International Nuclear Information System (INIS)
Wharton, C.B.
1977-01-01
A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Simulation of turbulent flows containing strong shocks
Fryxell, Bruce; Menon, Suresh
2008-12-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Simulation of turbulent flows containing strong shocks
International Nuclear Information System (INIS)
Fryxell, Bruce; Menon, Suresh
2008-01-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Turbulent resistive heating of solar coronal arches
Benford, G.
1983-01-01
The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.
Probability densities in strong turbulence
Yakhot, Victor
2006-03-01
In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production...... subrange. The spectra of velocity and potential fluctuations interact in the coupling subrange, and the energy is transferred along the spectrum in the inertia subrange. Applying the method of cascade decomposition, the spectral laws k-3, k-3, k-2 are obtained for the velocity fluctuations, and k-3, k-5, k......-3/2 for the potential fluctuations in the production, coupling and inertia subranges, respectively. The coefficient of Bohm diffusion is reproduced, and its role in electrostatic coupling is derived. Comparison is made with measured power laws reported in the literature, from Q-devices, hot...
Turbulent energy losses during orchard heating
Energy Technology Data Exchange (ETDEWEB)
Bland, W.L.
1979-01-01
Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.
Strong Turbulence in Alkali Halide Negative Ion Plasmas
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans
2017-01-01
Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...
Electrostatic turbulence in strongly magnetized plasmas
International Nuclear Information System (INIS)
Nielsen, A.H.
1993-01-01
Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)
Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux
International Nuclear Information System (INIS)
Kawamura, Hiroshi
1978-01-01
Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)
Soliton and strong Langmuir turbulence in solar flare processes
Song, M. T.; Wu, S. T.; Dryer, M.
1989-01-01
The occurrence of modulational instability in the current sheet of a solar flare is investigated. Special attention is given to the plasma microinstability in this sheet and its relation to the flare process. It is found that solitons or strong Langmuir turbulence are likely to occur in the diffusion region under solar flare conditions in which the electric resistivity could be enhanced by several orders of magnitude in the region, resulting in significant heating and stochastic acceleration of particles. A numerical example is used to demonstrate the transition of the magnetic field velocity and plasma density from the outer MHD region into the diffusive region and then back out again with the completion of the energy conversion process. This is all made possible by an increase in resistivity of four to five orders of magnitude over the classical value.
Energy Technology Data Exchange (ETDEWEB)
Sarh, B.; Gokalp, I.; Sanders, H. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)
1997-12-31
In the framework of the studies carried out by the LCSR on variable density flows and diffusion turbulent flames, this paper deals with the study of the influence of density variation on the characteristics of a heated rectangular turbulent jet emerging in a stagnant surrounding atmosphere and more particularly on the determination of turbulent viscosity. The dynamical field is measured using laser-Doppler anemometry while the thermal field is measured using cold wire anemometry. A numerical predetermination of the characteristics of this jet, based on a k-{epsilon} modeling, is carried out. (J.S.) 6 refs.
Strongly-Heated Gas Flow in Parallel Tube Rotation
Directory of Open Access Journals (Sweden)
Shuichi Torii
1998-01-01
Full Text Available A numerical analysis is performed to study thermal transport phenomena in gas flow through a strongly heated tube whose axis is in parallel with the rotational axis. The velocity and temperature fields prevail when fluid flows in a rotating tube with uniform heat flux on the tube wall. The two-equation k-ω turbulence and t2¯-εt heat transfer models are employed to determine turbulent viscosity and eddy diffusivity for heat, respectively. The governing boundary-layer equations are discritized by means of a control volume finitedifference techniques. It is found that the Coriolis and centrifugal (or centripetal forces cause fluid flow and heat transfer performance in the parallel-rotation system to be drastically different from those in the stationary case. Consequently, even if a tube rotating around a parallel axis is heated with high heat flux whose level causes a laminarizing flow in the stationary tube case, both the turbulent kinetic energy and the temperature variance remain over the pipe cross section, resulting in the suppression of an attenuation in heat transfer performance. In other words, an increase in tube rotation suppresses laminarization of gas flow.
Electromagnetic enhancement of turbulent heat transfer
Kenjeres, S.
2008-01-01
We performed large eddy simulations (LES) of the turbulent natural convection of an electrically conductive fluid (water with 7% Na2SO4 electrolyte solution) in a moderate (4:4:1) aspect ratio enclosure heated from below and cooled from above and subjected to external nonuniformly distributed
Turbulent Heat Transfer in Ribbed Pipe Flow
Kang, Changwoo; Yang, Kyung-Soo
2012-11-01
From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).
NATO Advanced Study Institute on Turbulence, Weak and Strong
Cardoso, O
1994-01-01
The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation:...
Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection
Ahlers, Günter; Brown, Eric; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef
2006-01-01
Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number $Nu$ and Reynolds number $\\hbox{\\it Re}$ in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were investigated both experimentally and theoretically. In the experiments the heat current, the temperature difference, and the
On the role of sound in the strong Langmuir turbulence
International Nuclear Information System (INIS)
Malkin, V.M.
1989-01-01
The main directions in the precision of the theory of strong Langmuir turbulence caused by the necessity of account of sound waves in plasma are preseted. In particular the effect of conversion of short-wave modulations in Langmuir waves induced by sound waves, are briefly described. 8 refs
Atmospheric Quantum Channels with Weak and Strong Turbulence
Vasylyev, D.; Semenov, A. A.; Vogel, W.
2016-08-01
The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.
Simulations of Turbulent Flows with Strong Shocks and Density Variations
Energy Technology Data Exchange (ETDEWEB)
Zhong, Xiaolin
2012-12-13
In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.
Experiments on plasma turbulence induced by strong, steady electric fields
International Nuclear Information System (INIS)
Hamberger, S.M.
1975-01-01
The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)
Turbulent ion heating in TCV Tokamak plasmas
International Nuclear Information System (INIS)
Schlatter, Ch.
2009-08-01
charge exchange measurements, by doping the plasma with ion neutralisation targets injected with the diagnostic neutral beam (DNBI), were used to absolutely calibrate the NPA. Advanced modelling of the measured hydrogenic charge exchange spectra with the neutralisation and neutral transport codes KN1D and DOUBLE-TCV permitted a calculation of the absolute neutral density profiles of the plasma species.The energisation and the properties of fast ions were studied in dedicated, low density, cold ion, hot electron plasmas, resonantly heated at the second harmonic of the electron cyclotron frequency. The ion acceleration occurs on a characteristic timescale in the sub-millisecond range and comprises up to 20 % of the plasma ions. The number of fast ions n i s and their effective temperature T i s are found to depend strongly on the bulk and suprathermal electron parameters, in particular T i s ≥ T e b (electron bulk) and n i s ∼ v de (toroidal electron drift speed). The suprathermal electrons, abundantly generated in plasmas subjected to ECCD, are diagnosed with perpendicular and oblique viewing electron cyclotron emission (ECE) antennas and the measured frequency spectra are reconstructed with the relativistic ECE radiation balance code NOTEC-TCV. With steady-state ECRH and ECCD, the fast ion population reaches an equilibrium state. The spatial fast ion temperature profile is broad, of similar shape compared to the bulk ion temperature profile. The hottest suprathermal temperature observed is T i s ≥ 6 keV. Various potential ion acceleration mechanisms were examined for relevance in the TCV parameter range. The simultaneous wave-electron and wave-ion resonances of ion acoustic turbulence (IAT) show the best correlation with the available experimental knowledge. Ion acoustic waves are emitted by the weakly relativistic circulating electrons and are mainly Landau damped onto the ions. Destabilisation of IAT is markedly facilitated by the important degree of
Exact result in strong wave turbulence of thin elastic plates
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.
Characteristics of turbulent heat transfer in an annulus at supercritical pressure
Peeters, J.W.R.; Pecnik, R.; Rohde, M.; van der Hagen, T.H.J.J.; Boersma, B.J.
2017-01-01
Heat transfer to fluids at supercritical pressure is different from heat transfer at lower pressures due to strong variations of the thermophysical properties with the temperature. We present and analyze results of direct numerical simulations of heat transfer to turbulent CO2 at 8 MPa in an
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-07-01
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed νe/c increases and as the temperature ratio Ti/Te of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on νe/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of Ti/Te. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of νe/c. For νe/c ≲0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For νe/c ≳0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all νe/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as νe/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Laminar turbulent transition in heated free jet
International Nuclear Information System (INIS)
Krejci, L.; Marsik, F.; Nenicka, V.
1998-01-01
The evolution of heat and mass transfer in the initial region of a transitional plasma plume is investigated and discussed. The results show that these transport processes are controlled and limited by the plume shear layer instability. The process of laminar-turbulent transition is consecutively controlled by the plume core shear layer instability where interrelation of the effective thickness of the shear temperature and density layers play decisive role. When the absolute instability occurs the resonances in the jet and arc chamber must be taken into account. These processes are manifested in three events. Between the first and second phase, there is a maximum of arc heater exit average enthalpy. The other two thresholds occur at maximum and minimum stagnation heat flux from the plume core. It seems that these processes also influence the thermal energy production in the arc chamber cavity. (author)
Weak and strong turbulence in the CGL equation
International Nuclear Information System (INIS)
Gibbon, J.D.; Bartuccelli, M.V.; Doering, C.R.
1993-01-01
To many fluid dynamicists, the only real turbulence is the fine scale 3-dimensional turbulence which occurs at high Reynolds numbers, with an energy cascade and an inertial subrange. The number of degrees of freedom in 3d strong turbulence is clearly many orders of magnitude greater than in such phenomena as convection in a box where perhaps only a few spatial modes govern the dynamics. Only in 2d are the incompressible Navier Stokes equations understood analytically in the sense that there is a rigorous proof of the existence of a finite dimensional global attractor. Computational methods are generally good enough to resolve the smallest scale in a 2d flow and, for 2d homogeneous decaying turbulence, the vorticity obeys a maximum principle. No such maximum principle is known to exist in 3d and regularity remains to be proved. Numerical resolution of the smallest scale in a fully turbulent 3d flow is still a long way off. In order to attempt to get a better grip on the tantalizing phenomena displayed by the Navier Stokes equations, it is a useful exercise to see whether it is possible to mimic some limited features of the 3d Navier Stokes equations with a different PDE system which displays similar functional properties but in a lower spatial dimension. This exercise, however, must obviously be limited by the fact that simpler models in lower dimensions cannot display the vortex stretching properties displayed by the 3d Navier Stokes equations, although the lowering of the spatial dimension does make it easier to compute the dynamics. One equation which will be shown to have some of the desired properites is a version of the d dimensional complex Ginzburg Landau (CDL) equation on the periodic domain [0,1]. It is not our intention here to treat it in its physical context. Our intention in using it is to try and mimic limited features of the Navier Stokes equations with an equation over which we have more analytical control
Turbulent heat flux measurements in thermally stable boundary layers
Williams, Owen J.; van Buren, Tyler; Smits, Alexander J.
2014-11-01
Thermally stable turbulent boundary layers are prevalent in the polar regions and nocturnal atmospheric surface layer but heat and momentum flux measurements in such flow are often difficult. Here, a new method is employed using a nanoscale cold-wire (T-NSTAP) adjacent to a 2D PIV light sheet to measure these fluxes within rough-wall turbulent boundary layer. This method combines the advantages of fast thermal frequency response with measurement of the spatial variation of the velocity field. Resolution is limited solely by the separation of the probe and the light sheet. The new technique is used to examine the applicability of Monin-Obukhov similarity over a range of Richardson numbers from weak to strongly stable. In addition, the velocity fields are conditionally averaged subject to strong deviations of temperature above and below the local average in an effort to determine the relationship between the coherent turbulent motions and the fluctuating temperature field. This work was supported by the Princeton University Cooperative Institute for Climate Science.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Directory of Open Access Journals (Sweden)
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Ion temperature gradient driven turbulence with strong trapped ion resonance
Energy Technology Data Exchange (ETDEWEB)
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)
2014-10-15
A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Energy Technology Data Exchange (ETDEWEB)
Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
Wavefront sensing and adaptive optics in strong turbulence
Mackey, Ruth; Dainty, Christopher
2005-06-01
When light propagates through the atmosphere the fluctuating refractive index caused by temperature gradients, humidity fluctuations and the wind mixing of air cause the phase of the optical field to be corrupted. In strong turbulence, over horizontal paths or at large zenith angles, the phase aberration is converted to intensity variation (scintillation) as interference within the beam and diffraction effects produce the peaks and zeros of a speckle-like pattern. At the zeros of intensity the phase becomes indeterminate as both the real and imaginary parts of the field go to zero. The wavefront is no longer continuous but contains dislocations along lines connecting phase singularities of opposite rotation. Conventional adaptive optics techniques of wavefront sensing and wavefront reconstruction do not account for discontinuous phase functions and hence can only conjugate an averaged, continuous wavefront. We are developing an adaptive optics system that can cope with dislocations in the phase function for potential use in a line-of-sight optical communications link. Using a ferroelectric liquid crystal spatial light modulator (FLC SLM) to generate dynamic atmospheric phase screens in the laboratory, we simulate strong scintillation conditions where high densities of phase singularities exist in order to compare wavefront sensors for tolerance to scintillation and accuracy of wavefront recovery.
Measuring mixing efficiency in experiments of strongly stratified turbulence
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.
2017-12-01
Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree
Turbulent heat transport in two- and three-dimensional temperature fields
Energy Technology Data Exchange (ETDEWEB)
Samaraweera, Don Sarath Abesiri [Univ. of California, Berkeley, CA (United States)
1978-03-01
A fundamental numerical study of turbulent heat and mass transport processes in two- and three-dimensional convective flows is presented. The model of turbulence employed is the type referred to as a second-order closure. In this scheme transport equations for all nonzero components of the Reynolds stress tensor, for the isotropic dissipation rate of turbulent kinetic energy, for all nonzero scalar flux tensor components and for the mean square scalar fluctuations are solved by a finite difference method along with the mean momentum and mean enthalpy (or concentration) equations. The model used for the stresses was developed earlier. Parallel ideas were utilised in obtaining a model for turbulent heat and mass transfer processes. The study has focused especially on the problem of nonaxisymmetric convective heat and mass transport in pipes, which arises when the boundary conditions are not axisymmetric. The few available experimental data on such situations have indicated anisotropy in effective diffusivities. To expand the available data base an experiment was conducted to obtain heat transfer measurements in strong three-dimensional heating conditions. Numerical procedures especially suitable for incorporation of second-order turbulent closure models have been developed. The effect of circumferential conduction in the tube material, which is influential in the asymmetric heating data currently available, was accounted for directly by extending the finite difference calculations into the pipe wall. The principal goal of predicting three-dimensional scalar transfer has been achieved.
An experimental investigation of turbulent flow heat transfer through ...
African Journals Online (AJOL)
An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. III
International Nuclear Information System (INIS)
Itoh, Sanae-I.; Itoh, Kimitaka
2000-01-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A unified theory for both the thermally excited fluctuations and the strongly turbulent fluctuations is presented. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. Formulation is presented by deriving an Fokker-Planck equation for the probability distribution function. Equilibrium distribution function of fluctuations is obtained. Transition from the thermal fluctuations, that is governed by the Boltzmann distribution, to the turbulent fluctuation is clarified. The distribution function for the turbulent fluctuation has tail component and the width of which is in the same order as the mean fluctuation level itself. The Lyapunov function is constructed for the strongly turbulent plasma, and it is shown that an approach to a certain equilibrium distribution is assured. The result for the most probable state is expressed in terms of 'minimum renormalized dissipation rate', which is given by the ratio of the nonlinear decorrelation rate of fluctuation energy and the random excitation rate which includes both the thermal noise and turbulent self-noise effects. Application is made for example to the current-diffusive interchange mode turbulence in inhomogeneous plasmas. The applicability of this method covers plasma turbulences in much wider circumstance as well as neutral fluid turbulence. This method of analyzing strong turbulence has successfully extended the principles of statistical physics, i.e., Kubo-formula, Prigogine's principle of minimum entropy production rate. The condition for the turbulence transition is analogous to
Higher order mode laser beam intensity fluctuations in strong oceanic turbulence
Baykal, Yahya
2017-05-01
Intensity fluctuations of the higher order mode laser beams are evaluated when these beams propagate in a medium exhibiting strong oceanic turbulence. Our formulation involves the modified Rytov solution that extends the Rytov solution to cover strong turbulence as well, and our recently reported expression that relates the atmospheric turbulence structure constant to the oceanic turbulence parameters and oceanic wireless optical communication link parameters. The variations of the intensity fluctuations are reported against the changes of the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, viscosity and the source size of the higher order mode laser beam. Our results indicate that under any oceanic turbulence parameters, it is advantageous to employ higher order laser modes in reducing the scintillation noise in wireless optical communication links operating in a strongly turbulent ocean.
Intermittent heating of the solar corona by MHD turbulence
Directory of Open Access Journals (Sweden)
É. Buchlin
2007-10-01
Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.
Sediment and plankton lift off recirculations in strong synthetic turbulence (KS)
Redondo, Jose M.; Castilla, Roberto; Sekula, Emil; Furmanek, Petr
2014-05-01
stratified flow. The properties of ensemble averages of the separation between two particles in a 2D turbulent flow were considered, and the KS approach was found to give satisfactory answers, with good comparison to experiment. We also compare structure and intermittency between KS and DNS. And experiments (Redondo 1988) The dynamical processes associated with the stably stratified atmospheric boundary layer or in the ocean thermocline are less well understood than those of its convective counterparts. This is due to its complexity, and the fact that buoyancy reduces entrainment across density interfaces. We present results on a numerical simulation of homogeneous and density stratified fluids and of comparable laboratory experiments where a sharp density interface generated by either salt concentration or heat, advances due to grid stirred turbulence Redondo (1988, 1990). The appearance of bursts of turbulence in very stable conditions due to breaking up of the internal waves, confers a sporadic character to the turbulence; these conditions of non-fully developed turbulence could explain this unusual behaviour of the scaling exponents. (Mahjoub et al. 1998, 20009 The structure functions show, in the inertial range, a potential law . The relation is concave in strong mixing situations (instability with fully developed turbulence), and convex in very stable situations (in which the breaking up of the interval waves confers a sporadic character to the turbulence).The multifractal model can not be used to represent situations of non-fully developed turbulence but the use of structure function analysis allows the investigation of intermittent and scale to scale energy transfer even in local non equilibrium flows. The relative diffusion of tracers is strongly dependent on the slope of the energy spectra which tends to Richardson's law also for very steep spectra. (Castilla et al. 2007) Local turbulence is used to establish the geometry of the turbulence mixing, changes in the
Numerical prediction of flow, heat transfer, turbulence and combustion
Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K
1983-01-01
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu
Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces
Directory of Open Access Journals (Sweden)
Onur YEMENİCİ
2013-04-01
Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights
Cryogenic Heat Exchanger with Turbulent Flows
Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard
2012-01-01
An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)
2016-08-10
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes
Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David
2017-04-01
This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non
Fast Heat Pulse Propagation by Turbulence Spreading
DEFF Research Database (Denmark)
Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola
2009-01-01
The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...
Heat and mass transfer in turbulent multiphase channel flow
Bukhvostova, A.
2015-01-01
Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We
Direct numerical simulation of turbulent concentric annular pipe flow Part 2: Heat transfer
International Nuclear Information System (INIS)
Chung, Seo Yoon; Sung, Hyung Jin
2003-01-01
A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at Re D h =8900 and Pr=0.71 for two radius ratios (R 1 /R 2 =0.1 and 0.5) and wall heat flux ratio q * =1.0. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent thermal structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. Probability density functions of the splat/anti-splat process are investigated to analyze the transverse curvature effect on the strong relationship between sweep and splat events. The present numerical results show that the turbulent thermal structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls
Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux
Directory of Open Access Journals (Sweden)
Shuichi Torii
2010-01-01
Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments
Mantica, P.; Thyagaraja, A.; Weiland, J.; Hogeweij, G. M. D.; Knight, P. J.
2005-10-01
Two fluid turbulence models, the drift wave based quasilinear 1.5D Weiland model and the electromagnetic global 3D nonlinear model cutie, have been used to account for heat pinch evidence in off-axis modulated electron cyclotron heating experiments in the Rijnhuizen Tokamak Project. Both models reproduce the main features indicating inward heat convection in mildly off-axis cases. In far-off-axis cases with hollow electron temperature profiles, the existence of outward convection was reproduced only by cutie. Turbulence mechanisms driving heat convection in the two models are discussed.
Validating modeled turbulent heat fluxes across large freshwater surfaces
Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.
2017-12-01
Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.
Computation of turbulent flow and heat transfer in subassemblies
International Nuclear Information System (INIS)
Slagter, W.
1979-01-01
This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas (IV)
International Nuclear Information System (INIS)
Itoh, S.I.; Itoh, K.
1999-08-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A Fokker-Planck equation for the probability distribution function of the magnitude of turbulence is deduced. In the statistical description, both the contributions of thermal excitation and turbulence are kept. From the Fokker-Planck equation, the transition probability between the thermal fluctuation and turbulent fluctuation is derived. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. The equilibrium distribution function describes the thermal fluctuation, self-sustained turbulence and the hysteresis between them as a function of the plasma gradient. The plasma inhomogeneity is the controlling parameter that governs the turbulence. The formula of transition probability recovers the Arrhenius law in the thermodynamical equilibrium limit. In the presence of self-noise, the transition probability deviates form the exponential law and provides a power law. Application is made to the submarginal interchange mode turbulence, being induced by the turbulent current-diffusivity, in inhomogeneous plasmas. The power law dependence of the transition probability is obtained on the distance between the pressure gradient and the critical gradient for linear instability. Thus a new type of critical exponent is explicitly deduced in the phenomena of subcritical excitation of turbulence. The method provides an extension of the nonequilibrium statistical physics to the far-nonequilibrium states. (orig.)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2007-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2008-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)
Wang, Xin; Tu, Chuanyi; He, Jiansen; Marsch, Eckart; Wang, Linghua
2013-08-01
The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These results confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.
Observation of a current-limited double layer in a linear turbulent-heating device
International Nuclear Information System (INIS)
Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.
1985-01-01
Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL
DNS of turbulent channel flow subject to oscillatory heat flux
Directory of Open Access Journals (Sweden)
Bukhvostova Anastasia
2014-01-01
Full Text Available In this paper we study the heat transfer in a turbulent channel flow, which is periodically heated through its walls. We consider the flow of air and water vapor using direct numerical simulation. We consider the fluid as a compressible Newtonian gas. We focus on the heat transfer properties of the system, e.g., the temperature difference between the walls and the Nusselt number. We consider the dependence of these quantities on the frequency of the applied heat flux. We observe that the mean temperature difference is quite insensitive to the frequency and that the amplitude of its oscillations is such that its value multiplied by the square root of frequency is approximately constant. Next we add droplets to the channel, which can undergo phase transitions. The heat transfer properties of the channel in the case with droplets are found to increase by more than a factor of two, compared to the situation without droplets.
Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage
Verdini, A.; Grappin, R.; Velli, M.
2012-02-01
Context. Coronal loops act as resonant cavities for low-frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere. These fluctuations are amplified in the corona and lead to the development of turbulence that in turn is able to dissipate the accumulated energy, thus heating the corona. However, trapping is not perfect, because some energy leaks down to the chromosphere on a long timescale, limiting the turbulent heating. Aims: We consider the combined effects of turbulence and energy leakage from the corona to the photosphere in determining the turbulent energy level and associated heating rate in models of coronal loops, which include the chromosphere and transition region. Methods: We use a piece-wise constant model for the Alfvén speed in loops and a reduced MHD-shell model to describe the interplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is sustained by incoming fluctuations that are equivalent, in the line-tied case, to forcing by the photospheric shear flows. While varying the turbulence strength, we systematically compare the average coronal energy level and dissipation in three models with increasing complexity: the classical closed model, the open corona, and the open corona including chromosphere (or three-layer model), with the last two models allowing energy leakage. Results: We find that (i) leakage always plays a role. Even for strong turbulence, the dissipation time never becomes much lower than the leakage time, at least in the three-layer model; therefore, both the energy and the dissipation levels are systematically lower than in the line-tied model; (ii) in all models, the energy level is close to the resonant prediction, i.e., assuming an effective turbulent correlation time longer than the Alfvén coronal crossing time; (iii) the heating rate is close to the value given by the ratio of photospheric energy divided by the Alfv
BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME
Directory of Open Access Journals (Sweden)
Suresh Chandrasekhar
2016-08-01
Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.
Mikhailenko, V. S.; Mikhailenko, V. V.; Lee, Hae June
2018-01-01
The ion cyclotron instability driven by a strong kinetic Alfvén wave is investigated as a possible source of anisotropic heating of ions in the sun's corona. We present a novel model of a plasma with coupled inhomogeneous current and shearing flow, which results from the particle's motion in the electric field of the kinetic Alfvén wave of finite wavelength. The investigation is performed employing the non-modal kinetic theory grounded on the shearing mode approach. The solution of the governing linear integral equation for the perturbed potential displays that the flow velocity shear, which for the corona conditions may be above the growth rate of the ion cyclotron instability in the plasma with steady current, changes the exponential growth of the ion cyclotron potential on the power function of time, that impedes the growth of the unstable ion cyclotron wave and reduces the turbulent heating rate of ions across the magnetic field.
Tokamak electron heat transport by direct numerical simulation of small scale turbulence
International Nuclear Information System (INIS)
Labit, B.
2002-10-01
In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the
Visualization of the heat release zone of highly turbulent premixed jet flames
Lv, Liang; Tan, Jianguo; Zhu, Jiajian
2017-10-01
Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.
Verniero, J. L.; Howes, G. G.; Klein, K. G.
2018-02-01
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.
Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection
Fan, Siteng; He, Jiansen; Yan, Limei; Tomczyk, Steven; Tian, Hui; Song, Hongqiang; Wang, Linghua; Zhang, Lei
2018-01-01
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot ({≈} 10 MK) rising blob was detected on the east limb, with an initial ejection flow speed of {≈} 330 km s^{-1}. The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from {≈} ± 3 km s^{-1} to {≈} ± 15 km s^{-1} and effective thermal velocities from {≈} 30 km s^{-1} to {≈} 60 km s^{-1}, according to the CoMP observations at the Fe xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was {≈} 1000 seconds for the Fe 171 Å channel, while it was {≈} 500 seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.
Turbulent heating in galaxy clusters brightest in X-rays
Zhuravleva, I.; Churazov, E.; Schekochihin, A. A.; Allen, S. W.; Arévalo, P.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.
2014-11-01
The hot (107 to 108 kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius--it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.
Universal characterization of wall turbulence for fluids with strong property variations
Patel, A.
2017-01-01
Wall-bounded turbulence involving mixing of scalars, such as temperature or concentration fields, play an important role in many engineering applications. In applications with large temperature or concentration differences, the variation of scalar dependent thermos physical properties can be strong.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2018-03-01
The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.
Performances of Free-Space Optical Communication System Over Strong Turbulence
Directory of Open Access Journals (Sweden)
Ucuk Darusalam
2014-08-01
Full Text Available We report an experimental of free-space optical communication (FSOC system that use tube propagation simulator (TPS as the turbulence medium. The FSOC system usewavelength of 1550 nm at the rate transmission of 1000 Mbps and amplified with EDFA at the output of +23 dBm. Index structure of 10-15–10-13 as the representation of atmosphere index turbulences are used for simulation of intensity distribution model or scintillation. The simulation use gammagamma and K model as well. The beam wave propagation models used in simulation are plane wave, spherical wave and Gaussian wave. Spherical wave achieves highest performance via gamma-gamma in strong turbulence. While Gaussian wave achieves highest performance also via K model. We also found, characteristical FSOC system performance is calculated more accurately with gamma-gamma method for strong turbulence than K model. The performances from gamma-gamma for strong turbulenceare at 22.55 dB, at 5.33×10-4, and at 9.41 ×10-6.
Turbulence convective heat transfer for cooling the photovoltaic cells
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
Heat Transfer Enhancement in a Differentially Heated Enclosure Using Nanofluids-Turbulent Regime
Abu-Nada, E.; Dinkelacker, F.; Alatabi, A.; Manickam, B.; Jollet, S.
2010-05-01
Heat Transfer enhancement in turbulent natural convection using nanofluids is investigated numerically. The problem used for studying natural convection is a differentially heated square enclosure. The Bousinessq model is used to model density variation in the nanofluid. The transport equations are solved numerically using a second-order finite volume technique by implementing the k-ω model. The numerical solution is benchmarked against the experimental results of Ampofo and Karayiannis [10]. The Prandtl number and the Rayleigh number of the base fluid are set equal to 6.57 and 1010 respectively. The presence of nanoparticles is found to enhance the heat transfer in the enclosure.
Transient turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru
2011-01-01
The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the
Transient turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru
2011-01-01
The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the
Energy Technology Data Exchange (ETDEWEB)
Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2016-11-10
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho and Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fast and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.
Turbulent heat/mass transfer at oceanic interfaces
Energy Technology Data Exchange (ETDEWEB)
Enstad, Lars Inge
2005-07-01
The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes
Heating and Cooling of Coronal Loops with Turbulent Suppression of Parallel Heat Conduction
Bian, Nicolas; Emslie, A. Gordon; Horne, Duncan; Kontar, Eduard P.
2018-01-01
Using the “enthalpy-based thermal evolution of loops” (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path {λ }T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃ 1.5× {10}7 K and a 200 s cooling time consistent with observations, the flare-heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free path {λ }T.
Heating and Cooling of Coronal Loops with Turbulent Suppression of Parallel Heat Conduction.
Bian, Nicolas; Emslie, A Gordon; Horne, Duncan; Kontar, Eduard P
2018-01-10
Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path λ T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃1.5 × 10 7 K and a 200 s cooling time consistent with observations, the flare-heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free path λ T .
International Nuclear Information System (INIS)
Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun
2011-01-01
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.
Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling
Uzdensky, D. A.
2018-03-01
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.
Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames
Liao, Ying-Hao
2013-11-02
The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.
International Nuclear Information System (INIS)
Goodman, S.
1993-05-01
Optical pumping of the ionospheric plasma by high-frequency radio waves produces a state of turbulence. Several consequences of the pumping are considered in this thesis. At reflection altitude the plasma is thought to be dominated by parametric instabilities and strong turbulence; these are both encapsulated in the so called Zakharov equations. The Zakharov equations are derived and generalised from kinetic theory. Limits of validity, corrections to the ion sound speed,effective ponderomotive force, nonlinear damping and other generalisation are included. As an example of the difference a kinetic approach makes, the threshold for parametric instabilities is seen to be lowered in a kinetic plasma. Mostly relevant to the upper hybrid layer is the recent discovery in the pumping experiments of stimulated electromagnetic emissions (SEE). In particular one feature of SEE which occurs around the cyclotron harmonics and depends on density striations is investigated. The observed frequency of emission, dependency on striations, time evolution and cutoff frequency below which the feature does not occur, are explained. Two theoretical approaches are taken. The first is a parametric three wave decay instability followed by a nonlinear mixing to produce SEE. Thresholds for the instability are well within experimental capacity. The second, less orthodox, approach, is a finite amplitude model. The finite amplitude model goes beyond the traditional parametric approach by being able to predict radiated power output. Miscellaneous aspects of a turbulent ionosphere are also examined. The dependency of the scattering cross section of a turbulent plasma upon higher order perturbations is considered. In a turbulent plasma, density gradients steeper than characteristic plasma scales may develop. The case of calculating the dielectric permittivity for a linear gradient of arbitrary steepness is considered
Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.
Mykhaylenko, Volodymyr S.; Mykhaylenko, Volodymyr V.; Lee, Hae June
2017-10-01
The ion cyclotron instability driven by the strong kinetic Alfven wave is investigated as a possible source of the anisotropic heating of ions in the coronal holes and solar wind. We present a novel model of a plasma with coupled inhomogeneous current and the sheared flow, which follows from the studies of the particles motion in the electric field of the kinetic Alfven wave of the finite wavelength. The investigation is performed employing the non-modal kinetic theory grounded on the shearing modes approach. The solution of the governing linear integral equation for the perturbed potential displays that the flow velocity shear, which for the corona conditions may be above the growth rate of the ion cyclotron instability in plasma with steady current, changes the exponential growth of the ion cyclotron potential on the power function of time, that impedes the growth of the unstable ion cyclotron wave and reduces the turbulent heating rate of ions across the magnetic field. This work was funded by National R&D Program through the National Research Foundation of Korea (NRF) (Grant No. NRF-2015R1D1A1A01061160).
Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration
Directory of Open Access Journals (Sweden)
Gil Katz
2016-05-01
Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.
Bubble deformability is crucial for strong drag reduction in turbulent Taylor-Couette flow
Sun, Chao; Narezo Guzman, Daniela; van Gils, Dennis P. M.; Lohse, Detlef
2011-11-01
Bubbly Taylor-Couette flow in the turbulent regime is studied both globally and locally at Reynolds numbers of 5 . 1 ×105 - 2 . 0 ×106 for pure inner cylinder rotation. We measure the drag reduction (DR) based on the global torque for global gas volume fractions (αglobal) up to 4 %, and observe a moderate DR for Re = 5 . 1 ×105 , and a strong DR for Re = 1 . 0 ×106 and 2 . 0 ×106 . Remarkably, more than 40 % of DR is achieved for αglobal = 4 % at Re = 2 . 0 ×106 . We investigate the statistics of the liquid flow velocity, and directly measure the local bubble concentration and Weber number for two Reynolds numbers in different drag reduction regimes, i.e. Re = 1 . 0 ×106 (strong DR) and 5 . 1 ×105 (moderate DR). By combining global and local measurements we reveal that bubble deformability is crucial for strong drag reduction in bubbly turbulent Taylor-Couette flow. This work was financially supported by technology foundation STW in The Netherlands.
Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage
Directory of Open Access Journals (Sweden)
Abhishek G. Ramgadia
2012-01-01
Full Text Available Numerical simulations of hydrodynamic and thermally fully developed turbulent flow are presented for flow through a stationary duct with periodic array of inline transverse rib turbulators. The rib height to hydraulic diameter ratio (/ℎ is 0.1 and the rib pitch to rib height ratio (/ is 10. The effect of secondary flow due to presence of rib turbulators on heat and mass transfer has been investigated. The present work reviews the use of a large eddy simulation (LES turbulence model, known as shear-improved Smagorinsky model (SISM, for predicting flow and heat transfer characteristics in the fully developed periodic flow region. The computations are performed for Reynolds number of 2,053 and the working fluid chosen to be air, the Prandtl number of which is 0.7. Instantaneous flow field, time-mean, and turbulent quantities are reported together with heat transfer and a close match with experiments has been observed.
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed
The radiated noise from isotropic turbulence and heated jets
Lilley, G. M.
1995-01-01
prevented the full deployment of Lighthill's theory from being achieved. However, the growth of the supercomputer and its applications in the study of the structure of turbulent shear flows in both unbounded and wall bounded flows, which complements and in certain cases extends the work of the few dedicated experimental groups working in this field for the past forty years, provides an opportunity and challenge to accurately predict the noise from jets. Moreover a combination of numerical and laboratory experiments offers the hope that in the not too distant future the physics of noise generation and flow interaction will be better understood and it will then be possible to not only improve the accuracy of noise prediction but also to explore and optimize schemes for noise reduction. The present challenge is to provide time and space accurate numerical databases for heated subsonic and supersonic jets to provide information on the fourth-order space-time covariance of Lighthill's equivalent stress tensor, T(ij), which governs the characteristics of the farfield radiated noise and the total acoustic power. Validation with available experimental databases will establish how close Lighthill's theory is to the accurate prediction of the directivity and spectrum of jet noise and the total acoustic power, and the need, in the applications of the theory, to include the effects of flow-acoustic interaction.
Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1982-01-01
The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt
Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris
Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.
2016-02-01
Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle
Energy Technology Data Exchange (ETDEWEB)
Krauss, T.; Meyer, L. [Forschungszentrum Karlsruhe (Germany)
1995-09-01
Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D
2014-06-20
Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.
Directory of Open Access Journals (Sweden)
Hooman Yarmand
2014-01-01
Full Text Available Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM. The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Statistics and Structures of Strong Turbulence in a Complex Ginzburg-Landau Equation
Iwasaki, H.; Toh, S.
1992-05-01
One-dimensional complex Ginzburg-Landau equation with a quintic nonlinearity (QCGL) is studied numerically to reveal the asymptotic property of its strong turbulence. In the inviscid limit, the QCGL equation tends to the nonlinear Schrödinger (NLS) equation which has a singular solution self-similarly blowing up in a finite time. The probability distribution function (PDF) of fluctuation amplitudes is found to have an algebraic tail with exponent close to -8. This power law is described as the multiplication of the PDF of the amplitude of a singular solution of the NLS equation and that of maximum heights of bursts. The former is shown to have a -7 power law in terms of the scaling property of the NLS singular solution. The latter is found to have a -1 power law by numerical simulation.
Nonlinear physics of plasmas. Spatiotemporal structures in strong turbulence. Lecture notes
International Nuclear Information System (INIS)
Skoric, Milos M.
2008-05-01
This material has been prepared and partly delivered in a series of lectures given at NIFS to Doctor course students of the SOKENDAI (Graduate University of Advanced Studies, Japan) in academic 2007/08 year. Special gratitude is due to colleagues for fruitful collaboration: Profs. K. Mima, Lj. Hadzievski, S. Ishiguro, A. Maluckov, M. Rajkovic and Dr Li Baiwen and Dr Lj. Nikolic, in particular, and to Prof. Mitsuo Kono for motivating the work on this text. I wish to pay unique tribute to close friends and longtime collaborators, Prof. Dik ter Haar and Prof. Moma Jovanovic who are no longer with us. This report contains Chapter 1 (Strong Langmur Turbulence), Chapter 2 (Wave Collapse in Plasmas), Chapter 3 (Spatiotemporal Complexity in Plasmas), Chapter 4 (Relativistic Plasma Interactions) and Chapter 5 (Ponderomotive Potential and Magnetization). (J.P.N.)
Characterization of Fuego for laminar and turbulent natural convection heat transfer.
Energy Technology Data Exchange (ETDEWEB)
Francis, Nicholas Donald, Jr. (,; .)
2005-08-01
A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).
Numerical turbulent convective heat transfer and fluid flow in complex channels
Energy Technology Data Exchange (ETDEWEB)
Rokni, M.
1996-04-01
This investigation concerns numerical turbulent heat transfer and fluid flow in complex channels for fully developed periodic state. Numerical application of different turbulence models for forced convective heat transfer in three dimensional channels are presented. It also concerns prediction of secondary motions and temperature distribution in straight and corrugated ducts with different cross section area. The standard linear k-e and Speziale`s non-linear k-e models with wall functions are applied to calculate the turbulent shear stresses. SED, GGDH and WET models are used to predict the turbulent heat fluxes. The overall thermal-hydraulic performance is presented in terms of friction factor and Nu-number. Some formulas are also presented to estimate the Nu-number in various wavy channels. The numerical approach is based on the finite volume technique with non-staggered grid arrangement. Rhie-Chow interpolation with SIMPLEC-algorithm is used. The convective terms are treated by hybrid, MUSCL, van Leer and QUICK schemes while the diffusive terms are treated by central difference scheme. The fully developed turbulent state is achieved by imposing periodic conditions in the main flow direction. In general, a numerical method for calculation of turbulent convective heat transfer in complex channels is presented. 4 refs, 3 figs
Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization
Tay-Wo-Chong, Luis
2015-11-16
The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
International Nuclear Information System (INIS)
Boudjemadi, R.
1996-03-01
The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends
Sensible Heat Flux Related to Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach
2017-06-01
FLUX RELATED TO VARIATIONS IN ATMOSPHERIC TURBULENCE KINETIC ENERGY ON A SANDY BEACH by Jessica S. Koscinski June 2017 Thesis Advisor...KINETIC ENERGY ON A SANDY BEACH 5. FUNDING NUMBERS 6. AUTHOR(S) Jessica S. Koscinski 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Sensible heat flux, turbulence kinetic energy , surf zone 15. NUMBER OF PAGES 57 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT
International Nuclear Information System (INIS)
Joong Hun Bae; Jung Yul Yoo; Haecheon Choi
2005-01-01
Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)
International Nuclear Information System (INIS)
Flageul, Cédric; Benhamadouche, Sofiane; Lamballais, Éric; Laurence, Dominique
2015-01-01
Highlights: • DNS of a turbulent channel flow with a Robin boundary condition on the scalar. • Budgets of second-order moments for conjugate and non-conjugate heat-transfer. • Original theoretical analysis for compatibility conditions at the wall. - Abstract: Budgets of turbulent heat fluxes and temperature variance obtained from the Direct Numerical Simulation of an incompressible periodic channel flow with a Reynolds number of 150 (based on friction velocity) and a Prandtl number of 0.71 are presented and analysed for four cases: locally imposed temperature at the wall (constant Dirichlet), locally imposed heat flux (constant Neumann), heat exchange coefficient (Robin) and 3D conjugate heat transfer. The dissipation rate associated with the temperature variance is strongly impacted by the thermal boundary condition. For non-conjugate cases, a straightforward analytical analysis establishes the connection between the boundary condition, the temperature variance and the wall-normal part of the thermal dissipation rate at the wall. For the conjugate case, the two-point correlations of the thermal field in the solid domain confirms the existence of very large scale thermal structures.
Heating of the Solar Wind Beyond 1 AU by Turbulent Dissipation
Smith, Charles
The deposition of energy into the solar wind is argued to result from the dissipation of low frequency magnetohydrodynamic turbulence via kinetic processes at spatial scales comparable to the ion gyroradius. We present a theory for heating the solar wind that relies on uid processes such as wind shear inside about 10 AU and the pickup of interstellar ions and the associated generation of waves and turbulence beyond the ionization cavity to serve as energy sources for the heating. We compare the predictions of this theory to the observed magnetic turbulence levels and solar wind temperature measured by Voyager 2 beyond 1 AU. The contribution to the heating of the solar wind provided by interstellar pickup ions is a key feature of this theory and is chie y responsible for the excellent agreement between theory and observation that is seen beyond 10 AU.
Self-regulation of mean flows in strongly stratified sheared turbulence
Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard
2016-11-01
We investigate the near-equilibrium state of shear-driven stratified turbulence generated by the breaking of Holmboe wave instability (HWI) and Kelvin-Helmholtz instability (KHI). We discuss DNS analyses associated with HWI under various initial conditions. We analyze the time-dependent distribution of the gradient Richardson number, Rig (z , t) associated with the horizontally-averaged velocity and density fields. We demonstrate that unlike the KHI-induced turbulence, the fully turbulent flow that is generated by HWI is robustly characterized by its high probability of Rig 0 . 2 - 0 . 25 , independent of the strength of the initial stratification and furthermore that the turbulence evolves in a 'near-equilibrium' state. The KHI-induced turbulence may become grossly 'out of equilibrium', however, and therefore decays rapidly when the initial value at the interface, Rig (0 , 0) , is closer to the critical value of 1/4; otherwise as Rig (0 , 0) -> 0 the KHI-induced turbulence is close to a state of equilibrium and hence is much more long-lived. We conjecture that stratified shear turbulence tends to adjust to a state of 'near-equilibrium' with horizontally-averaged flows characterized by a high probability of Rig <= 1 / 4 , and hence sustained turbulence over relatively long times.
Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number
International Nuclear Information System (INIS)
Ishihara, Takashi; Kaneda, Yukio; Hunt, Julian C R
2011-01-01
Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R λ = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10η, where η is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, κ) from scales larger than 1/κ to scales smaller than 1/κ at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.
Ghannam, Khaled
structure function of the longitudinal and vertical velocity components is examined using five experimental data sets that span the roughness sub-layer above vegetation canopies, the atmospheric surface-layer above a lake and a grass field, and an open channel experiment. The results indicate that close to the wall/surface, this scaling exists in the longitudinal velocity structure function only, with the vertical velocity counterpart exhibiting a much narrower extent of this range due to smaller separation of scales. Phenomenological aspects of the large-scale eddies show that the length scale formed by the friction velocity and energy dissipation acts as a dominant similarity length scale in collapsing experimental data at different heights, mainly due to the imbalance between local production and dissipation of turbulence kinetic energy. • Nonlocal heat transport in the convective atmospheric boundary-layer: Failure of the mean gradient-diffusion (K-theory) in the convective boundary-layer is explored. Using large eddy simulation runs for the atmospheric boundary layer spanning weakly to strongly convective conditions, a generic diagnostic framework that encodes the role of third-order moments in nonlocal heat transport is developed and tested. The premise is that these nonlocal effects are responsible for the inherent asymmetry in vertical transport, and hence the necessary non-Gaussian nature of the joint probability density function (JPDF) of vertical velocity and potential temperature must account for these effects. Conditional sampling (quadrant analysis) of this function and the imbalance between the flow mechanisms of ejections and sweeps are used to characterize this asymmetry, which is then linked to the third-order moments using a cumulant-discard method for the Gram-Charlier expansion of the JPDF. The connection between the ejection-sweep events and the third-order moments shows that the concepts of bottom-up/top-down diffusion, or updraft/downdraft models
Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees
Schröttle, Josef; Dörnbrack, Andreas
2013-06-01
We investigate the turbulent flow through a heterogeneous forest canopy by high-resolution numerical modeling. For this purpose, a novel approach to model individual trees is implemented in our large-eddy simulation (LES). A group of sixteen fractal Pythagoras trees is placed in the computational domain and the tree elements are numerically treated as immersed boundaries. Our objective is to resolve the multiscale flow response starting at the diameter of individual tree elements up to the depth of the atmospheric surface layer. A reference run, conducted for the forest flow under neutral thermal stratification, produces physically meaningful turbulence statistics. Our numerical results agree quantitatively with data obtained from former field-scale LESs and wind tunnel experiments. Furthermore, the numerical simulations resolve vortex shedding behind individual branches and trunks as well as the integral response of the turbulent flow through the heterogeneous forest canopy. A focus is the investigation of the turbulence structure of the flow under stable thermal stratification and in response to the heating of the fractal tree crowns. For the stratified flows, statistical quantities, e.g. turbulent kinetic energy and vorticity, are presented and the turbulent exchange processes of momentum and heat are considered in detail. The onset and formation of coherent structures such as elevated shear layers above the diabatically heated forest canopy are analyzed. For the stably stratified flow, temperature ramps above the forest canopy were simulated in agreement with previous observations. Thermally driven vortices with a typical diameter of the canopy height were simulated when the tree crowns were diabatically heated. The impact of the coherent flow structures on the heat flux is investigated.
International Nuclear Information System (INIS)
Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi
1981-01-01
Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time). (author)
Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.
Carbone, V; Marino, R; Sorriso-Valvo, L; Noullez, A; Bruno, R
2009-08-07
Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.
The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer
International Nuclear Information System (INIS)
Caldas, Miguel; Semiao, Viriato
2007-01-01
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence
International Nuclear Information System (INIS)
Loges, A.; Baumann, T.; Marocco, L.; Wetzel, T.; Stieglitz, R.
2011-01-01
In a couple of European research centres, Accelerator Driven Systems (ADS) are investigated for the transmutation of radioactive waste. In one of these concept lead bismuth eutectic (LBE) is applied as coolant. In different experiments covering forced and mixed convection in turbulent LBE flow in a concentric annulus the local velocity and temperature fields were investigated at prototypical power levels and dimensions. Local heat transfer properties were extracted and compared with literature data. A new empirical correlation for the Nusselt number for the thermal entry region for turbulent forced convection in liquid metals is introduced and the transition from forced to mixed convection in LBE is characterized. (author)
Energy Technology Data Exchange (ETDEWEB)
Capecelatro, Jesse, E-mail: jcaps@illinois.edu [Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2307 (United States); Desjardins, Olivier [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853 (United States); Fox, Rodney O. [Department of Chemical and Biological Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011-2230 (United States); Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Vois des Vignes, 92295 Chatenay Malabry (France)
2016-03-15
Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.
Local heat transfer coefficient for turbulent flow in rod bundles
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1983-03-01
The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-07-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.
2015-03-01
Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.
Experimental investigation of turbulent heat transfer in straight and curved rectangular ducts
Daughety, Steven Floyd
1983-01-01
Approved for public release; distribution is unlimited An experimental investigation was conducted to examine the convective heat transfer in straight and curved ducts of rectangular cross-section. The experimental configuration was modeled as infinite parallel plates with one wall at a constant temperature and the opposite wall adiabatic. The experiments were conducted at steady states for turbulent flow. Average Nusselt numbers were used to compare the heat transfer characteristics of...
Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes
Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun
2006-01-01
This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy
Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes
Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.
2006-01-01
This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy
Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Bénard turbulence
Narezo Guzman, Daniela; Xie, Yanbo; Chen, S.; Fernandez Rivas, David; Sun, Chao; Lohse, Detlef; Ahlers, Günter
2016-01-01
We report on the enhancement of turbulent convective heat transport due to vapour-bubble nucleation at the bottom plate of a cylindrical Rayleigh–Bénard sample (aspect ratio 1.00, diameter 8.8 cm) filled with liquid. Microcavities acted as nucleation sites, allowing for well-controlled bubble
Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer
International Nuclear Information System (INIS)
Costa, E.B. da.
1992-09-01
The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs
Slow Impacts on Strong Targets Bring on the Heat
Melosh, H. J.; Ivanov, B. A.
2018-03-01
An important new paper by Kurosawa and Genda (2017, https://doi.org/10.1002/2017GL076285) reports a previously overlooked source of heating in low velocity meteorite impacts. Plastic deformation of the pressure-strengthened rocks behind the shock front dissipates energy, which appears as heat in addition to that generated across the shock wave itself. This heat source has surprisingly escaped explicit attention for decades: First, because it is minimized in the geometry typically chosen for laboratory experiments; and second because it is most important in rocks, and less so for the metals usually used in experiments. Nevertheless, modern numerical computer codes that include strength do compute this heating correctly. This raises the philosophical question of whether we can claim to understand some process just because our computer codes compute the results correctly.
Turbulence Heating ObserveR – satellite mission proposal
Czech Academy of Sciences Publication Activity Database
Vaivads, A.; Retinò, A.; Souček, Jan; Khotyaintsev, Y. V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; André, M.; Bale, S. D.; Balikhin, M.; Burgess, D.; Camporeale, E.; Caprioli, D.; Chen, C. H. K.; Clacey, E.; Cully, C. M.; Keyser de, J.; Eastwood, J. P.; Fazakerley, A. N.; Eriksson, S.; Goldstein, M. L.; Graham, D. B.; Haaland, S.; Hoshino, M.; Ji, H.; Karimabadi, H.; Kucharek, H.; Lavraud, B.; Marcucci, F.; Matthaeus, W. H.; Moore, T. E.; Nakamura, R.; Narita, Y.; Němeček, Z.; Norgren, C.; Opgenoorth, H.; Palmroth, M.; Perrone, D.; Pinçon, J.-L.; Rathsman, P.; Rothkaehl, H.; Sahraoui, F.; Servidio, S.; Sorriso-Valvo, L.; Vainio, L.; Vörös, Z.; Wimmer-Schweingruber, R. F.
2016-01-01
Roč. 82, č. 5 (2016), 905820501/1-905820501/16 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : plasma heating * plasma properties * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/div-classtitleturbulence-heating-observer-satellite-mission-proposaldiv/01BB69B09206CE04C48BEDA8F24ED33C/core-reader
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
International Nuclear Information System (INIS)
Aly, Wael I.A.
2014-01-01
Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for
Simple heat transfer correlations for turbulent tube flow
Directory of Open Access Journals (Sweden)
Taler Dawid
2017-01-01
Full Text Available The paper presents three power-type correlations of a simple form, which are valid for Reynolds numbers range from 3·103 ≤ Re ≤ 106, and for three different ranges of Prandtl number: 0.1 ≤ Pr ≤ 1.0, 1.0 < Pr ≤ 3.0, and 3.0 < Pr ≤ 103. Heat transfer correlations developed in the paper were compared with experimental results available in the literature. The comparisons performed in the paper confirm the good accuracy of the proposed correlations. They are also much simpler compared with the relationship of Gnielinski, which is also widely used in the heat transfer calculations.
International Nuclear Information System (INIS)
Wang, Wei; Zhang, Yaning; Li, Bingxi; Han, Huaizhi; Gao, Xiaoyan
2017-01-01
Highlights: • The outward helically corrugated tube is suitable for high pressure fluids. • The effects of corrugation height and pitch on turbulent flow are investigated. • The relationships among swirl, rotational flow and heat transfer are discussed. - Abstract: Concerning a novel outward helically corrugated tube manufactured through hydraulic forming under 290 MPa, a numerical study was conducted to investigate the mechanism of turbulent flow dynamics and heat transfer enhancement based on the Reynolds stress model (RSM) using the FLUENT software. A validation of the Reynolds stress model for turbulent flow over a wavy surface was performed, and the results were then compared with the results from a large eddy simulation (LES) model and with experimental measurements. The helically corrugated tubes with different corrugation height-to-diameter ratios and pitch-to-diameter ratios are then evaluated to explore their influence on turbulent flow and heat transfer. It was found that the intensity of swirl flow was enhanced with an increase in the corrugation height, and it increased with a decrease in the corrugation pitch, the intensification of the swirl flow strengthens the heat transfer and resistance characteristics. The intensity of rotational flow was enhanced with an increase in the corrugation height, and increased with an increase in the corrugation pitch; the enhanced rotational flow causes an inhibition effect on heat transfer and resistance. Moreover, the maximum values of the local Nusselt number and the friction factor along the walls were observed at the reattachment point, and their minimum values appeared at the core of the swirl flow. It is therefore reasonable to keep the corrugation height-to-diameter ratios be less than 0.1, and the pitch-to-diameter ratios be less than 2 to ensure that the growth rate of the heat transfer is greater than the growth rate of the flow resistance.
Turbulent heat transfer on a permeable surface in the range of supercritical gas injections
International Nuclear Information System (INIS)
Kichatov, B.V.; Polyaev, V.M.
1997-01-01
Gas injection in a permeable surface is used as one of the most perspective ways of thermal protection. Forcing back of the boundary layer from the surface takes place by injection, whereby the friction coefficients and heat exchange are decreased. By certain injection parameter, which is called critical, there takes place the complete forcing back of the boundary layer from the surface. However the process of friction and heat exchange degeneration proceeds nonuniformly. This article is devoted to explanation of the above notice. Analysis of the problem is based on the limiting relative law of heat exchange and friction for a turbulent boundary layer
Transient hydraulics and heat transfer in a turbulent flow
International Nuclear Information System (INIS)
Kawamura, H.
1975-06-01
In a reactor transient analysis, the friction factor and the heat transfer coefficient are assumed equal to the steady state values even in a transient state. This quasi-static assumption has been examined in the present paper. (orig./TK) [de
Bramberger, Martina; Dörnbrack, Andreas; Rapp, Markus; Gemsa, Steffen; Raynor, Kevin
2017-04-01
In January 2016, the combined POLar STRAtosphere in a Changing Climate (POLSTRACC), Investigation of the life cycle of gravity waves (GW-LCYCLE) II and Seasonality of Air mass transport and origin in the Lowermost Stratosphere (SALSA) campaign, shortly abbreviated as PGS, took place in Kiruna, Sweden. During this campaign, on 31 January 2016, a strong polar jet with horizontal wind speeds up to 100 m/s was located above northern Great Britain. The research flight PGS12 lead the High Altitude LOng range (HALO) aircraft right above the jet streak of this polar jet, a region which is known from theoretical studies for prevalent turbulence. Here, we present a case study in which high-resolution in-situ aircraft measurements are employed to analyse and quantify turbulence in the described region with parameters such as e.g. turbulent kinetic energy and the eddy dissipation rate. This analysis is supported by idealized numerical simulations to determine involved processes for the generation of turbulence. Complementing, forecasts and operational analyses of the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to thoroughly analyze the meteorological situation.
Computational simulation of turbulent natural convection in a volumetrically heated square cavity
International Nuclear Information System (INIS)
Vieira, Camila Braga; Su, Jian; Niceno, Bojan
2012-01-01
This work aims to analyze the turbulent natural convection in a volumetrically heated fluid with similar characteristics of an oxide layer of a molten core in the lower head of the pressure vessel. The simulations were carried out in a square cavity with isothermal walls, for Rayleigh numbers (Ra) ranging from 10 9 to 10 11 . Different turbulence models based on Reynolds Averaged Navier-Stokes equations were studied, such as the standard k - ε, low-Reynolds-k - ε, and Shear Stress Transport (SST), using the open-source Computational Fluid Dynamics (CFD) code - Open FOAM (Open Field Operation and Manipulation). The results of the three turbulence models were compared versus the results of experimental correlations and other authors’ simulations, and the conclusion was that the most promising model proves to be the SST, due to its accuracy and robustness. (author)
Kawaguchi, Yusuke; Takeda, Hiroki
2017-04-01
This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.
Yaningsih, Indri; Wijayanta, Agung Tri; Miyazaki, Takahiko; Koyama, Shigeru
2018-02-01
Turbulator is recognized as a method to increase the performance of the heat exchanger. Turbulator in the form of V-cut twisted tape insert could help to increase the performance by enhancing the coefficient of the heat transfer. This paper proposes a new design of V-cut twisted tape insert (VTT) with different width ratio (w/W), which investigated on the heat transfer enhancement, in the form of Nusselt number (Nu) and friction factor (f) characteristics. Three different width ratios (w/W) 0.32; 0.38 and 0.48 are introduced in this experiment. The working fluid is the hot water in the inner tube and cold water in the annulus, the flow direction is counter-flow. The temperature inlet of hot water is kept constant at 60°C while the flow rate is in the range of Reynolds number 5400 - 17,350. The heat exchanger without insertion (plain tube) and typical twisted tape insert (TT) are examined for comparison. Results indicate that the proposed VTT increases the heat transfer, friction factor, and thermal performance of the heat exchanger. Under the similar condition, VTT provides the best performance in comparison with TT and plain tube. Decreasing width ratio (w/W) increases the heat transfer and thermal performance. However, when the heat transfer is increased, the friction factor is also increasing. The results also revealed that the use of the VTT and TT, the increase in the heat transfer and friction factor up to 97% and 3.48 times of the plain tube. The highest thermal performance is 1.4.
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
Energy Technology Data Exchange (ETDEWEB)
Sanjiva Lele
2012-10-01
The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is
Turbulent transport regimes and the scrape-off layer heat flux width
Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.
2015-04-01
Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.
Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6
Johnson, C. B.; Kaufman, L. G., II
1974-01-01
An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.
DNS of turbulent heat transfer in a channel flow with a high spatial resolution
Energy Technology Data Exchange (ETDEWEB)
Kozuka, Makoto [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kozuka.makoto@gmail.com; Seki, Yohji [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan); Kawamura, Hiroshi [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kawa@rs.noda.tus.ac.jp
2009-06-15
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.
DNS of turbulent heat transfer in a channel flow with a high spatial resolution
International Nuclear Information System (INIS)
Kozuka, Makoto; Seki, Yohji; Kawamura, Hiroshi
2009-01-01
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.
Strong contributions of local background climate to urban heat islands.
Zhao, Lei; Lee, Xuhui; Smith, Ronald B; Oleson, Keith
2014-07-10
The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 ± 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 ± 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.
Strong contributions of local background climate to urban heat islands
Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith
2014-07-01
The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.
Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.
Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C
2015-05-13
The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2010-03-15
Atmospheric turbulence produces fluctuations in the irradiance of the transmitted optical beam, which is known as atmospheric scintillation, severely degrading the link performance. In this paper, a scheme combining transmit laser selection (TLS) and space-time trellis code (STTC) for multiple-input-single-output (MISO) free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over strong atmospheric turbulence channels is analyzed. Assuming channel state information at the transmitter and receiver, we propose the transmit diversity technique based on the selection of two out of the available L lasers corresponding to the optical paths with greater values of scintillation to transmit the baseline STTCs designed for two transmit antennas. Based on a pairwise error probability (PEP) analysis, results in terms of bit error rate are presented when the scintillation follows negative exponential and K distributions, which cover a wide range of strong atmospheric turbulence conditions. Obtained results show a diversity order of 2L-1 when L transmit lasers are available and a simple two-state STTC with rate 1 bit/(s .Hz) is used. Simulation results are further demonstrated to confirm the analytical results.
Mongiovì, Maria Stella; Jou, David; Sciacca, Michele
2018-01-01
This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to
Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
In this paper a turbulent channel flow with dispersed droplets is examined. The dispersed phase is allowed to have phase transition, which leads to heat and mass transfer between the phases, and correspondingly modulates turbulent flow properties. As a point of reference we examine the flow of water
International Nuclear Information System (INIS)
Menon, G.J.; Sielwa, J.T.
1977-01-01
The study is presented of the effects of heat transfer and the variations of the properties of the fluids in turbulent flow in tube. One model for the turbulent Eddy viscosity and termal Eddy diffusivity developed by CEBECI; NA and HABIB was utilized. The theoretical results agree well with experimental results [pt
Renormalization theory of stationary homogeneous strong turbulence in a collisionless plasma
International Nuclear Information System (INIS)
Zhang, Y.Z.
1984-01-01
A renormalization procedure for the perturbation expansion of the Vlasov-Poisson equation is presented to describe stationary homogeneous turbulence. By using the diagramatic scheme the theory is shown to be renormalizable to any order. The expressions for the renormalized propagator, the renormalized dielectric function, and the intrinsically incoherent source are given. The renormalization leads to a complete separation of the fluctuating distribution function f/sub k/ into two parts, the coherent part, which is proved to represent the dielectric effect of the medium, and the intrinsically incoherent part, which represents the effect of nonlinear source. The turbulent collisional operator in the transport equation is proved equal to GAMMA 0 , the frequency broadening when k = 0
Heat transfer by liquids in suspension in a turbulent gas stream (1960)
International Nuclear Information System (INIS)
Grison, E.; Commissariat a l'Energie Atomique, Saclay
1960-01-01
The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm 2 ), the temperature (until the boiling point) and the heat flux (until 250 W/cm 2 ). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [fr
The role of turbulence in coronal heating and solar wind expansion.
Cranmer, Steven R; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N
2015-05-13
Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Heat transfer from a simulated shuttle external tank in the naturally turbulent outdoor environment
Lin, F. N.; Littlefield, M. D.
1985-01-01
To estimate the local heat-transfer coefficients around an external-tank (ET) surface, a 9.8-m-high by 8.4-m-diameter ET simulator is constructed, instrumented, and tested in the naturally turbulent outdoor environment. Two different configurations under which the testing is conducted are described. The time-average, local values of Nusselt number at time-average Reynolds numbers of 2.2 x 10 to the 6th, 2.6 x 10 to the 6th, and 4.5 x 10 to the 6th are presented. It is shown that, at the same Reynolds numbers, the heat transfer coefficients due to the atmospheric airflow are higher than those due to airflow in a low-turbulent-intensity wind tunnel.
International Nuclear Information System (INIS)
Seki, Yohji; Kawamura, Hiroshi
2005-01-01
Direct numerical simulation (DNS) have been performed for the turbulent heat transfer in a channel flow. In the present study, effect of thermal boundary condition is examined. DNS has been carried out for streamwisely thermal boundary conditions (Re τ =180) with Pγ=0.71 to obtain statistical mean temperatures, temperature variances, budget terms and time scale ratios etc. The obtained results have indicated that the time scale ratio varies along a streamwise. (author)
Directory of Open Access Journals (Sweden)
Yu Ji
2017-03-01
Full Text Available The entropy generation analysis of fully turbulent convective heat transfer to nanofluids in a circular tube is investigated numerically using the Reynolds Averaged Navier–Stokes (RANS model. The nanofluids with particle concentration of 0%, 1%, 2%, 4% and 6% are treated as single phases of effective properties. The uniform heat flux is enforced at the tube wall. To confirm the validity of the numerical approach, the results have been compared with empirical correlations and analytical formula. The self-similarity profiles of local entropy generation are also studied, in which the peak values of entropy generation by direct dissipation, turbulent dissipation, mean temperature gradients and fluctuating temperature gradients for different Reynolds number as well as different particle concentration are observed. In addition, the effects of Reynolds number, volume fraction of nanoparticles and heat flux on total entropy generation and Bejan number are discussed. In the results, the intersection points of total entropy generation for water and four nanofluids are observed, when the entropy generation decrease before the intersection and increase after the intersection as the particle concentration increases. Finally, by definition of Ep, which combines the first law and second law of thermodynamics and attributed to evaluate the real performance of heat transfer processes, the optimal Reynolds number Reop corresponding to the best performance and the advisable Reynolds number Read providing the appropriate Reynolds number range for nanofluids in convective heat transfer can be determined.
Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts
Abroshan, Hamid
2018-02-01
Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.
Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger
Directory of Open Access Journals (Sweden)
Heydar Maddah
2014-01-01
Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.
International Nuclear Information System (INIS)
Goldston, R.J.
1984-02-01
Recent results from confinement scaling experiments on tokamaks with ohmic and strong auxiliary heating are reviewed. An attempt is made to draw these results together into a low-density ohmic confinement scaling law, and a scaling law for confinement with auxiliary heating. The auxiliary heating confinement law may also serve to explain the saturation in tau/sub E/ vs anti n/sub e/ observed in some ohmic heating density scaling experiments
Numerical simulation of strongly swirling turbulent flows through an abrupt expansion
International Nuclear Information System (INIS)
Paik, Joongcheol; Sotiropoulos, Fotis
2010-01-01
Turbulent swirling flow through an abrupt axisymmetric expansion is investigated numerically using detached-eddy simulation at Reynolds numbers = 3.0 x 10 4 and 1.0 x 10 5 . The effects of swirl intensity on the coherent dynamics of the flow are systematically studied by carrying out numerical simulations over a range of swirl numbers from 0.17 to 1.23. Comparison of the computed solutions with the experimental measurements of shows that the numerical simulations resolve both the axial and swirl mean velocity and turbulence intensity profiles with very good accuracy. Our simulations show that, along with moderate mesh refinement, critical prerequisite for accurate predictions of the flow downstream of the expansion is the specification of inlet conditions at a plane sufficiently far upstream of the expansion in order to avoid the spurious suppression of the low-frequency, large-scale precessing of the vortex core. Coherent structure visualizations with the q-criterion, friction lines and Lagrangian particle tracking are used to elucidate the rich dynamics of the flow as a function of the swirl number with emphasis on the onset of the spiral vortex breakdown, the onset and extent of the on-axis recirculation region and the large-scale instabilities along the shear layers and the pipe wall.
International Nuclear Information System (INIS)
Petukhov, B.S.; Zal'tsman, I.G.; Shikov, V.K.
1980-01-01
Methods of taking account of mutual effect of chemical transformations, radiation and turbulence in the calculations of heat transfer in gas flows are considered. Exponential functions of medium parameters are used to describe chemical sources and optical properties of media. It is shown using as an example the dissociation reaction C 2 reversible 2C that the effect of temperature and composition pulsations on recombination rates is negligibly small. It is also shown on the example of turbulent flow of hot molecular gas in a flat channel with cold walls that at moderate temperatures the effect of temperature pulsations on heat radiation flow can be significant (30-40%). The calculational results also show that there is a region in a turbulent boundary layer where the radiation greatly affects the coefficient of turbulent heat transfer
Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others
1995-09-01
In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
A theory for natural convection turbulent boundary layers next to heated vertical surfaces
International Nuclear Information System (INIS)
George, W.K. Jr.; Capp, S.P.
1979-01-01
The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)
Directory of Open Access Journals (Sweden)
Theodore D. Katsilieris
2017-03-01
Full Text Available The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need of licensing. However, since the propagation path of the information signal, i.e., the laser beam, is the atmosphere, their effectivity affects the atmospheric conditions strongly in the specific area. Thus, system performance depends significantly on the rain, the fog, the hail, the atmospheric turbulence, etc. Due to the influence of these effects, it is necessary to study, theoretically and numerically, very carefully before the installation of such a communication system. In this work, we present exactly and accurately approximate mathematical expressions for the estimation of the average capacity and the outage probability performance metrics, as functions of the link’s parameters, the transmitted power, the attenuation due to the fog, the ambient noise and the atmospheric turbulence phenomenon. The latter causes the scintillation effect, which results in random and fast fluctuations of the irradiance at the receiver’s end. These fluctuations can be studied accurately with statistical methods. Thus, in this work, we use either the lognormal or the gamma–gamma distribution for weak or moderate to strong turbulence conditions, respectively. Moreover, using the derived mathematical expressions, we design, accomplish and present a computational tool for the estimation of these systems’ performances, while also taking into account the parameter of the link and the atmospheric conditions. Furthermore, in order to increase the accuracy of the presented tool, for the cases where the obtained analytical mathematical expressions are complex, the performance results are verified with the numerical estimation of the appropriate integrals. Finally, using
Directory of Open Access Journals (Sweden)
Jan Skočilas
2015-08-01
Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.
Confinement-induced heat-transport enhancement in turbulent thermal convection.
Huang, Shi-Di; Kaczorowski, Matthias; Ni, Rui; Xia, Ke-Qing
2013-09-06
We report an experimental and numerical study of the effect of spatial confinement in turbulent thermal convection. It is found that when the width of the convection cell is narrowed, the heat-transfer efficiency increases significantly despite the fact that the overall flow is slowed down by the increased drag force from the sidewalls. Detailed experimental and numerical studies show that this enhancement is brought about by the changes in the dynamics and morphology of the thermal plumes in the boundary layers and in the large-scale flow structures in the bulk. It is found that the confined geometry produces more coherent and energetic hot and cold plume clusters that go up and down in random locations, resulting in more uniform and thinner thermal boundary layers. The study demonstrates how changes in turbulent bulk flow can influence the boundary layer dynamics and shows that the prevalent mode of heat transfer existing in larger aspect ratio convection cells, in which hot and cold thermal plumes are carried by the large-scale circulation along opposite sides of the sidewall, is not the most efficient way for heat transport.
Kinematics, Turbulence and Star Formation of z ˜1 Strongly Lensed Galaxies seen with MUSE
Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.
2018-03-01
We analyse a sample of 8 highly magnified galaxies at redshift 0.6 star formation rates, extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 - 80 km s-1and Gini coefficent of ⪉ 0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected star formation rates from emission lines for two objects in the sample. We use this information to study the relation between resolved star formation rate and velocity dispersion. We find that these quantities are not correlated, and the high velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.
Lee, Dorothy B; Faget, Maxime A
1956-01-01
A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.
Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum
International Nuclear Information System (INIS)
Nakao, Keisuke; Hattori, Yasuo; Suto, Hitoshi
2017-01-01
Highlights: • A large-eddy simulation of a spatially developing natural convection boundary layer is conducted. • First- and second-order moments of the heat and momentum showed a reasonable agreement with past experiments. • Coherent structure of turbulent vortex inherent in this boundary layer is discussed. - Abstract: Large-eddy simulation (LES) on a spatially developing natural convection boundary layer along a vertical heated plate was conducted. The heat transfer rate, friction velocity, mean velocity and temperature, and second-order turbulent properties both in the wall-normal and the stream-wise direction showed reasonable agreement with the findings of past experiments. The spectrum of velocity and temperature fluctuation showed a -2/3-power decay slope and -2-power decay slope respectively. Quadrant analysis revealed the inclination on Q1 and Q3 in the Reynolds stress and turbulent heat flux, changing their contribution along the distance from the plate surface. Following the convention, we defined the threshold region where the stream-wise mean velocity takes local maximum, the inner layer which is closer to the plate than the threshold region, the outer layer which is farther to the plate than the threshold region. The space correlation of stream-wise velocity tilted the head toward the wall in the propagating direction in the outer layer; on the other hand, the correlated motion had little inclination in the threshold region. The time history of the second invariant of gradient tensor Q revealed that the vortex strength oscillates both in the inner and the outer layers in between the laminar and the transition region. In the turbulent region, the vortex was often dominant in the outer layer. Instantaneous three-dimensional visualization of Q revealed the existence of high-speed fluid parcels associated with arch-shape vortices. These results were considered as an intrinsic structure in the outer layer, which is symmetrical to the structure of
Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence
Lynn, Jacob William
We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no
Numerical study of natural turbulent convection of nanofluids in a tall cavity heated from below
Directory of Open Access Journals (Sweden)
Mebrouk Ridha
2016-01-01
Full Text Available In the present paper a numerical study of natural turbulent convection in a tall cavity filled with nanofluids. The cavity has a heat source embedded on its bottom wall, while the left, right and top walls of the cavity are maintained at a relatively low temperature. The working fluid is a water based nanofluid having three nanoparticle types: alumina, copper and copper oxid. The influence of pertinent parameters such as Rayleigh number, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. Steady forms of twodimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the control volume based discretisation method employing the SIMPLE algorithm for pressure-velocity coupling. Turbulence is modeled using the standard k-ε model. The Rayleigh number, Ra, is varied from 2.491009 to 2.491011. The volume fractions of nanoparticles were varied in the interval 0≤φ≤ 6% . Stream lines, isotherms, velocity profiles and Temperature profiles are presented for various combinations of Ra, the type of nanofluid and solid volume fraction of nanoparticles. The results are reported in the form of average Nusselt number on the heated wall. It is shown that for all values of Ra, the average heat transfer rate from the heat source increases almost linearly and monotonically as the solid volume fraction increases. Finally the average heat transfer rate takes on values that decrease according to the ordering Cu, CuO and Al2O3.
International Nuclear Information System (INIS)
Truc, A.
1983-07-01
The spectrum of low frequency turbulence in the TFR tokamak, as observed along a central chord by a CO 2 laser light diffusion diagnostic, appears to be representable by four monomial branches joining to three vertices. This schematic representation permits to follow more easily the evolution of the turbulence during the life of the plasma, including the ohmic regime, the transitions to auxiliary heating and the minor and major disruptions
Yang, Liang
2014-12-01
In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.
International Nuclear Information System (INIS)
Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.
1987-01-01
The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section
Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction
Georgiou, Michail; Papalexandris, Miltiadis V.
2017-11-01
In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.
Ziaei-Rad, Masoud; Nouri-Broujerdi, Ali
2008-12-01
In this paper, the compressible gas flow through a pipe subjected to wall heat flux in unsteady condition in the entrance region is investigated numerically. The coupled conservation equations governing turbulent compressible viscous flow in the developing region of a pipe are solved numerically under different thermal boundary conditions. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. The convection terms are discretized by the well-defined Roe method, whereas the diffusion terms are discretized by a Galerkin finite-element formulation. The temporal terms are evaluated based on an explicit fourth-order Runge-Kutta scheme. The effect of different thermal conditions on the pressure loss of unsteady flow is investigated. The results show that increase in the inflow temperature or pipe-wall heat flux increases the pressure drop or decreases the mass flow rate in the pipe.
Augmented of turbulent heat transfer in an annular pipe with abrupt expansion
Directory of Open Access Journals (Sweden)
Togun Hussein
2016-01-01
Full Text Available This paper presents a study of heat transfer to turbulent air flow in the abrupt axisymmetric expansion of an annular pipe. The experimental investigations were performed in the Reynolds number range from 5000 to 30000, the heat flux varied from 1000 to 4000 W/m2, and the expansion ratio was maintained at D/d=1, 1.25, 1.67 and 2. The sudden expansion was created by changing the inner diameter of the entrance pipe to an annular passage. The outer diameter of the inner pipe and the inner diameter of the outer pipe are 2.5 and 10 cm, respectively, where both of the pipes are subjected to uniform heat flux. The distribution of the surface temperature of the test pipe and the local Nusselt number are presented in this investigation. Due to sudden expansion in the cross section of the annular pipe, a separation flow was created, which enhanced the heat transfer. The reduction of the surface temperature on the outer and inner pipes increased with the increase of the expansion ratio and the Reynolds number, and increased with the decrease of the heat flux to the annular pipe. The peak of the local Nusselt number was between 1.64 and 1.7 of the outer and inner pipes for Reynolds numbers varied from 5000 to 30000, and the increase of the local Nusselt number represented the augmentation of the heat transfer rate in the sudden expansion of the annular pipe. This research also showed a maximum heat transfer enhancement of 63-78% for the outer and inner pipes at an expansion ratio of D/d=2 at a Re=30000 and a heat flux of 4000W/m2.
Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra
Directory of Open Access Journals (Sweden)
D. Bewley
2010-07-01
Full Text Available Measurements of snowmelt and turbulent heat fluxes were made during the snowmelt periods of two years at two neighbouring tundra sites in the Yukon, one in a sheltered location with tall shrubs exposed above deep snow and the other in an exposed location with dwarf shrubs covered by shallow snow. The snow was about twice as deep in the valley as on the plateau at the end of each winter and melted out about 10 days later. The site with buried vegetation showed a transition from air-to-surface heat transfers to surface-to-air heat transfers as bare ground became exposed during snowmelt, but there were daytime transfers of heat from the surface to the air at the site with exposed vegetation even while snow remained on the ground. A model calculating separate energy balances for snow and exposed vegetation, driven with meteorological data from the sites, is found to be able to reproduce these behaviours. Averaged over 30-day periods the model gives about 8 Wm^{−2} more sensible heat flux to the atmosphere for the valley site than for the plateau site. Sensitivity of simulated fluxes to model parameters describing vegetation cover and density is investigated.
Electron heating caused by parametrically driven turbulence near the critical density
International Nuclear Information System (INIS)
Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.
1986-01-01
Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments
International Nuclear Information System (INIS)
Takase, Kazuyuki
1996-01-01
The square-ribbed fuel rod for high temperature gas-cooled reactors was developed in order to enhance the turbulent heat transfer in comparison with the standard fuel rod. To evaluate the heat transfer performance of the square-ribbed fuel rod, the turbulent heat transfer coefficients in an annular fuel channel with repeated two-dimensional square ribs were analyzed numerically on a fully developed incompressible flow using the k - ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out for a range of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40, respectively. The predicted values of the heat transfer coefficients agreed within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40, respectively, with the heat transfer empirical correlations obtained from the experimental data. It was concluded by the present study that the effect of the heat transfer augmentation by square ribs could be predicted sufficiently by the present numerical simulations and also a part of its mechanism could be explained by means of the change in the turbulence kinematic energy distribution along the flow direction. (author)
Energy Technology Data Exchange (ETDEWEB)
Chatelain, A.
2004-09-15
LES of turbulent flows with heat transfer was used within the framework of conjugate heat transfer problems. The objective of this work lies not only in identifying the various elements likely to impair temperature fluctuations estimations at the fluid/solid interface but also to introduce adequate wall modeling. The choice of a proper convection scheme for the transport of passive scalars led to the adoption of a high order upwind scheme with slope limiter. The use of classical wall models having shown some weaknesses as for the estimation of parietal temperature fluctuations, two new approaches are proposed and tested. The first one relies on a complete resolution of the Navier-Stokes equations on a refined grid close to the wall making it possible to rebuild the temperature fluctuations near the wall. The second one relies on the simultaneous and one dimensional resolution of a turbulent boundary layer equation and a variance transport equation near the wall. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)
2016-03-15
Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.
Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film
Directory of Open Access Journals (Sweden)
Khalal Larbi
2015-01-01
Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.
Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall
International Nuclear Information System (INIS)
Skote, Martin
2014-01-01
Highlights: • Scaling analysis is used to derive a log-law for drag reduced flow. • The slope of the log layer is directly linked to the drag reduction. • The result is only valid for wall manipulated flows – not fluid altering methods. • Extensive comparison with data found in the literature is made. - Abstract: Scaling analysis of the velocity profiles in strongly drag reduced flows reveals that the slope of the logarithmic part depends on the amount of drag reduction (DR). Unlike DR due to polymeric fluids, the slope changes gradually and can be predicted by the analysis. Furthermore, the intercept of the profiles is found to vary linearly with the DR. Two velocity scales are utilized: the reference (undisturbed) and the actual friction velocity. The theory is based on the assumption that the near-wall linear region is only governed by the actual friction velocity, while the outer part is governed by the reference friction velocity. As a result, logarithmic part is influenced by both velocity scales and the slope of the velocity profile is directly linked to the DR. The theoretically obtained results are verified by data from six previously performed direct numerical simulations (DNSs) of boundary layers over spatial and temporal wall oscillations, with a wide range of resulting DR. The theory is further supported by data from numerous investigations (DNSs as well as experiments) of wall-bounded flows forced by various forms of oscillating wall-motion. The assumption that the outer part is unaffected by the actual friction velocity limits the validity of the proposed log-law to flows not fully adapted to the imposed wall forcing, hence the theory provides a measure of the level of adjustment. In addition, a fundamental difference in the applicability of the theory to spatially developing boundary flow and infinite channel flow is discussed
Energy Technology Data Exchange (ETDEWEB)
Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)
1996-12-31
In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type
Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage
Directory of Open Access Journals (Sweden)
Sunil Kumar
Full Text Available In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000â18000. Different nanoparticles (Al2O3, CuO, and ZnO, with different concentration (Ï range of 1â4% and different nanoparticle diameter (dnp range of 30â45Â nm are disperse in water (base fluid. Several parameters such as stream wise distance (Xs/dp range of 1.4â2.6, span wise distance (Ys/dp range of 1.4â2.6, ratio of protruded height to print diameter (ep/dp range of 0.83â1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent. Renormalization k-Îµ model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, ÏÂ =Â 0.04, dnpÂ =Â 30Â nm, Xs/dpÂ =Â 1.8, Ys/dp=1.8 and ep/dp=1.0. The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within Â±7.0% error band. Keywords: Nanofluid, Turbulent heat transfer, Stream and span wise spacing, Flow channel, Protruded rib
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Direct Numerical Simulation of turbulent heat transfer up to Reτ = 2000
Hoyas, Sergio; Pérez-Quiles, Jezabel; Lluesma-Rodríguez, Federico
2017-11-01
We present a new set of direct numerical simulations of turbulent heat transfer in a channel flow for a Prandtl number of 0.71 and a friction Reynolds number of 2000. Mixed boundary conditions, i.e., wall temperature is time independent and varies linearly along streamwise component, have been used as boundary conditions for the thermal field. The effect of the size of the box in the one point statistics of the thermal field, and the kinetic energy, dissipation and turbulent budgets has been studied, showing that a domain with streamwise and spanwise sizes of 4 πh and 2 πh, where h is the channel half-height, is large enough to reproduce the one point statistics of larger boxes. The scaling of the previous quantities with respect to the Reynolds number has been also studied using a new dataset of simulations at smaller Reynolds number, finding two different scales for the inner and outer layers of the flow. Funded by project ENE2015-71333-R of the Spanish Ministerio de Economía y Competitividad.
Energy Technology Data Exchange (ETDEWEB)
Labit, B
2002-10-01
In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand
Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces
Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao
2018-01-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.
Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces
Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef
2017-11-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
International Nuclear Information System (INIS)
Ghosh, Somnath; Friedrich, Rainer
2015-01-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
Ghosh, Somnath; Friedrich, Rainer
2015-05-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.
Evaluation of turbulence models for flow and heat transfer in fuel rod bundle geometries
International Nuclear Information System (INIS)
Sofu, T.; Chun, T. H.; In, W. K.
2004-01-01
One of the objectives of the US-ROK collaborative I-NERI project known as the 'Numerical Reactor' is an assessment of commercial Computational Fluid Dynamics (CFD) analysis capabilities for high-fidelity thermal-hydraulic analysis of current and advanced reactor designs. More specifically, the work involves evaluation of common turbulence models in terms of their ability to calculate the flow and heat transfer for simple fuel rod bundle configurations. The evaluations have so far focused mostly on Reynolds-Averaged Navier-Stokes (RANS) models - including the standard k-ε model, non-linear (quadratic and cubic) k-ε models, and the renormalization-group (RNG) variant. The second-order moment closure models such as the differential Reynolds stress model (RSM) have also been considered. (authors)
Turbulent convective heat and mass transfer in the developing region of elliptical ducts
International Nuclear Information System (INIS)
Vinagre, H.T.M.; Mendes, P.R.S.
1990-01-01
Mass transfer experiments were performed to determine local heat and mass transfer coefficients for the turbulent flow in a duct with elliptical cross section. The naphthalene sublimation technique was employed to obtain the experimental results. Both entrance-region and fully-developed results were obtained. The Reynolds number was varied in the overall range of 7000-60,000, whereas values of 0,12, 0,25 and 0,5 for the aspect ratio were investigated. The fully developed transport coefficients obtained were compared with the ones available in the open literature for parallel plates and circular tubes, and it was found that the coefficients are quite insensitive to aspect ratio variations. (author)
Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We
Debruin, H.A.R.; Hartogensis, O.K.
2005-01-01
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
Directory of Open Access Journals (Sweden)
Weidan Ni
2016-03-01
Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.
International Nuclear Information System (INIS)
Shati, A.K.A.; Blakey, S.G.; Beck, S.B.M.
2013-01-01
The effects of natural turbulent convection with the interaction of surface radiation in a rectangular enclosure have previously been numerically and theoretically studied. The analyses were carried out over a wide range of enclosure aspect ratios ranging from 0.0625 to 16, different enclosure sizes, with cold wall temperatures ranging from 283 to 373 K, and temperature ratios ranging from 1.02 to 2.61. The work was carried out using four fluids (Argon, Air, Helium and Hydrogen; whose properties vary with temperature). These can be used to calculate Nusselt number for pure natural convection and also to calculate the ratio between convection to radiation heat transfer for both square and rectangular enclosures. This work extends these results by providing an empirical solution for the case of radiation and natural convection in square and rectangular enclosures and also provides a correlation equation to calculate the total Nusselt number for these cases. This method allows the simple calculation of either the total heat transfer rate, given the fluid, the geometry and the temperatures of the hot and cold walls, or via a straightforward iterative technique, the temperature of one wall given the other wall temperature and the total heat transfer. -- Highlights: ► Previous work has non-dimensionalised flow in enclosures with and without radiation. ► This extends the work by enabling a simple iterative technique to work out temperatures for total heat transfer rate. ► The provided solution has a maximum deviation of 7.7%. ► The method works for a variety of enclosures sizes, aspect ratios, temperatures and gases
CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step
Directory of Open Access Journals (Sweden)
Hussein Togun
2013-01-01
Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.
Using sonic anemometer temperature to measure sensible heat flux in strong winds
Directory of Open Access Journals (Sweden)
S. P. Burns
2012-09-01
Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (T_{s}', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with T_{s} to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s^{−1}, the agreement was around ±30 W m^{−2}. However, for U ≈ 8 m s^{−1}, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m^{−2} at U ≈ 18 m s^{−1}. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus T_{s} in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this T_{s} error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of T_{s}; however, a T_{s} error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the T_{s} error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.
International Nuclear Information System (INIS)
Takase, Kazuyuki
1994-11-01
The turbulent heat transfer of a fuel rod with three-dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors was analyzed numerically using the k-ε turbulence model, and investigated experimentally using a simulated fuel rod under the helium gas condition of a maximum outlet temperature of 1000degC and pressure of 4MPa. From the experimental results, it found that the turbulent heat transfer coefficients of the fuel rod were 18 to 80% higher than those of a concentric smooth annulus at a region of Reynolds number exceeding 2000. On the other hand, the predicted average Nusselt number of the fuel rod agreed well with the heat transfer correlation obtained from the experimental data within a relative error of 10% with Reynolds number of more than 5000. It was verified that the numerical analysis results had sufficient accuracy. Furthermore, the numerical prediction could clarify quantitatively the effects of the heat transfer augmentation by the spacer rib and the axial velocity increase due to a reduction in the annular channel cross-section. (author)
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Division of Mechanical Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki, E-mail: kunugi@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku 615-8540, Kyoto (Japan)
2016-11-01
Highlights: • We show the applicability to predict the heat transfer imposed on a uniform wall-normal magnetic field by means of the zero-equation heat transfer model. • Quasi-theoretical turbulent Prandtl numbers with various molecular Prandtl number fluids were obtained. • Improvements of the prediction accuracy in turbulent kinetic energy and turbulent dissipation rate under the magnetic fields were accomplished. - Abstract: Zero-equation heat transfer models based on the constant turbulent Prandtl number are evaluated using direct numerical simulation (DNS) data for fully developed channel flows imposed on a uniform wall-normal magnetic field. Quasi-theoretical turbulent Prandtl numbers are estimated by DNS data of various molecular Prandtl number fluids. From the viewpoint of highly-accurate magneto-hydrodynamic (MHD) heat transfer prediction, the parameters of the turbulent eddy viscosity of the k–É› model are optimized under the magnetic fields. Consequently, we use the zero-equation model based on a constant turbulent Prandtl number to demonstrate MHD heat transfer, and show the applicability of using this model to predict the heat transfer.
Directory of Open Access Journals (Sweden)
Fatimah A. Z. Mohd Saat
2017-06-01
Full Text Available This work focuses on the predictions of turbulent transition in oscillatory flow subjected to temperature gradients, which often occurs within heat exchangers of thermoacoustic devices. A two-dimensional computational fluid dynamics (CFD model was developed in ANSYS FLUENT and validated using the earlier experimental data. Four drive ratios (defined as maximum pressure amplitude to mean pressure were investigated: 0.30%, 0.45%, 0.65% and 0.83%. It has been found that the introduction of the turbulence model at a drive ratio as low as 0.45% improves the predictions of flow structure compared to experiments, which indicates that turbulent transition may occur at much smaller flow amplitudes than previously thought. In the current investigation, the critical Reynolds number based on the thickness of Stokes’ layer falls in the range between 70 and 100. The models tested included four variants of the RANS (Reynolds-Averaged Navier–Stokes equations: k-ε, k-ω, shear-stress-transport (SST-k-ω and transition-SST, the laminar model being used as a reference. Discussions are based on velocity profiles, vorticity plots, viscous dissipation and the resulting heat transfer and their comparison with experimental results. The SST-k-ω turbulence model and, in some cases, transition-SST provide the best fit of the velocity profile between numerical and experimental data (the value of the introduced metric measuring the deviation of the CFD velocity profiles from experiment is up to 43% lower than for the laminar model and also give the best match in terms of calculated heat flux. The viscous dissipation also increases with an increase of the drive ratio. The results suggest that turbulence should be considered when designing thermoacoustic devices even in low-amplitude regimes in order to improve the performance predictions of thermoacoustic systems.
Louda, P.; Kozel, K.; Sváček, P.; Příhoda, J.
2012-11-01
The work deals with numerical simulation of transonic flow in turbine cascade including heat transfer between fluid and blades. The blades are considered either solid, with heat conduction, or with a cavity held at constant temperature above the total temperature of the fluid. The surface of blades is hydraulically smooth or rough. The mathematical model is based on Favre averaged Navier-Stokes equations with SST turbulence model. The heat transfer inside blades is governed by Laplace equation for temperature. The solution for fluid part is obtained by implicit AUMPW+ finite volume method. The solution of Laplace equation is obtained by finite element method. The coupling between the two solvers is discussed including some problems. In the discussion of results, the effects of heat conduction in the blade, internal heating of the blade and surface roughness are observed.
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2017-01-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
International Nuclear Information System (INIS)
Amaya, J.; Cabrit, O.; Poitou, D.; Cuenot, B.; El Hafi, M.
2010-01-01
Direct numerical simulations (DNS) of an anisothermal reacting turbulent channel flow with and without radiative source terms have been performed to study the influence of the radiative heat transfer on the optically non-homogeneous boundary layer structure. A methodology for the study of the emitting/absorbing turbulent boundary layer (TBL) is presented. Details on the coupling strategy and the parallelization techniques are exposed. An analysis of the first order statistics is then carried out. It is shown that, in the studied configuration, the global structure of the thermal boundary layer is not significantly modified by radiation. However, the radiative transfer mechanism is not negligible and contributes to the heat losses at the walls. The classical law-of-the-wall for temperature can thus be improved for RANS/LES simulations taking into account the radiative contribution.
Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines
Energy Technology Data Exchange (ETDEWEB)
Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)
2017-04-26
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.
The application of complex network time series analysis in turbulent heated jets
International Nuclear Information System (INIS)
Charakopoulos, A. K.; Karakasidis, T. E.; Liakopoulos, A.; Papanicolaou, P. N.
2014-01-01
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics
New insights into the decay of ion waves to turbulence, ion heating, and soliton generation
Energy Technology Data Exchange (ETDEWEB)
Chapman, T., E-mail: chapman29@llnl.gov; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brunner, S. [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, Ecole Polytechnique Fédéral de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland)
2014-04-15
The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.
The application of complex network time series analysis in turbulent heated jets
Energy Technology Data Exchange (ETDEWEB)
Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A. [Laboratory of Hydromechanics and Environmental Engineering, Department of Civil Engineering, University of Thessaly, 38334 Volos (Greece); Papanicolaou, P. N. [School of Civil Engineering, Department of Water Resources and Environmental Engineering, National Technical University of Athens, 5 Heroon Polytechniou St., 15780 Zografos (Greece)
2014-06-15
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.
2ND EF Conference in Turbulent Heat Transfer, Manchester, UK 1998. Volume 1
1998-06-01
interpolated onto the 128 x 193 x 128 grid. A time of about 800 vfx &r was required to reach a stationary state and the averaging time was 715 v/u2r...number fully into turbulence (smooth spec- trum and PDF ) while retaining some coherence related to the flow geometry, (vertical dimension) and...containing the main part of the turbulence energy. The pdf s of turbulent fluctuations become essentially non-gaussian under the effects of inter- mittency
Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg
2009-12-01
Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.
Energy Technology Data Exchange (ETDEWEB)
Salimpour, Mohammad Reza; Golmohammadi, Kia; Sedaghat, Ahmad [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Campo, Antonio [The University of Texas at San Antonio, San Antonio (United States)
2015-09-15
The convective heat transfer for the turbulent flow of water/TiO{sub 2} nanofluid inside helically horizontal corrugated tubes is investigated in this paper using experimental techniques. The tube boundary condition is a uniform wall temperature. The test apparatus was designed and assembled with a test section containing 93 cm copper tubes with internal and external diameters of 7.71 mm and 9.52 mm, respectively. First, the heat transfer characteristics of the distilled water turbulent flow in a plain copper tube were measured preliminarily. Second, various test runs were performed for nanofluids with two nanoparticle concentrations (0.1% and 0.5%), two corrugation depth to diameter ratios (0.0648 and 0.103), two corrugation pitch to diameter ratios (0.917 and 1.297), and two corrugation width to diameter ratios (0.363 and 0.492) that were all within the range of turbulent Reynolds numbers (3000 < Re < 15000). The experimental results reveal that the Nusselt number augments the dual increments in corrugation depth and width and with the decrements in corrugation pitch, particularly for high Reynolds numbers. The nanoparticles have a stronger effect on the heat transfer in helically corrugated tubes with higher corrugation depths and widths as well as lower corrugation pitches. A correlation for the Nusselt number in terms of the helically corrugated tubes is introduced based on the linear regression analysis of the experimental data.
Sarris, Theo S.; Close, Murray; Abraham, Phillip
2018-03-01
A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1985-01-01
The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-10-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Comparison of strongly heat-driven flow codes for unsaturated media
International Nuclear Information System (INIS)
Updegraff, C.D.
1989-08-01
Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs
International Nuclear Information System (INIS)
Tian Wenxi; Su, G.H.; Qiu Suizheng; Jia Dounan
2004-01-01
The field synergy principle was proposed by Guo(1998) which is based on 2-D boundary laminar flow and it resulted from a second look at the mechanism of convective heat transfer. Numerical verification of this principle's validity for turbulent flow has been carried out by very few researchers, and mostly commercial software such as FLUENT, CFX etc. were used in their study. In this paper, numerical simulation of turbulent flow with recirculation was developed using SIMPLE algorithm with two-equation k-ε model. Extension of computational region method and wall function method were quoted to regulate the whole computational region geometrically. Given the inlet Reynold number keeps constant: 10000, by changing the height of the solid obstacle, simulation was conducted and the result showed that the wall heat flux decreased with the angle between the velocity vector and the temperature gradient. Thus it is validated that the field synergy principle based on 2-D boundary laminar flow can also be applied to complex turbulent flow even with recirculation. (author)
Kawazura, Yohei; Barnes, Michael; Plasma theory group Team
2017-10-01
Understanding the ion-to-electron temperature ratio is crucial for advancing our knowledge in astrophysics. Among the possible thermalization mechanisms, we focus on the dissipation of Alfvénic turbulence. Although several theoretical studies based on linear Alfvén wave damping have estimated the dependence of heating ratio on plasma parameters, there have been no direct nonlinear simulation that has investigated the heating ratio scanning plasma parameters. Schekochihin et al. (2009) proved that the turbulent heating ratio is determined at the ion Lamor radius scale. Therefore, we do not need to resolve all the scales up to the electron dissipation scale. To investigate the ion kinetic scale effectively, we developed a new code that solves a hybrid model composed of gyrokinetic ions and an isothermal electron fluid (ITEF). The code is developed by incorporating the ITEF approximation into the gyrokinetics code AstroGK (Numata et al., 2010). Since electron kinetic effects are eliminated, the new hybrid code runs approximately 2√{mi /me } times faster than full gyrokinetics codes. We will present linear and nonlinear benchmark tests of the new code and our first result of the heating ratio sweeping the plasma beta and ion-to-electron temperature ratio. This work was supported by STFC Grant ST/N000919/1. The authors also acknowledge the use of ARCHER through the Plasma HEC Consortium EPSRC Grant Number EP/L000237/1 under the projects e281-gs2.
Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim
2015-04-01
Investigation of small scale transfer processes between the ocean and atmosphere in the boundary and its parameterization on the meteorological conditions (wind and surface waves parameters) is very important for weather forecasts modeling [1]. The accuracy of the predictions taking in to account the so named bulk-formulas strongly depends on the quality empirical data. That is why the laboratory modeling sometimes is preferable (see [2]) then in situ measurements for obtaining enough ensembles of the data with a good accuracy in control conditions, first of all in a case of severe conditions (strong winds with intensive wave breaking and sprays generation). In this investigation laboratory modeling was performed on the Thermostratified Wind-Wave Channel of the IAP RAS (see. [3]). Experiments were carried out for the wind speeds up to 18.5 m/s (corresponding the equivalent 10-m wind speed 30 m/s). For the possibility of varying parameters of surface roughness independently on the wind flow a special system basing on the submerged mosquito mesh (cell of 2*2 mm) was used (see [4]). The roughness was controlled by the depth of the mesh installation under the free surface (no waves when the mesh was on the surface and maximum wave amplitude for the maximum depth). So, for each wind speed several cases of the waves parameters were investigated. During experiments a stable stratification of the boundary layer of air flow was obtained. Temperature of the heating air was 33-37 degrees (depending on the reference wind speed), and the water temperature was 14-16 degrees. The Pitote gauge and hotwire were used together for measuring velocity and temperature profiles. Also indirect estimations of the total volume of the phase of sprays were obtained by analyzing hotwire signals errors during droplets hits. Then aerodynamic drag CD and heat transfer Ch coefficients were obtained by profiling method. It was shown that that these parameters are very sensitive to the intensity of
International Nuclear Information System (INIS)
Groshev, A.I.; Slobodchuk, V.I.
1986-01-01
The results of numerical calculation of the conjugated problem of convective heat transfer under unsteady conditions are presented. The equations describing heat transfer take into account longitudinal heat diffusion in liquid and in a wall. The formulae for calculating local heat flows at the wall-liquid surface in the case of an arbitrary law of temperature variation at the outer wall surface along the channel length are proposed for steady-state heat transfer conditions
Strong source heat transfer simulations based on a GalerKin/Gradient - least - squares method
International Nuclear Information System (INIS)
Franca, L.P.; Carmo, E.G.D. do.
1989-05-01
Heat conduction problems with temperature-dependent strong sources are modeled by an equation with a laplacian term, a linear term and a given source distribution term. When the linear-temperature-dependent source term is much larger than the laplacian term, we have a singular perturbation problem. In this case, boundary layers are formed to satisfy the Dirichlet boundary conditions. Although this is an elliptic equation, the standard Galerkin method solution is contaminated by spurious oscillations in the neighborhood of the boundary layers. Herein we employ a Galerkin/Gradient-least-squares method which eliminates all pathological phenomena of the Galerkin method. The method is constructed by adding to the Galerkin method a mesh-dependent term obtained by the least-squares form of the gradient of the Euler-Lagrange equation. Error estimates, numerical simulations in one-and multi-dimensions are given that attest the good stability and accuracy properties of the method [pt
International Nuclear Information System (INIS)
Takase, Kazuyuki; Akino, Norio
1996-06-01
Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations κ-ε turbulence model was applied to the present turbulent analysis. In particular, the κ-ε turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)
International Nuclear Information System (INIS)
Huyghe, J.; Mondin, H.; Villeneuve, J.
1961-01-01
The vaporisation of an appreciable quantity of a liquid in a turbulent gas stream explains the increase in the heat capacity of the fluid and the improvement in the heat-transfer coefficient. The present study makes it clear that even with a very slight vaporisation, the transfer coefficient can be much increased, the pressure drop remaining nearly constant. (authors) [fr
Liu, Yu
2015-09-01
The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.
Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel
Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali
2018-02-01
In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.
International Nuclear Information System (INIS)
Kobata, T.
1987-01-01
It is well known that high temperature thermo-nuclear plasma of several keV is very difficult to exist in the dense and small radius plasma column. So, at any time the high neutron yield from the dense plasma focus has had the tendency to be explained by the beam target mechanism based on the observation of the high energy beam emissions. However the manner of neutron emission is very complex and different among the devices and from shot to shot. Especially it is difficult to explain the first neutron emission by the beam target mechanism which is coincide with the formation of very dense plasma column. There is the ionizing shock wave in front of the plasma sheet and the gas is fully ionized after the shock wave because the Mach-number against the filling gas is very large, M--100. The thickness of the shock wave is very thin, 1≤0.5 mm for the discharge condition that the speed of the plasma sheet V/sub sh/ is 1--2 x 10/sup 7/ cm/sec and the discharge gas pressure is several Torr. The intensity of the magnetic field penetrated into the shock wave from the back side of the plasma sheet at the last converging phase will be the order of 1 kG. The plasma density in the shock wave will be n=4--9.10/sup 17//cm/sup 3/ because the density jump in the very strong shock limit is 6 times of the base gas density. Then the Alfven speed b=B/sub θ//(4πrho)/sup 1/2/ calculated from these density and magnetic field is 2.4--1.6 x 10/sup 6/ cm/sec. Similarly the sonic speed a= (γkT/m)/sup 1/2/ in the plasma is also the same order, i.e. a=2--4x10/sup 6/ cm/sec, for the temperature of 10--50 eV expected from the shock wave heating
Afsar, Mohammed; Sescu, Adrian; Sassanis, Vasileios; Bres, Guillaume; Towne, Aaron; Lele, Sanjiva
2016-11-01
The Goldstein-Sescu-Afsar asymptotic theory postulated that the appropriate distinguished limit in which non-parallel mean flow effects introduces a leading order change in the 'propagator' (which is related adjoint linearized Euler Green's function) within Goldstein's acoustic analogy must be when the jet spread rate is the same order as Strouhal number. We analyze the low frequency structure of the acoustic spectrum using Large-eddy simulations of two axi-symmetric jets (heated & unheated) at constant supersonic jet Mach number to obtain the mean flow for the asymptotic theory. This approach provides excellent quantitative agreement for the peak jet noise when the coefficients of the turbulence model are tuned for good agreement with the far-field acoustic data. Our aim in this talk, however, is to show the predictive capability of the asymptotics when the turbulence model in the acoustic analogy is 'exactly' re-constructed by numerically matching the length scale coefficients of an algebraic-exponential model for the 1212-component of the Reynolds stress auto-covariance tensor (1 is streamwise & 2 is radial direction) with LES data at any spatial location and temporal frequency. In this way, all information is obtained from local unsteady flow. We thank Professor Parviz Moin for supporting this work as part of the Center for Turbulence Research Summer Program 2016.
International Nuclear Information System (INIS)
Kouidri, Frederic
1997-01-01
This work is a numerical and experimental study of the behaviour of a turbulent flow loaded with solid particles. It involves the particulate fouling of plate heat exchangers used in industrial field. Visual observation and LDA measurements inside a mock-up show the presence of large coherent vortices and confirm the tight link between particulate deposition and flow field. The vortices participate to the creation of preferential areas where the particles are in contact with the wall, and they shape the deposit according to a precise mechanism. Two processes of deposit removal have also been shown. Hydraulic phenomena and particles behaviours pointed out in the experiment are compared to different typical samples in a bibliographic survey. The use of the a software for computational fluid dynamics (TRIO developed at the Commissariat a l'Energie Atomique) completed the experimental results by predicting the particles behaviour into the turbulent flow. The approach is based on a connection between a pseudo-direct simulation of the turbulent flow and a Lagrangian model for particles paths. The results show good agreements, qualitatively speaking, between numerical predictions and experimental measurement. The arrangement of the deposit onto the corrugated surface is globally well described by numerical simulation. The influence of some parameters on deposition process such as the flow (corresponding to Re=5000 or Re=10000), the horizontal or vertical position of the channel or the particles diameter (d p =100 μm or d p =25 μm) has been studied. (author) [fr
The Effect of Nanoparticles on Thermal Efficiency of Double Tube Heat Exchangers in Turbulent Flow
Aghayari, Reza; Madah, Heydar; Keyvani, Bahram; Moghadassi, Abdolreza; Ashori, Fatemeh
2014-01-01
This paper refers to the Overall Heat Transfer Coefficient of Nano Fluids (OHTCNF) in heat exchangers and the relevant effective parameters. An improvement in Heat Transfer (HT) and OHTCNF containing nanoaluminum oxide with ca. 20 nm particle size and particular volume fraction in the range of 0.001-0.002 has been reported. The effects of temperature and concentration of nanoparticles on HT variation as well as Overall Heat Transfer Coefficient (OHTC) in a countercurrent double tube heat exch...
Energy Technology Data Exchange (ETDEWEB)
El Kabiri, M.; Paranthoen, P.; Rosset, L.; Lecordier, J.C. [Rouen Univ., 76 - Mont-Saint-Aignan (France)
1997-12-31
An experimental study of heat transport downstream of a linear source installed in a turbulent boundary layer is performed. Second and third order momenta of velocity and temperature fields are presented and compared to gradient-type modeling. (J.S.) 7 refs.
Numerical investigation of turbulent flow and heat transfer in channel with ribs
DEFF Research Database (Denmark)
Myllerup, Lisbeth; Larsen, Poul Scheel
1999-01-01
The performance of three different low-Reynolds number turbulence models has been explored for the benchmark test of fully developed (periodic) flow in a ribbed plane channel. Results are presented for two values of the Reynolds number (based on mean velocity and hydraulic diameter), Re = 37...
Directory of Open Access Journals (Sweden)
Liou Tong-Miin
2005-01-01
Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.
Analysis of heat and mass transfer
International Nuclear Information System (INIS)
Eckert, E.R.G.; Drake, R.M. Jr.
1987-01-01
The contents of this book are: Theory of Heat Conduction and Heat-conduction Equations; Thermal Conductivity; Steady Heat Conduction; Unsteady Heat Conduction; Forced Convection in Laminar Flow; Forced Convection in Turbulent Flow; Dimensional Analysis; Forced Convection in Separated Flow; Natural Convection; Radiation of Strongly Absorbing Media; and Radiation of Weakly Absorbing Media
International Nuclear Information System (INIS)
Tongmin Liou; Jennjiang Hwang; Shihhui Chen
1993-01-01
This paper performs a numerical and experimental analysis to investigate the heat transfer and fluid flow behaviour in a rectangular channel flow with streamwise-periodic ribs mounted on one of the principal walls. The k --A PDM turbulence model together with a smoothed hybrid central/skew upstream difference scheme (SCSUDS) and the PISO pressure-velocity coupling algorithm was applied to solving the accelerated, separated and recirculating flows. The real-time holographic interferometry technique was adopted to measure the time-dependent temperature field in the ribbed duct. The predicted fluid flow and temperature field were tested by previous laser-Doppler velocimetry measurements and present holographic interferometry data, and reasonable agreement was achieved. By the examination of the local wall temperature distribution for the uniform wall heat flux (UHF) boundary condition the regions susceptible to the hot spots are identified. Moreover, the study provided the numerical solution to investigate the effect of geometry and flow parameters on the local as well as average heat transfer coefficients. The compact correlation of the average heat transfer coefficient was further developed and accounted for the rib height, rib spacing, and Reynolds number. (Author)
International Nuclear Information System (INIS)
Nishimura, M.; Maekawa, I.
2004-01-01
A numerical study is performed on the natural draft reactor cavity cooling system (RCCS). In the cooling system, buoyancy driven heated upward flow could be in the mixed convection regime that is accompanied by heat transfer impairment. Also, the heating wall condition is asymmetric with regard to the channel cross section. These flow regime and thermal boundary conditions may invalidate the use of design correlation. To precisely simulate the flow and thermal fields within the RCCS, the second moment closure turbulence model is applied. Two types of the RCCS channel geometry are selected to make a comparison: an annular duct with fins on the outer surface of the inner circular wall, and a multi-rectangular duct. The prediction shows that the local heat transfer coefficient on the RCCS with finned annular duct is less than 1/6 of that estimated with Dittus-Boelter correlation. Much portion of the natural draft airflow does not contribute cooling at all because mainstream escapes from the narrow gaps between the fins. This result and thus the finned annulus design are unacceptable from the viewpoint for structural integrity of the RCCS wall boundary. The performance of the multi-rectangular duct design is acceptable that the RCCS maximum temperature is less than 400 degree centigrade even when the flow rate is halved from the designed condition. (author)
Directory of Open Access Journals (Sweden)
Anna Sjöblom
2014-06-01
Full Text Available Different observation techniques for atmospheric turbulent fluxes of momentum and sensible heat were tested in a High-Arctic valley in Svalbard during two consecutive summers (June–August in 2010 and 2011. The gradient method (GM and the bulk method (BM have been compared to the more direct eddy covariance method (ECM in order to evaluate if relatively robust and cheap instrumentation with low power consumption can be used as a means to increase the number of observations, especially at remote locations where instruments need to be left unattended for extended periods. Such campaigns increase knowledge about the snow-free surface exchange processes, an area which is relatively little investigated compared to snow-covered ground. The GM agreed closely to the ECM, especially for momentum flux where the two methods agree within 5%. For sensible heat flux, the GM produces, on average, approximately 40% lower values for unstable stratification and 67% lower for stable stratification. However, this corresponds to only 20 and 12 W m−2, respectively. The BM, however, shows a greater scatter and larger differences for both parameters. In addition to testing these methods, radiation properties were measured and the surface albedo was found to increase through the summer, from approximately 0.1 to 0.2. The surface energy budget shows that the sensible heat flux is usually directed upwards for the whole summer, while the latent heat flux is upwards in June, but becomes downward in July and August.
Energy Technology Data Exchange (ETDEWEB)
Xaman, J. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos CP 62490 (Mexico)], E-mail: jxaman@cenidet.edu.mx; Alvarez, G. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos CP 62490 (Mexico)], E-mail: gaby@cenidet.edu.mx; Hinojosa, J. [Universidad de Sonora - UNISON, Blvd. Luis Encinas y Rosales, Col. Centro, Hermosillo, Sonora CP 83000 (Mexico)], E-mail: fhinojosa@iq.uson.mx; Flores, J. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos CP 62490 (Mexico)], E-mail: jasson@cenidet.edu.mx
2009-04-15
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 deg. C, the external ambient temperature was fixed at 35 deg. C and on the semitransparent wall the direct normal solar irradiation of 750 W/m{sup 2} was considered constant. The Rayleigh number was varied in the range of 10{sup 9} {<=} Ra {<=} 10{sup 12} by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.
Directory of Open Access Journals (Sweden)
Kurt L. Polzin
2017-06-01
Full Text Available There is no theoretical underpinning that successfully explains how turbulent mixing is fed by wave breaking associated with nonlinear wave-wave interactions in the background oceanic internal wavefield. We address this conundrum using one-dimensional ray tracing simulations to investigate interactions between high frequency internal waves and inertial oscillations in the extreme scale separated limit known as “Induced Diffusion”. Here, estimates of phase locking are used to define a resonant process (a resonant well and a non-resonant process that results in stochastic jumps. The small amplitude limit consists of jumps that are small compared to the scale of the resonant well. The ray tracing simulations are used to estimate the first and second moments of a wave packet’s vertical wavenumber as it evolves from an initial condition. These moments are compared with predictions obtained from the diffusive approximation to a self-consistent kinetic equation derived in the ‘Direct Interaction Approximation’. Results indicate that the first and second moments of the two systems evolve in a nearly identical manner when the inertial field has amplitudes an order of magnitude smaller than oceanic values. At realistic (oceanic amplitudes, though, the second moment estimated from the ray tracing simulations is inhibited. The transition is explained by the stochastic jumps obtaining the characteristic size of the resonant well. We interpret this transition as an adiabatic ‘saturation’ process which changes the nominal background wavefield from supporting no mixing to the point where that background wavefield defines the normalization for oceanic mixing models.
Application of Rayleigh Scattering to Turbulent Flow with Heat Transfer and Combustion.
1987-12-11
premixed conical flame produced by a Bunsen -type burner . For the most part, ethylene-air flames were chosen for the investigations. RESEARCH RESULTS The...A turbulent premixed ethylene/air conical flame in a large Bunsen type burner has been studied using a two-component laser Doppler anemometry (LDA...density function (pdf). In the oblique flame region above the burner exit, the overall characteristics of the conditioned velocity statistics are
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-05-19
In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between
Directory of Open Access Journals (Sweden)
A. D. Kliukvin
2014-01-01
Full Text Available There is theoretically investigated the influence of thermal dependence of air thermophysical properties on accuracy of heat transfer problems solution in a turbulent flow when using different methods of averaging the Navier-Stokes equations.There is analyzed the practicability of using particular method of averaging the NavierStokes equations when it’s necessary to clarify the solution of heat transfer problem taking into account the variability of air thermophysical properties.It’s shown that Reynolds and Favre averaging (the most common methods of averaging the Navier-Stokes equations are not effective in this case because these methods inaccurately describe behavior of large scale turbulent structures which strongly depends on geometry of particular flow. Thus it’s necessary to use more universal methods of turbulent flow simulation which are not based on averaging of all turbulent scales.In the article it’s shown that instead of Reynold and Favre averaging it’s possible to use large eddy simulation whereby turbulent structures are divided into small-scale and large-scale ones with subsequent modelling of small-scale ones only. But this approach leads to the necessarity of increasing the computational power by 2-3 orders.For different methods of averaging the form of additional terms of averaged Navier-Stokes equations in case of accounting pulsation of thermophysical properties of the air is obtained.On the example of a submerged heated air jet the errors (which occur when neglecting the thermal dependence of air thermophysical properties on averaged flow temperature in determination of convectional and conductive components of heat flux and viscous stresses are evaluated. It’s shown that the greatest increase of solution accuracy can be obtained in case of the flows with high temperature gradients.Finally using infinite Teylor series it’s found that underestimation of convective and conductive components of heat flux and
Experimental study of heat transfer through liquid metal under strong centrifugal acceleration
International Nuclear Information System (INIS)
Le Grives, E.; Genot, Jeanne
1975-01-01
An experimental study concerning heat transfers by convective cycle (thermosyphon) or evaporative cycle (phase change) of a liquid metal subjected to a high centrifugal acceleration, has been carried out with a system incorporating a high speed rotor. The maximal acceleration is 1.2 10 5 ms -2 at the average radius (0.165m). The heat-carrier fluid circulates radially inside two identical test tubes diametrically opposed, in sealed cylindrical channels drilled from one to the other of each of their ends. The heat source is supplied at the periphery by radiation of the graphite areas; the flow is transmitted by the heat carrier fluid to the other and where air-cooled finned heat-exchanges are fitted. The maximum density of the dissipated flows reaches 6.6 10 5 W m -2 [fr
Ma, Jian; Lu, Chen; Liu, Hongmei
2015-01-01
The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010
Ma, Jian; Lu, Chen; Liu, Hongmei
2015-01-01
The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.
Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙
Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan
2017-12-01
We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.
Losic, Mira
Turbulent heat flux and its contribution to energy balance is investigated at two glaciers in the Canadian Rockies. Detailed profile measurements of wind, temperature, and humidity in the lower boundary layer above the Opabin Glacier reveal a predominantly stable boundary layer regime. Wind speeds generally increase with height and temperature profiles are predominantly logarithmic in nature, however humidity profiles do not exhibit the archetypal shape. Roughness lengths derived using the profile method are used to calculate energy balance in fifteen unique models per site. The models perform best at both sites when a constant roughness value is used; however, the median value of all found roughness lengths performs better than mean value which is typically used in current literature. Model results improve when melt is restricted to periods when surface temperature is above 0°C, and when atmospheric stability corrections are applied.
Macroscopic turbulent models for heat and mass transfer in catalyst reactors
Mathey, Fabrice
2012-05-01
Tthis paper reports the development and validation of a Computational Fluid Dynamics (CFD) up-scaling approach to predict wit a porous media approximation the heat transfer efficiency of arbitrary randomly packed bed tubular reactors. The results demonstrate the feasibility to predict the flow, temperature and global heat transfer with macroscopic simulations with a good accuracy.
Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.
2017-11-01
The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.
Energy Technology Data Exchange (ETDEWEB)
Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)
2017-08-20
We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.
Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick
2016-04-01
This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both
Direct numerical simulation of the passive heat transfer in a turbulent flow with particle
Directory of Open Access Journals (Sweden)
Jaszczur Marek
2017-01-01
Full Text Available Turbulent non-isothermal fully developed channel flow with solid particles was investigated through Direct Numerical Simulation combined with the point-particle approach. The focus was on the interactions between discrete and continuous phase and their effect on the velocity and the temperature of the particles. It has been found that low momentum inertia particles have a mean temperature similar to the fluid temperature and this effect is almost independent of particle thermal inertia. For particles with larger momentum, the inertia thermal effect is more complex, particle temperature in the near-wall and buffer region is significantly lower than the fluid temperature. The difference between the fluid mean temperature and particle mean temperature increases along with the momentum response time. This may have important consequences on the chemical reactions, technological processes and on the accuracy of temperature measurement techniques based on seeding particle.
Medium Resolution Parameterisation of Turbulent Heat Fluxes over the Tibetan Plateau
Faivre, R.; Colin, J.; Ghafarian, H.; Menenti, M.
2013-01-01
The estimation of turbulent fluxes is of primary interest for hydrological and climatological studies. Also the use of optical remote sensing data in the VNIR and TIR domain already proved to allow for the parameterization of surface energy balance, leading to many algorithms. Their use over arid high elevation areas require detailed characterisation of key surface physical properties and atmospheric statement at a reference level. Satellite products aquired over the Tibetan Plateau provide incentives for a regular analysis at medium scale. This work aims at improving the use of spaceborne optical remote sensing such as ENVISAT/AATSR or Feng-Yun 2C (VNIR and TIR) for land surface evaporation mapping over the whole Tibetan Plateau, based on SEBI algorithm. An evaluation is leaded over some reference sites set-up through the Tibetan Plateau.
Kumar, Prince; Pandey, K. M., Dr.
2017-08-01
Heat transfer is a most important phenomenon that influence the performance of working device. To date several attempts have been made by researchers to minimize the size of heat exchangers in order to reduce the cost. Earlier we use some conventional fluids (water, air, engine oil etc.) for cooling of automobile, refrigeration and some other industrial applications. But it is observed here that by using these fluids there is curb and hindrance in heat transfer rate because of very low thermal conductivity. From last ten-years new generation fluid introduced known as nanofluid. To increase the thermal conductivity of base fluid some amount of nanoparticles is added. Nanofluid have combined properties of nanoparticles as well as base fluid. Researcher found that heat transfer rate fully dependent of the thermal conductivity of nanoparticles as well as nanoparticle size diameter and volume concentration. This review paper summarised the recent research on enhancement of heat transfer and thermal performance of nanofluid as coolant for industrial applications.
Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang
2018-02-01
The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.
Energy Technology Data Exchange (ETDEWEB)
Hu, C.; Fukuchi, N. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-10-01
An analysis was made on turbulent heat diffusion in a multi-compartment structure necessary for designing calorific power and environment for functional systems used in marine vessels and off-shore structures. In a multi-compartment structure, the diffusion phenomenon is complex because of movement of air flow in turbulence and buoyancy resulted from non-isothermal condition. The phenomenon is largely affected by space shapes and walls, and the conditions in heat diffusion field is governed also by shapes of opening connecting the compartments. An analysis was made by using the SIMPLE method on turbulent heat diffusion in a multi-compartment space with high Raleigh number in which natural convection is dominant. If the opening is small, the Coanda effect appears, in which air flow passing through the opening rises along the wall, wherein a high-temperature layer is formed near the ceiling, making the heat diffusion inactive. If the opening is large, a jetting flow from the opening and a large circulating flow are created, which cause active advection mixture, making temperature gradient smaller in the upper layer. Heat transfer intensity in an opening on a partition wall decays in proportion with 1/4th power of the opening ratio. 7 refs., 11 figs.
International Nuclear Information System (INIS)
Ravigururajan, T.S.; Bergles, A.E.
1985-01-01
General correlations for friction factors and heat transfer coefficients for single-phase turbulent flow in internally ribbed tubes are presented. Data from previous investigations are gathered for a wide range of tube parameters with e/d: 0.01 to 0.2; p/d: 0.1 to 7.0; α/90: 0.3 to 1.0, and flow parameters Re: 5000 to 250,000 and Pr: 0.66 to 37.6. The data were applied to a linear model to get normalized correlations that were then modified to fit tubes with extremely small parametric values. A shape function was included in the friction correlation to account for different rib profiles. The friction correlation predicts 96% of the data base to within +. 50% and 77% of the data base to within +. 20%. Corresponding figures for the heat transfer correlation are 99% and 69%. The present correlations are superior, for this extensive data base, to those presented by other investigators
DNS of heat transfer in turbulent and transitional channel flow obstructed by rectangular prisms
Energy Technology Data Exchange (ETDEWEB)
Kawamura, Fusao; Seki, Yohji; Iwamoto, Kaoru [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan); Kawamura, Hiroshi [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kawa@rs.noda.tus.ac.jp
2007-12-15
Direct numerical simulation (DNS) of heat transfer in a channel flow obstructed by rectangular prisms has been performed for Re{sub {tau}} = 80-20, where Re{sub {tau}} is based on the friction velocity, the channel half width and the kinematic viscosity. The molecular Prandtl number is set to be 0.71. The flow remains unsteady down to Re{sub {tau}} = 40 owing to the disturbance induced by the prism. For Re{sub {tau}} = 30 and 20, the flow results in a steady laminar flow. In the vicinity of the prism, the three-dimensional complex vortices are generated and heat transfer is enhanced. The Reynolds number effect on the time-averaged vortex structure and the local Nusselt number are investigated. The mechanism of the heat transfer enhancement is discussed. In addition, the mean flow parameters such as the friction factor and the Nusselt number are examined in comparison with existing DNS and experimental data.
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism
Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid
Directory of Open Access Journals (Sweden)
Hussein Adnan M.
2016-01-01
Full Text Available Heat transfer and friction characteristics were numerically investigated, employing elliptical tube to increase the heat transfer rate with a minimum increase of pressure drop. The flow rate of the tube was in a range of Reynolds number between 10000 and 100000. FLUENT software is used to solve the governing equation of CFD (continuity, momentum and energy by means of a finite volume method (FVM. The electrical heater is connected around the elliptical tube to apply uniform heat flux (3000 W/m2 as a boundary condition. Four different volume concentrations in the range of 0.25% to 1% and different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm, dispersed in water are utilized. The CFD numerical results indicate that the elliptical tube can enhance heat transfer and friction factor by approximately 9% and 6% than the circular tube respectively. The results show that the Nusselt number and friction factor increase with decreasing diameters but increasing volume concentrations of nanoparticles.
Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?
Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.
2010-11-01
A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.
Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases
Zhao, Hanqing; Wang, Wen-ge
2018-01-01
For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the 1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.
Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi
2018-02-01
This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.
Groot, Maartje P; Kubisch, Alexander; Ouborg, N Joop; Pagel, Jörn; Schmid, Karl J; Vergeer, Philippine; Lampei, Christian
2017-08-01
Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Ando, Y.; Tachibana, Y.; Konda, M.; Maekawa, Y.; Nakamura, T.; Okada, K.
2016-12-01
In order to understand the air-sea interaction in the climate system, a direct measurement of turbulent flux (the eddy covariance method) is necessary as well as an indirect estimate of that, for example, the bulk method. However, it is rarely experienced due to many difficulties over a long period. The most of the difficulties comes from the moving platform, which is not fixed as over land because the anemometer moves with the platform as the ship moves. The ship motion correction for the wind velocity is a very difficult issue. On the top of the foremast of the training ship SEISUIMARU (Mie University, Japan), the developed on-board eddy covariance system was installed in 2009. The training ship SEISUIMARU cruises the northwest Pacific Ocean, especially the coast of Japan every year. This system is routinely operating in her whole cruises. When these kind of continuous measurements are integrated in these areas, reliable direct measurement of turbulent flux database can be established.We compared the turbulent heat fluxes using the bulk method and those of the eddy covariance method using this database. The results were some differences in certain conditions. In some cases, the direction of the turbulent heat fluxes was opposite. This might be caused by the sea surface temperatures (SSTs) using the bulk method were temperatures at the depth of 3 meter instead of the surface temperatures. SSTs are warmer than bulk 3 meter temperatures in high-level solar radiation and low-wind conditions, as expected due to the sea surface warming effects over calm oceans in summer. The difference of the turbulent heat fluxes using the eddy covariance method and those of the bulk method was positively correlated with the solar radiation. Moreover, the difference was negatively correlated with the surface wind speed. These results were more clear in the sensible heat fluxes than that of the latent heat fluxes. These results suggest one of difference of the turbulent heat fluxes
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
1979-08-01
from the spectra of the scalars, *r(f), and downstream velocity, *u(f), at frequencies, f, in the -5/3 region where the Kolmogoroff hypothesis predicts...dissipation methods is proportional to c ) zb [*t #u]%/2 <U>-i . (2.33) (Bt’ K’ ]I Again uncertainty in 9, Z and the Kolmogoroff constants together could...the record length, the subsampling scheme and the portions of frequency space covered by each sampling rate. In additional switch sets the time interval
Chen, Quan
1991-02-01
A seven-phase experimental investigation documented the three-dimensional separation region in front of a surface-mounted rectangular obstruction. The obstruction was centered between sidewalls of a wind tunnel in a turbulent approaching boundary layer. The major feature of this flow was a horseshoe vortex system near the junction. Real-time vortex structures were visualized with a laser sheet. Interior velocity, turbulence intensity and velocity power spectrum measurements were obtained with a Laser Doppler Anemometer (LDA) and a hot-wire anemometer. Ink dot surface flow visualizations and pressure measurements were acquired on the endwall under the vortex system. Endwall heat transfer coefficients were nonintrusively measured by an infrared imaging system. Laser sheet flow visualizations indicated a vortex system with randon oscillations. In the time-averaged sense, ink-dot flow visualizations, LDA measurements and endwall pressure measurements indicated a well defined primary vortex. The separation region was 70 percent larger, in the streamwise direction, than that in front of a cylinder with a diameter the same as the obstruction width. The time-averaged primary vortex center, where maximum values of turbulence intensity were measured, was located farther away from the obstruction leading edge at higher freestream velocities. Endwall heat transfer coefficient distribution measurements on the endwall surface revealed that the obstruction established a complex heat transfer pattern. Local heat transfer rates as much as 80 percent greater than the undisturbed two-dimensional level were recorded upstream of the obstruction along the test section centerline. A local heat transfer coefficient peak was associated with the local maximum turbulence intensity measured near the endwall by LDA.
Energy Technology Data Exchange (ETDEWEB)
Yamagishi, Y.; Sugano, T. [Daido Hoxan Inc., Hokkaido (Japan); Takeuchi, H.; Pyatenko, A. [Hokkaido National Industrial Research Institute Sapporo (Japan)
1998-01-01
An experimental study using a slurry of micro-encapsulated phase change material (MCPCM) in water is conducted in order to investigate the increase in convection heat transfer coefficients of slurry flows as well as the increase in thermal capacity of a slurry by using the latent heat from a solid-liquid phase change material (PCM). Experiments were done for turbulent, hydrodynamically fully developed flows in a circular tube with constant wall heat flux. Local convective heat transfer coefficients were measured along the heating test section in order to study the effects of the melting phenomena inside MCPCMs. Experimental data are presented for various particle concentrations, slurry flow rates, and heating rates. Results show that an increase in the local convective heat transfer coefficient is found when the MCPCMs melted. Enhancement of heat transfer due to phase change is affected to varying degrees by Reynolds numbers of slurry flows, the fraction of PCM which is solid phase and heating rates. This paper provides and presents an explanation of the physical mechanism of the convective heat transfer enhancement due to the phase change of MCPCMs and a set of data available for the adjustments of system operating conditions for optimum heat transfer performance. 15 refs., 11 figs., 4 tabs.
Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind
International Nuclear Information System (INIS)
Woolsey, Lauren N.; Cranmer, Steven R.
2014-01-01
Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.
Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors
Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem
2016-10-01
Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative
Kawachi, Shigehiro; Koshin, Haruo; Kurima, Junji; Murakawa, Katsuhisa
1980-01-01
The turbulent flow of steam moving through the thermal entrance region of a concentric annulus and a circular tube, is heated by an inner pipe wall of the annulus and the circular tube wall, respectively. An analysis of this was made so as to study unsteady heat transfer combined with thermal radiation and turbulent flow. At the time this study was carried out, we took into consideration the influence of temperature-dependent thermophysical properties, and restricted ourselves to the opticall...
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Large eddy simulation for predicting turbulent heat transfer in gas turbines.
Tafti, Danesh K; He, Long; Nagendra, K
2014-08-13
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Robblee, James P; Cao, Wenxiang; Henn, Arnon; Hannemann, Diane E; De La Cruz, Enrique M
2005-08-02
We have measured the energetics of ATP and ADP binding to single-headed actomyosin V and VI from the temperature dependence of the rate and equilibrium binding constants. Nucleotide binding to actomyosin V and VI can be modeled as two-step binding mechanisms involving the formation of collision complexes followed by isomerization to states with high nucleotide affinity. Formation of the actomyosin VI-ATP collision complex is much weaker and slower than for actomyosin V. A three-step binding mechanism where actomyosin VI isomerizes between two conformations, one competent to bind ATP and one not, followed by rapid ATP binding best accounts for the data. ADP binds to actomyosin V more tightly than actomyosin VI. At 25 degrees C, the strong ADP-binding equilibria are comparable for actomyosin V and VI, and the different overall ADP affinities arise from differences in the ADP collision complex affinity. The actomyosin-ADP isomerization leading to strong ADP binding is entropy driven at >15 degrees C and occurs with a large, positive change in heat capacity (DeltaC(P) degrees ) for both actomyosin V and VI. Sucrose slows ADP binding and dissociation from actomyosin V and VI but not the overall equilibrium constants for strong ADP binding, indicating that solvent viscosity dampens ADP-dependent kinetic transitions, presumably a tail swing that occurs with ADP binding and release. We favor a mechanism where strong ADP binding increases the dynamics and flexibility of the actomyosin complex. The heat capacity (DeltaC(P) degrees ) and entropy (DeltaS degrees ) changes are greater for actomyosin VI than actomyosin V, suggesting different extents of ADP-induced structural rearrangement.
Zhou, Jian
2016-06-09
A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Directory of Open Access Journals (Sweden)
J. Lüers
2010-01-01
Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T_{(0} required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.
International Nuclear Information System (INIS)
Capdevila, R; Perez-Segarra, C D; Lehmkuhl, O; Colomer, G
2012-01-01
Turbulent natural convection in a tall differentially heated cavity of aspect ratio 5:1, filled with air under a Rayleigh number based on the height of 4.5·10 10 is studied numerically. Three different situations have been analysed. In the first one, the cavity is filled with a transparent medium. In the second one, the cavity is filled with a semigrey participating mixture of air and water vapour. In the last one the cavity contains a grey participating gas. The turbulent flow is described by means of Large Eddy Simulation (LES) using symmetry-preserving discretizations. Simulations are compared with experimental data available in the literature and with Direct Numerical Simulations (DNS). Surface and gas radiation have been simulated using the Discrete Ordinates Method (DOM). The influence of radiation on fluid flow behaviour has been analysed.
Intermittent Turbulence in the Very Stable Ekman Layer
Energy Technology Data Exchange (ETDEWEB)
Barnard, James C [Univ. of Washington, Seattle, WA (United States)
2001-01-01
This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence
Directory of Open Access Journals (Sweden)
Y. Voitenko
2011-09-01
Full Text Available A weakly dispersive range (WDR of kinetic Alfvén turbulence is identified and investigated for the first time in the context of the MHD/kinetic turbulence transition. We find perpendicular wavenumber spectra ∝ k_{⊥}^{−3} and ∝ k_{⊥}^{−4} formed in WDR by strong and weak turbulence of kinetic Alfvén waves (KAWs, respectively. These steep WDR spectra connect shallower spectra in the MHD and strongly dispersive KAW ranges, which results in a specific double-kink (2-k pattern often seen in observed turbulent spectra. The first kink occurs where MHD turbulence transforms into weakly dispersive KAW turbulence; the second one is between weakly and strongly dispersive KAW ranges. Our analysis suggests that partial turbulence dissipation due to amplitude-dependent non-adiabatic ion heating may occur in the vicinity of the first spectral kink. The threshold-like nature of this process results in a conditional selective dissipation that affects only the largest over-threshold amplitudes and that decreases the intermittency in the range below the first spectral kink. Several recent counter-intuitive observational findings can be explained by the coupling between such a selective dissipation and the nonlinear interaction among weakly dispersive KAWs.
New perspectives on superparameterization for geophysical turbulence
International Nuclear Information System (INIS)
Majda, Andrew J.; Grooms, Ian
2014-01-01
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades
Directory of Open Access Journals (Sweden)
Navid Bozorgan
2012-01-01
Full Text Available Nanofluids are expected to be a promising coolant candidate in chemical processes for water waste remediation and heat transfer system size reduction. This paper focuses on the potential mass flowrate reduction in exchanger with a given heat exchange capacity using nanofluids. Al2O3 nanoparticles with diameters of 7 nm dispersed in water with volume concentrations up to 2% are selected as a coolant, and their performance in a horizontal double-tube counterflow heat exchanger under turbulent flow conditions is numerically studied. The results show that the flowrate of nanofluid coolant decreases with the increase of concentration of nanoparticles in the exchanger with a given heat exchange capacity. The mass flowrate of the nanofluid at a volume concentration of 2 vol.% is approximately 24.5% lower than that of pure water (base fluid for given conditions. For the pressure drop, the results show that the pressure drop of nanofluid is slightly higher than water and increases with increase of volume concentrations. In addition, the reduction of wall temperature and heat transfer area is estimated.
Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
2014-01-01
In this paper a turbulent channel flow of a mixture of dry air and water vapor with water droplets is examined. Direct numerical simulation is used to quantify the importance of variations in the initial relative humidity. We focus on the droplet behavior along with the thermal properties of the
Energy Technology Data Exchange (ETDEWEB)
Soudani, A. [Batna Univ., Dept. de Physique, Faculte des Sciences (Algeria); Bessaih, R. [Mentouri-Constantine Univ., Dept. de Genie Mecanique, Faculte des Sciences de l' Ingenieur (Algeria)
2004-12-01
The study of turbulent boundary layer with strong differences of density is important for the understanding of practical situations occurring for example in the cooling of turbine blades through the tangential injection of a different gas or in combustion. In order to study the fine structure of wall turbulence in the presence of significant variations of density, a statistical analysis of the experimental data, obtained in a wind tunnel, is carried out. The results show that the relaxation of the skewness factor of u'(S{sub u'}) is carried out more quickly in the external layer than close to the wall, as well for the air injection as for the helium injection. S{sub u'} grows close to the injection slot in an appreciable way and this increase is accentuated for the air injection than for the helium injection. This growth of the skewness factor close to the injection slot can be explained by the increase in the longitudinal convective flux of turbulent energy in this zone. The results show for the distribution of the flatness factor F{sub u'} that there is no significant effect of the density gradient on the intermittent structure of the instantaneous longitudinal velocity in the developed zone, x/{delta} {>=} 5. The statistical analysis carried out in this study shows that the helium injection in the boundary layer generates more violent ejections than in the case of air injection. This result is confirmed by the significant contribution of the ejections to turbulent mass flux.
Study of plasma turbulence by ultrafast sweeping reflectometry on the Tore Supra Tokamak
International Nuclear Information System (INIS)
Hornung, Gregoire
2013-01-01
The performance of a fusion reactor is closely related to the turbulence present in the plasma. The latter is responsible for anomalous transport of heat and particles that degrades the confinement. The measure and characterization of turbulence in tokamak plasma is therefore essential to the understanding and control of this phenomenon. Among the available diagnostics, the sweeping reflectometer installed on Tore Supra allows to access the plasma density fluctuations from the edge to the centre of the plasma discharge with a fine spatial (mm) and temporal resolution (μs), that is of the order of the characteristic turbulence scales.This thesis consisted in the characterization of plasma turbulence in Tore Supra by ultrafast sweeping reflectometry measurements. Correlation analyses are used to quantify the spatial and temporal scales of turbulence as well as their radial velocity. In the first part, the characterization of turbulence properties from the reconstructed plasma density profiles is discussed, in particular through a comparative study with Langmuir probe data. Then, a parametric study is presented, highlighting the effect of collisionality on turbulence, an interpretation of which is proposed in terms of the stabilization of trapped electron turbulence in the confined plasma. Finally, it is shown how additional heating at ion cyclotron frequency produces a significant though local modification of the turbulence in the plasma near the walls, resulting in a strong increase of the structure velocity and a decrease of the correlation time. The supposed effect of rectified potentials generated by the antenna is investigated via numerical simulations. (author) [fr
Fritts, David C.; Wang, Ling; Laughman, Brian; Lund, Thomas S.; Collins, Richard L.
2018-01-01
A companion paper by Fritts, Laughman, et al. (2017) employed an anelastic numerical model to explore the dynamics of gravity waves (GWs) encountering a mesospheric inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. That study revealed that MIL responses, including GW transmission, reflection, and instabilities, are sensitive functions of GW parameters. This paper expands on two of the Fritts, Laughman, et al. (2017) simulations to examine GW instability dynamics and turbulence in the MIL; forcing of the mean wind and stability environments by GW, instability, and turbulence fluxes; and associated heat and momentum transports. These direct numerical simulations resolve turbulence inertial-range scales and yield the following results: GW breaking and turbulence in the MIL occur below where they would otherwise, due to enhancements of GW amplitudes and shears in the MIL. 2-D GW and instability heat and momentum fluxes are 20-30 times larger than 3-D instability and turbulence fluxes. Mean fields are driven largely by 2-D GW and instability dynamics rather than 3-D instabilities and turbulence. 2-D and 3-D heat fluxes in regions of strong turbulence yield small departures from initial T(z) and N2(z) profiles, hence do not yield nearly adiabatic "mixed" layers. Our MIL results are consistent with the relation between the turbulent vertical velocity variance and energy dissipation rate proposed by Weinstock (1981) for the limited intervals evaluated.
International Nuclear Information System (INIS)
Kolev, N.; Kolev, D.
2010-01-01
The reduction of the cost prices is always an important action against the economical crisis. In this paper the reduction of the cost prices of the district heating based on patented inventions of the authors for significant increasing of the energy efficiency at simultaneous production of electric and heat energy for district heating purpose, using as fuel natural gas, is considered. The economical calculations, based on 50 MW electric and 50 MW heat power, show that at the present prices of the natural gas, electric and heat energy, the net profit of the installation will be about 47 millions of levs per year at pay back term of only about 1,2 years. Even if the price of the heat is reduced twice the profit will be about 35 millions of levs per year at pay back term 1,623 years. (authors)
Stably-stratified wall-bounded turbulence
Hadi Sichani, Pejman; Zonta, Francesco; Obabko, Aleksandr; Soldati, Alfredo
2017-11-01
Stably-stratified (bottom-up cooling) turbulent flows are encountered in a number of industrial applications, environmental processes and geophysical flows. Turbulent entrainment and mixing across density interfaces in terrestrial water bodies (oceans, lakes and rivers) and in industrial heat transfer equipments are just some important examples of stably-stratified flows. In this work we use Direct Numerical Simulation to investigate the fundamental physics of stably-stratified channel turbulence under Boussinesq and Non-Oberbeck-Boussinesq (NOB) conditions. Compared to the neutrally-buoyant case, in the stably-stratified case active turbulence survives only in the near-wall region and coexists with internal gravity waves (IGW) moving in the core region of the channel. This induces a general suppression of turbulence levels, momentum and buoyancy fluxes. Our results show also that NOB effects may be important when the flow is subject to large temperature gradients. The most striking feature observed in case of NOB conditions is the generation of a strong flow asymmetry with possible local flow laminarization in the near wall region.
Directory of Open Access Journals (Sweden)
H. Dupuis
Full Text Available Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.
Churchill, Dean D.; Houze, Robert A., Jr.
1991-01-01
A twi-dimensional kinematic model has been used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds associated with a mesoscale tropical cloud cluster. The model incorporates ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment. It is intended to determine the relative contributions of radiation, mycrophysics, and turbulence to diabatic heating, and the effects that radiation has on the water budget of the cluster in the absence of dynamical interactions. The model has been initialized with thermodynamic fields and wind velocities diagnosed from a GATE tropical squall line. It is found that radiation does not directly affect the water budget of the stratiform region, and any radiative effect on hydrometeors must involve interaction with dynamics.
International Nuclear Information System (INIS)
Devoino, A.N.
1978-01-01
An experimental set up, a method and experimental results of the study of heat transfer and hydraulic resistance under conditions of cooling the dissociating coolant flow at elevated wall temperatures of the tube (Tsub(w) 2 O 4 reversible 2NO 2 reversible 2NO + O 2 chemically reacting turbulent flow in a tube are considered
Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology
1997-10-01
In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction
International Nuclear Information System (INIS)
Kurganov, V.A.; Gladuntsov, A.I.
1977-01-01
Analysed are the experimental data obtained for heat transfer to gaseous dissociating ammonium (NH 3 ) under heating in round pipes (steel Kh18N10T) at developed eddying input flow and marginal condition of heat supply gsub(c) approximately equal to const in the ranges of the following parameters: p=3-10 atm; Tsub(input)=310-720 K; Tsub(c) ( 3 ; gsub(c)/-anti rho W 8.8 kJ/kg; gsub(c)/(anti rho WCsub(p) sub(input)Tsub(input)) (<=) 0.0104; 1/d (<=) 150 (where Tsub(c) is the wall temperature, gsub(c) the heat flow density on wall, and anti rho W velocity). The discussion involves phenomena of worsened heat transfer at high heat loads. The authors show the basic relationship between these phenomena and laminarization of the near-wall flow at the input site of the pipe. The regularities of heat transfer were noted to undergo substantial transformation under laminarized flow
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.
2006-06-01
It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heat (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
International Nuclear Information System (INIS)
Ullschmied, J.; Simek, M.; Kolacek, K.; Ripa, M.
1996-01-01
Theoretical and experimental parameters characterizing the Langmuir turbulence in the REBEX machine are summarized. The experimental data collected up to now support the idea that at the end of the beam injection the beam-heated plasma in the REBEX machine reaches a strongly turbulent state. Nevertheless the attempts to determine the turbulence level on the base of spectroscopic measurements were unsuccessful up to now. From this point of view, the advantages and disadvantages of three different spectroscopic apparatuses used for detailed measurements of the profiles of hydrogen emission lines are discussed. (J.U.). 2 tabs., 5 figs., 13 refs
Computational simulation of turbulent natural convection in a corium pool
Energy Technology Data Exchange (ETDEWEB)
Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety
2013-07-01
After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)
Computational simulation of turbulent natural convection in a corium pool
International Nuclear Information System (INIS)
Vieira, Camila B.; Su, Jian; Niceno, Bojan
2013-01-01
After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)
Mantica, Paola
2016-10-01
Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.
Czech Academy of Sciences Publication Activity Database
Urban, Pavel; Hanzelka, Pavel; Králík, Tomáš; Musilová, Věra; Srnka, Aleš; Skrbek, L.
2013-01-01
Roč. 110, 8 May (2013), 199402:1-1 ISSN 0031-9007 Institutional support: RVO:68081731 Keywords : cryogenic turbulence * turbulent convection * Rayleigh-Bénard convection Subject RIV: BJ - Thermodynamics Impact factor: 7.728, year: 2013
Energy Technology Data Exchange (ETDEWEB)
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional
2015-07-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.
2011-01-01
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
Directory of Open Access Journals (Sweden)
Fangyang Yuan
2018-01-01
Full Text Available A coupled numerical model for nanorod-based suspension flow is constructed, and the convective heat transfer and resistance characteristics of the nanofluid duct flow are investigated. The numerical results are verified by experimental results and theoretical models. Most of nanorods are located randomly in the bulk fluid, while particles near the wall aligned with the flow direction. Friction factor of nanofluids with nanorods increases with higher particle volume concentration or aspect ratio, but the increment reduces when the Reynolds number gets larger. The relative Nusselt number is obtained to characterize the intensity of convective heat transfer. The results show that the Nusselt number of nanofluids increases when the particle volume concentration or aspect ratio becomes larger. Compared to increasing the aspect ratio of nanorods, increasing the particle volume concentration would be more effective on enhancing the convective heat transfer intensity in industrial applications although it will cause a slight increase of resistance.
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Hellinger, Petr; Trávnícek, Pavel M. [Astronomical Institute, CAS, Bocni II/1401, CZ-14100 Prague (Czech Republic); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Landi, Simone; Verdini, Andrea; Franci, Luca, E-mail: petr.hellinger@asu.cas.cz [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy)
2015-10-01
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.
Hofmeister, A.; Criss, R. E.
2013-12-01
Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a
Why turbulence dominates the atmosphere and hydrosphere? (Alfred Wegener Medal Lecture)
Zilitinkevich, Sergej
2015-04-01
It is widely recognised that in very stable stratifications, at Richardson numbers (Ri) exceeding the critical value Ric ~ 0.25, turbulence inevitably decays and the flow becomes laminar. This is so, indeed, in the low-Reynolds-number (Re) flows, e.g., in some laboratory experiments; but this is by no means always the case. Air flows in the free atmosphere and water currents in deep ocean are almost always turbulent in spite of the strongly supercritical stratifications, with typical values of Ri varying in the interval 10 Ric the familiar 'strong-mixing turbulence' regime, typical of boundary-layer flows and characterised by the practically invariable turbulent Prandtl number PrT ~ 1 (the so-called 'Reynolds analogy'), gives way to a previously unknown 'wave-like turbulence' regime, wherein PrT sharply increases with increasing Ri (rather than to the laminar regime as is often the case in lab experiments). It is precisely the wave-like turbulence that dominates the free flows in the atmosphere and ocean. Modellers have long been aware that the turbulent heat transfer in the free atmosphere/ocean is much weaker than the momentum transfer. Our theory gives authentic formulation for this heuristic rule and provides physically grounded method for modelling geophysical turbulence up to very stable startifications.
1981-09-01
to calculate the reattachment length correctly, One of the Boussineaq modelo which uses a mixing-length formulation (BILK 30) predicted the...throughout a computation; we know where we will - ead to - A r . match. The various cases of complex strains and turbulent-turbulent interactions can be
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Turbulent dispersion of many particles
Pratt, J.; Busse, A.; Muller, W. C.
2017-12-01
We demonstrate the utility of the convex hull to analyze dispersion of groups of many Lagrangian tracer particles in turbulence. We examine dispersion in turbulent flows driven by convection, relevant to geophysical flows and the spread of contaminants in the atmosphere, and in turbulent flows affected by magnetic fields, relevant to stellar winds and stellar interiors. Convex hull analysis can provide new information about local dispersion, in the form of the surface area and volume for a cluster of particles. We use dispersive information to examine the local anisotropy that occurs in these turbulent settings, and to understand fundamental characteristics of heat transfer and the small-scale dynamo.
Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile
Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich
2018-02-01
In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Flow and heat and mass transfer in laminar and turbulent mist gas-droplets stream over a flat plate
Terekhov, Victor I
2014-01-01
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressur...
Large Eddy Simulations of turbulent flows at supercritical pressure
Energy Technology Data Exchange (ETDEWEB)
Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)
2011-07-01
A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)
Multi-Spacecraft Turbulence Analysis Methods
Horbury, Tim S.; Osman, Kareem T.
Turbulence is ubiquitous in space plasmas, from the solar wind to supernova remnants, and on scales from the electron gyroradius to interstellar separations. Turbulence is responsible for transporting energy across space and between scales and plays a key role in plasma heating, particle acceleration and thermalisation downstream of shocks. Just as with other plasma processes such as shocks or reconnection, turbulence results in complex, structured and time-varying behaviour which is hard to measure with a single spacecraft. However, turbulence is a particularly hard phenomenon to study because it is usually broadband in nature: it covers many scales simultaneously. One must therefore use techniques to extract information on multiple scales in order to quantify plasma turbulence and its effects. The Cluster orbit takes the spacecraft through turbulent regions with a range of characteristics: the solar wind, magnetosheath, cusp and magnetosphere. In each, the nature of the turbulence (strongly driven or fully evolved; dominated by kinetic effects or largely on fluid scales), as well as characteristics of the medium (thermalised or not; high or low plasma sub- or super-Alfvenic) mean that particular techniques are better suited to the analysis of Cluster data in different locations. In this chapter, we consider a range of methods and how they are best applied to these different regions. Perhaps the most studied turbulent space plasma environment is the solar wind, see Bruno and Carbone [2005]; Goldstein et al. [2005] for recent reviews. This is the case for a number of reasons: it is scientifically important for cosmic ray and solar energetic particle scattering and propagation, for example. However, perhaps the most significant motivations for studying solar wind turbulence are pragmatic: large volumes of high quality measurements are available; the stability of the solar wind on the scales of hours makes it possible to identify statistically stationary intervals to
Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.
2016-01-01
Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.
Directory of Open Access Journals (Sweden)
Adnan M. Hussein
2017-03-01
Full Text Available The limited thermal properties of liquids have led to the addition of solid nanoparticles to liquids in many industrial applications. In this paper, the friction factor and forced convection heat transfer of TiO2 nanoparticles dispersed in water in a car radiator was numerically determined. Four different nanofluid volume concentrations (1%, 2%, 3% and 4% were used, and the resulting thermal properties were evaluated. The Reynolds number and inlet temperature ranged from 10000 to 100000 and from 60 to 90 °C, respectively. The results showed that the friction factor decreases as the Reynolds number increases and increases as the volume concentration increases. Additionally, the Nusselt number increases as the Reynolds number and volume concentration of the nanofluid increases. The TiO2 nanofluid at low concentrations can enhance the heat transfer efficiency up to 20% compared with that of pure water. There was good agreement among the CFD analysis and experimental data available in the literature.
The Interaction of Coronal Mass Ejections with Alfvenic Turbulence
Manchester, W.; van der Holst, B.
2017-12-01
We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Relativistic generalization of strong plasma turbulence
International Nuclear Information System (INIS)
Chian, A.C.-L.
1982-01-01
Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.
1993-01-01
Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.
1993-01-01
Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
International Nuclear Information System (INIS)
Kim, Hyeon Il
2010-02-01
In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Directory of Open Access Journals (Sweden)
T. R. Robinson
1994-03-01
Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.
Numerical investigation on the convective heat transfer in a spiral coil with radiant heating
Directory of Open Access Journals (Sweden)
Đorđević Milan Lj.
2016-01-01
Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Turbulence in high-beta ASDEX upgrade advanced scenarios
Doerk, H.; Bock, A.; Di Siena, A.; Fable, E.; Görler, T.; Jenko, F.; Stober, J.; The ASDEX Upgrade Team
2018-01-01
Recent experiments at ASDEX Upgrade achieve non-inductive operation in full tungsten wall conditions by applying electron cyclotron and neutral beam current drive. These discharges are characterised by a well-measured safety factor profile, which does not drop below one, and a good energy confinement. By reproducing the experimental heat fluxes, nonlinear gyrokinetic simulations suggest that the observed strong peaking of the ion temperature in the core is caused by the stabilising impact of a significant beam ion content, as well as strong electromagnetic effects on turbulent transport. Quasilinear transport models are not yet applicable in this interesting and reactor relevant parameter regime, but available simulation data may serve as a testbed for improvements. As the present plasma is close to the kinetic ballooning (KBM) threshold, elevating the safety factor profile under otherwise identical conditions is proposed to clarify, whether profiles are ultimately limited by KBM turbulence, or by global stability constraints.
Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.
2018-02-01
We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Absorption of turbulent laser plasma radiation
International Nuclear Information System (INIS)
Silin, V.P.
1979-02-01
Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)
Current-driven turbulence in plasmas
International Nuclear Information System (INIS)
Kluiver, H. de.
1977-10-01
Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research
Lawrence, Ellen
2016-01-01
Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.
Long-term Evolution of Decaying Magnetohydrodynamic Turbulence in the Multiphase Interstellar Medium
Kim, Chang-Goo; Basu, Shantanu
2013-12-01
Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of Evpropt -1 and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (~0.2E 0) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding
Energy Technology Data Exchange (ETDEWEB)
Boughanem, H.
1998-03-24
The assumption of gradient transport for the mean reaction progress variable has a limited domain of validity in premixed turbulent combustion. The existence of two turbulent transport regimes, gradient and counter-gradient, is demonstrated in the present work using Direct Numerical Simulations (DNS) of plane flame configurations. The DNS data base describes the influence of the heat release factor, of the turbulence-to-flame velocity ratio, and of an external pressure gradient. The simulations reveal a strong correlation between the regime of turbulent transport and the turbulent flame speed and turbulent flame thickness. These effects re not well described by current turbulent combustion models. A conditional approach `fresh gases / burnt gases` is proposed to overcome these difficulties. Furthermore, he development of flame instabilities in turbulent configurations is also observed in the simulations. A criterion is derived that determines the domain of occurrence of these instabilities (Darrieus- Landau instabilities, Rayleigh- Taylor instabilities, thermo-diffusive instabilities). This criterion suggests that the domain of occurrence of flame instabilities is not limited to small Reynolds numbers. (author) 98 refs.
Magnetized Turbulent Dynamo in Protogalaxies
Energy Technology Data Exchange (ETDEWEB)
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
International Nuclear Information System (INIS)
Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.
2008-01-01
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4 He are strongly non-Gaussian with 1/v 3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Energy Technology Data Exchange (ETDEWEB)
Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Henriksson, S.; Janhunen, S.; Kiviniemi, T.P. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Ogando, F. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Universidad Nacional de Educacion a Distancia, C/ Juan del Rosal, 12 28040 Madrid (Spain)
2006-09-15
A full f nonlinear 5D gyrokinetic electrostatic particle-in-cell code ELMFIRE using an implicit direct solution method for ion polarization drift and electron parallel velocity response to electric field and its validation are described. The developed code is applied for transport analysis in a tokamak plasma at steep pressure gradient. The role of turbulence and neoclassical equilibrium in determining the flux surface averaged radial electric field component are investigated, as well as the role of the latter in affecting the saturation level of the turbulence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
International Nuclear Information System (INIS)
Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.
2009-01-01
The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
First steps towards modeling of ion-driven turbulence in Wendelstein 7-X
Warmer, F.; Xanthopoulos, P.; Proll, J. H. E.; Beidler, C. D.; Turkin, Y.; Wolf, R. C.
2018-01-01
Due to foreseen improvement of neoclassical confinement in optimised stellarators—like the newly commissioned Wendelstein 7-X (W7-X) experiment in Greifswald, Germany—it is expected that turbulence will significantly contribute to the heat and particle transport, thus posing a limit to the performance of such devices. In order to develop discharge scenarios, it is thus necessary to develop a model which could reliably capture the basic characteristics of turbulence and try to predict the levels thereof. The outcome will not only be affordable, using only a fraction of the computational cost which is normally required for repetitive direct turbulence simulations, but would also highlight important physics. In this model, we seek to describe the ion heat flux caused by ion temperature gradient (ITG) micro-turbulence, which, in certain heating scenarios, can be a strong source of free energy. With the aid of a relatively small number of state-of-the-art nonlinear gyrokinetic simulations, an initial critical gradient model (CGM) is devised, with the aim to replace an empirical model, stemming from observations in prior stellarator experiments. The novel CGM, in its present form, encapsulates all available knowledge about ion-driven 3D turbulence to date, also allowing for further important extensions, towards an accurate interpretation and prediction of the ‘anomalous’ transport. The CGM depends on the stiffness of the ITG turbulence scaling in W7-X, and implicitly includes the nonlinear zonal flow response. It is shown that the CGM is suitable for a 1D framework turbulence modeling.
Bukhvostova, A.; Kuerten, Johannes G.M.; Geurts, Bernardus J.
2016-01-01
We present results of a numerical study of turbulent droplet-laden channel flow with phase transition. Previous studies of the same system did not take into account the presence of gravity. Here, we do so introducing a thin film of water at the bottom wall and permitting droplets to fall into and
Magnetosheath electrostatic turbulence
International Nuclear Information System (INIS)
Rodriguez, P.
1979-01-01
By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath
Visible imaging of edge turbulence in NSTX
International Nuclear Information System (INIS)
S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden
2000-01-01
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence
Energy Technology Data Exchange (ETDEWEB)
Aounallah, M.; Imine, O.; Adjlout, L. [Department of Marine Engineering, Faculty of Mechanics, P.O. Box 1505, El-Mnaouar (Algeria); Addad, Y. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom); Benhamadouche, S.; Laurence, D. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom); Electricite de France R and D, Departement de Mecanique des Fluides et Transferts Thermiques (MFTT), 6 Quai Watier, 78400 Chatou (France)
2007-05-15
The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10{sup 12}. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k-{epsilon}, k-{omega}, k-{omega}-SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551-3572]. The k-{omega}-SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10{sup 9}-10{sup 12}. (author)
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Kakwere, Hamilton
2015-04-03
Herein we prepare nanohybrids by incorporating iron oxide nanocubes (cubic-IONPs) within a thermo-responsive polymer shell that can act as drug carriers for doxorubicin(doxo). The cubic-shaped nanoparticles employed are at the interface between superparamagnetic and ferromagnetic behavior and have an exceptionally high specific absorption rate (SAR) but their functionalization is extremely challenging compared to bare superparamagnetic iron oxide nanoparticles as they strongly interact with each other. By conducting the polymer grafting reaction using reversible addition-fragmentation chain transfer (RAFT) polymerization in a viscous solvent medium, we have here developed a facile approach to decorate the nanocubes with stimuli-responsive polymers. When the thermo-responsive shell is composed of poly(N-isopropyl acrylamide-co-polyethylene glycolmethylether acrylate), nanohybrids have a phase transition temperature, the lower critical solution temperature (LCST), above 37 °C in physiological conditions. Doxo loaded nanohybrids exhibited a negligible drug release below 37 °C but showed a consistent release of their cargo on demand by exploiting the capability of the nanocubes to generate heat under an alternating magnetic field (AMF). Moreover, the drug free nanocarrier does not exhibit cytotoxicity even when administered at high concentration of nanocubes (1g/L of iron) and internalized at high extent (260 pg of iron per cell). We have also implemented the synthesis protocol to decorate the surface of nanocubes with poly(vinylpyridine) polymer and thus prepare pH-responsive shell coated nanocubes.
Impact of terrain heterogeneity on near-surface turbulence structure
Fesquet, Clément; Drobinski, Philippe; Barthlott, Christian; Dubos, Thomas
2009-10-01
This study investigates the impact of terrain heterogeneity on local turbulence measurements using 18 months of turbulence data taken on a 30 m tower at the SIRTA mixed land-use observatory under varying stability conditions and fetch configurations. These measurements show that turbulence variables such as the turbulent kinetic energy or momentum fluxes are strongly dependent on the upstream complexity of the terrain (presence of trees or buildings, open field). However, using a detection technique based on wavelet transforms which permits the isolation of the large-scale coherent structures from small-scale background fluctuations, the study shows that, for all stability conditions, whatever the upstream complexity of the terrain, the coherent structures display universal properties which are independent of the terrain nature: the frequency of occurrence, time duration of the coherent structures, the time separation between coherent structures and the relative contribution of the coherent structures to the total fluxes (momentum and heat) appear to be independent of the upstream roughness. This is an important result since coherent structures are known to transport a large portion of the total energy. This study extends to all stability conditions a numerical study by Fesquet et al. [Fesquet, C., Dupont, S., Drobinski, P., Barthlott, C., Dubos, T., 2008. Impact of terrain heterogeneities on coherent structures properties: experimental and numerical approaches. In: 18th Symposium on Boundary Layers and Turbulence. No. 11B.1. Stockholm, Sweden., Fesquet, C., Dupont, S., Drobinski, P., Dubos, T., Barthlott, C., in press. Impact of terrain heterogeneity on coherent structure properties: numerical approach. Bound.-Layer Meteorol.] conducted in neutral conditions which shows that a reason for such behavior is that the production of local active turbulence in an internal boundary layer associated with coherent structure originating from the outer layer and impinging
Homogeneous internal wave turbulence driven by tidal flows
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team
2017-11-01
We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).
Energetics of turbulent transport processes in tokamaks
International Nuclear Information System (INIS)
Haas, F.A.; Thyagaraja, A.
1987-01-01
The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)
Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue
2016-01-01
Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.
Directory of Open Access Journals (Sweden)
Fei Jiang
Full Text Available Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu and heat shock protein 70 (HSP 70 are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70, IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.
Mori, Shoji; Muranushi, Takayuki; Okuzumi, Satoshi; Inutsuka, Shu-ichiro
2017-11-01
Magnetorotational instability (MRI) has the potential to generatevigorous turbulence in protoplanetary disks, although its turbulence strength and accretion stress remain debatable because of the uncertainty of MRI with a low ionization fraction. We focus on the heating of electrons by strong electric fields, which amplifies nonideal magnetohydrodynamic effects. The heated electrons frequently collide with and stick to dust grains, which in turn decreases the ionization fraction and is expected to weaken the turbulent motion driven by MRI. In order to quantitatively investigate the nonlinear evolution of MRI, including the electron heating, we perform magnetohydrodynamical simulation with the unstratified shearing box. We introduce a simple analytic resistivity model depending on the current density by mimicking the resistivity given by the calculation of ionization. Our simulation confirms that the electron heating suppresses magnetic turbulence when the electron heating occurs with low current density. We find a clear correlation between magnetic stress and current density, which means that the magnetic stress is proportional to the squared current density. When the turbulent motion is completely suppressed, laminar accretion flow is caused by an ordered magnetic field. We give an analytical description of the laminar stateusing a solution of linear perturbation equations with resistivity. We also propose a formula that successfully predicts the accretion stress in the presence of the electron heating.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
Energy Technology Data Exchange (ETDEWEB)
Vörös, Zoltán; Narita, Yasuhito [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Yordanova, Emiliya [Swedish Institute of Space Physics, Uppsala (Sweden); Echim, Marius M. [Belgian Institute for Space Aeronomy, Bruxelles (Belgium); Consolini, Giuseppe, E-mail: zoltan.voeroes@oeaw.ac.at [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy)
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives. During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.
Turbulent and neoclassical toroidal momentum transport in tokamak plasmas
International Nuclear Information System (INIS)
Abiteboul, J.
2012-10-01
The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
A hydrological investigation was conducted in the shelf of eastern Hainan island during July 2012. With the in-situ measurements from four cross-shelf sections and satellite data, the submesoscale process of the fronts are discussed in this paper, the seasonal variation characteristics of thermal front, the three-dimensional structure, dynamic characteristics of frontal and mixed characteristics in the shelf sea of eastern Hainan island. It's obviously that the thermal front has a seasonal variation: the front is strongest in winter, and decreased gradually in spring and summer. However, it fade and disappear in fall. The core region of the front also changes with the seasons, it moved southward gradually from mainly distributed in the upwelling zone and the front center is not obvious in summer. it is a typical upwelling front in summer, the near shore is compensated with the underlying low-temperature and high-sale water , while the offshore is the high-temperature and low-salinity shelf water. The thermal front distribution is located in the 100m isobaths. The frontal intensity is reduced with increasing depth, and position goes to offshore. Subsurface temperature front is significantly higher in the surface of the sea, which may cause by the heating of nearshore sea surface water and lead to the weakening horizontal temperature gradient. Dynamic characteristics of the front has a great difference in both sides. The O(1) Rossby number is positive on the dense side and negative on the light side. The maximum of along-frontal velocity is 0.45m/s and the stretching is strengthened by strong horizontal shear, also is the potential vorticity, which can trace the cross front Ekman transport. We obtained the vertical velocity with by quasi-geostrophic omega equation and grasped the ageostrophic secondary circulation. The magnitude of frontal vertical velocity is O(10-5) and causes downwelling on the dense side and upwelling on the light side, which constitute the
Directory of Open Access Journals (Sweden)
Abhijit Paul
2016-09-01
Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
The flux tube paradigm and its role in MHD turbulence in the solar atmosphere
Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.
2011-12-01
Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these
Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.
2017-12-01
The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.
Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.
2018-05-01
The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.
Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz
2018-01-01
We investigate the area-averaged sensible heat flux (QH ) obtained with a scintillometer along a 3.1-km path length over the city centre of Łódź, Central Poland. The annual cycle of QH peaks in June but is lower by the middle of summer. In winter, due to a large amount of anthropogenic heat input, QH remains positive all day long, with positive night-time fluxes also found during months with frequent cold advection, e.g., June 2010. In the diurnal cycle of this flux, several features specific to urban areas are seen: the peak shifts 1-2 h after noon, the heat flux turns from positive to negative 1-2 h after sunset. In Łódź QH was observed during inflow from the north and north-west, i.e. from the city centre. As this area is mostly covered with impervious materials, most of the heat exchanged between the ground and the overlying air is in the form of sensible heat flux. Under the conditions of inflow from the east and south-east, the maximum heat flux is approximately 100 W m^{-2} lower than during the inflow from the city centre, since more vegetation exists to the east and south-east of the scintillometer path. Cold and warm advection are found to be a vital factor in the observed heat-flux variability in the centre of Łódź.
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
On the parameterization of turbulent fluxes over the tropical Eastern Pacific
Directory of Open Access Journals (Sweden)
G. B. Raga
2007-01-01
Full Text Available We present estimates of turbulent fluxes of heat and momentum derived from low level (~30 m aircraft measurements over the tropical Eastern Pacific and provide empirical relationships that are valid under high wind speed conditions (up to 25 ms−1. The estimates of total momentum flux and turbulent kinetic energy can be represented very accurately (r2=0.99, when data are binned every 1 ms−1 by empirical fits with a linear and a cubic terms of the average horizontal wind speed. The latent heat flux shows a strong quadratic dependence on the horizontal wind speed and a linear relationship with the difference between the air specific humidity and the saturated specific humidity at the sea surface, explaining 96% of the variance. The estimated values were used to evaluate the performance of three currently used parameterizations of turbulence fluxes, varying in complexity and computational requirements. The comparisons with the two more complex parameterizations show good agreement between the observed and parameterized latent heat fluxes, with less agreement in the sensible heat fluxes, and one of them largely overestimating the momentum fluxes. A third, very simple parameterization shows a surprisingly good agreement of the sensible heat flux, while momentum fluxes are again overestimated and a poor agreement was observed for the latent heat flux (r2=0.62. The performance of all three parameterizations deteriorates significantly in the high wind speed regime (above 10–15 ms−1. The dataset obtained over the tropical Eastern Pacific allows us to derive empirical functions for the turbulent fluxes that are applicable from 1 to 25 ms−1, which can be introduced in meteorological models under high wind conditions.
Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi
2016-03-01
For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.
Laboratory Study of Air Turbulence-Particle Coupling
Petersen, A.; Baker, L.; Coletti, F.
2017-12-01
Inertial particles suspended in a turbulent flow are unable to follow the fluid's rapid velocity fluctuations, leading to high concentrations in regions where fluid strain dominates vorticity. This phenomenon is known as preferential concentration or clustering and is thought to affect natural processes ranging from the collisional growth of raindrops to the formation of planetesimals in proto-planetary nebulas. In the present study, we use a large jet-stirred chamber to generate homogeneous air turbulence into which we drop particles with an aerodynamic response time comparable to the flow time scales. Using laser imaging we find that turbulence can lead to a multi-fold increase of settling velocity compared to still-air conditions. We then employ Voronoi tessellation to examine the particle spatial distribution, finding strong evidence of turbulence-driven particle clustering over a wide range of experimental conditions. We observe individual clusters of a larger size range than seen previously, sometimes beyond the integral length scale of the turbulence. We also investigate cluster topology and find that they (i) exhibit a fractal structure, (ii) have a nearly constant particle concentration over their entire size range, and (iii) are most often vertically oriented. Furthermore, clustered particles tend to fall faster than those outside clusters, and larger clusters fall faster on average than smaller ones. Finally, by simultaneous measurement of particle and air velocity fields, we provide the first experimental evidence of preferential sweeping, a mechanism previously proposed to explain the increase in particle settling velocity found in numerical simulations, and find it especially effective for clustered particles. These results are significant for the micro-scale physics of atmospheric clouds. The large cluster size range has implications for how droplets will influence the local environment through condensation, evaporation, drag and latent heat effects
TEM turbulence optimisation in stellarators
Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.
2016-01-01
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Effective kinematic viscosity of turbulent He II
Czech Academy of Sciences Publication Activity Database
Chagovets, Tymofiy; Gordeev, A. V.; Skrbek, L.
2007-01-01
Roč. 76, č. 2 (2007), 027301/1-027301/4 ISSN 1539-3755 R&D Projects: GA ČR GA202/05/0218 Institutional research plan: CEZ:AV0Z10100520 Keywords : ĺiquid helium II * decaying counetrflow turbulence * mutual friction * grid turbulence * rotating helium * finite channel * heat current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.483, year: 2007
SUNDÉN, B
2012-01-01
Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.
Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence
International Nuclear Information System (INIS)
Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.
2011-01-01
Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.
Clumps in drift wave turbulence
DEFF Research Database (Denmark)
Pecseli, H. L.; Mikkelsen, Torben
1986-01-01
In a statistical analysis pair correlation of particles is eventually destroyed by small scale fluctuations giving rise to relative particle diffusion. However, in any one given realization of the statistical ensemble particles may remain correlated in certain regions of space. A perfectly frozen......, two-dimensional random flow serves as a particularly simple illustration. For this case particles can be trapped for all times in a local vortex (macro-clump). A small test-cloud of particles (micro-clump) chosen arbitrarily in a realization will on the other hand expand on average. A formulation...... is proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence...
Onset of meso-scale turbulence in active nematics
Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.
2017-05-01
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.
2018-04-01
We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.
Czech Academy of Sciences Publication Activity Database
Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, M.; Srnka, Aleš; Skrbek, L.
2014-01-01
Roč. 16, č. 5 (2014), 053042: 1-40 ISSN 1367-2630 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : Rayleigh-Bénard convection * heat transfer efficiency * cryogenic helium Subject RIV: BK - Fluid Dynamics Impact factor: 3.558, year: 2014
Size scaling of turbulent transport in tokamak plasmas
International Nuclear Information System (INIS)
Lin Zhihong
2002-01-01
Transport scaling with respect to tokamak device size is critically examined for electrostatic ion temperature gradient (ITG) turbulence with adiabatic electrons using first-principles gyrokinetic particle simulations, which use up to one billion particles to address realistic parameters of reactor-grade plasmas. Results of these large scale simulations, varying ρ* (ion gyroradius normalized by tokamak minor radius) while keeping other dimensionless plasma parameters fixed, show that the fluctuation scale length is microscopic and transport is diffusive in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day tokamak experiments to a gyro-Bohm scaling for future larger devices. The device size where this transition occurs is much larger than that expected from linear ITG theory for profile variations. Our simulations include a heat bath/source to prevent profile relaxation and are in the strong turbulence regime far away from ITG marginality. The effects of kinetic electrons on electrostatic ITG-TEM (trapped electron mode) driven turbulence will also be presented. (author)
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
A weakened cascade model for turbulence in astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom); TenBarge, J. M. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Dorland, W. [Department of Physics, University of Maryland, College Park, Maryland 20742-3511 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom)
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Turbulent wedge spreading dynamics and control strategies
Suryanarayanan, Saikishan; Goldstein, David; Brown, Garry
2017-11-01
Turbulent wedges are encountered in some routes to transition in wall bounded flows, particularly those involving surface roughness. They are characterized by strongly turbulent regions that are formed downstream of large disturbances, and spread into the non-turbulent flow. Altering the wedge spreading mechanism is a possible drag reduction strategy. Following recent studies of Goldstein, Chu and Brown (Flow Turbul. Combust. 98(1), 2017) and Kuester and White (Exp. Fluids 57(4), 2016), we explore the relation between the base flow vorticity field and turbulent wedge spreading using immersed boundary direct numerical simulations. The lateral spreading rate of the wedges are similar for high Reynolds number boundary layers and Couette flow, but differences emerge in wall normal propagation of turbulence. We also attempt to utilize the surface texture based strategy suggested by Strand and Goldstein (J. Fluid Mech. 668, 2011) to reduce the spreading of isolated turbulent spots, for turbulent wedge control. The effects of height, spacing and orientation of fins on the dynamics of wedge evolution are studied. The results are interpreted from a vorticity dynamics point of view. Supported by AFOSR # FA9550-15-1-0345.
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhaleva, Larisa V.; Chukalin, Andrey V.; Bondarenko, Aleksandr A.; Kovrizhnykh, Evgeny N.
2017-07-01
Generalization of classical model of a displacement way on the transfer of heat exchange and mass exchange of a stream in the boundary layer, confirmed by the control action of the different nature, is undertaken. Here are given the results of numerical research which have allowed explaining the mechanism, to reveal efficiency and limits of various ways of management of intensity in exchange processes. The possibility of management of intensity in processes of a thermolysis and friction by use of the perforated surface with the damping cavities is analyzed.
Turbulent Mixing in Stably Stratified Flows
2008-03-01
Turbulent fluid motions are typically characterized by several features including randomness in both space and time, vorticity, an energy cascade ...drawback of this method is that the portion of the flow identified as a turbulent structure is dependent on the type of wavelet filter used (e.g., Haar ...the mesoscale variability of the atmosphere. J. Atmos. Sci., 40:749-761, 1983. E. Lindborg. The energy cascade in a strongly stratified fluid. J
Nazari, Saeed; Zamani, Mahdi; Moshizi, Sajad A.
2018-03-01
The ensuing study is dedicated to a series of numerical investigations concerning the effects of various geometric parameters of dimpled plates on the flow structure and heat transfer performance in a rectangular duct compared to the smooth plate. These parameters are the arrangement, number and depth of dimples. Two widely used staggered and square patterns in addition to a triangular arrangement, and three dimple depths (Δ = δ/d = 0.25, 0.375 and 0.5) have been chosen for this particular study. All studies have been conducted at three different Reynolds numbers Re = 25,000, 50,000 and 100,000. In order to capture the flow structures in the vicinity of dimples and contributing phenomena related to the boundary layer interactions, fully structured grids with y+ rims of dimples are the causes for improved average Nusselt number in the dimpled surface in comparison to the smooth plate. However, more pressure loss due to the higher friction drag and recirculation zones inside dimples will exist as a drawback in this system. Moreover, for all arrangements increasing dimple ratio Δ has a negative impact on the heat transfer augmentation and also deteriorates the pressure loss, which leads to this fact that Δ = 0.25 serves as the best option for the dimple depth.
Deissler, Robert G.
1996-01-01
Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
National Research Council Canada - National Science Library
Drikakis, D; Geurts, Bernard
2002-01-01
... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...
Effects of roughness on density-weighted particle statistics in turbulent channel flows
Energy Technology Data Exchange (ETDEWEB)
Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)
2015-12-31
The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu
2018-04-01
The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Evolution of the lower planetary boundary layer over strongly contrasting surfaces
International Nuclear Information System (INIS)
Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.
1992-01-01
In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities
Coherent structure generation in near-wall turbulence
Schoppa, W.; Hussain, F.
2002-02-01
We present a new mechanism for generation of near-wall streamwise vortices which dominate turbulence phenomena in boundary layers using linear perturbation analysis and direct numerical simulations of turbulent channel flow. The base flow, consisting of the mean velocity profile and low-speed streaks (free from any initial vortices), is shown to be linearly unstable to sinuous normal modes only for relatively strong streaks, i.e. for wall inclination angles of streak vortex lines exceeding 50°. Analysis of streaks extracted from fully developed near-wall turbulence indicates that about 20% of streak regions in the buffer layer exceed the strength threshold for instability. More importantly, these unstable streaks exhibit only moderate (twofold) normal-mode amplification, the growth being arrested by self-annihilation of streak-flank normal vorticity due to viscous cross-diffusion. We present here an alternative, streak transient growth (STG) mechanism, capable of producing much larger (tenfold) linear ampliflcation of x-dependent disturbances. Note the distinction of STG responsible for perturbation growth on a streak velocity distribution U(y, z) from prior transient growth analyses of the (streakless) mean velocity U(y). We reveal that streamwise vortices are generated from the more numerous normal-mode-stable streaks, via a new STG-based scenario: (i) transient growth of perturbations leading to formation of a sheet of streamwise vorticity [omega]x (by a ‘shearing’ mechanism of vorticity generation), (ii) growth of sinuous streak waviness and hence [partial partial differential]u/[partial partial differential]x as STG reaches nonlinear amplitude, and (iii) the [omega]x sheet’s collapse via stretching by [partial partial differential]u/[partial partial differential]x (rather than rollup) into streamwise vortices. Significantly, the three-dimensional features of the (instantaneous) streamwise vortices of x-alternating sign generated by STG agree well with
Dynamic Heat Transfer Model of Refrigerated Foodstuff<strong> strong>
DEFF Research Database (Denmark)
Cai, Junping; Risum, Jørgen; Thybo, Claus
2006-01-01
condition. The influence of different factors such as air velocity, type of food, size of food, or food package are investigated, the question such as what kind of food are more sensitive to the surrounding temperature change is answered. This model can serve as a prerequisite for modelling of food quality...
Wind effect in turbulence parametrization
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
Turbulent mixed flow applying CFD in electronic cooling
Directory of Open Access Journals (Sweden)
Carlos Alberto Chaves
2011-01-01
laminar and turbulent fluxes until heat flux equal 1,000 and maximum dimensionless temperature increase abruptly with heat flux to laminar and turbulent flows for injection dimensionless velocity equal 1, 2, 4, 6, 8, and 10. The results obtained allowed identifying the highest temperature when the system is submitted to combine forced and free convection, making possible to apply control actions, avoiding thermal damages to the devices that work with this cooling process.
A New Paradigm for Turbulence Control for Drag Reduction
2017-02-27
Reynolds stresses , turbulent heat fluxes and higher-order moments of velocity and temperature. Explicit Algebraic Reynolds Stress Models (EARSM...obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows and turbulent heat flux distributions obtained from two...flows. Results from this seed grant have appeared in three journal articles and have been accepted for presentation at national conferences 16
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Cleveland, Mathew A.
initialization. The TRI effects are very sensitive to the initialization of the turbulence in the system. The TRI parameters are somewhat sensitive to the treatment of particulate temperature and the particulate optical thickness, and this effect are amplified by increased particulate loading. Monte Carlo radiative heat transfer simulations of time-dependent combustion processes generally involve an explicit evaluation of emission source because of the expense of the transport solver. Recently, Park et al. [5] have applied quasi-diffusion with Monte Carlo in high energy density radiative transfer applications. We employ a Crank-Nicholson temporal integration scheme in conjunction with the coarse mesh finite difference (CMFD) method, in an effort to improve the temporal accuracy of the Monte Carlo solver. Our results show that this CMFD-CN method is an improvement over Monte Carlo with CMFD time-differenced via Backward Euler, and Implicit Monte Carlo [6] (IMC). The increase in accuracy involves very little increase in computational cost, and the figure of merit for the CMFD-CN scheme is greater than IMC.
A Survey of Atmospheric Turbulence Characteristics
1981-08-19
urban heat island reduced atmospheric stability, especially at lower levels. Turbulence wao more intense in the rougher and less stable urban environment...20546 1 30 Owl DISTRIBUTION (Continued) • No. of A Copies Commander -USAF Environmental Teohnical Applications Center (MAC) ATTNt Mr. Oscar E
Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions
International Nuclear Information System (INIS)
Brinkop, S.; Roeckner, E.
1993-01-01
Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)
1997-12-31
Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.
International Nuclear Information System (INIS)
Takahashi, Minoru; Momozaki, Yoichi
2000-01-01
For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Heat-transfer data for hydrogen
Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.
1970-01-01
Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.
Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.
Perez, J. C.; Chandran, B. D. G.
2015-12-01
The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.
TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING
Energy Technology Data Exchange (ETDEWEB)
Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo
2013-06-13
A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.
Turbulent Transport in a Three-dimensional Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-11-01
This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact
Statistical theory and transition in multiple-scale-lengths turbulence in plasmas
International Nuclear Information System (INIS)
Itoh, Sanae-I.; Itoh, Kimitaka
2001-06-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE
International Nuclear Information System (INIS)
Aspden, A. J.; Bell, J. B.; Woosley, S. E.
2011-01-01
In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.
Multiple-scale turbulence and bifurcation
Energy Technology Data Exchange (ETDEWEB)
Yagi, M.; Itoh, S.-I.; Kawasaki, M. [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukuyama, A. [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)
2003-01-01
In this paper, we analyze the turbulence composed of collective modes with different scale lengths. The hierarchical model for multiple-scale turbulence is developed. Nonlinear interactions between different scale length are modeled as turbulent drag, nonlinear noise and nonlinear drive and a set of Langevin equations is formulated. Using this model, a case where two driving mechanisms coexist (one for the micro mode and the other for semi-micro mode) is investigated. It is found that a new type of turbulence transition and a cusp-type catastrophe exist in some parameter regime. Numerical simulations are also performed for neighboring multiple-scale turbulence such as ion temperature gradient driven drift wave (ITG) (k{sub y}{rho}{sub i} < 1) and short wavelength ITG (k{sub y}{rho}{sub i} > 1) modes in the shearless slab geometry. The cascade and inverse cascade in multiple-scale turbulence are investigated. The cascade is mainly observed in k sub(parallel) space. On the other hand, the cascade and the inverse cascade are observed in K sub(perpendicular) space. Another interesting result is that the particle flux is negative (inward pinch) due to the short wavelength ITG modes, while the ion and electron heat flux are positive, which indicates nonlinear interaction between different scale length mode might affect transport. (author)
Liang, J.; Zhang, L.; Yuan, G.
2017-12-01
Accurate determination of surface turbulent fluxes in a stable boundary layer is of great practical importance in weather prediction and climate simulations, as well as applications related to air pollution. To gain an insight into the characteristics of turbulence in a stable boundary layer over the complex terrain of the Loess Plateau, we analyzed the data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). We proposed a method to identify and efficiently isolate nonstationary motions from turbulence series, and examined the characteristics of nonstationary motions (nonstationary motions refer to gusty events on a greater scale than local shear-generated turbulence). The occurrence frequency of nonstationary motions was found to depend on the mean flow, being more frequent in weak wind conditions and vanishing when the wind speed, U, was greater than 3.0 m s-1. When U exceeded the threshold value of 1.0 m s-1 for the gradient Richardson number Ri ≤ 0.3 and 1.5 m s-1 for Ri > 0.3, local shear-generated turbulence depended systematically on U with an average rate of 0.05 U. However, for the weak wind condition, neither the mean wind speed nor the stability was an important factor for local turbulence. Under the weak wind stable condition, affected by topography-induced nonstationary motions, the local turbulence was anisotropic with a strong horizontal fluctuation and a weak vertical fluctuation, resulting in weakened heat mixing in the vertical direction and stronger un-closure of energy. These findings accessed the validity of similarity theory in the stable boundary layer over complex terrain, and revealed one reason for the stronger un-closure of energy in the night.
Reduced Models for Gyrokinetic Turbulence
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2009-09-01
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (Magnetohydrodynamics (MHD), gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge demand on computer resources. A unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore, finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically confined plasmas. Here we present the derivation of nonlinear gyro-water-bag models and their numerical approximations by backward Runge-Kutta semi-Lagrangian methods and forward Runge-Kutta discontinuous Galerkin schemes.
Modelling and prediction of non-stationary optical turbulence behaviour
Doelman, N.J.; Osborn, J.
2016-01-01
There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument
Near bed suspended sediment flux by single turbulent events
Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian
2018-01-01
The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport
Turbulence radiation coupling in boundary layers of heavy-duty diesel engines
Energy Technology Data Exchange (ETDEWEB)
Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)
2017-04-05
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
International Nuclear Information System (INIS)
Li Ya-Qing; Wu Zhen-Sen; Zhang Yuan-Yuan; Wang Ming-Jun
2014-01-01
Based on the modified Rytov theory and the international telecommunication union-radio (ITU-R) slant atmospheric structure constant model, the uniform scintillation index of partially coherent Gaussian—Schell model (GSM) beam propagation in the slant path is derived from weak- to strong-turbulence regions considering inner- and outer-scale effects. The effects of wavelength of beams and inner- and outer-scale of turbulence on scintillation are analyzed numerically. Comparison between the scintillation of GSM beams under the von Karman spectrum and that of beams under the modified Hill spectrum is made. The results obtained show that the scintillation index obtained under the von Karman spectrum is smaller than that under the modified Hill spectrum. This study can find theory bases for the experiments of the partially coherent GSM beam propagation through atmospheric turbulence. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Characterization of transition to turbulence in microchannels
Energy Technology Data Exchange (ETDEWEB)
Rands, C.; Webb, B.W.; Maynes, D. [Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602-4201 (United States)
2006-08-15
This paper reports on an experimental study characterizing the laminar-turbulent transition for water flow in circular microtubes. Microtubes with diameters in the range 16.6-32.2{mu}m of varying length were employed over the Reynolds number range 300-3400. The volume flowrate was measured for an imposed pressure differential using a timed displacement technique. Additionally, the viscous heating-induced mean fluid temperature rise was measured. Two independent approaches were used to identify transition from laminar to turbulent flow. Both methods showed transition to occur in the Reynolds number range 2100-2500, consistent with macroscale tube flow behavior. (author)
Bahamas Optical Turbulence Exercise (BOTEX): preliminary results
Hou, Weilin; Jorosz, Ewa; Dalgleish, Fraser; Nootz, Gero; Woods, Sarah; Weidemann, Alan D.; Goode, Wesley; Vuorenkoski, Anni; Metzger, B.; Ramos, B.
2012-06-01
The Bahamas Optical Turbulence Exercise (BOTEX) was conducted in the coastal waters of Florida and the Bahamas from June 30 to July 12 2011, onboard the R/V FG Walton Smith. The primary objective of the BOTEX was to obtain field measurements of optical turbulence structures, in order to investigate the impacts of the naturally occurring turbulence on underwater imaging and optical beam propagation. In order to successfully image through optical turbulence structures in the water and examine their impacts on optical transmission, a high speed camera and targets (both active and passive) were mounted on a rigid frame to form the Image Measurement Assembly for Subsurface Turbulence (IMAST). To investigate the impacts on active imaging systems such as the laser line scan (LLS), the Telescoping Rigid Underwater Sensor Structure (TRUSS) was designed and implemented by Harbor Branch Oceanographic Institute. The experiments were designed to determine the resolution limits of LLS systems as a function of turbulence induced beam wander at the target. The impact of natural turbulence structures on lidar backscatter waveforms was also examined, by means of a telescopic receiver and a short pulse transmitter, co-located, on a vertical profiling frame. To include a wide range of water types in terms of optical and physical conditions, data was collected from four different locations. . Impacts from optical turbulence were observed under both strong and weak physical structures. Turbulence measurements were made by two instruments, the Vertical Microstructure Profiler (VMP) and a 3D acoustical Doppler velocimeter with fast conductivity and temperature probes, in close proximity in the field. Subsequently these were mounted on the IMAST during moored deployments. The turbulence kinetic energy dissipation rate and the temperature dissipation rates were calculated from both setups in order to characterize the physical environments and their impacts. Beam deflection by multiple point
2014-01-01
Santacesaria et al. [2] reported higher yields of biodiesel at relatively low Re, which they credited to strong localized micromixing and turbulence. Edge et...corrugated heat transfer plates which are separated by gaskets. The corrugations are aligned in a repeating series of chevrons toApproved for public release...industrial applications [10]. The treatment of individual channels as separate submodels (Fig. 3) also allows for non-idealities seen in real heat
Gyrokinetic simulation of microtearing turbulence
International Nuclear Information System (INIS)
Doerk, Hauke
2013-01-01
In modern fusion experiments, plasma turbulence is responsible for the radial heat transport and thus determines the plasma confinement within the magnetic field of tokamak devices. Deeper theoretical understanding is needed to explain today's and future fusion experiments. The goal of fusion research is to establish nuclear fusion as a safe and sustainable energy source. In future fusion power plants, and also in large fusion experiments like the presently constructed ITER, plasma heating predominantly affects the electron species. The reason is of fundamental nature: the collisional cross section of fast ions that are produced by the heating systems is larger for thermal electrons than for thermal ions. It is thus essential to correctly predict electron thermal transport, but the overall picture still continues to evolve. Besides microinstabilities on the electron gyroradius scales, also a stochastized magnetic field can contribute to enhanced electron transport. Already since the 1970's, the so-called microtearing instability is discussed as a source of stochastic fields. This microinstability deserves its name for breaking up the magnetic field structure by forming small-scale magnetic islands. The linear microtearing instability and its nonlinear, turbulent behavior is investigated in this thesis by means of numerical simulations with the gyrokinetic turbulence code Gene. The underlying gyrokinetic equations are not only appropriate to predict turbulent transport, but also describe neoclassical transport that is drift-kinetic in nature. Besides revealing interesting physics on long time scales, solving the neoclassical equation serves as an excellent test for the numerical implementation of the collision operator in Gene. Focusing on the local limit, it is found that a modification of this implementation that considers certain symmetries is necessary to obtain a satisfactory agreement with the well-established drift-kinetic neoclassical code Neo. Also the
Eddy turbulence, the double mesopause, and the double layer of atomic oxygen
Directory of Open Access Journals (Sweden)
M. N. Vlasov
2012-01-01
Full Text Available In this study, we consider the impact of eddy turbulence on temperature and atomic oxygen distribution when the peak of the temperature occurs in the upper mesosphere. A previous paper (Vlasov and Kelley, 2010 considered the simultaneous impact of eddy turbulence on temperature and atomic oxygen density and showed that eddy turbulence provides an effective mechanism to explain the cold summer and warm winter mesopause observed at high latitudes. Also, the prevalent role of eddy turbulence in this case removes the strong contradiction between seasonal variations of the O density distribution and the impact of upward/downward motion corresponding to adiabatic cooling/heating of oxygen atoms. Classically, there is a single minimum in the temperature profile marking the location of the mesopause. But often, a local maximum in the temperature is observed in the height range of 85–100 km, creating the appearance of a double mesopause (Bills and Gardner, 1993; Yu and She, 1995; Gusev et al., 2006. Our results show that the relative temperature maximum in the upper mesosphere (and thus the double mesopause can result from heating by eddy turbulence. According to our model, there is a close connection between the extra temperature peak in the mesosphere and the oxygen atom density distribution. The main feature of the O density height profile produced by eddy turbulence in our model is a double peak instead of a single peak of O density. A rocket experiment called TOMEX confirms these results (Hecht et al., 2004. Applying our model to the results of the TOMEX rocket campaign gives good agreement with both the temperature and oxygen profiles observed. Climatology of the midlatitude mesopause and green line emission shows that the double mesopause and the double layers of the green line emission, corresponding to the double O density height profile, are mainly observed in spring and fall (Yu and She, 1995; Liu and Shepherd, 2006. Further observations of
Turbulence modeling of natural convection in enclosures: A review
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2012-01-01
In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed
Buoyancy effects on turbulent mixing in the LMFBR outlet plenum
International Nuclear Information System (INIS)
Chang, S.H.
1983-01-01
The effect of flow stratification is of particular concern during transient after scram in the outlet plenum of LMFBR. In this case, buoyancy effects on turbulent mixing are the importance to designers. An investigation has been made to identify the appropriate change in the available turbulence models which are necessary to include the effects of buoyancy on turbulence transport equations. The developed physical model of the buoyant turbulent flow are solved through SMAC method. Testing of the developed numerical model was undertaken and compared with experimental results. The results show that the buoyant turbulent effects account for the significant increase in the stability of the stratification, with a strong suppression of turbulence in the outlet plenum. (Author)
The Effect of Large Scale Salinity Gradient on Langmuir Turbulence
Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.
2017-12-01
Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Estuary Turbulence and Air-Water Carbon Dioxide Exchange
Orton, Philip Mark
The mixing of constituents between estuarine bottom and surface waters or between estuarine surface waters and the atmosphere are two topics of growing interest, in part due to the potentially important role of estuaries in global carbon budgets. These two types of mixing are typically driven by turbulence, and a research project was developed to improve the scientific understanding of atmospheric and tidal controls on estuary turbulence and airwater exchange processes. Highlights of method development and field research on the Hudson River estuary include several deployments of bottom mounted current profilers to quantify the turbulent kinetic energy (TKE) budget, and construction and deployment of an instrumented catamaran that makes autonomous measurements of air-water CO2 exchange (FCO2), water TKE dissipation at 50 cm depth (epsilon50), and other physical properties just above and below the air-water interface. On the Hudson, wind correlates strongly with epsilon50, but surface water speed and airwater heat flux also have moderate correlations with epsilon50. In partially mixed estuaries such as the Hudson, as well as salt wedge estuaries, baroclinic pressure forcing typically causes spring ebb tides to have much stronger upper water column shear than flood tides. The Hudson data are used to show that this shear leads to local shear instability and stronger near-surface turbulence on spring ebbs. Also, buoyancy budget terms are compared to demonstrate how water-to-air heat fluxes can influence stratification and indirectly influence epsilon50. Looking more closely at the role of wind forcing, it is demonstrated that inland propagation of the sea breeze on warm sunny days leads to arrival in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the air-water CO2 flux by 1-2 orders of magnitude, and drives epsilon50 comparable to spring tide levels in the upper meter of the water
Resistive fluid turbulence and tokamak edge plasma dynamics
International Nuclear Information System (INIS)
Thayer, D.R.; Diamond, P.H.; Ritz, C.P.
1988-01-01
Electrostatic and electromagnetic turbulence has been linked to particle and heat transport in tokamaks. Here we report on several related theoretical and experimental investigations of edge plasma dynamics. The theory of thermally-driven convective cell edge turbulence has been developed to treat the coupling of the radiative-condensation instability to the resistivity-gradient expansion free energy. This model of edge turbulence has led to theoretical understanding of several anomalies in electrostatic edge turbulence found from experiment: that fluctuation levels and transport coefficients are larger than naively expected, that potential fluctuations are significantly larger than the density. Impurity gas-puffing experiments on the TEXT tokamak have been performed to test this theory, and have indicated favorable results. Resistive fluid turbulence models have also been explored and applied in the hope of understanding the extensive edge magnetic fluctuation studies. We discuss models of electromagnetic microtearing turbulence, resistive-pressure-gradient-driven turbulence, and ion temperature gradient driven turbulence. In particular we study the role of resistive fluid turbulence with separatrix effects in the L /yield/ H mode transition. 36 refs., 2 figs
Transport and turbulence studies in the T-10 tokamak
International Nuclear Information System (INIS)
Ossipenko, M.V.
2003-01-01
Transitions to the improved confinement regimes were studied in the T-10 ECR heated tokamak: the H-mode with and without ITB and the pellet enhanced confinement (PEC) regime. It was shown that subtle changes in the q profile allow us to obtain either ITB or ETB only, or both of them under approximately similar conditions. The H-mode is obtained by power increase, pellet injection and biasing. The confinement time in the PEC-mode is 30% higher than that in the spontaneous H-mode. In biasing experiments the enhancement factor for the energy confinement time was up to 1.55. The global confinement in the regime with density above the Greenwald limit under strong gas puffing and ECRH was investigated. To identify the type of turbulence responsible for transport, Ohmic and ECRH regimes with variation of qL and gas puffing were considered. Two regions along the minor radius with different turbulence properties corresponding to ITG or DTEM and resistive interchange instabilities were observed. (author)
Chaos and turbulent nucleosynthesis prior to a supernova explosion
International Nuclear Information System (INIS)
Arnett, W. D.; Meakin, C.; Viallet, M.
2014-01-01
Three-dimensional (3D), time dependent numerical simulations of flow of matter in stars, now have sufficient resolution to be fully turbulent. The late stages of the evolution of massive stars, leading up to core collapse to a neutron star (or black hole), and often to supernova explosion and nucleosynthesis, are strongly convective because of vigorous neutrino cooling and nuclear heating. Unlike models based on current stellar evolutionary practice, these simulations show a chaotic dynamics characteristic of highly turbulent flow. Theoretical analysis of this flow, both in the Reynolds-averaged Navier-Stokes (RANS) framework and by simple dynamic models, show an encouraging consistency with the numerical results. It may now be possible to develop physically realistic and robust procedures for convection and mixing which (unlike 3D numerical simulation) may be applied throughout the long life times of stars. In addition, a new picture of the presupernova stages is emerging which is more dynamic and interesting (i.e., predictive of new and newly observed phenomena) than our previous one
Nonlinear turbulence theory and simulation of Buneman instability
International Nuclear Information System (INIS)
Yoon, P. H.; Umeda, T.
2010-01-01
In the present paper, the weak turbulence theory for reactive instabilities, formulated in a companion paper [P. H. Yoon, Phys. Plasmas 17, 112316 (2010)], is applied to the strong electron-ion two-stream (or Buneman) instability. The self-consistent theory involves quasilinear velocity space diffusion equation for the particles and nonlinear wave kinetic equation that includes quasilinear (or induced emission) term as well as nonlinear wave-particle interaction term (or a term that represents an induced scattering off ions). We have also performed one-dimensional electrostatic Vlasov simulation in order to benchmark the theoretical analysis. Under the assumption of self-similar drifting Gaussian distribution function for the electrons it is shown that the current reduction and the accompanying electron heating as well as electric field turbulence generation can be discussed in a self-consistent manner. Upon comparison with the Vlasov simulation result it is found that quasilinear wave kinetic equation alone is insufficient to account for the final saturation amplitude. Upon including the nonlinear scattering term in the wave kinetic equation, however, we find that a qualitative agreement with the simulation is recovered. From this, we conclude that the combined quasilinear particle diffusion plus induced emission and scattering (off ions) processes adequately account for the nonlinear development of the Buneman instability.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
International Nuclear Information System (INIS)
E.A. Belli, G.W. Hammett and W. Dorland
2008-01-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ∼ κ -1.5 or κ -2.0 , depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
International Nuclear Information System (INIS)
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
Turbulent dynamo action in stars
International Nuclear Information System (INIS)
Brandenburg, A.; Nordlund, A.; Ruokolainen, J.; Stein, R.F.; Tuominen, I.
1990-01-01
The way in which dynamo action amplifies magnetic fields in the Sun, the Earth, and indeed galaxies is a classic problem of theoretical physics. Here we present the results of direct simulations of turbulent compressible hydromagnetic convection with a stable overshoot layer underneath (to model the Sun). We find spontaneous dynamo action followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts. Here both the generation and destruction of magnetic field is at its most vigorous, and which process ultimately dominates depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. (orig.)
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
ability of a generalized EDQNM (Eddy Damped Quasi-Normal Markovian) model to predict the underlying spectral transfer structure and all the subsequent developments of classic anisotropy indicators in physical space, when compared to recent LES results. Even if the applications mainly concern developed strong turbulence, a particular emphasis is given to the strong formal analogy of this EDQNM2 model with recent weakly nonlinear approaches to wave-turbulence.
Intermittent structures at ion scales in the turbulent solar wind
Perrone, Denise; Alexandrova, Olga; Lion, Sonny; Roberts, Owen W.; Maksimovic, Milan; Escoubet, Philippe C.; Zouganelis, Yannis
2017-04-01
Understanding the physical mechanisms of dissipation, and the related heating, in turbulent collisionless plasmas (such as the solar wind) represents nowadays one of the key issues of plasma physics. Although the complex behavior of the solar wind has been matter of investigation of many years, some of the primary problems still remain a puzzle for the scientific community. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to current sheets and Alfvén vortex-like structures. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field and typical scales around ion characteristic scales. Moreover, some of them propagate in the plasma rest frame. Moreover, a further analysis on the ion velocity distribution shows a high variability; in particular, close to coherent structures the proton distribution function appears strongly deformed and far from the thermodynamic equilibrium. We discuss possible interpretation of the observed structures and their role in the heating process of the plasma.
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
NO concentration imaging in turbulent nonpremixed flames
Energy Technology Data Exchange (ETDEWEB)
Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
A study of runaway electron confinement and theory of neoclassical MHD turbulence
International Nuclear Information System (INIS)
Kwon, Oh Jin
1989-07-01
This thesis consists of two major studies: a study of runaway electron confinement and a theory of neoclassical MHD turbulence. The aim of the former is to study the structure of internal magnetic turbulence in tokamaks, which is thought by many to be responsible for the heat transport. The aim of the latter is to extend existing theories of MHD turbulence in tokamaks into experimentally relevant low-collisionality regimes. This section contains a theory of neoclassical pressure-gradient-driven turbulence and a theory of neoclassical resistivity-gradient-driven turbulence
Gyrokinetic simulations of ETG Turbulence*
Nevins, William
2005-10-01
Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence [1,2] produced different results despite similar plasma parameters. Ref.[1] differs from Ref.[2] in that [1] eliminates magnetically trapped particles ( r/R=0 ), while [2] retains magnetically trapped particles ( r/R 0.18 ). Differences between [1] and [2] have been attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations[2]. We have reproduced the results reported in [2] using a flux-tube, particle-in-cell (PIC) code, PG3EQ[3], thereby eliminating global effects as the cause of the discrepancy. We observe late-time decay of ETG turbulence and the steady-state heat transport in agreement with [2], and show this results from discrete particle noise. Discrete particle noise is a numerical artifact, so both the PG3EQ simulations reported here and those reported in Ref.[2] have little to say about steady-state ETG turbulence and the associated anomalous electron heat transport. Our attempts to benchmark PIC and continuum[4] codes at the plasma parameters used in Ref.[2] produced very large, intermittent transport. We will present an alternate benchmark point for ETG turbulence, where several codes reproduce the same transport levels. Parameter scans about this new benchmark point will be used to investigate the parameter dependence of ETG transport and to elucidate saturation mechanisms proposed in Refs.[1,2] and elsewhere[5-7].*In collaboration with A. Dimits (LLNL), J. Candy, C. Estrada-Mila (GA), W. Dorland (U of MD), F. Jenko, T. Dannert (Max-Planck Institut), and G. Hammett (PPPL). Work at LLNL performed for US DOE under Contract W7405-ENG-48.[1] F. Jenko and W. Dorland, PRL 89, 225001 (2002).[2] Z. Lin et al, 2004 Sherwood Mtg.; 2004 TTF Mtg.; Fusion Energy 2004 (IAEA, Vienna, 2005); Bull. Am. Phys. Soc. (November, 2004); 2005 TTF Mtg.; 2005 Sherwood Mtg.; Z. Lin, et al, Phys. Plasmas 12, 056125 (2005). [3] A.M. Dimits
Turbulent intermittent structure in non-homogeneous non-local flows
Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.
2010-05-01
Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are
Study and modelling of liquid metal turbulent flows
International Nuclear Information System (INIS)
Pimont, Vincent
1983-01-01
In this research thesis, the author first reports the study of equations of a turbulent flow with heat transfer: transport equations of 2. order moments related to different fluctuations, influence of a change of referential. He analyses the structure of a non isothermal turbulent flow of liquid metal: study of the turbulent heat flow and of liquid metal temperature fluctuations, study of characteristic scales for such a flow, principle of assessment of orders of magnitude. He presents the modelling of transport equations of moments related to temperature fluctuation, and of transport equations at high Reynolds number. He finally reports the application of the developed model to the wall area of a non isothermal turbulent flow of liquid metal [fr
Toward the Theory of Turbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
Boldyrev, Stanislav
2013-01-01
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model
Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer
Attili, Antonio
2014-06-02
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. © 2014 Taylor & Francis.
A turbulent transport network model in MULTIFLUX coupled with TOUGH2
International Nuclear Information System (INIS)
Danko, G.; Bahrami, D.; Birkholzer, J.T.
2011-01-01
A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.
Models for turbulent flows with variable density and combustion
International Nuclear Information System (INIS)
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
Andre, Jean-Claude; Cousteix, Jean; Durst, Franz; Launder, Brian E.; Schmidt, Frank W.
1989-08-01
The conference presents papers on scalar transport and geophysical flows, aerodynamic flows, complex flows, and numerical simulation. Particular attention is given to an eigenfunction analysis of turbulent thermal convection, turbulent diffusion behind a heated line source in a nearly homogeneous turbulent shear flow, and the evolution of axisymmetric wakes from attached and separated flows. Other topics include the vortex street and turbulent wakes behind a circular cylinder placed inside a rotating rectangular channel and a numerical study of a stably stratified mixing layer.
Yu, Kai; Dong, Changming; King, Gregory P.
2017-06-01
We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve
International Nuclear Information System (INIS)
Childress, S.
1995-01-01
The authors formulate and study an elementary one-dimensional model mimicking some of the features of fluid turbulence. The underlying vorticity field corresponds to a parallel flow. Structure on all scales down to the numerical resolution is generated by the action of baker's maps acting on the vorticity of the flow. These transformations conserve kinetic energy locally in the Euler model, while viscous diffusion of vorticity occurs in the Navier-Stokes case. The authors apply the model to the study of homogeneous fully, developed turbulence, and to turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
A theory of burn-out in heated channels at low mass velocities
International Nuclear Information System (INIS)
Randles, J.
1963-01-01
At low coolant mass velocities the fraction by weight of vapour flowing out of heated channels can become extremely large (∼ 90%). Consequently, the dominating feature of burn-out at small flow rates is that it occurs at high vapour qualities. For such a high degree of evaporation, the induced turbulence is very strong and the liquid phase is dispersed into a spray of droplets. By the application of the first law of thermodynamics and some basic relationships of turbulence theory to this spray, it is shown how an expression for the critical heat flux can be derived. By comparing this expression with the data from burn-out measurements on uniformly heated channels, reasonably good agreement is obtained. It is demonstrated that eddy slip and channel geometry are extremely important in the determination of the level of turbulence in the droplet motion. Having thus established a reasonable degree of plausibility for the theory, it is applied to channels heated by a chopped cosine form of power distribution. The results indicate that the effect of the axial variation of the power on the burnout heat flux can be described in a simple manner. (author)
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Environmental turbulence and climate-weather scaling
Ben Mahjoub, Otman; Cherubini, Claudia; Jebbad, Raghda; Mosso, Cessar; Benjamin, Juan Jose; Jorge, Joan; Diez, Margarita; Redondo, Jose M.
2017-04-01
.M.and Babiano A. Structure functions in complex flows . Applied Scientific Research 59, 299.1998. [3]. Castilla R., Onate E. and Redondo J.M. Models, Experiments and Computations in Turbulence. CIMNE, Barcelona. 2007. P. 255. [4]. Nicolleau, F.C.G.A.; Cambon, C.; Redondo, J.M.; Vassilicos, J.C.; Reeks, M.; Nowakowski,A.F. (Eds.)(2012) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series. [5]. Fraunie P., Berreba S. Chashechkin Y., Velasco D. and Redondo J.M. (2008) LES and laboratory experiments on the decay of grid wakes in strongly stratied fows. Il Nuovo Cimento 31, 909-930 [6]. Gonzlez-Nieto, P., Cano J.L., and J. M. Redondo. (2008) Buoyant Mixing Processes Generated in Turbulent Plume Arrays. Fsica de la Tierra 19, 2008: 205-217. [7]. Redondo J.M. and Babiano A.: Turbulent Diffusion in the Environment, 2001, Fragma, Madrid.
International Nuclear Information System (INIS)
Casso-Torralba, P.; Rosa Soler, M.; Vila-Guerau de Arellano, J.; Bosveld, F.; Vermeulen, A.; Werner, C.; Moors, E.
2008-08-01
The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE)
International Nuclear Information System (INIS)
Dulk, G.A.; Goldman, M.V.; Toomre, J.
1985-01-01
Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened,