
Effects of carbon wall on the behavior of Heliotron-E plasmas
Energy Technology Data Exchange (ETDEWEB)
Noda, N; Mizuuchi, T; Akaishi, K; Senju, T; Kondo, K; Kaneko, H; Motojima, O; Baba, T; Besshou, S; Sato, M
1989-04-01
Carbonization was successfully applied to Heliotron-E. Iron-inpurity radiations were strongly reduced with the carbonized wall. Main impacts of the metal reduction on plasma behaviors are sustainment of stored energy during high power, long pulse heating by NBI, achievement of a quasi-steady discharge with a low helical field and high beta, and highest electron density with pellet injection in a quasi-steady state. Hydrogen recycling was very high with the carbonized wall and low density operation was impossible. Helium glow discharge was found to be effective to control the hydrogen recycling with a carbon-tiled wall. (orig.).
Heat transfer effects on the performance of an air standard Dual cycle
International Nuclear Information System (INIS)
Hou, S.-S.
2004-01-01
There are heat losses during the cycle of a real engine that are neglected in ideal air standard analysis. In this paper, the effects of heat transfer on the net work output and the indicated thermal efficiency of an air standard Dual cycle are analyzed. Heat transfer from the unburned mixture to the cylinder walls has a negligible effect on the performance for the compression process. Additionally, the heat transfer rates to the cylinder walls during combustion are the highest and extremely important. Therefore, we assume that the compression and power processes proceed instantaneously so that they are reversible adiabatics, and the heat losses during the heat rejection process can be neglected. The heat loss through the cylinder wall is assumed to occur only during combustion and is further assumed to be proportional to the average temperature of both the working fluid and the cylinder wall. The results show that the net work output versus efficiency characteristics and the maximum net work output and the corresponding efficiency bounds are strongly influenced by the magnitude of the heat transfer. Higher heat transfer to the combustion chamber walls lowers the peak temperature and pressure and reduces the work per cycle and the efficiency. The effects of other parameters, in conjunction with the heat transfer, including combustion constants, cut-off ratio and intake air temperature, are also reported. The results are of importance to provide good guidance for the performance evaluation and improvement of practical Diesel engines
Directory of Open Access Journals (Sweden)
Gilaber P.
2006-11-01
formulation k-epsilon de la turbulence a été adoptée. La sensibilité du modèle aux effets de densité et de turbulence a été testée par l'intermédiaire de variations de l'avance à l'allumage et du régime. La comparaison entre mesure et simulation a montré un bon accord, tant en termes de flux thermiques locaux et instantanés, qu'en termes de bilan global. The computational fluid dynamics codes, which help to predict the behaviour of combusting gas in reciprocating engines, need, as boundary conditions for the momentum and energy equations, to approximate wall frictions and heat transfer between gas and walls. The purpose of this work is to validate a heat transfer model for spark ignited engines. Two steps of research have been worked on to meet this objective: an experimental phase and a computational phase. In the experimental phase, measurements were made on a test-engine instrumented with fast-response surface heat flux gages. Each gage consisted of a steel cylinder, containing two thermocouples. To analyze the influence of fluid dynamics on heat transfer, a Laser Doppler Velocimeter was used, by means of a spacer placed between the engine head and cylinder. The spacer was equiped with two windows and two heat-flux gages permitting simultaneous measurements of the heat flux and of the fluid dynamics outside the boundary layer. Two other gages were present in the head of the engine and up to ten data inputs could be simultaneously recorded at each crank-angle, including two velocity components and the cylinder pressure. A parametric analysis was carried out revealing the following trends:- the global heat transfer rate for a thermodynamic cycle of the engine decreases as the speed of the engine is increased, but the peak value of the wall heat-flux increases because of the increase of the turbulence level. - the volumetric efficiency appeared to have little effect on the turbulence level, and its influence on the heat transfer is mainly due to the increase of
DEFF Research Database (Denmark)
Mody, Astrid
2012-01-01
The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...
DEFF Research Database (Denmark)
Mody, Astrid
2012-01-01
The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...
Electroweak bubble wall speed limit
Energy Technology Data Exchange (ETDEWEB)
Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)
2017-05-01
In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.
Dynamic wall demonstration project
Energy Technology Data Exchange (ETDEWEB)
Nakatsui, L.; Mayhew, W.
1990-12-01
The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
Energy Technology Data Exchange (ETDEWEB)
Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan)
1996-10-27
A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.
Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin
2017-12-01
Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.
Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets
Pouransari, Z.; Biferale, L.; Johansson, A. V.
2015-02-01
The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.
Flow and heat transfer in a curved channel
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
External corners as heat bridges
Energy Technology Data Exchange (ETDEWEB)
Berber, J.
1984-08-01
The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.
International Nuclear Information System (INIS)
Li Longjian; Liu Hongtao; Cui Wenzhi
2007-01-01
The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)
Directory of Open Access Journals (Sweden)
Vebil Yıldırım
2017-07-01
Full Text Available Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk are all determined analytically at a specified constant surface temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy differential equation with constant coefficients are solved and results are presented in compact forms. For disks, three different boundary conditions are taken into account to consider mechanical engineering applications. The present study is also peppered with numerical results in graphical forms.
Shielding wall for thermonuclear device
International Nuclear Information System (INIS)
Uchida, Takaho.
1989-01-01
This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)
Czech Academy of Sciences Publication Activity Database
Halpern, F.D.; Horáček, Jan; Pitts, R. A.; Ricci, P.
2016-01-01
Roč. 58, č. 8 (2016), č. článku 084003. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GAP205/12/2327 Institutional support: RVO:61389021 Keywords : edge plasma * heat-flux width * scrape-off layer Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/0741-3335/58/8/084003/meta
International Nuclear Information System (INIS)
Maekawa, Akira; Serizawa, Hisashi; Nakacho, Keiji; Murakawa, Hidekazu
2011-01-01
There are many weld zones in the apparatus and piping installed in nuclear power plants and residual stress generated in the zone by weld process is the most important influence factor for maintaining structural integrity. Though the weld residual stress is frequently evaluated using numerical simulation, fast simulation techniques have been demanded because of the enormous calculation times used. Recently, the fast weld residual stress evaluation based on three-dimensional accurate analysis became available through development of the Iterative Substructure Method (ISM). In this study, the computational performance of the welding simulation code using the ISM was improved to get faster computations and more accurate welding simulation. By adding functions such as parallel processing, the computation speed was much faster than that of the conventional finite element method code. Furthermore, the accuracy of the improved code was validated by measurements. The influence of two different weld heat source models on the simulation results was also investigated and it was found that the moving heat source was effective to achieve accurate weld simulation for multi-pass welds. (author)
International Nuclear Information System (INIS)
Spatz, R.; Mewes, D.
1989-01-01
The counter-current flow of steam and water was experimentally investigated for the upper part of a PWR fuel element. The actual geometrical shape of the nuclear equipment was simulated by various types of plates, in which bore holes and slots were arranged in different positions. The experiments were performed with and without an installed, unheated rod bundle below the plates. The water was injected at saturated and subcooled temperatures in order to observe the effects of heat transfer on counter-current flow. With increasing steam velocity the flooding occurs initially in the tie-plate area. If the rod bundle is installed in the flow duct, a part of the downwards flowing water is transported upwards from the region of the upper grid spacer to the plate. Heat transfer between the phases can cause in the counter-current flow region an instable transition from downward to near complete upward directed liquid flow. In comparison to experiments with saturated water injection, flooding occurs at larger steam velocities. Different flooding correlations, which are known from the literature, were compared with the experimental data to appraise their applicability to counter-current flow in the core of PWRs. (orig.)
Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt
2016-03-01
In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.
A unified wall function for compressible turbulence modelling
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
International Nuclear Information System (INIS)
Li Zhihui; Jiang Peixue
2008-01-01
Convection heat transfer during the upward flow of CO 2 at supercritical pressures in a vertical circular tube (d in = 2 mm) at high Reynolds numbers was investigated experimentally, and the effects of heat fluxes, mass fluxes, inlet temperatures, pressures, buoyancy and thermal acceleration on the convection heat transfer was analyzed. The results show that the tube wall temperature occurs abnormally distribution for high heat-fluxes with upward flow. The degree of deteriorated heat transfer increases with increasing heat flux. Increasing of the mass flux delays the occurrence of the deterioration of heat transfer and weakens the deterioration of heat transfer down-stream section. The inlet temperature strongly influences the heat transfer. The deterioration degree of heat transfer decreases with increasing pressure. (authors)
Heat exchanger for solar water heaters
Cash, M.; Krupnick, A. C.
1977-01-01
Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.
Energy Technology Data Exchange (ETDEWEB)
Wang, Guiding [Univ. of California, Los Angeles, CA (United States)
2017-11-02
Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in China based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.
Thermal Bridge Effects in Walls Separating Rowhouses
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben Adriaan; Bakhuis, Dennis; Huisman, Sander Gerard; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-01-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by
Energy Technology Data Exchange (ETDEWEB)
Kostek, P.T.
1987-08-11
In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.
Abnormal energy deposition on the wall through plasma disruptions
International Nuclear Information System (INIS)
Yamazaki, K.; Schmidt, G.L.
1984-01-01
The dissipation of plasma kinetic and magnetic energy during sawtooth oscillations and disruptions in tokamak is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during the current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (orig.)
Abnormal energy deposition on the wall through plasma disruptions
International Nuclear Information System (INIS)
Yamazaki, K.; Schmidt, G.L.
1984-07-01
The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2013-09-17
A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.
Heat flux microsensor measurements
Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.
1992-01-01
A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.
Impinging jets - a short review on strategies for heat transfer enhancement
Nastase, Ilinca; Bode, Florin
2018-02-01
In industrial applications, heat and mass transfer can be considerably increased using impinging jets. A large number of flow phenomena will be generated by the impinging flow, such as: large scale structures, large curvature involving strong shear and normal stresses, stagnation in the wall boundary layers, heat transfer with the impinged wall, small scale turbulent mixing. All these phenomena are highly unsteady and even if nowadays a substantial number of studies in the literature are dedicated, the impinging jets are still not fully understood due to the highly unsteady nature and more over due to great difficulty of performing detailed numerical and experimental investigations.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
Research was made on improvement of the wettability and boiling heat transfer characteristics of a photocatalyst wall. Measurement experiment of the wettability was made for anatase type titan oxide-coated Al, SUS and Pb plates, rutil type titan oxide-flame coated SUS plate, raw plate, and oxide-plasma coated titan plate. In the ground experiment, the contact angles of distilled water and oil on specimen surfaces were measured. In the microgravity experiment, falling droplet images were recorded by using the facility of Japan Microgravity Center (JAMIC). For obtaining the effect of radioactive emission, UV irradiation, {gamma} ray and neutron beam irradiation by nuclear reactor, and {gamma} ray irradiation by Co-60 were carried out. As the experiment result, the rutil type titan oxide-flame coated SUS plate, nonconductor-coated titan plate, and zircaloy plate showed large improvement of the wettability by {gamma} ray irradiation with Co-60. It was also confirmed that in particular, titan shows the large effect of radioactive emission, and the wettability deteriorates rapidly after {gamma} ray irradiation. (NEDO)
Liquid metal heat exchanger for efficient heating of soils and geologic formations
DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN
2010-02-23
Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.
Manufacturing studies of double wall components for the ITER EC H and CD upper launcher
International Nuclear Information System (INIS)
Spaeh, P.; Aiello, G.; Goldmann, A.; Kleefeldt, K.; Kroiss, A.; Meier, A.; Obermeier, C.; Scherer, T.; Schreck, S.; Serikov, A.; Strauss, D.; Vaccaro, A.
2012-01-01
Highlights: ► Double wall manufacturing technologies for ITER In-vessel components. ► Rigid and safe accommodation of ECRH heating and current drive systems. ► Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm 3 up to 0.8 W/cm 3 will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.
Manufacturing studies of double wall components for the ITER EC H and CD upper launcher
Energy Technology Data Exchange (ETDEWEB)
Spaeh, P., E-mail: peter.spaeh@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kleefeldt, K. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Meier, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Scherer, T.; Schreck, S. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Serikov, A. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Strauss, D.; Vaccaro, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)
2012-08-15
Highlights: Black-Right-Pointing-Pointer Double wall manufacturing technologies for ITER In-vessel components. Black-Right-Pointing-Pointer Rigid and safe accommodation of ECRH heating and current drive systems. Black-Right-Pointing-Pointer Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm{sup 3} up to 0.8 W/cm{sup 3} will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.
Energy Technology Data Exchange (ETDEWEB)
Dondainas, N
1998-07-01
This study concerns the calculation methods relative to wall heat transfers in the simulation of air flows inside rooms. Today, there is a real need for a low cost predictive and reliable tool for the prediction of air flows inside buildings or air-conditioned rooms. However, the validity of results is highly dependent to the models used, in particular for the heat and pulse exchanges on walls. This study comprises 3 parts. The first part concerns the convective exchanges. An evaluation of 5 wall turbulence models is made (logarithmic functions model, non-equilibrium model, two-layers model, Lam and Bremhorst low-Reynolds model and modified Lam model). Comparison with experiment is performed on two test cases of the literature: the Cheesewright cavity in natural convection and the Blay cavity in mixed convection. A particular attention is paid to the mesh dependence of results and to the convergence of calculations. The second part concerns the radiant heat transfers between the walls of a room. A new method, called scale change method, is developed for the evaluation of radiant transfers. This method generalizes the fictive cell and radiosity methods. The energy conservation and exchange reciprocity principles are respected. The new method is not a zonal but a field method because net radiant fluxes calculated for each cell wall are variable (the walls are not isothermal). An evaluation of three methods is performed (ray tracing, fictive cell, and the new method) on 4 test cases in 2-D and 3-D geometry with and without mask effect. A particular attention is paid to the processing cost. The third part deals with the study of a real scale atrium. Three air-conditioning configurations are studied. An important part of the study concerns the convection-radiation coupling. Its advantage is to reject the boundary conditions outside the room. (J.S.)
Intense Magnetized Plasma-Wall Interaction
Energy Technology Data Exchange (ETDEWEB)
Bauer, Bruno S. [UNR; Fuelling, Stephan [UNR
2013-11-30
This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.
Numerical investigation on the convective heat transfer in a spiral coil with radiant heating
Directory of Open Access Journals (Sweden)
Đorđević Milan Lj.
2016-01-01
Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006
Modeling of heat transfer into a heat pipe for a localized heat input zone
International Nuclear Information System (INIS)
Rosenfeld, J.H.
1987-01-01
A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance
Energy Technology Data Exchange (ETDEWEB)
Bellettre, J.
1998-12-01
The flows and the heat transfer near and inside a porous wall subjected to an internal flow are numerically and experimentally studied. Numerical simulations of the main flow are performed using a classical model of turbulence (RNG k-{xi} model). A discrete modeling of blowing through a porous plate is developed in order to predict interactions between the main flow and the injected fluid. Numerical results are in good agreement with experimental data obtained with a subsonic wind tunnel. The coupling between the heat transfer near and inside porous plates is studied for different injection rates, main flow temperatures and internal exchange surfaces of porous media. Surfaces temperatures are calculated using a nodal model of internal heat transfer, linked to the model of boundary layer submitted to injection. By comparing numerical and experimental temperatures of walls, the heat transfer coefficients inside porous media are calculated. In order to improve the thermal protection of walls, the transpiration with a liquid is studied. Experimental results, obtained with ethanol injection whereas the main flow is gaseous, show an important enhancement of the protection process. The coolant evaporation rate is calculated using measurement of mass fraction in the boundary layer and is used for the numerical study of mass transfer in the boundary layer. (author)
Direct numerical simulation of turbulent concentric annular pipe flow Part 2: Heat transfer
International Nuclear Information System (INIS)
Chung, Seo Yoon; Sung, Hyung Jin
2003-01-01
A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at Re D h =8900 and Pr=0.71 for two radius ratios (R 1 /R 2 =0.1 and 0.5) and wall heat flux ratio q * =1.0. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent thermal structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. Probability density functions of the splat/anti-splat process are investigated to analyze the transverse curvature effect on the strong relationship between sweep and splat events. The present numerical results show that the turbulent thermal structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
Elevator mode convection in flows with strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)
2015-04-15
Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...
Hygrothermal behavior for a clay brick wall
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-06-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Hygrothermal behavior for a clay brick wall
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-01-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Formulation of an OTTV for walls of bedroom in Thailand
International Nuclear Information System (INIS)
Tummu, Preecha; Chirarattananon, Surapong; Hien, Vu Duc; Chaiwiwatworakul, Pipat; Rakkwamsuk, Pattana
2017-01-01
Highlights: • High and increasing use of air-conditioning in household bedrooms. • Building envelope is the barrier against heat gain into air-conditioned bedroom. • The OTTV form of performance measure for bedroom wall is applicable. • Effects of solar radiation appear strongly in OTTV formulation. - Abstract: Air-conditioning has penetrated to a significant extent in urban households and is increasingly used in all areas in Thailand. Building envelope is the most significant component that affects energy performance of an air-conditioned building. This paper reports results of an attempt to formulate a measure of performance of building envelope enclosing space used under bedroom function. The overall thermal transfer value form of the measure that comprises a heat gain through opaque wall term, a solar radiation gain term, and a conduction heat gain through glazing term proves to apply well. The formulation is validated through the use of two simulation programs on two residential building models with significant variations of the envelope thermal parameters. The work is a part of an effort in an international research program to develop a scheme for rating energy and carbon performance of residential buildings.
Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces
DEFF Research Database (Denmark)
Ji, Wenhui; Heiselberg, Per Kvols; Wang, Houhua
2016-01-01
The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...... an experimental study of the cooling of wall surfaces in a test room by mechanical night-time ventilation. Significant improvement of indoor thermal environment is presented resulting from the enhanced internal convection heat transfer....
Local wall power loading variations in thermonuclear fusion devices
International Nuclear Information System (INIS)
Carroll, M.C.; Miley, G.H.
1989-01-01
A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls
Heat transfer at a beam port corner
International Nuclear Information System (INIS)
Krinsky, S.
Along the general run of the vacuum chamber synchrotron radiation strikes the wall at a glancing angle of about 5.6 0 . The heat source is well-approximated by a ribbon of uniform power density having a small vertical height and an infinite azimuthal length. The heat transfer problem reduces to one in two-dimensions and it has been considered in a previous note. At the corner of a beam port the angle of incidence becomes 90 0 , so the temperature rises much higher than elsewhere. Since the power density at the corner is not uniform in its azimuthal dependence, but is strongly peaked at the point of normal incidence, two-dimensional heat flow is not a good approximation. The rectangular 3d problem is considered. This is easily solved and yields a good first estimate of the temperature rise at the corner
Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T
2014-10-21
A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.
Heat transfer from internally heated hemispherical pools
International Nuclear Information System (INIS)
Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.
1980-01-01
Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere
Design studies of an aluminum first wall for INTOR
International Nuclear Information System (INIS)
Powell, J.R.; Fillo, J.A.; Yu, W.S.; Hsieh, S.Y.; Pearlman, H.; Kramer, R.; Franz, E.; Craig, A.; Farrell, K.
1980-01-01
Besides the high erosion rates (including evaporation) expected for INTOR, there may also be high heat fluxes to the first wall, e.g., approx. 9 (Case I) to 24 (Case II) W/cm 2 , from two sources - radiation and charge exchange neutrals. There will also be internal heat generation by neutron and gamma deposition. An aluminum first wall design is analyzed, which substantially reduces concerns about survivability of the first wall during INTOR's operating life
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.
2017-11-01
The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.
Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe
International Nuclear Information System (INIS)
Mameli, Mauro; Marengo, Marco; Khandekar, Sameer
2014-01-01
A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)
International Nuclear Information System (INIS)
Groshev, A.I.; Slobodchuk, V.I.
1986-01-01
The results of numerical calculation of the conjugated problem of convective heat transfer under unsteady conditions are presented. The equations describing heat transfer take into account longitudinal heat diffusion in liquid and in a wall. The formulae for calculating local heat flows at the wall-liquid surface in the case of an arbitrary law of temperature variation at the outer wall surface along the channel length are proposed for steady-state heat transfer conditions
Discrete symmetries, strong CP problem and gravity
International Nuclear Information System (INIS)
Senjanovic, G.
1993-05-01
Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans
2017-01-01
Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...
Heat transfer in an asymmetrically heated duct, 2
International Nuclear Information System (INIS)
Satoh, Isao; Kurosaki, Yasuo
1986-01-01
The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)
Industrial waste heat for district heating
International Nuclear Information System (INIS)
Heitner, K.L.; Brooks, P.P.
1982-01-01
Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users
Sideways wall force produced during tokamak disruptions
Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.
2013-07-01
A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.
Wall temperature control of low-speed body drag
Lin, J. C.; Ash, R. L.
1986-01-01
The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Jiji, Latif M.
Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.
Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls
Directory of Open Access Journals (Sweden)
Wenjie Zhang
2014-01-01
Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.
Dynamics of strings between walls
International Nuclear Information System (INIS)
Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2009-01-01
Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.
Qualification Test for Korean Mockups of ITER Blanket First Wall
International Nuclear Information System (INIS)
Kim, S. K.; Lee, D. W.; Bae, Y. D.; Hong, B. G.; Jung, H. K.; Jung, Y. I.; Park, J. Y.; Jeong, Y. H.; Choi, B. K.; Kim, B. Y.
2009-01-01
ITER First Wall (FW) includes the beryllium armor tiles joined to CuCrZr heat sink with stainless steel cooling tubes. This first wall panels are one of the critical components in the ITER machine with the surface heat flux of 0.5 MW/m 2 or above. So qualification program needs to be performed with the goal to qualify the joining technologies required for the ITER First Wall. Based on the results of tests, the acceptance of the developed joining technologies will be established. The results of this qualification test will affect the final selection of the manufacturers for the ITER First Wall
Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan
2017-11-01
The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.
Enzymes and other agents that enhance cell wall extensibility
Cosgrove, D. J.
1999-01-01
Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.
Energy Technology Data Exchange (ETDEWEB)
Vernier, Ph [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1960-07-01
A study is made of the local heating phenomena produced on the isolated wall of a channel heated by the Joule effect by a sudden fluctuation in the conducting thickness. By the use of an experimental scale model it has been possible to measure the differences in the isolated wall temperature along the abscissa of the perturbation. The tests carried out show that the temperature differences are contained within a range of {+-} 4 per cent with respect to the temperature differences between the isolated and the isolated walls. (author) [French] On analyse le phenomene thermique local cree sur la paroi isolee d'un canal chauffe par effet Joule, par une perturbation brusque de l'epaisseur conductrice. Un modele experimental a l'echelle a permis de mesurer les ecarts de temperature de la paroi isolee a l'abscisse de la perturbation. Les essais realises ont montre que les ecarts de temperature se situaient dans une bande de {+-} 4 pour cent par rapport a l'ecart de temperature moyen entre paroi isolee et paroi refroidie. (auteur)
Visualisation of heat transfer in laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the
Studies on first wall and plasma wall interaction in JT-60
International Nuclear Information System (INIS)
Nakamura, Hiroo
1988-12-01
This paper describes studies on first wall and plasma wall interaction in JT-60. Main results are as follows; (1) To select JT-60 first wall material, various RandD were done in FY1975 ∼ 1976. Mo was selected as first wall materials of limiters and divertor plates because of its reliability under a high heat flux condition. (2) Development of low-Z material has been done to reduce impurity problem of Mo first wall. As a result, titanium carbide (TiC) was selected as a coating material on the Mo. High heat load testing has been done for TiC coated Mo limiter same as JT-60. This material can survive under the condition of 1 kW/cm 2 x 10 s, expected in JT-60 limiter design. (3) To reduce high heat load on the divertor plate, separatrix swing is proposed. Optimum frequency of the sweeping is evaluated to be 2 Hz in JT-60. For a discharge with heating power of 30 MW and duration time of 10 s, in addition to the separatrix swing, remote radiative cooling in the divertor region is necessary. Moreover, calculations of erosion thickness have been done for stainless steel, Mo, graphite, TiC and silicon caibide under high heat flux during plasma disruption. (4) In divertor experiments in JT-60, divertor functions on particle, heat load and impurity controls have been demonstrated. In elctron density of 6 x 10 19 m -3 , particle fueling rate of 20 MW NB heating (3 Pa m 3 /s) can be exhausted by divertor pumping system. Effectiveness of remote radiative cooling is demonstrated under the condition of 20 MW NB heating power. Also, separatrix swing is demonstrated to reduce heat load on the divertor plate. Total radiation in main plasma is 5 ∼ 10% of total absorbed power. (author) 120 refs
Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors
International Nuclear Information System (INIS)
Chen, Junjie; Song, Wenya; Xu, Deguang
2017-01-01
Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.
International Nuclear Information System (INIS)
Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.
2011-01-01
Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.
Domain walls at finite temperature
International Nuclear Information System (INIS)
Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.
1983-08-01
It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt
Fast wall of thermonuclear device
International Nuclear Information System (INIS)
Kitamura, Kazunori.
1990-01-01
A protruding molten metal reservoir is disposed to a sealing vessel embedded in the armour tile of fast walls, and molten metal of low melting point such as tin, lead or alloy thereof is filled in the sealing vessel. The volume of the molten metal reservoir is determined such that the surface level of the molten metal is kept within the molten metal reservoir even when the sealed low melting point metal is solidified at room temperature. When the temperature is lowered during plasma interruption period and the sealed low melting molten metal is solidified to reduce the volume, most of the molten metal reservoir regioin constitutes a vacuum gap. However, the inner wall of the sealing vessel other than the molten metal reservior region can be kept into contact with the sealed metal. Accordingly, the temperature and the sublimation loss of the armour tile can be kept low even upon plasma heat application. (I.N.)
Influence of the wall on the droplet evaporation
Directory of Open Access Journals (Sweden)
Misyura S. Y.
2015-01-01
Full Text Available Evaporative influence of the wall material and its thickness has been investigated in the present study. The wall influence for heat exchangers is particularly important in the boiling transition regime and in the event of the Leidenfrost temperature. The experimental points significantly diverge in the transition area of the boiling crisis. This fact can be explained by a different residence time of droplet on the wall surface. The discrepancy between the experimental data also takes place at the Leidenfrost temperature. The lower the thermal diffusivity of the wall material (high thermal inertia, the more the wall is cooled under a droplet.
Application of strong phosphoric acid to radiochemistry
International Nuclear Information System (INIS)
Terada, Kikuo
1977-01-01
Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)
Energy Technology Data Exchange (ETDEWEB)
Sarh, B.; Gokalp, I.; Sanders, H. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)
1997-12-31
In the framework of the studies carried out by the LCSR on variable density flows and diffusion turbulent flames, this paper deals with the study of the influence of density variation on the characteristics of a heated rectangular turbulent jet emerging in a stagnant surrounding atmosphere and more particularly on the determination of turbulent viscosity. The dynamical field is measured using laser-Doppler anemometry while the thermal field is measured using cold wire anemometry. A numerical predetermination of the characteristics of this jet, based on a k-{epsilon} modeling, is carried out. (J.S.) 6 refs.
Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall
Energy Technology Data Exchange (ETDEWEB)
Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Association EURATOM-IPPLM, Hery 23 Str., 01-497 Warsaw (Poland); Bobkov, V.; Maggi, C.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Coffey, I. H. [Department of Physics, Queen' s University, Belfast, BT7 1NN, Northern Ireland (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Jacquet, P.; Lawson, K. D. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van Eester, D. [Association EURATOM - Belgian State, ERM-KMS, TEC Partner (Belgium); Mayoral, M.-L. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB, UK and EFDA Close Support Unit, Garching (Germany); Collaboration: JET-EFDA Contributors
2014-02-12
Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of −π/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.
Harris, William G.
1985-01-01
A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Prediction of critical heat flux for water in uniformly heated vertical ...
African Journals Online (AJOL)
Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes. Auteur correspondant ... electrical and mechanical characteristics were well validated. Figure. 1 shows ... resistance to vapor filtration from the heating wall to the liquid bulk.
Energy Technology Data Exchange (ETDEWEB)
Li, J; Chen, J L [Institute of Plasma Physics, Chinese Academy of Sciences (China); Guo, H Y [Tri Alpha Energy (United States); Institute of Plasma Physics, Chinese Academy of Sciences (China); McCracken, G M [Culham Science Centre, UKAEA, Abingdon (United Kingdom)
2012-09-15
The problem of impurities in fusion plasmas has been recognized since the beginning of the fusion programme. Early experiments in glass vacuum vessels released gas from the wall to such an extent that the radiation from the impurities prevented the plasma from being heated above about 50 eV. The radiative power loss is principally due to line radiation from partially stripped ions, which is particularly a problem during the plasma startup phase. Another problem is fuel dilution, which arises because impurity atoms produce many electrons and, for a given plasma pressure, these electrons take the place of fuel particles. Impurities can also lead to disruptions, as a result of edge cooling and consequent current profile modification. The fractional impurity level which radiates 10% of the total thermonuclear power for a 10 keV plasma is 50% for helium, 7% for carbon, and less than 0.1% for molybdenum. Clearly, impurities of low atomic number are a much less serious problem than those of high atomic number. (author)
Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow
International Nuclear Information System (INIS)
Bostjan Koncar; Borut Mavko; Yassin A Hassan
2005-01-01
Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling
Methodology for first wall design
International Nuclear Information System (INIS)
Galambos, J.D.; Conner, D.L.; Goranson, P.L.; Lousteau, D.C.; Williamson, D.E.; Nelson, B.E.; Davis, F.C.
1993-01-01
An analytic parametric scoping tool has been developed for application to first wall (FW) design problems. Both thermal and disruption force effects are considered. For the high heat flux and high disruption load conditions expected in the International Thermonuclear Experimental Reactor (ITER) device, Vanadium alloy and dispersion-strengthened copper offer the best stress margins using a somewhat flattened plasma-facing configuration. Ferritic steels also appear to have an acceptable stress margin, whereas the conventional stainless steel 316 does not appear feasible. If a full semicircle shape FW is required, only the Vanadium and ferritic steel alloy have acceptable solutions
Investigations of post-dryout heat transfer in case of vertical and horizontal pipe flow
International Nuclear Information System (INIS)
Schnittger, R.B.
1982-01-01
Experimental studies are presented of the heat transfer behaviour of a post dry-out flows in directly heated tubes of 6 m length. The wall temperatures of the tube are measured by thermocouples, which are distributed radially and axially on the outer tube surface. The vapor temperature is determined by a probe at the exit of the tube R 12 is used as a working fluid. Based on the experimental temperature distribution, the influence on pressure, massflow-density, and on specific thermal surface load had been studied. As a result, the heat transfer behaviour is dominated in a broad parameter range by thermal non-equilibrium conditions between the phases. Under these conditions the heat is transfered mainly from the tube wall to the vapor and from the vapor to the droplets. The strong wall temperature decrease observed at higher pressures and specific thermal surface loads after the dryout is not explained by a contact between the droplets and the tube wall, but by the decay of the droplets in the boundary layer of the wall. The non-uniform wall-temperature distribution of the horizontal tube and the lower evaporation rate compared with a vertical tube are explained by a non-uniform vapor temperature - and droplet distribution over the tube cross-section. A model is proposed for the calculation of the wall temperatures, which accounts for all these individual effects. This model can also be applied in the case of water as is demonstrated by a comparison with respective experimental results from the literature. (orig.) [de
Condensation on a cooled plane upright wall
International Nuclear Information System (INIS)
Fortier, Andre.
1975-01-01
The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr
International Nuclear Information System (INIS)
Nishimura, M.
1998-04-01
To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)
Radiative heat transfer in a heat generating and turbulently convecting fluid layer
International Nuclear Information System (INIS)
Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.
1980-01-01
The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
First Wall, Blanket, Shield Engineering Technology Program
International Nuclear Information System (INIS)
Nygren, R.E.
1982-01-01
The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry
International Nuclear Information System (INIS)
Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.
2008-01-01
The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows
International Nuclear Information System (INIS)
Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.
2003-01-01
The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
Bitcoin Meets Strong Consistency
Decker, Christian; Seidel, Jochen; Wattenhofer, Roger
2014-01-01
The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...
Strong gravity and supersymmetry
International Nuclear Information System (INIS)
Chamseddine, Ali H.; Salam, A.; Strathdee, J.
1977-11-01
A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group
Energy Technology Data Exchange (ETDEWEB)
Ito, K; Fujita, O; Iiya, M; Kudo, K [Hokkaido University, Sapporo (Japan)
1997-02-01
To establish the inhomogeneous solid combustion control technology, effects of the strong magnetic field on the solid combustion were examined. When applying the sufficiently strong magnetic field, it is possible to control the air flow in combustion field by utilizing the force applying to constituent oxygen with large susceptibility. Based on this possibility, combustion experiments of expanded polystyrene plates were conducted between the magnetic poles of electro-magnet having the maximum flux density of 1 T and the maximum magnetic field gradient of 0.5 T/cm. To observe the effects of magnetic field without the effects of natural convection, combustion experiments of acrylic sheets were conducted between the magnetic poles of electro-magnet having the maximum flux density of 0.6 T and the magnetic field gradient of about 0.1 T/cm under the microgravity conditions between 10{sup -4} and 10{sup -5}g using a microgravity test facility. Consequently, prospective combustion results could be obtained, in which the force of flame received from the magnetic field is almost equivalent to the buoyancy of flame. It was demonstrated that combustion can be controlled by the magnetic field. 1 ref., 3 figs., 1 tab.
Rail gun performance and plasma characteristics due to wall ablation
Ray, P. K.
1986-01-01
The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.
Quality labels for retrofit cavity wall insulation : a comparative analysis
Rovers, Twan Johannes Hendrikus; Entrop, Alexis Gerardus; Halman, Johannes I.M.
2017-01-01
Retrofit cavity wall insulation can be exerted to reduce the energy use for space heating and cooling of existing buildings. In multiple countries, quality labels have emerged for this insulation service. In this research project, an evaluation framework for cavity wall insulation is developed by
Hot wire production of single-wall and multi-wall carbon nanotubes
Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.
2010-10-26
Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.
Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P
2015-07-28
a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.
Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... is the most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
Heat transfer, condensation and fog formation in crossflow plastic heat exchangers
Brouwers, H.J.H.
1996-01-01
In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
Structure of thermonuclear reactor wall
International Nuclear Information System (INIS)
Yamazaki, Seiichiro.
1991-01-01
In a thermonuclear reactor wall, there has been a worry that the brazing material is melted by high temperature heat and particle load, to peel off the joined portion and the protecting material is destroyed by temperature elevation, to expose the heat sink material. Then, in the reactor core structures of a thermonuclear reactor, such as a divertor plate comprising a protecting material made of carbon material and the heat sink material joined by brazing, a plate material made of a so-called refractory metal having a high atomic number such as tungsten, molybdenum or the alloy thereof is embedded or attached to an accurate position of the protecting material. This can prevent the brazing portion from destruction by escaping electrons generated upon occurrence of abnormality in the thermonuclear reactor, and peeling or destroy of the protecting material and the heat sink material. Sufficient characteristics of plasmas can always be maintained by disposing a material having a small atomic number, for example, carbon material, to the position facing to the plasmas. (N.H.)
Thermal insulation properties of walls
Directory of Open Access Journals (Sweden)
Zhukov Aleksey Dmitrievich
2014-05-01
Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.
Energy Technology Data Exchange (ETDEWEB)
Meier, W R
2011-02-24
The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e