WorldWideScience

Sample records for strongly diffracting high

  1. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  2. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  3. Diffraction analysis of materials under strong plastic deformation

    International Nuclear Information System (INIS)

    Pyzalla, A.

    2001-01-01

    The applicability of X-ray diffraction in analyses of the microstructure texture and intrinsic stresses of materials under strong plastic deformation is illustrated by examples and discussed. The experimental methods and findings are supplemented by numeric calculations. It is shown how the microstructure, texture and intrinsic stresses can thus be optimized already in the production process. Analyses of changes in materials during operation of a component provide information on loads and material response to loads which can then be used for optimization of the component, e.g. by constructional modifications or selective heat treatment [de

  4. X-ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

    DEFF Research Database (Denmark)

    Küpper, Jochen; Stern, Stephan; Holmegaard, Lotte

    2014-01-01

    We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive...... imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural......-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules....

  5. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  6. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  7. Photoemission in case of a strongly asymmetric X-ray dinamic diffraction

    International Nuclear Information System (INIS)

    Kruglov, M.V.; Sazontov, E.A.; Solomin, I.K.

    1985-01-01

    Possibility has been studied of utilizing strongly asymmet-- ric reflections, in particular in case when the reflected wave slips at a small angle along the surface, for investigating the structural violations of the surface crystal layers. Angular dependence extrinsic photoeffect (ADEP) in the region of X-ray incedence angles close to the Bragg diffraction angle was studied in this paper conformably to crystals with a distorted surface layer. Measurements were conducted with ideal germanium crystals using CuKsub(α) radiation reflections (220) and silicon crystals using CrKsub(α) radiation reflections (22O). It is shown that, in investigating deformed surface layers with low thichkness and large variation of interplanar space, as compared to the basic crystal matric, application of strongly asymmetric reflections anables to increase the sensitivity and information content of the method of abnormal ADEP

  8. Intensity of diffracted X-rays from biomolecules with radiation damage caused by strong X-ray pulses

    International Nuclear Information System (INIS)

    Kai, Takeshi; Tokuhisa, Atsushi; Moribayashi, Kengo; Fukuda, Yuji; Kono, Hidetoshi; Go, Nobuhiro

    2014-01-01

    In order to realize the coherent X-ray diffractive imaging of single biomolecules, the diffraction intensities, per effective pixel of a single biomolecule with radiation damage, caused by irradiation using a strong coherent X-ray pulse, were examined. A parameter survey was carried out for various experimental conditions, using a developed simulation program that considers the effect of electric field ionization, which was slightly reported on in previous studies. The two simple relationships among the parameters were identified as follows: (1) the diffraction intensity of a biomolecule slightly increases with the incident X-ray energy; and that (2) the diffraction intensity is approximately proportional to the target radius, when the radius is longer than 400 Å, since the upper limit of the incident intensity for damage to the biomolecules marginally changes with respect to the target radius. (author)

  9. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  10. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  11. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  12. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  13. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  14. High temperature neutron diffraction study of LaPO4

    International Nuclear Information System (INIS)

    Mishra, S.K.; Mittal, R.; Ningthoujam, R.S.; Vatsa, R.K.; Hansen, T.

    2016-01-01

    We report high temperature powder neutron diffractions study in LaPO 4 using high-flux D20 neutron diffractometer in the Institut Laue-Langevin, France. The measurements were carried out in high resolution mode (incident neutron wavelength 1.36 A) at various temperature upto 900°C. CarefuI inspection of temperature dependence of diffraction data showed appearance and disappearance of certain Bragg's reflections above 1273 K. It is a signature of structural phase transition. Rietveld refinement of the powder diffraction data revealed that diffraction patterns at and above 800°C could be indexed using the monoclinic structure with P21/n space group. Detail analysis for identify the water molecules is under investigation. (author)

  15. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  16. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  17. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  18. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data

    International Nuclear Information System (INIS)

    Wang, Jimin; Wing, Richard A.

    2014-01-01

    Here, new evidence is provided to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry averaging. Overwhelming evidence exists to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps improve the refinement of atomic models by imposing strong constraints on individual and overall temperature B factors and thus the quality of crystal structures. Some researchers consider these data to be of little value and opt to discard them during data processing, particularly at medium and low resolution, at which individual B factors of atomic models cannot be refined. Here, new evidence is provided to show that the inclusion of these data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry (NCS) averaging. Using electron-density correlation coefficients as criteria, the resolution of data has successfully been extended from 3.1 to 2.5 Å resolution with redundancy-independent merging R factors from below 100% to about 310%. It is further demonstrated that phase information can be fully extracted from observed amplitudes through de novo NCS averaging. Averaging starts with uniform density inside double-shelled spherical masks and NCS matrices that are derived from bound heavy-atom clusters at the vertices of cuboctahedrally symmetric protein particles

  19. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R. [Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  20. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  1. STUDY ON HIGH RESOLUTION MEMBRANE-BASED DIFFRACTIVE OPTICAL IMAGING ON GEOSTATIONARY ORBIT

    Directory of Open Access Journals (Sweden)

    J. Jiao

    2017-05-01

    Full Text Available Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the “6+1” petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  2. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    Science.gov (United States)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  3. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  4. High resolution X-ray diffraction studies on unirradiated

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  5. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  6. Future directions in high-pressure neutron diffraction

    Science.gov (United States)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  7. Quasi-kinoform type multilayer zone plate with high diffraction efficiency for high-energy X-rays

    International Nuclear Information System (INIS)

    Tamura, S; Yasumoto, M; Kamijo, N; Uesugi, K; Takeuchi, A; Terada, Y; Suzuki, Y

    2009-01-01

    Fresnel zone plate (FZP) with high diffraction efficiency leads to high performance X-ray microscopy with the reduction of the radiation damage to biological specimens. In order to attain high diffraction efficiency in high energy X-ray region, we have developed multilevel-type (6-step) multilayer FZPs with the diameter of 70 micron. The efficiencies of two FZPs were evaluated at the BL20XU beamline of SPring-8. For one FZP, the peak efficiency for the 1st-order diffraction of 51% has been obtained at 70 keV. The efficiencies higher than 40% have been achieved in the wide energy range of 70-90 keV. That for the 2nd-order diffraction of 46% has been obtained at 37.5 keV.

  8. Design and fabrication of advanced EUV diffractive elements

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2003-11-16

    As extreme ultraviolet (EUV) lithography approaches commercial reality, the development of EUV-compatible diffractive structures becomes increasingly important. Such devices are relevant to many aspects of EUV technology including interferometry, illumination, and spectral filtering. Moreover, the current scarcity of high power EUV sources makes the optical efficiency of these diffractive structures a paramount concern. This fact has led to a strong interest in phase-enhanced diffractive structures. Here we describe recent advancements made in the fabrication of such devices.

  9. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  10. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  11. Neutron diffraction studies of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1988-03-01

    Neutron powder diffraction techniques have been used extensively for the study of high-T/sub c/ oxide superconductors because of the need to locate oxygen atoms and accurately determine the oxygen site occupancies, and the difficulty in obtaining single crystals. For example, in the case of YBa 2 Cu 3 O/sub 7-δ/, neutron powder diffraction and Rietveld structural refinement were used to obtain the first complete structural information. Subsequent experiments focussed on determining the relationship of superconducting properties to the number and distribution of oxygen vacancies on the Cu-O sublattice with measurements being done on samples in thermodynamic equilibrium, at high temperature in controlled oxygen atmospheres, and on metastable, oxygen-deficient samples produced by quenching. Neutron powder diffraction has also been used to determine the structures of compounds in which the properties have been modified by substitution on the Y, Ba, or Cu sites. This paper briefly reviews some of the neutron powder diffraction results in these areas. 17 refs

  12. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    Science.gov (United States)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  13. HIFI - a dedicated HIgh-FIeld diffraction and spectroscopy instrument

    International Nuclear Information System (INIS)

    Steffens, P.; Enderle, M.; Boehm, M.; Roux, S.

    2011-01-01

    The outstanding scientific impact of single-crystal neutron diffraction and spectroscopy in steady state vertical magnetic fields up to 15 T (17 T without dilution fringe) is reflected in numerous high-profile publications. Magnetic fields 30 T - 35 T in vertical geometry allow to address enigmatic questions without equivalence at lower fields. The constraints implied by such magnetic fields demand a specially designed dedicated instrument. Since the vertical field geometry is crucial for single-crystal diffraction as well as spectroscopy, the solid angle of scattered neutrons is restricted, and a high-flux reactor is best suited to host a corresponding instrument. We propose a world-wide unique versatile instrument for diffraction and spectroscopy in vertical steady fields of 30 T. (authors)

  14. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  15. Self-channeling of high-power laser pulses through strong atmospheric turbulence

    Science.gov (United States)

    Peñano, J.; Palastro, J. P.; Hafizi, B.; Helle, M. H.; DiComo, G. P.

    2017-07-01

    We present an unusual example of truly long-range propagation of high-power laser pulses through strong atmospheric turbulence. A form of nonlinear self-channeling is achieved when the laser power is close to the self-focusing power of air and the transverse dimensions of the pulse are smaller than the coherence diameter of turbulence. In this mode, nonlinear self-focusing counteracts diffraction, and turbulence-induced spreading is greatly reduced. Furthermore, the laser intensity is below the ionization threshold so that multiphoton absorption and plasma defocusing are avoided. Simulations show that the pulse can propagate many Rayleigh lengths (several kilometers) while maintaining a high intensity. In the presence of aerosols, or other extinction mechanisms that deplete laser energy, the pulse can be chirped to maintain the channeling.

  16. Duality in diffraction dissociations

    International Nuclear Information System (INIS)

    Santoro, Alberto.

    1977-01-01

    Diffractive dissociations (aN→a*πN) are naturally explained and a model that accounts for the three-variable correlation (mass-transfer-Jackson angle correlation) is presented. This model takes into account the three possible exchanges: t (pion), u(a*) and s(a) channel exchanger. The physical consequences of the model are: a strong mass-slope correlation due to the zeros of the amplitude, a factorization of diffractive dissociations (factorization of the Pomeron), the possibility of extending this model to double diffractive dissociation and diffraction by nuclei. This model was applied to the NN→NπN reaction. Using the usual parameters of the Deck model, a comparison is made with experiments for all available distributions. the strong slope of the peak at 1400 MeV is naturally explained [fr

  17. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  18. Transformation Heat Treatment of Rapidly Quenched Nb3A1 Precursor Monitored in situ by High Energy Synchrotron Diffraction

    CERN Document Server

    Scheuerlein, C; Di Michiel, M; Jin, X; Takeuchi, T; Kikuchi, A; Tsuchiya, K; Nakagawa, K; Nakamoto, T

    2013-01-01

    Nb3Al superconductors are studied for use in high field magnets. Fine grained Nb3Al with nearly stoichiometric Al content is obtained by a Rapid Heating Quenching and Transformation (RHQT) process. We describe a non destructive in situ study of the transformation process step of a RHQ Nb3Al precursor wire with ramp rates of either 120 °C/h or 800 °C/h. High energy synchrotron x-ray diffraction measurements show the transformation from a Nb(Al)SS supersaturated solid solution into Nb3Al. When heating with a ramp rate of 120 °C/h a strong reduction of the Nb(Al)SS (110) diffraction peak component is observed when the temperature exceeds 660 °C. Additional diffraction peaks are detectable in the approximate temperature interval 610 °C - 750 °C and significant Nb3Al growth is observed above 730 °C.

  19. Strong-Field Modulated Diffraction Effects in the Correlated Electron-Nuclear Motion in Dissociating H2+

    International Nuclear Information System (INIS)

    He Feng; Becker, Andreas; Thumm, Uwe

    2008-01-01

    We show that the electronic dynamics in a molecule driven by a strong field is complex and potentially even counterintuitive. As a prototype example, we simulate the interaction of a dissociating H 2 + molecule with an intense infrared laser pulse. Depending on the laser intensity, the direction of the electron's motion between the two nuclei is found to follow or oppose the classical laser-electric force. We explain the sensitive dependence of the correlated electronic-nuclear motion in terms of the diffracting electronic momentum distribution of the dissociating two-center system. The distribution is dynamically modulated by the nuclear motion and periodically shifted in the oscillating infrared electric field

  20. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  1. High energy diffraction

    International Nuclear Information System (INIS)

    Berger, C.

    1995-11-01

    Recent experiments on total hadronic cross sections are reviewed together with results on photo- and electroproduction of vector mesons. New data on diffractive deep inelastic scattering shed light on the nature of the pomeron. (orig.)

  2. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new...

  3. High-Resolution Single-Grain Diffraction of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Lienert, Ulrich; Ribárik, Gábor; Ungar, Tamas

    2017-01-01

    . The microstructure usually influences the materials properties critically. It has been demonstrated that, by using high-energy synchrotron radiation, diffraction peaks off individual grains can be recorded in-situ during processing. Important information such as the orientation, average strain, and size...... of individual grains can be obtained, even if the peak shapes are commonly not analyzed. However, it is also well-known that the shape of diffraction peaks, if observed with sufficient resolution, contains significant information about the microstructure. While the intensity distribution in reciprocal space...... of a perfect lattice consists of delta functions located at the reciprocal lattice points, defects induce characteristic peak broadening. In order to exploit the wealth of microstructural information contained in broadened diffraction peaks, the intensity distribution has to be characterized in all three...

  4. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  5. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  6. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    Science.gov (United States)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  7. In situ neutron diffraction studies of high density amorphous ice under pressure

    International Nuclear Information System (INIS)

    Klotz, Stefan; Straessle, Th; Saitta, A M; Rousse, G; Hamel, G; Nelmes, R J; Loveday, J S; Guthrie, M

    2005-01-01

    We review recent in situ neutron diffraction studies on the structural pressure dependence and the recrystallization of dense amorphous ices up to 2 GPa. Progress in high pressure techniques and data analysis methods allows the reliable determination of all three partial structure factors of amorphous ice under pressure. The strong pressure dependence of the g OO (r) correlation function shows that the isothermal compression of high density amorphous ice (HDA) at 100 K is achieved by a contraction (∼ 20%) of the second-neighbour coordination shell leading to a strong increase in coordination. The g DD (r) and g OD (r) structure factors are, in contrast, only weakly sensitive to pressure. These data allow a comparison with structural features of the recently reported 'very high density amorphous ice' (VHDA) which indicates that VHDA at ambient pressure is very similar to compressed HDA, at least up to the second-neighbour shell. The recrystallization of HDA has been investigated in the range 0.3-2 GPa. It is shown that hydrogen-disordered phases are produced which normally grow only from the liquid, such as ice XII, and in particular ice IV. These findings are in good agreement with results on quench-recovered samples

  8. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  9. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  10. Diffractive DIS: Where are we?

    International Nuclear Information System (INIS)

    Nikolaev, N.N.

    2001-01-01

    A brief review of the modern QCD theory of diffractive DIS is given. The recent progress has been remarkably rapid, all the principal predictions from the color dipole approach to diffraction - the (Q 2 + m V 2 ) scaling, the pattern of SCHNC, shrinkage of the diffraction cone in hard diffractive DIS, the strong impact of longitudinal gluons in inclusive J/Ψ production at Tevatron - have been confirmed experimentally

  11. Evidence of strong proton shape fluctuations from incoherent diffraction

    International Nuclear Information System (INIS)

    Mantysaari, H.; Schenke, B.

    2016-01-01

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  12. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  13. Dynamical and topological considerations in low and high mass diffractive dissociation

    International Nuclear Information System (INIS)

    Bishari, M.

    1978-01-01

    The topological structure of a given process completely specifies the 1/N dependence. However dynamics seems to be crucial in characterizing strongly interacting reactions, as illustrated in the study of elastic scattering, low mass diffraction and the triple pomeron mechanism. The ''1/N dual unitarization'' scheme is a viable framework for Gribov's Reggeon field theory, since it clarifies and determines the bare parameters of Gribov's Lagrangian. (author)

  14. Synchrotron X-ray diffraction studies of the incommensurate phase of a spin-Peierls system CuGeO3 in strong magnetic fields

    International Nuclear Information System (INIS)

    Narumi, Yasuo; Katsumata, Koichi; Tanaka, Yoshikazu; Ishikawa, Tetsuya; Kitamura, Hideo; Hara, Toru; Tanaka, Takashi; Tamasaku, Kenji; Tabata, Yoshikazu; Kimura, Shojiro; Nakamura, Tetsuya; Yabashi, Makina; Goto, Shunji; Ohashi, Haruhiko; Takeshita, Kunikazu; Ohata, Toru; Matsushita, Tomohiro; Bizen, Teruhiko; Shimomura, Susumu; Matsuda, Masaaki

    2004-01-01

    Synchrotron X-ray diffraction measurements on a spin-Peierls material CuGeO 3 in applied magnetic fields, H, up to 15 T are made. We find that the temperature, T, dependence of the incommensurate Bragg peak at a lower H is quite different from that at a higher H. At sufficiently high fields, we find that the lattice incommensurability, δι, is almost independent of T, while at H slightly above the critical field = 12.25 T for the commensurate to incommensurate transition, δι decreases with increasing T. We interpret that this finding is due to a stabilization of the incommensurate state by a strong magnetic field which suppresses thermal fluctuations. (author)

  15. High-order diffraction gratings for high-power semiconductor lasers

    International Nuclear Information System (INIS)

    Vasil’eva, V. V.; Vinokurov, D. A.; Zolotarev, V. V.; Leshko, A. Yu.; Petrunov, A. N.; Pikhtin, N. A.; Rastegaeva, M. G.; Sokolova, Z. N.; Shashkin, I. S.; Tarasov, I. S.

    2012-01-01

    A deep diffraction grating with a large period (∼2 μm) within one of the cladding layers is proposed for the implementation of selective feedback in a semiconductor laser. Frequency dependences of reflectance in the 12th diffraction order for rectangular, triangular, and trapezoidal diffraction gratings are calculated. It is shown that the maximum reflectance of the waveguide mode is attained using a rectangular or trapezoidal grating ∼2 μm deep in the laser structure. Deep trapezoidal diffraction gratings with large periods are fabricated in the Al 0.3 Ga 0.7 As cladding layer of a GaAs/AlGaAs laser structure using photolithography and reactive ion etching.

  16. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  17. Interpretation of small-angle diffraction experiments on opal-like photonic crystals

    Science.gov (United States)

    Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.

    2011-08-01

    Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.

  18. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  20. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  1. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    Science.gov (United States)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  2. Diffraction in ALICE and trigger efficiencies

    CERN Document Server

    Navin, Sparsh; Lietava, Roman

    ALICE is built to measure the properties of strongly interacting matter created in heavy-ion collisions. In addition, taking advantage of the low pT acceptance in the central barrel, ALICE is playing an important role in understanding pp collisions with minimum bias triggers at LHC energies. The work presented in this thesis is based on pp data simulated by the ALICE collaboration and early data collected at a center-of-mass energy of 7 TeV. A procedure to calculate trigger efficiencies and an estimate of the systematic uncertainty due to the limited acceptance of the detector are shown. A kinematic comparison between Monte Carlo event generators, PYTHIA 6, PYTHIA 8 and PHOJET is also presented. To improve the description of diffraction in PYTHIA, a hard diffractive component was added to PYTHIA 8 in 2009, which is described. Finally a trigger with a high efficiency for picking diffractive events is used to select a sample with an enhanced diffractive component from pp data. These data are compared to Monte ...

  3. Study of Jet Structure in High Mass Diffraction at the SPS Collider

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to study the class of events which have a quasi-elastic recoil proton or antiproton (with x^F~$>$~0.9) and also large transverse energy (hadronic and/or electromagnetic). The trigger is a minimum transverse energy in the UA2 calorimeter system and a diffractive recoil proton signature in a system of ``Mini-Drift'' wire chambers installed symmetrically in Roman-pots on both sides of LSS4. \\\\ \\\\ In single diffractive events of the type: .ce @*p @A @* + X + c.c. the system X is believed to result from a Pomeron-proton collision Pp~@A~X. We will study the energy flow in the UA2 detector and search for jet structure in high mass diffraction at @Rs~=~630~GeV in order to elucidate the nature of the Pomeron and its possible parton structure. Observation of electrons with high transverse momentum in coincidence with leading protons will signal the production of heavy flavour in high mass diffraction. Evidence for heavy vector boson production will be the signature for a q$\\bar{q}$ componen...

  4. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  5. High-resolution neutron diffraction studies of biological and industrial fibres

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P; Mason, S A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fuller, W; Forsyth, V T; Mahendrasingam, A; Shotton, M; Simpson, L [Keele Univ. (United Kingdom); Grimm, H [FZ, Juelich (Germany); Leberman, R [EMBL, (Country Unknown)

    1997-04-01

    Neutron diffraction is becoming an important tool for studying fibres due to its complementarity to X-ray diffraction. Unlike X-rays, scattering of neutrons by polymer atoms is not a function of their atomic number. In high-resolution studies (1.5-3 A) on D19 deuteration (replacing H by D) is being used to change the relative scattering power of chosen groups making them easier to locate. Recent studies on DNA and cellulose are described. (author). 6 refs.

  6. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  7. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  8. On the extension of the Fermi-Watson Theorem to high energy diffraction

    International Nuclear Information System (INIS)

    Malecki, A.; Istituto Nazionale di Fisica Nucleare, Frascati

    1995-12-01

    The Fermi-Watson theorem, established for low energy reactions and then applied to high energy collision, is revisited. Its use for the processes of inelastic diffraction is discussed. The theorem turns out to be valid in the case inclusive cross-section of diffractive transition

  9. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    International Nuclear Information System (INIS)

    2005-01-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics

  10. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics.

  11. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  12. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  13. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  14. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  15. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  16. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  17. Impact factor for high-energy two and three jets diffractive production

    International Nuclear Information System (INIS)

    Boussarie, R.; Grabovsky, A.V.; Szymanowski, L.; Wallon, S.

    2014-01-01

    We present the calculation of the impact factor for the γ (∗) →qq-barg transition within Balitsky’s high energy operator expansion. We also rederive the impact factor for the γ (∗) →qq-bar transition within the same framework. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering, as well as, for two and three jets diffractive production, which go beyond approximations discussed in the literature.

  18. Impact factor for high-energy two and three jets diffractive production

    Energy Technology Data Exchange (ETDEWEB)

    Boussarie, R. [Laboratoire de Physique Théorique, Bât. 210, Université Paris-Sud, CNRS,91405 Orsay (France); Grabovsky, A.V. [Physics Department, Novosibirsk State University,2 Pirogova street, Novosibirsk (Russian Federation); Theory division, Budker Institute of Nuclear Physics,11 Lavrenteva avenue, Novosibirsk (Russian Federation); Szymanowski, L. [Theoretical Physics Division, National Centre for Nuclear Research (NCBJ),Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [Laboratoire de Physique Théorique, Bât. 210, Université Paris-Sud, CNRS,91405 Orsay (France); UPMC Université Paris 06, Faculté de Physique,4 place Jussieu, 75252 Paris Cedex 05 (France)

    2014-09-02

    We present the calculation of the impact factor for the γ{sup (∗)}→qq-barg transition within Balitsky’s high energy operator expansion. We also rederive the impact factor for the γ{sup (∗)}→qq-bar transition within the same framework. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering, as well as, for two and three jets diffractive production, which go beyond approximations discussed in the literature.

  19. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  20. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Vorberger, J. [Helmholtz Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Gamboa, E. J.; Glenzer, S. H.; Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [Climate and Space Sciences and Engineering, Applied Physics, and Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

  1. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...

  2. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  3. Anomalous effect of high-frequency ultrasound on radiation diffraction in deformed single crystals

    International Nuclear Information System (INIS)

    Iolin, E.M.; Rajtman, Eh.A.; Kuvaldin, B.V.; Zolotoyabko, Eh.V.

    1988-01-01

    Results are presented of a theoretical and experimental study of neutron and X-ray diffraction in defromed single crystals on high-frequency ultrasonic excitation. It is demonstrated theoretically that at a frequency exceeding a certain threshold value the ultrasound violates the adiabatic conditions for the excitation point motion on the dispersion surface branches. This leads to an anomalous (compared to diffraction for a perfect crystal) dependence of the diffraction intensity on the ultrasonic wave amplitude. The experimental data for Si crystals are in good agreement with the theoretical predictions

  4. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  5. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhisa, Atsushi [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Arai, Junya [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Joti, Yasumasa [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi [RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Okada, Kensuke [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Sugimoto, Takashi [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yamaga, Mitsuhiro; Tanaka, Ryotaro [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yokokawa, Mitsuo; Hori, Atsushi [RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Ishikawa, Yutaka, E-mail: ishikawa@is.s.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hatsui, Takaki, E-mail: ishikawa@is.s.u-tokyo.ac.jp [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Go, Nobuhiro [Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2013-11-01

    A code with an algorithm for high-speed classification of X-ray diffraction patterns has been developed. Results obtained for a set of 1 × 10{sup 6} simulated diffraction patterns are also reported. Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10{sup 6} noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10{sup 6} diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  6. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    allowing diffraction information to be obtained from only the active material during battery operation [2]. High resolution synchrotron x-ray powder diffraction technique has been undertaken to obtain detailed structural and compositional information during lithiation/delithiation of commercial LiFePO4...... materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld...... method. Conscientious Rietveld analysis shows slight but continuous deviation of lattice parameters from those of the fully stoichiometric end members LiFePO4 and FePO4 indicating a subsequent variation of stoichiometry during cathode delithiation. The application of an intermittent current pulses during...

  7. A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal

    International Nuclear Information System (INIS)

    Malinowski, M.

    1987-01-01

    A new diamond-anvil high-pressure cell is described which can be used in single-crystal X-ray diffraction instruments to collect X-ray intensity data from single-crystal samples up to hydrostatic pressures of about 10 GPa. A unique design allows two types of diffraction geometry to be applied in single-crystal high-pressure diffraction experiments. More than 85% of the Ewald sphere is accessible, and a continuous range of 2θ values is available from 0 up to about 160 0 . Pressure may be calibrated by the ruby fluorescence technique or by the use of an internal X-ray-standard single crystal. The design of our diamond-anvil cell would allow, with little or no modification, operation at high and low temperatures, optical studies and powder diffractometer work. (orig.)

  8. High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Tapas Kumar; Zhou Weidong [University of Texas at Arlington, Department of Electrical Engineering, NanoFAB Center, Arlington, TX 76019-0072 (United States)

    2009-04-21

    We report here the design of a new type of high efficiency grating coupler, based on single crystalline Si nanomembrane overlay and stacking. Such high efficiency diffractive grating couplers are designed for the purpose of coupling light between single mode fibres and nanophotonic waveguides, and for the coupling between multiple photonic interconnect layers for compact three-dimensional vertical integration. Two-dimensional model simulation based on eigenmode expansion shows a diffractive power-up efficiency of 81% and a fibre coupling efficiency of 64%. With nanomembrane stacking, it is feasible to integrate the side-distributed Bragg reflector and bottom reflector, which can lead to the diffractive power-up efficiency and the fibre coupling efficiency of 97% and 73.5%, respectively. For a negatively detuned coupler, the bottom reflector is not needed, and the diffractive power-up efficiency can reach 98% over a large spectral range. The device is extremely tolerant to fabrication errors.

  9. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  10. Multiple Order Diffractions by laser-Injured Transient Grating in Nematic MBBA Film

    International Nuclear Information System (INIS)

    Kim, Seong Kyu; Kim, Hack Jin

    1999-01-01

    The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals

  11. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

    Directory of Open Access Journals (Sweden)

    Loïc Renversade

    2016-01-01

    Full Text Available The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT and high-energy diffraction microscopy (HEDM. 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.

  12. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  13. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  14. Genetic algorithm for the design of high frequency diffraction gratings for high power laser applications

    Science.gov (United States)

    Thomson, Martin J.; Waddie, Andrew J.; Taghizadeh, Mohammad R.

    2006-04-01

    We present a genetic algorithm with small population sizes for the design of diffraction gratings in the rigorous domain. A general crossover and mutation scheme is defined, forming fifteen offspring from 3 parents, which enables the algorithm to be used for designing gratings with diverse optical properties by careful definition of the merit function. The initial parents are randomly selected and the parents of the subsequent generations are selected by survival of the fittest. The performance of the algorithm is demonstrated by designing diffraction gratings with specific application to high power laser beam lines. Gratings are designed that act as beam deflectors, polarisers, polarising beam splitters, harmonic separation gratings and pulse compression gratings. By imposing fabrication constraints within the design process, we determine which of these elements have true potential for application within high power laser beam lines.

  15. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  16. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  17. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO{sub 2} laser polishing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hun-Kook [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Jin-Tae [Chosun University, Gwangju (Korea, Republic of); Ahsan, Shamim [Khulna University, Khulna (Bangladesh)

    2014-11-15

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO{sub 2} laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO{sub 2} laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO{sub 2} laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  18. Double-diffractive processes in high-resolution missing-mass experiments at the Tevatron

    International Nuclear Information System (INIS)

    Khoze, V.A.; Martin, A.D.

    2001-01-01

    We evaluate, in a model-independent way, the signal-to-background ratio for Higgs→b anti b detection in exclusive double-diffractive events at the Tevatron and the LHC. For the missing-mass approach to be able to identify the Higgs boson, it will be necessary to use a central jet detector and to tag b quark jets. The signal is predicted to be very small at the Tevatron, but observable at the LHC. However we note that the background, that is double-diffractive dijet production, may serve as a unique gluon factory. We also give estimates for the double-diffractive production of χ c and χ b mesons at the Tevatron. We emphasize that a high-resolution missing-mass measurement, on its own, is insufficient to identify rare processes. (orig.)

  19. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  20. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  1. High-resolution X-ray diffraction with no sample preparation.

    Science.gov (United States)

    Hansford, G M; Turner, S M R; Degryse, P; Shortland, A J

    2017-07-01

    It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high-quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions.

  2. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  3. High current table-top setup for femtosecond gas electron diffraction

    Directory of Open Access Journals (Sweden)

    Omid Zandi

    2017-07-01

    Full Text Available We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  4. High pressure x-ray diffraction studies on U-Al systems

    International Nuclear Information System (INIS)

    Sahu, P.Ch.; Chandra Shekar, N.V.; Subramanian, N.; Yousuf, Mohammad; Govinda Rajan, K.

    1995-01-01

    In this paper, high pressure x-ray diffraction studies of the three U-Al compounds, namely, UAl 2 , UAl 3 and UAl 4 are presented. The experiments are carried out using a unique diamond anvil high pressure x-ray diffraction system in the Guinier geometry up to a maximum pressure of ∼ 35 GPa. The compressibility behaviour of UAl 2 is consistent with its itinerant 5f states, whereas that of UAl 3 and UAl 4 indicate more towards their localized nature. Among these three compounds, a structural phase transition in UAl 2 has been observed at ∼ 11 GPa and the structure of the high pressure phase has been identified to be of MgNi 2 type with space group P6 3 /mmc. The structure of UAl 2 at NTP is of MgCu 2 type with space group Fd3m. From the electron to atom ratio (e/α) consideration, another structural phase transition, namely, MgNi 2 -MgCu 2 at a higher pressure is proposed. Further, on a similar consideration, a new pressure induced structural sequence, namely, MgCu 2 -MgNi 2 (or MgZn 2 -MgCu 2 ) in the AB 2 type compounds of the f electron based systems is suggested. (author)

  5. X-ray powder diffraction camera for high-field experiments

    International Nuclear Information System (INIS)

    Koyama, K; Mitsui, Y; Takahashi, K; Watanabe, K

    2009-01-01

    We have designed a high-field X-ray diffraction (HF-XRD) camera which will be inserted into an experimental room temperature bore (100 mm) of a conventional solenoid-type cryocooled superconducting magnet (10T-CSM). Using the prototype camera that is same size of the HF-XRD camera, a XRD pattern of Si is taken at room temperature in a zero magnetic field. From the obtained results, the expected ability of the designed HF-XRD camera is presented.

  6. High-resolution neutron-diffraction measurements to 8 kbar

    Science.gov (United States)

    Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.

    2017-10-01

    We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.

  7. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  8. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  9. QCD-motivated Pomeron and diffractive hadronic cross sections at high energies

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Dakhno, L.G.; Nikonov, V.A.

    1996-01-01

    The cross sections for soft diffractive processes in pp (or p-barp) and πp collisions are calculated by using the QCD-motivated Pomeron. Unitarization of the s-channel amplitude is performed in the eikonal approximation. Color screening is taken into account in the quark structure of hadrons. The resulting description of diffractive processes leads to the parameters of the bare Pomeron P that are close to the corresponding parameters of the Lipatov Pomeron. The parameters of the bare Pomeron and three-reggeon block PGG (G is a reggeized gluon) are fixed by fitting data at moderately high energies. Predictions for ultrahigh energies are made. The intercept for the bare Pomeron is obtained. It is consistent with data on deep-inelastic scattering at small x

  10. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  11. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime.

    Science.gov (United States)

    Goussev, Arseni; Dorfman, J R

    2006-07-01

    We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.

  12. Jets and diffraction results from HERA

    International Nuclear Information System (INIS)

    Buniatyan, A.

    2014-01-01

    The latest results on precision measurements of jet and diffractive cross sections obtained by the H1 and ZEUS experiments at HERA are reported. The inclusive jet and multi-jet cross-sections are used in QCD calculations at next-to-leading order (NLO) to determine the strong coupling α s . The cross-section measurements for diffractive inclusive DIS processes with a leading proton in the final state are combined for the H1 and ZEUS experiments in order to improve the precision and extend the kinematic range. The di-jet cross sections are measured in diffractive DIS with a leading proton and compared with QCD predictions based on diffractive parton densities in the proton. The cross sections for exclusive heavy vector meson photoproduction are studied in terms of the momentum transfer at the proton vertex and of the photon-proton centre-of-mass energy. (author)

  13. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanzhang@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Li, Meimei [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Thomas D. [University of California, Berkeley, CA 94720 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Lyubimov, Artem Y. [Stanford University, Stanford, CA 94305 (United States); Ogata, Craig M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Vo, Huy [Johns Hopkins University, Baltimore, MD 21205 (United States); Uervirojnangkoorn, Monarin; Brunger, Axel T., E-mail: brunger@stanford.edu [Stanford University, Stanford, CA 94305 (United States); Berger, James M., E-mail: brunger@stanford.edu [Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    International Nuclear Information System (INIS)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs

  16. Anisotropic Light Diffraction by Ultrasound in Crystals with Strong Acoustic Anisotropy

    Science.gov (United States)

    Voloshin, Andrey S.; Balakshy, Vladimir I.

    In modern acousto-optics, crystalline materials are used predominantly for manufacturing acousto-optic instruments. Among these materials, such crystals as paratellurite, tellurium, calomel, TAS and some others occupy a prominent place, which are distinguished by exceptionally large anisotropy of acoustic properties. In this work, the influence of acoustic beam energy walk-off on characteristics of Bragg diffraction of light is studied by the example of tellurium crystal. It is shown that the walk-off can substantially change angular and frequency ranges, resulting in their narrowing or broadening subject to position of the operating point in the Bragg angle frequency characteristic. Coefficients of broadening are introduced for characterization of this effect.

  17. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  18. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  19. Experimental issues in in-situ synchrotron x-ray diffraction at high pressure and temperature by using a laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Yoo, C.S.

    1997-01-01

    An integrated technique of diamond-anvil cell, laser-heating and synchrotron x-ray diffraction technologies is capable of structural investigation of condensed matter in an extended region of high pressures and temperatures above 100 GPa and 3000 K. The feasibility of this technique to obtain reliable data, however, strongly depends on several experimental issues, including optical and x-ray setups, thermal gradients, pressure homogeneity, preferred orientation, and chemical reaction. In this paper, we discuss about these experimental issues together with future perspectives of this technique for obtaining accurate data

  20. Natural and synthetic prion structure from X-ray fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Holger; Bian, Wen; McDonald, Michele; Kendall, Amy; Colby, David W.; Bloch, Lillian; Ollesch, Julian; Borovinskiy, Alexander L.; Cohen, Fred E.; Prusiner, Stanley B.; Stubbs, Gerald; (Vanderbilt); (UCSF)

    2009-10-21

    A conformational isoform of the mammalian prion protein (PrP{sup Sc}) is the sole component of the infectious pathogen that causes the prion diseases. We have obtained X-ray fiber diffraction patterns from infectious prions that show cross-{beta} diffraction: meridional intensity at 4.8 {angstrom} resolution, indicating the presence of {beta} strands running approximately at right angles to the filament axis and characteristic of amyloid structure. Some of the patterns also indicated the presence of a repeating unit along the fiber axis, corresponding to four {beta}-strands. We found that recombinant (rec) PrP amyloid differs substantially from highly infectious brain-derived prions, both in structure as demonstrated by the diffraction data, and in heterogeneity as shown by electron microscopy. In addition to the strong 4.8 {angstrom} meridional reflection, the recPrP amyloid diffraction is characterized by strong equatorial intensity at approximately 10.5 {angstrom}, absent from brain-derived prions, and indicating the presence of stacked {beta}-sheets. Synthetic prions recovered from transgenic mice inoculated with recPrP amyloid displayed structural characteristics and homogeneity similar to those of naturally occurring prions. The relationship between the structural differences and prion infectivity is uncertain, but might be explained by any of several hypotheses: only a minority of recPrP amyloid possesses a replication-competent conformation, the majority of recPrP amyloid has to undergo a conformational maturation to acquire replication competency, or inhibitory forms of recPrP amyloid interfere with replication during the initial transmission.

  1. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    Science.gov (United States)

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  2. Diffractive interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Goulianos, K.

    1982-01-01

    Elastic scattering, inclusive single diffraction dissociation and total cross section results are reviewed, with emphasis on the inter-relationship among the parameters that characterize these processes

  3. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  4. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  5. Comparative study of structural properties of trehalose water solutions by neutron diffraction, synchrotron radiation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaro, A.; Magazu, V.; Migliardo, F.; Sussich, F.; Vadala, M

    2004-07-15

    Neutron diffraction measurements combined with H/D substitution have been performed on trehalose aqueous solutions as a function of temperature and concentration by using the SANDALS diffractometer at ISIS Facility (UK). The findings point out a high capability of trehalose to strongly affect the tetrahedral hydrogen bond network of water. The neutron diffraction results are also compared with simulation and experimental data obtained by synchrotron radiation on the phospholipid bilayer membranes (DPPC)/trehalose/H{sub 2}O ternary system.

  6. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  7. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P.; Moody, J. T.; Scoby, C. M.; Gutierrez, M. S. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Bender, H. A.; Wilcox, N. S. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2010-01-15

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  8. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  9. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J. T.; Scoby, C. M.; Gutierrez, M. S.; Bender, H. A.; Wilcox, N. S.

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  10. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  11. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-01-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub(angstrom)-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed

  12. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  13. On the absence of multiple dips in diffraction of high energy hadrons

    International Nuclear Information System (INIS)

    Malecki; Michalec, M.; Pallotta, M.

    1997-07-01

    An unorthodox insight into the structure of the geometrical Chou-Yang model explains the experimentally observed paradox of elastic diffraction of high energy hadrons without multiple dips. It is pointed out that the shadow scattering, away from the forward peak, is governed by small values of the coupling strength

  14. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  15. High-pressure behavior of synthetic mordenite-Na. An in situ single-crystal synchrotron X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Lotti, Paolo; Merlini, Marco [Univ. degli Studi di Milano, (Italy). Dipt. di Scienze della Terra; Gatta, G. Diego [Univ. degli Studi di Milano, (Italy). Dipt. di Scienze della Terra; CNR, Bari (Italy). Int. di Cristallografia; Liermann, Hanns-Peter [DESY, Hamburg (Germany). Photon Sciences

    2015-05-01

    The high-pressure behavior of a synthetic mordenite-Na (space group: Cmcm or Cmc2{sub 1}) was studied by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell up to 9.22(7) GPa. A phase transition, likely displacive in character, occurred between 1.68(7) and 2.70(8) GPa, from a C-centered to a primitive space group: possibly Pbnm, Pbnn or Pbn2{sub 1}. Fitting of the experimental data with III-BM equations of state allowed to describe the elastic behavior of the high-pressure polymorph with a primitive lattice. A very high volume compressibility [K{sub V0} = 25(2) GPa, β{sub V0} = 1/K{sub V0} = 0.040(3) GPa{sup -1}; K{sub V}' = (∂K{sub V}/∂P){sub T} = 2.0(3)], coupled with a remarkable elastic anisotropy (β{sub b}>>β{sub c}>β{sub a}), was found. Interestingly, the low-P and high-P polymorphs show the same anisotropic compressional scheme. A structure collapse was not observed up to 9.22(7) GPa, even though a strong decrease of the number of observed reflections at the highest pressures suggests an impending amorphization. The structure refinements performed at room-P, 0.98(2) and 1.68(7) GPa allowed to describe, at a first approximation, the mechanisms that govern the framework deformation in the low-P regime: the bulk compression is strongly accommodated by the increase of the ellipticity of the large 12-membered ring channels running along [001].

  16. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  17. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  18. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  19. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  20. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  1. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-08-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

  2. Device for high-temperature X-ray diffraction analysis. Ustrojstvo dlya vysokotemperaturnogo rentgenostrukturnogo analiza

    Energy Technology Data Exchange (ETDEWEB)

    Epifanov, V G; Zavilinskij, A V; Pet' kov, V V; Polenur, A V

    1975-01-07

    Device for high-temperature X-ray diffraction analysis, containing a vacuum chamber with a window for X-ray transit, in which sample- and standard-holders, heater, thermal shields and means for standard and sample temperature measurement are located, is proposed. In order to increase the working temperature level and the structural change detection accuracy the heater is located between the sample- and standard-holders. The standard-holder is linked with the mechanism of control of its position in relation to the heater. The device is intended for investigating phase transformations by differential thermal analysis method with the simultaneous diffraction pattern detection using X-ray diffractometry method.

  3. High-resolution neutron powder-diffraction in CMR manganates

    Energy Technology Data Exchange (ETDEWEB)

    Suard, E; Radaelli, P G [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Manganese-oxide materials have recently been the subject of renewed attention, due to the `colossal` magnetoresistance (CMR) displayed near the spin-ordering temperature T{sub c} by some of these compounds. CMR has been evidenced in at least three families of manganese oxides. In most cases, the CMR compounds behave as paramagnetic semiconductors at high temperatures, and as ferromagnetic metals below T{sub c}. The study of this metallization process has lead some theorists to challenge its traditional interpretation in terms of the so-called double-exchange mechanism, and to propose alternative scenarios in which the coupling of the charge carriers with the lattice plays a paramount role. Powder diffraction method, being at the forefront of CMR research is presented. (author). 4 refs.

  4. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  5. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  6. A time-of-flight spectrometer for neutron diffraction under high pressure or at high temperature

    International Nuclear Information System (INIS)

    Roult, G.; Buevoz, J.L.

    1975-01-01

    For high pressure neutron diffraction studies (40 kilobars) the sample is placed in a very thick cell. In order to allow the neutron beam to go through the cell loosing as little intensity as possible, the inner part is kept solid while the external part has some windows facing the incident and reflected beam. The window dimensions are small (a few millimeters wide and a few centimeters long). There are two alternatives: to have the window either in a perpendicular plane or in a plane parallel to the axis. In the first case a fixed wavelength spectrometer can be used but the sample is small and the contribution of the cell to the diffraction pattern is relatively great. In the second case samples can be something like ten times greater and the cell contribution can be eliminated but a fixed wavelength spectrometer cannot be used. Thus the time-of-flight method is very convenient. The second alternative was chosen

  7. Abstracts of International Conference on Experimental and Computing Methods in High Resolution Diffraction Applied for Structure Characterization of Modern Materials - HREDAMM

    International Nuclear Information System (INIS)

    2004-01-01

    The conference addressed all aspects of high resolution diffraction. The topics of meeting include advanced experimental diffraction methods and computer data analysis for characterization of modern materials as well as the progress and new achievements in high resolution diffraction (X-ray, electrons, neutrons). Application of these methods for characterization of modern materials are widely presented among the invited, oral and poster contributions

  8. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    International Nuclear Information System (INIS)

    Prilliman, Gerald Stephen

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe 2 O 3 ) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure

  9. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Prilliman, Stephen Gerald [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe2O3) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition

  10. Surface and interface strains studied by x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi; Ichimiya, Ayahiko

    1998-01-01

    The authors have developed a technique of X-ray diffraction in order to measure strain fields near semiconductor surface and interface. The diffraction geometry is using the extremely asymmetric Bragg-case bulk reflection of a small incident angle to the surface and a large angle exiting from the surface. The incident angle of the X-rays is set near critical angle of total reflection by tuning X-ray energy of synchrotron radiation at the Photon Factory, Japan. For thermally grown-silicon oxide/Si(100) interface, the X-ray intensity of the silicon substrate 311 reflection has been measured. From comparison of the full width at half maxima (FWHM) of X-ray rocking curves of various thickness of silicon oxides, it has been revealed that silicon substrate lattice is highly strained in the thin (less than about 5 nm) silicon oxide/silicon system. In order to know the original silicon surface strain, the authors have also performed the same kind of measurements in the ultra-high vacuum chamber. A clean Si(111) 7x7 surface gives sharper X-ray diffraction peak than that of the native oxide/Si(111) system. From these measurements, it is concluded that the thin silicon oxide film itself gives strong strain fields to the silicon substrates, which may be the reason of the existence of the structural transition layer at the silicon oxide/Si interface

  11. Time-resolved x-ray diffraction measurement of C60 under high pressure and temperature using synchrotron radiation

    International Nuclear Information System (INIS)

    Horikawa, T; Suito, K; Kobayashi, M; Onodera, A

    2002-01-01

    C 60 has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C 60 structure are presented and the relevance to the hardness of materials derived from C 60 is discussed

  12. MacDUST - a powder diffraction package developed for the ''ADONE'' high resolution diffraction station

    International Nuclear Information System (INIS)

    Burattini, E.; Cappuccio, G.; Maistrelli, P.; Simeoni, S.

    1993-01-01

    A High Resolution Powder Diffraction Station (PO.DI.STA.) was installed at the beginning of 1991 on the ADONE-Wiggler magnet beam line. The station and the first powder diffraction spectra, collected with synchrotron radiation, were presented at the EPDIC-1 Conference. More details can also be found in. For this station, a very sophisticated software package ''MacDUST'' has been developed on an Apple Macintosh computer, using the Microsoft QuickBASIC compiler. It allows very easy and comfortable operations by means of a graphical user interface environment, typical of the Macintosh system. The package consists of five major programs. The main program, MacDIFF, performs all the graphic operations on the experimental data, including zooming, overlapping, cursor scanning and editing of patterns, control of output operations to printers and HPGL plotters. It also includes several analysis routines for data smoothing, a first derivative peak search algorithm, two background subtraction routines and two profile fitting programs: one based on the simplex method and the other on the Marquardt modification of a least-square algorithm. MacPDF and MacRIC are both dedicated to phase identification. The first program is an archive manager for searching, displaying and printing phase records; MacRIC is a graphic aided search-match program based on the Hanawalt algorithm. Mac3-DIM is a plot program, useful, e.g., for representing kinetics three dimensionally. MacRIET is a Macintosh version of the well known Rietveld refinement program. This version, besides conventional structure refinements, also allows the determination of micro structural parameters, i.e. micro strain and crystallite size. The program can also be used to simulate a pattern, once the structure of the compound is known. Taking advantage of the very intuitive Macintosh graphic user interface, through dialog and alert boxes, the program allows straightforward introduction and modification of the structure

  13. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    International Nuclear Information System (INIS)

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase, a protein found in high levels in the traditional Japanese food natto, has been reported to have high thrombolytic activity. In the present study, the crystallization of native nattokinase and the collection of X-ray diffraction date from a nattokinase crystal to a resolution of 1.74 Å are reported. Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase

  14. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Yasuhide [Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025 (Japan); Chatake, Toshiyuki [Research Reactor Institute, Kyoto University, Asashironishi 2, Kumatori, Sennan, Osaka 590-0494 (Japan); Chiba-Kamoshida, Kaori [National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki [Kurashiki University of Science and Arts, Nishinoura 2640, Tsurajima-cho, Kurashiki, Okayama 712-8505 (Japan); Yasuda, Ichiro [Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025 (Japan); Morimoto, Yukio [Research Reactor Institute, Kyoto University, Asashironishi 2, Kumatori, Sennan, Osaka 590-0494 (Japan); Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025 (Japan)

    2010-12-01

    Nattokinase, a protein found in high levels in the traditional Japanese food natto, has been reported to have high thrombolytic activity. In the present study, the crystallization of native nattokinase and the collection of X-ray diffraction date from a nattokinase crystal to a resolution of 1.74 Å are reported. Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R{sub merge} of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.

  15. Levitation apparatus for neutron diffraction investigations on high temperature liquids

    International Nuclear Information System (INIS)

    Hennet, Louis; Pozdnyakova, Irina; Bytchkov, Aleksei; Cristiglio, Viviana; Palleau, Pierre; Fischer, Henry E.; Cuello, Gabriel J.; Johnson, Mark; Melin, Philippe; Zanghi, Didier; Brassamin, Severine; Brun, Jean-Francois; Price, David L.; Saboungi, Marie-Louise

    2006-01-01

    We describe a new high temperature environment based on aerodynamic levitation and laser heating designed for neutron scattering experiments up to 3000 deg. C. The sample is heated to the desired temperature with three CO 2 lasers from different directions in order to obtain a homogeneous temperature distribution. The apparent temperature of the sample is measured with an optical pyrometer, and two video cameras are employed to monitor the sample behavior during heating. The levitation setup is enclosed in a vacuum-tight chamber, enabling a high degree of gas purity and a reproducible sample environment for structural investigations on both oxide and metallic melts. High-quality neutron diffraction data have been obtained on liquid Y 3 Al 5 O 12 and ZrNi alloy for relatively short counting times (1.5 h)

  16. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    Science.gov (United States)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  17. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  18. A structural view of Pd model catalysts : high-pressure surface X-Ray diffraction

    NARCIS (Netherlands)

    Rijn, Richard van

    2012-01-01

    This thesis describes the development of a combined high-pressure/ultrahigh-vacuum flow reactor for the study of model catalysts by means of surface x-ray diffraction and grazing incidence small angle scattering. The system was used to measure a stability diagram for the different oxide phases

  19. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  20. Gluon radiation in diffractive electroproduction

    International Nuclear Information System (INIS)

    Buchmueller, W.; McDermott, M.F.; Hebecker, A.

    1996-07-01

    Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)

  1. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  2. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  3. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    Science.gov (United States)

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  4. X-ray diffraction at high pressure and high/low temperatures using synchrotron radiation. Applications in the study of spinel structures

    International Nuclear Information System (INIS)

    Gerward, L.; Jiang, J.Z.; Olsen, J.S.; Recio, J.M.; Wakowska, A.

    2004-01-01

    High-pressure x-ray diffraction made a quantum leap in the 1960's with the advent of the diamond-anvil cell. This ingenious device, where two opposing diamond faces apply pressure to a tiny sample, made it possible to replicate the pressure near the core of the Earth by turning a thumbscrew. Multianvil cells, such as the Japanese MAX80 press, were developed for combined high-pressure and high-temperature studies. The availability n at about the same time n of dedicated synchrotron radiation sources of hard x-rays was another big step forward. Since then, the white-beam energy-dispersive method has been the workhorse for high pressure, high-temperature x-ray diffraction, although it is now gradually being replaced by high-resolution monochromatic methods based on the image plate, the CCD camera or other electronic area detectors. The first part of the paper is a review of high-pressure x-ray diffraction (HPXRD), covering roughly the last three decades. Physical parameters, such as the bulk modulus, the compressibility and the equation of state, are defined. The diamond-anvil cell, the multianvil press and other high-pressure devices are described, as well as synchrotron radiation sources and recording techniques. Examples are drawn from current experimental and theoretical research on crystal structures of the spinel type. Accurate structural parameters have been determined at ambient conditions and at low temperatures using single-crystal diffraction and four-circle diffractometers. The uniform high-pressure behavior of the oxide spinels has been investigated in detail and compared with the corresponding behavior of selenium-based spinels. The synthesis of advanced novel materials is exemplified in the case of the cubic spinel Si 3 N 4 . This and other nitrogen spinels, which have a bulk modulus of about 300 GPa modulated by the actual cation, are opening a road towards superhard materials. The paper finishes off with an outlook into the future, where new

  5. A high and low noise model for strong motion accelerometers

    Science.gov (United States)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.

  6. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  7. Diffraction attraction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'

  8. Diffraction attraction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.

  9. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  10. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  11. A synchrotron X-ray diffraction study of non-proportional strain-path effects

    International Nuclear Information System (INIS)

    Collins, D.M.; Erinosho, T.; Dunne, F.P.E.; Todd, R.I.; Connolley, T.; Mostafavi, M.; Kupfer, H.; Wilkinson, A.J.

    2017-01-01

    Common alloys used in sheet form can display a significant ductility benefit when they are subjected to certain multiaxial strain paths. This effect has been studied here for a polycrystalline ferritic steel using a combination of Nakajima bulge testing, X-ray diffraction during biaxial testing of cruciform samples and crystal plasticity finite element (CPFE) modelling. Greatest gains in strain to failure were found when subjecting sheets to uniaxial loading followed by balanced biaxial deformation, resulting in a total deformation close to plane-strain. A combined strain of approximately double that of proportional loading was achieved. The evolution of macrostrain, microstrain and texture during non-proportional loading were evaluated by in-situ high energy synchrotron diffraction. The results have demonstrated that the inhomogeneous strain accumulation from non-proportional deformation is strongly dependent on texture and the applied strain-ratio of the first deformation pass. Experimental diffraction evidence is supported by results produced by a novel method of CPFE-derived diffraction simulation. Using constitutive laws selected on the basis of good agreement with measured lattice strain development, the CPFE model demonstrated the capability to replicate ductility gains measured experimentally.

  12. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    Science.gov (United States)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  13. X-ray diffraction analysis of InAs nanowires

    International Nuclear Information System (INIS)

    Davydok, Anton

    2013-01-01

    Si substrate. MBE provides the opportunity to combine a group III-V material with nearly any semiconductor substrate independent from lattice mismatch. Vertically aligned nanowire ensembles were studied performing X-ray diffraction experiments in different scattering geometries. Considering the nanowires are composed by structural units of zinc-blende and wurtzite the latter one was found to be affected by a high density of stacking faults already at nanowires with short growth time. The stacking faults density was estimated by Monte-Carlo simulations based on model of ensemble average. A strong signal of unique zinc-blende reflection was observed as well. Coherent X-ray diffraction experiments with the use of a nano-focus setup have shown 'bar-code' patterning due to stacking fault arrangement within the nanowire. The found highly defective structure cannot be attributed to wurtzite or zinc-blende phases alone. Also parasitic islands were found on the samples surfaces and characterized as pure zinc-blende objects.

  14. Diffractive dissociation in pp→Δ++π-p

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    The complete calculation for pp→Δ ++ π - p diffractive dissociation reaction at high energy in the framework of the Three Components Deck Model is made. This calculation suffers from some difficulties originated by the (3/2 + , 3/2 + , 1 - ) vertex that appears in one of the components. The main technical details are given and so this paper remains essentially technical. The conclusion, based on the results obtained, is that the structures of 'zeros' or dips predicted by the Model can not be analytically seen because of the complexity of the formulae involved. But numerical calculations for several distributions are performed. A strong interference among the three components may appear according to a particular choice of the parameters. (Author) [pt

  15. Use of neutron diffraction in determining strains in high-temperaure superconducting composites

    International Nuclear Information System (INIS)

    Hitterman, R.L.; Faber, J. Jr.; Kupperman, D.S.; Singh, J.P.; Majumdar, S.

    1990-01-01

    The Argonne Intense Pulsed Neutron Source and General Purpose Powder Diffractometer have been used to study high T c metal oxide composites composed of yttrium barium copper oxide and silver. Neutron diffraction techniques were applied to composites with 15, 20 and 30% silver content by volume. The authors have observed that after hot pressing, the 30% Ag specimens contained both orthorhombic high T c and tetragonal, non-superconducting phases near the center of the specimens but only tetragonal near the surface. The relationship of shifts in Bragg peaks to strains of the constituents is discussed

  16. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  17. Time-resolved x-ray diffraction measurement of C{sub 60} under high pressure and temperature using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suito, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kobayashi, M [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Onodera, A [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2002-11-11

    C{sub 60} has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C{sub 60} structure are presented and the relevance to the hardness of materials derived from C{sub 60} is discussed.

  18. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  19. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  20. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    International Nuclear Information System (INIS)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert; Battaile, Kevin P.; Pai, Emil F.; Chirgadze, Nickolay Y.

    2011-01-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  1. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    Energy Technology Data Exchange (ETDEWEB)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Battaile, Kevin P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pai, Emil F.; Chirgadze, Nickolay Y., E-mail: nchirgad@uhnresearch.ca [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2011-06-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  2. Analysis and Correction of Diffraction Effect on the B/A Measurement at High Frequencies

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Liu, Xiao-Zhou; Kushibiki, Jun-ichi; Nishino, Hideo

    2004-01-01

    A numerical method is developed to analyse and to correct the diffraction effect in the measurement of acoustic nonlinearity parameter B/A at high frequencies. By using the KZK nonlinear equation and the superposition approach of Gaussian beams, an analytical model is derived to describe the second harmonic generation through multi-layer medium SiO2/liquid specimen/SiO2. Frequency dependence of the nonlinear characterization curve for water in 110-155 MHz is numerically and experimentally investigated. With the measured dip position and the new model, values of B/A for water are evaluated. The results show that the present method can effectively correct the diffraction effect in the measurement.

  3. Time-resolved x-ray diffraction analysis of the experimental dehydration of serpentine at high pressure

    International Nuclear Information System (INIS)

    Inoue, Toru; Yoshimi, Isamu; Yamada, Akihiro; Kikegawa, Takumi

    2009-01-01

    Time-resolved, in situ X-ray diffraction analysis was used to determine the dehydration rate and kinetics of serpentine during experimental dehydration at high pressures. The capsule used comprises a diamond sleeve fitted with Au or Pt lids in order to provide high-quality, time-resolved X-ray diffraction data. Antigorite quickly dehydrated to enstatite + forsterite + fluid within 2 h at 650degC below ∼6 GPa. Avrami modeling of the results and SEM observations of the partially dehydrated sample revealed that the nucleation rate was quite high for enstatite but low for forsterite, showing incubation periods of ∼10 min before appearing. The crystallization of these minerals is controlled largely by the composition of the fluid generated from serpentine dehydration. The dehydration boundary determined below 6 GPa in the present study is consistent with the results of previous phase equilibrium studies. This study indicates that serpentine in a subducting slab dehydrates rapidly below 6 GPa when the slab intersects the dehydration boundary conditions. (author)

  4. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  5. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  6. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  7. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  8. Measurements of transient electron density distributions by femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Freyer, Benjamin

    2013-01-01

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  9. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  10. Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture

    International Nuclear Information System (INIS)

    Yan Hanfei; Maser, Joerg; Macrander, Albert; Shen Qun; Vogt, Stefan; Stephenson, G. Brian; Kang, Hyon Chol

    2007-01-01

    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations [Acta Crystallogr. 15, 1311 (1962); Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964)] for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely, flat, tilted, and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy both the Bragg condition everywhere and phase requirement for point focusing and effectively focus hard x rays to a scale close to the wavelength. Our calculations were made for an x-ray wavelength of 0.064 nm (19.5 keV)

  11. Development of a high repetition rate laser-plasma accelerator for ultra-fast electron diffraction experiments

    International Nuclear Information System (INIS)

    Beaurepaire, B.

    2009-01-01

    Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femto-seconds (fs). Laser accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Such accelerators used to work at a low repetition rate, so that it was necessary to develop a new one operating at a high repetition rate in order to accumulate a large amount of data. In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generates electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated. (author)

  12. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  13. Diffraction-based BioCD biosensor for point-of-care diagnostics

    Science.gov (United States)

    Choi, H.; Chang, C.; Savran, C.; Nolte, D.

    2018-02-01

    The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.

  14. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  15. Measurement of the open-charm contribution to the diffractive proton structure function

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Loizides, J.H.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kind, O.; Meyer, U.; Paul, E.; Rautenberg, J.; Renner, R.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Wang, M.; Weber, A.; Bailey, D.S.; Brook, N.H.; Cole, J.E.; Foster, B.; Heath, G.P.; Heath, H.F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J.Y.; Kim, Y.K.; Lee, J.H.; Lim, I.T.; Pac, M.Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Ning, Y.; Paganis, S.; Ren, Z.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Kowal, A.M.; Kowal, M.; Kowalski, T.; Przybycien, M.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotanski, A.; Slominski, W.; Adler, V.; Bauerdick, L.A.T.; Behrens, U.; Bloch, I.; Borras, K.; Chiochia, V.; Dannheim, D.; Drews, G.; Fourletova, J.; Fricke, U.; Geiser, A.; Goebel, F.; Goettlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G.F.; Hillert, S.; Kahle, B.; Koetz, U.; Kowalski, H.; Kramberger, G.; Labes, H.; Lelas, D.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I.-A.; Moritz, M.; Nguyen, C.N.; Notz, D.; Petrucci, M.C.; Polini, A.; Raval, A.; Schneekloth, U.; Selonke, F.; Stoesslein, U.; Wessoleck, H.; Wolf, G.; Youngman, C.; Zeuner, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Bell, M.; Bussey, P.J.; Doyle, A.T.; Glasman, C.; Hamilton, J.; Hanlon, S.; Lee, S.W.; Lupi, A.; Saxon, D.H.; Skillicorn, I.O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Collins-Tooth, C.; Foudas, C.; Goncalo, R.; Long, K.R.; Tapper, A.D.; Cloth, P.; Filges, D.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Lim, H.; Son, D.; Piotrzkowski, K.; Barreiro, F.; Gonzalez, O.; Labarga, L.; Del Peso, J.; Tassi, E.; Terron, J.; Vazquez, M.; Barbi, M.; Corriveau, F.; Gliga, S.; Lainesse, J.; Padhi, S.; Stairs, D.G.; Tsurugai, T.; Antonov, A.; Danilov, P.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Vlasov, N.N.; Zotkin, S.A.; Coppola, N.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Pellegrino, A.; Schagen, S.; Tiecke, H.; Velthuis, J.J.; Wiggers, L.; de Wolf, E.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Ling, T.Y.; Cooper-Sarkar, A.M.; Cottrell, A.; Devenish, R.C.E.; Ferrando, J.; Grzelak, G.; Patel, S.; Sutton, M.R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Heaphy, E.A.; Metlica, F.; Oh, B.Y.; Whitmore, J.J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Heusch, C.; Park, I.H.; Pavel, N.; Abramowicz, H.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Kuze, M.; Abe, T.; Fusayasu, T.; Kagawa, S.; Kohno, T.; Tawara, T.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Ferrero, M.I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Solano, A.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Butterworth, J.M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T.W.; Lightwood, M.S.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Nowak, R.J.; Pawlak, J.M.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zarnecki, A.F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L.K.; Hochman, D.; Karshon, U.; Riveline, M.; Kcira, D.; Lammers, S.; Li, L.; Reeder, D.D.; Savin, A.A.; Smith, W.H.; Deshpande, A.; Dhawan, S.; Straub, P.B.; Bhadra, S.; Catterall, C.D.; Fourletov, S.; Hartner, G.; Menary, S.; Soares, M.; Standage, J.

    2003-01-01

    Production of D* ± (2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb -1 . Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 2 2 , 0.02 P T (D* ± )>1.5 GeV and |η(D* ± )|<1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities

  16. Structural studies of metal nanoparticles using high-energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Song, Chulho [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J3-16, Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kohara, Shinji [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Kusada, Kohei; Kobayashi, Hirokazu [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); Kitagawa, Hiroshi [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan (Japan); Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan (Japan)

    2016-07-27

    The XRD patterns of nanoparticles exhibit broad Bragg peaks because of small size, where the contribution of diffuse component provides us with inherent structural information. Therefore, pair distribution function obtained from a Fourier transformation of high-energy XRD data and structure modeling on the basis of diffraction data becomes an essential tool to understand the structure of nanoparticles. This promising tool was utilized to obtain structural information of Pd/Pt bimetallic core/shell and solid-solution nanoparticles, which show much attention due to their improved hydrogen storage capacity and catalytic activity.

  17. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  18. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  19. On a semiclassical analysis of high energy electron diffraction by imperfect crystals: the stacking fault

    International Nuclear Information System (INIS)

    Smith, A.E.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Electron diffraction amplitudes at the lower surface of a displaced sandwich crystal are obtained for the high energy limit in the real space formulation. Using semiclassical methods analytical approximations to a resulting overlap integral - central to the problem - are derived. (Auth.)

  20. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  1. High-pressure X-ray diffraction experiments on US using synchrotron radiation

    International Nuclear Information System (INIS)

    Olsen, J.S.; Steenstrup, S.

    1983-12-01

    High-pressure X-ray diffraction studies have been performed on US up to 40 GPa using synchrotron radiation and a diamond anvil cell. The measured value of the bulk modulus B 0 = 92 GPa is in reasonable agreement with calculations. The high-pressure behaviour indicates a phase transformation to US III at about 15 GPa. The transformation is a smooth deformation process, which starts with a tetragonal structure asub(tetr) = asub(cub)/√2, csub(tetr) = 2asub(cub) and continues with an orthorhombic structure with a = 375(3)pm, b = 345(3)pm, c = 1069 (24)pm at 35 GPa; it is of second order nature within experimental errors and it should involve some contributions from uranium f electrons. (orig.)

  2. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    International Nuclear Information System (INIS)

    Sediako, A.; Shook, S.; Vogel, S.; Sediako, D.

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and excellent diecastability are frequently among the main considerations in development of a new magnesium alloy for automotive industry. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material become important factors in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated- temperature applications. Along with others 'traditional' characterization techniques of metals' performance in high- temperature creep, neutron diffraction was employed in this study to analyze evolution of crystallographic texture during creep deformation. The paper compares two methods of texture analysis in neutron diffraction studies: based on monochromatic (reactor-source) beam and white neutron beam (time-of-flight method, synchrotron). The time-of-flight (TOF) spectrometer illuminates the sample with a non-filtered beam of neutrons and captures the readings with an encircled detector array. This provides a very fast and detailed picture of the crystallographic texture for the bulk of the sample. As the white beam retains all neutron wavelengths, it takes much less time to collect statistically-valid dataset for the diffraction pattern. On the other hand, the monochromatic beam setup includes a monochromatic crystal that filters out a specific wavelength. The diffracted beam is then captured by a much simpler neutron detector. This setup is more flexible, allowing for choosing various wavelengths (depending on the sample material) but obviously requiring more time for statistically viable data collection. These studies were performed using E3 neutron

  3. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  4. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  5. A high-resolution neutron powder diffraction study of neodymium doping in barium cerate

    DEFF Research Database (Denmark)

    Knight, K.S.; Bonanos, N.

    1995-01-01

    High-resolution neutron powder diffraction data have been collected on 6 perovskites of composition BaCe1-xNdxO3-x/(2), with 0 less than or equal to x less than or equal to 0.2, in which structural phase transitions Pmcn-->P4/mbm at x=0.05, and P4/mbm-->Pm3m at x=0.1, were inferred from a recent ...

  6. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  7. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  8. Transferring diffractive optics from research to commercial applications: Part I - progress in the patent landscape

    Science.gov (United States)

    Brunner, Robert

    2013-12-01

    In the last 20 years, diffractive optics experienced a strong research interest and was in the center of many development projects in applied optics. To offer a side view for optical engineers, here, we discuss selected, business-related aspects of the current status of the transfer process to bring diffractive optics into commercial products. The contribution is divided into two parts. Here, in part I, we focus on the patent landscape of diffractive optics with a closer look on the temporal development and the distribution over main players. As an important result, currently, new strong patent activities are observed especially in the context of imaging systems. In the second part, the business volumes of selected market segments are discussed.

  9. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    Energy Technology Data Exchange (ETDEWEB)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2007-03-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.

  10. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    International Nuclear Information System (INIS)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2006-01-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC

  11. Molecular beam epitaxial growth mechanism of ZnSe epilayers on (100) GaAs as determined by reflection high-energy electron diffraction, transmission electron microscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, P.; Hommel, D.; Behr, T.; Heinke, H.; Waag, A.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1994-04-14

    The properties of molecular beam epitaxial growth of ZnSe epilayers deposited directly on a GaAs substrate are compared to those grown on a GaAs buffer layer. The superior quality of the latter is confirmed by RHEED, TEM and X-ray diffraction. Based on RHEED oscillation studies, a model explaining the dependence of the ZnSe growth rate on Zn and Se fluxes and the substrate temperature is developed taking into account physisorbed and chemisorbed states. For partially relaxed epilayers, the correlation between the relaxation state and the crystalline mosaicity, as found by high resolution X-ray diffraction, is discussed

  12. Direct observation of the near-surface layer in Pb(Mg1/3Nb2/3)O3 using neutron diffraction

    International Nuclear Information System (INIS)

    Conlon, K.H.; Whan, T.; Fox, J.H.; Luo, H.; Viehland, D.; Li, J.F.; Stock, C.; Shirane, G.

    2004-01-01

    Spatially resolved neutron diffraction as a function of crystal depth in Pb(Mg 1/3 Nb 2/3 )O 3 reveals the presence of a distinct near-surface region where a strong distortion in the lattice exists. A dramatic change in both the lattice constant and the Bragg peak intensity as a function of crystal depth is observed to occur in this region over a length scale ∼100 μm. This confirms a previous assertion, based on a comparison between high-energy x rays and neutrons, that such a near surface region exists in the relaxors. Consequences to both single crystal and powder diffraction measurements and previous bulk neutron diffraction measurements on large single crystals are discussed

  13. Diffractive Hyperbola of a Skin Layer

    Science.gov (United States)

    Yakubov, V. P.; Vaiman, E. V.; Shipilov, S. È.; Prasath, A. K.

    2018-03-01

    Based on an analysis of physics of the phase transition from the quasistatic state field to the running wave field of elementary electric and magnetic dipoles located in absorbing media, it is concluded that the skin layer is formed at the boundary of this phase transition. The possibility is considered of obtaining the diffractive hyperbola of the skin layer and its subsequent application for sensing of objects in strongly absorbing media.

  14. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...

  15. Definition and measurement of the times-diffraction-limit number of high-power laser beams

    Science.gov (United States)

    Bollanti, Sarah; Di Lazzaro, Paolo; Murra, Daniele

    1998-07-01

    A novel definition of the times-diffraction-limit (TDL) number of a laser beam is given. A comparison is made with the commonly used beam-propagation parameter M2, which is unreliable for hard-edge beams, like those produced by unstable resonators with diffraction output coupling. The new suggested TDL number definition doesn't rely on the real beam comparison to a Gaussian beam, but on the comparison of the far-field performances of the real beam with respect to those of a uniphase beam with the same amplitude profile in the near field. A practical method is also given for the estimation of the TDL number of real beams. Finally, this procedure is applied to the high-peak-power laser beams generated by two excimer laser systems developed in ENEA.

  16. X-Ray diffraction studies of silicon implanted with high energy ions

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    The character of lattice deformation in silicon implanted with high energy alpha-particles and protons was studied using a number of X-ray methods. The experiments included double-crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter distribution proportional to the vacancy-interstitial distribution coming from the Biersack-ziegler theory. The theoretical rocking curves and distribution in back-reflection double-crystal and section topographs well corresponding to the experimental results were calculated using numerical integration of the takagi-taupin equations

  17. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  18. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    International Nuclear Information System (INIS)

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. [copyright] 2001 American Institute of Physics

  19. Effect of Boron Doping on High-Resolution X-Ray Diffraction Metrology

    Science.gov (United States)

    Faheem, M.; Zhang, Y.; Dai, X.

    2018-03-01

    The effect of boron (B) doping on high-resolution X-ray diffraction (HXRD) metrology has been investigated. Twelve samples of Si1-xGex films were epitaxially grown on Si (100) substrates with different thicknesses, germanium (Ge) concentrations and with/without B dopants. Secondary ion mass spectroscopy (SIMS) and HXRD were employed for measurements of B doping, Ge concentration, strain, and thickness of the layers. The SIMS results show the absence of B in two samples while the rest of the samples have B doping in the range of 8.40 × 1018-8.7 × 1020 atoms/cm3 with Ge concentration of 13.3-55.2 at.%. The HXRD measurements indicate the layers thickness of 7.07-108.13 nm along with Ge concentration of 12.82-49.09 at.%. The difference in the Ge concentration measured by SIMS and HXRD was found to deend on B doping. For the undoped samples, the difference is 0.5 at.% and increases with B doping but with no linear proportionality. The difference in the Ge concentration was 7.11 at.% for the highly B-doped (8.7 × 1020 atoms/cm3) sample. The B doping influences the Si1-xGex structure, causing a change in the lattice parameter and producing tensile strains shifting Si1-xGex peaks towards Si (100) substrate peaks in the HXRD diffraction patterns. As a result, Vegard's law is no longer effective and makes a high impact on the HXRD measurement. The comparison between symmetric (004) and asymmetric (+113, +224) reciprocal space mappings (RSM) showed a slight difference in Ge concentration between the undoped and lower B-doped samples. However, there is a change of 0.21 at.% observed for the highly doped Si1-xGex samples. RSM's (+113) demonstrate the small SiGe peak broadening as B doping increases, which indicates a minor crystal distortion.

  20. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  1. A high resolution, high counting rate bidimensional, MWPC imaging detector for small angle X-ray diffraction studies

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Sawyer, E.C.; Stephenson, R.

    1981-07-01

    The performance is reported of a 200 mm x 200 mm X-ray imaging MWPC aimed at applications in small angle X-ray diffraction and scattering. With quantum energies of approximately 8 keV high spatial resolution (+- 0.5 mm x +- 0.14 mm) with a capability for data taking at >approximately 350 kHz is reported. The detection efficiency is approximately 75% and the detector operates as a sealed unit with a long lifetime. (author)

  2. Diffraction theory

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1954-01-01

    A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of

  3. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  4. Impact factor for high-energy two and three jets diffractive production

    Energy Technology Data Exchange (ETDEWEB)

    Boussarie, R. [LPT, Université Paris-Sud, CNRS, 91405, Orsay (France); Grabovsky, A.V. [Budker Institute of Nuclear Physics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [UPMC Univ. Paris 06, Faculté de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France); LPT, Université Paris-Sud, CNRS, 91405, Orsay (France)

    2015-04-10

    We present the calculation of the impact factor for the photon to quark, antiquark and gluon transition within Balitsky’s shock-wave formalism. We also rederive the impact factor for photon to quark and antiquark transition. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering as well as for two and three jets diffractive production which go beyond approximations discussed in the literature.

  5. Impact factor for high-energy two and three jets diffractive production

    International Nuclear Information System (INIS)

    Boussarie, R.; Grabovsky, A.V.; Szymanowski, L.; Wallon, S.

    2015-01-01

    We present the calculation of the impact factor for the photon to quark, antiquark and gluon transition within Balitsky’s shock-wave formalism. We also rederive the impact factor for photon to quark and antiquark transition. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering as well as for two and three jets diffractive production which go beyond approximations discussed in the literature

  6. Structure evolutions in a Ti–6Al–4V matrix composite reinforced with TiB, characterised using high energy X-ray diffraction

    International Nuclear Information System (INIS)

    Ropars, Ludovic; Dehmas, Moukrane; Gourdet, Sophie; Delfosse, Jérôme; Tricker, David; Aeby-Gautier, Elisabeth

    2015-01-01

    Highlights: • In-situ high energy X-ray diffraction used during different thermal treatments. • Kinetics of phase evolutions characterised for the matrix and for the borides. • Conversion from TiB 2 to TiB-B27 via a metastable structure TiB-B f . • Strong effect of the process on the matrix phases evolutions and microstructure. - Abstract: A titanium matrix composite reinforced with TiB was produced using powder metallurgy. A Ti–6Al–4V alloy was chosen to be the matrix, and 12 wt.% of TiB 2 was used as the boron source for the solid state formation of TiB. The TiB 2 to TiB conversion reaction was studied using an in situ high energy X-ray diffraction technique while heat treating the composite. The TiB 2 (space group: P6/mmm) converts into TiB-B27 (Pnma), via TiB-B f (Cmcm). The metastable character of B f is confirmed here; it is the first phase formed during the conversion and it progressively converts into B27 during elevated temperature heat treatment. A modification of the phase transformation kinetics in the matrix and of the composite β transus temperature (T β = 1275 °C) was also observed, mainly due to gas contamination and intensive work hardening as a result of the mechanical alloying process used to manufacture the material and to a modification of the matrix equilibria

  7. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  8. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  9. A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Oscar P., E-mail: obruno@caltech.edu; Lintner, Stéphane K.

    2013-11-01

    We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities.

  10. Diffraction studies of order-disorder at high pressures and temperatures

    International Nuclear Information System (INIS)

    Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson

    2005-01-01

    Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO 3 ) 2 ) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe 2 O 4 , which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO 4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO 4 -type structure.

  11. An engineered design of a diffractive mask for high precision astrometry

    Science.gov (United States)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; Marin, Eduardo; Sivo, Gaetano; Bendek, Eduardo; Guyon, Oliver

    2016-07-01

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors in the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. The mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.

  12. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  13. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  14. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  15. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  16. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    Science.gov (United States)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  17. Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing

    International Nuclear Information System (INIS)

    Yu, Cun; Aoun, Bachir; Cui, Lishan; Liu, Yinong; Yang, Hong; Jiang, Xiaohua; Cai, Song; Jiang, Daqiang; Liu, Zunping; Brown, Dennis E.; Ren, Yang

    2016-01-01

    Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy along 〈111〉, which coincides with the crystallographic fiber orientation of the domains along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. Crystallization of the amorphous phase led to a broadening of the angular distribution of 〈111〉 preferential orientations of grains along the axial direction as relative to the original 〈111〉 axial fiber texture of the nanocrystalline domains produced by the severe cold wire drawing deformation.

  18. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)], E-mail: z.kuang@liv.ac.uk; Perrie, Walter [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Leach, Jonathan [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Sharp, Martin; Edwardson, Stuart P. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Padgett, Miles [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dearden, Geoff; Watkins, Ken G. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2008-12-30

    High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be {approx}50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

  19. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  20. Inclusive transverse momentum distributions of charged particles in diffractive and non-diffractive photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range -1.2 T =8 GeV using the ZEUS detector. Diffractive and non-diffractive reactions have been selected with an average γp centre of mass (c.m.) energy of =180 GeV. For diffractive reactions, the p T spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values X >=5 GeV and 10 GeV. The inclusive transverse momentum spectra fall exponentially in the low p T region. The non-diffractive data show a pronounced high p T tail departing from the exponential shape. The p T distributions are compared to lower energy photoproduction data and to hadron-hadron collisions at a similar c.m. energy. The data are also compared to the results of a next-to-leading order QCD calculation. (orig.)

  1. Diffraction dissociation: thirty five years after

    International Nuclear Information System (INIS)

    Zotov, N.P.; Tsarev, V.A.

    1988-01-01

    Review of the basic results and stages of studying one of the most interesting phenomena in high energy physics-diffraction dissociation (DD) of hadrons is presented. The review contains complete information concerning the basic experimental results and the most ''set'' DD theoretical models. Though the discussion focuses primarily on considering a single nucleon DD, this still allows one to fully describe the basic features of the phenomenon under investigation. The last part of the review is devoted to the most notable results obtained during DD experimental investigation in the last five years, which have not been reflected in the earlier published reviews. Signs of excited system parton structure and pomeron are clearly found in the new experimental data. It is underlined that DD mechanism understanding is closely connected with the solution of the confinement problem in the strong interaction theory and requires further experimental and theoretical investigations

  2. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  3. Single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase at 100 K

    Science.gov (United States)

    Nakatsuka, Akihiko; Arima, Hiroshi; Ohtaka, Osamu; Fujiwara, Keiko; Yoshiasa, Akira

    2017-10-01

    Single-crystal X-ray diffraction study of SrGeO3 perovskite (cubic; space group Pmɜ¯m) synthesized at 6 GPa and 1223 K was conducted at a low temperature of 100 K. The residual electron density revealed the presence of the bonding electron at the center of the Ge-O bond, in accordance with our previous conclusion that the Ge-O bond is strongly covalent. From comparison with our previous structure-refinement result at 296 K, the mean square displacement (MSD) of the O atom in the direction of the Ge-O bond is suggested to exhibit no significant temperature dependence, in contrast to that in the direction perpendicular to the bond. Thus, the strong covalency of the Ge-O bond can have a large influence on the temperature dependence of thermal vibration of the O atom.

  4. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Science.gov (United States)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  5. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Nakayama, A [Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502 (Japan); Kikegawa, T [Photon Factory (PF), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan)], E-mail: NAKANO.Satoshi@nims.go.jp

    2008-07-15

    Lithium borohydride (LiBH{sub 4}) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P4{sub 2}/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH{sub 4}.

  6. Neutron Larmor diffraction measurements for materials science

    International Nuclear Information System (INIS)

    Repper, J.; Keller, T.; Hofmann, M.; Krempaszky, C.; Petry, W.; Werner, E.

    2010-01-01

    Neutron Larmor diffraction (LD) is a high-resolution diffraction technique based on the Larmor precession of polarized neutrons. In contrast to conventional diffraction, LD does not depend on the accurate measurement of Bragg angles, and thus the resolution is independent of the beam collimation and monochromaticity. At present, a relative resolution for the determination of the crystal lattice spacing d of Δd/d∼10 -6 is achieved, i.e. at least one order of magnitude superior to conventional neutron or X-ray techniques. This work is a first step to explore the application of LD to high-resolution problems in the analysis of residual stresses, where both the accurate measurement of absolute d values and the possibility of measuring type II and III stresses may provide additional information beyond those accessible by conventional diffraction techniques. Data obtained from Inconel 718 samples are presented.

  7. Neutron Larmor diffraction measurements for materials science

    Energy Technology Data Exchange (ETDEWEB)

    Repper, J., E-mail: julia_repper@web.de [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Keller, T. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)] [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Krempaszky, C. [Christian-Doppler-Labor fuer Werkstoffmechanik von Hochleistungslegierungen, TU Muenchen, 85747 Garching (Germany); Petry, W. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Werner, E. [Lehrstuhl fuer Werkstoffkunde und Werkstoffmechanik, TU Muenchen, 85747 Garching (Germany)

    2010-05-15

    Neutron Larmor diffraction (LD) is a high-resolution diffraction technique based on the Larmor precession of polarized neutrons. In contrast to conventional diffraction, LD does not depend on the accurate measurement of Bragg angles, and thus the resolution is independent of the beam collimation and monochromaticity. At present, a relative resolution for the determination of the crystal lattice spacing d of {Delta}d/d{approx}10{sup -6} is achieved, i.e. at least one order of magnitude superior to conventional neutron or X-ray techniques. This work is a first step to explore the application of LD to high-resolution problems in the analysis of residual stresses, where both the accurate measurement of absolute d values and the possibility of measuring type II and III stresses may provide additional information beyond those accessible by conventional diffraction techniques. Data obtained from Inconel 718 samples are presented.

  8. Single photon energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-01-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored

  9. Single photon energy dispersive x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  10. X-ray diffraction studies of silicon implanted with high energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K [Institute of Atomic Energy, Otwock-Swierk, (Poland); Wierzchowski, W [Institute of Electronic Materials Technology, Warsaw, (Poland); Graeff, W [Hasylab at Desy, Hamburg, (Germany)

    1997-12-31

    The character of lattice deformation in silicon in implanted with high energy {alpha} particles and protons was studied with a number of X-ray methods. The experiments included double crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter depth distribution proportional to the vacancy-interstitial distribution coming from the Biersack-Ziegler theory. The theoretical rocking curves and density distribution in back-reflection double-crystal and section topography well corresponding to experimental results were calculated using numerical integration of the Takagi-Taupin equations. 9 figs.

  11. Structures of high and low density amorphous ice by neutron diffraction

    International Nuclear Information System (INIS)

    Finney, J.L.; Hallbrucker, A.; Kohl, I.; Soper, A.K.; Bowron, D.T.

    2002-01-01

    Neutron diffraction with isotope substitution is used to determine the structures of high (HDA) and low (LDA) density amorphous ice. Both 'phases' are fully hydrogen bonded, tetrahedral networks, with local order similarities between LDA and ice Ih, and HDA and liquid water. Moving from HDA, through liquid water and LDA to ice Ih, the second shell radial order increases at the expense of spatial order. This is linked to a fifth first neighbor 'interstitial' that restricts the orientations of first shell waters. This 'lynch pin' molecule which keeps the HDA structure intact has implications for the nature of the HDA-LDA transition that bear on the current metastable water debate

  12. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  13. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    International Nuclear Information System (INIS)

    Yagi, Takehiko

    2014-01-01

    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  14. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    Science.gov (United States)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  15. Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

    International Nuclear Information System (INIS)

    Martínez-Tomás, M.C.; Montenegro, D.N.; Agouram, S.; Sallet, V.; Muñoz-Sanjosé, V.

    2013-01-01

    ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establish that the peaks of the Renninger scan are highly sensitive to structural characteristics, providing information related with both the out-plane and in-plane ordering of nanostructured samples with a single scan. - Highlights: ► Structural characteristics of ZnO nanorods have been analyzed by X-ray multiple diffraction. ► X-ray multiple diffraction can provide mosaic structure characteristics from a single scan. ► Peaks of Renninger scan result to be very sensitive to structural characteristics. ► X-ray multiple diffraction can be an alternative analysis method to X-ray diffraction

  16. Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tomás, M.C., E-mail: Carmen.Martinez-tomas@uv.es [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain); Montenegro, D.N.; Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain); Sallet, V. [Groupe d' Etude de la Matière Condensée (GEMAC), CNRS-Université de Versailles St-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Muñoz-Sanjosé, V. [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain)

    2013-08-31

    ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establish that the peaks of the Renninger scan are highly sensitive to structural characteristics, providing information related with both the out-plane and in-plane ordering of nanostructured samples with a single scan. - Highlights: ► Structural characteristics of ZnO nanorods have been analyzed by X-ray multiple diffraction. ► X-ray multiple diffraction can provide mosaic structure characteristics from a single scan. ► Peaks of Renninger scan result to be very sensitive to structural characteristics. ► X-ray multiple diffraction can be an alternative analysis method to X-ray diffraction.

  17. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    the crystalline quality through full-width at half-maximum values. .... angular divergence of ∆α = 12 arc sec. X-rays generated from the monochromator were diffracted from (0 0 6) LiNbO3 atomic planes with the (+, −, −, +, +) geometry. [8].

  18. An experiment in diffractive physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2001-01-01

    The purpose of this talk is to show one of the next future experiment in diffractive Physics which will be installed at the DO experiment at Tevatron/Fermilab for run II, and the importance for Quantum Chromodynamics (QCD) as the theory of the strong interactions. The apparatus that we have developed is the Forward Proton Detector (FPD) to be introduced on the beam line of the Tevatron at both sides of the DO detector. The FPD is composed by a set of Roman Pots as we will see in the text below

  19. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  20. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    Science.gov (United States)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  1. Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)

    2015-11-16

    We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.

  2. Phase retrieval of diffraction from highly strained crystals

    International Nuclear Information System (INIS)

    Newton, Marcus C.; Harder, Ross; Huang Xiaojing; Xiong Gang; Robinson, Ian K.

    2010-01-01

    An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of ±π/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of 'compressive sensing' has emerged, which dictates that an appropriately subsampled (or compressed) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l 1 norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a 'density-modification' phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l 1 norm of the amplitude by a promotion-penalization (or 'propenal') operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered.

  3. Electron back scattered diffraction study of SmCo magnets

    International Nuclear Information System (INIS)

    Yonamine, T.; Fukuhara, M.; Machado, R.; Missell, F.P.

    2008-01-01

    The remanence and energy product of permanent magnets is a strong function of their crystallographic texture. Electron back scattered diffraction (EBSD) is a tool for texture analysis providing information about the atomic layers up to 50 nm below the surface of the material. This paper discusses experimental requirements for performing EBSD measurements on rare-earth permanent magnets and presents results on commercial SmCo magnet material. EBSD measurements proved to be very sensitive to misaligned grains and were sensitive to texture in good agreement with information provided by X-ray diffraction scans. Results for nanostructured Sm(CoFeCuZr) z magnets are also discussed

  4. Structure evolutions in a Ti–6Al–4V matrix composite reinforced with TiB, characterised using high energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ropars, Ludovic, E-mail: ludovic.ropars@airbus.com [Airbus Group SAS, Airbus Group Innovations, 12 rue Pasteur, BP-76, 92152 Suresnes Cedex (France); Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Dehmas, Moukrane, E-mail: ismoukrane.dehmas@univlorraine.fr [Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Laboratory of Excellence for Design of Alloy Metals for Low-mass Structures (‘DAMAS’ Labex), Université de Lorraine (France); Gourdet, Sophie; Delfosse, Jérôme [Airbus Group SAS, Airbus Group Innovations, 12 rue Pasteur, BP-76, 92152 Suresnes Cedex (France); Tricker, David [Materion AMC, RAE Road, Farnborough, Hampshire GU14 6XE (United Kingdom); Aeby-Gautier, Elisabeth [Institut Jean Lamour (IJL), SI2M Dpt., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Laboratory of Excellence for Design of Alloy Metals for Low-mass Structures (‘DAMAS’ Labex), Université de Lorraine (France)

    2015-03-05

    Highlights: • In-situ high energy X-ray diffraction used during different thermal treatments. • Kinetics of phase evolutions characterised for the matrix and for the borides. • Conversion from TiB{sub 2} to TiB-B27 via a metastable structure TiB-B{sub f}. • Strong effect of the process on the matrix phases evolutions and microstructure. - Abstract: A titanium matrix composite reinforced with TiB was produced using powder metallurgy. A Ti–6Al–4V alloy was chosen to be the matrix, and 12 wt.% of TiB{sub 2} was used as the boron source for the solid state formation of TiB. The TiB{sub 2} to TiB conversion reaction was studied using an in situ high energy X-ray diffraction technique while heat treating the composite. The TiB{sub 2} (space group: P6/mmm) converts into TiB-B27 (Pnma), via TiB-B{sub f} (Cmcm). The metastable character of B{sub f} is confirmed here; it is the first phase formed during the conversion and it progressively converts into B27 during elevated temperature heat treatment. A modification of the phase transformation kinetics in the matrix and of the composite β transus temperature (T{sub β} = 1275 °C) was also observed, mainly due to gas contamination and intensive work hardening as a result of the mechanical alloying process used to manufacture the material and to a modification of the matrix equilibria.

  5. X-ray diffraction study of WO3 at high pressure

    International Nuclear Information System (INIS)

    Bouvier, P.; Crichton, W.A.; Boulova, M.; Lucazeau, G.

    2002-01-01

    The high-pressure behaviour of microcrystalline tungsten oxide (WO 3 ) has been investigated with angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to 40 GPa at room temperature. Up to 21 GPa, the pressure dependence of the volume of the monoclinic high-pressure (P2 1 /c) phase is described by a third-order Birch-Murnaghan equation of state with parameters V 0 =210.9(7)A 3 , K T =27(2)GP a and K'=9.4(5). At 24 GPa, a first-order phase transition occurs with an approximate Δ V of 7.4% to a monoclinic P2 1 /a unit cell with a=6.1669(8)A, b=4.5758(6)A, c=5.3159(6)A, β=101.440(9) deg. A second transition is observed at pressures higher than 31 GPa with an approximate Δ V of 12% to a phase described by a third monoclinic unit cell, with a=10.3633(22)A, b=3.9065(8)A, c=9.3459(18)A and β=98.539(14) deg. (author)

  6. A high pressure x-ray diffraction study of titanium disulfide

    International Nuclear Information System (INIS)

    Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma Yanzhang

    2009-01-01

    A high pressure angle dispersive synchrotron x-ray diffraction study of titanium disulfide (TiS 2 ) was carried out to pressures of 45.5 GPa in a diamond-anvil cell. We observed a phase transformation of TiS 2 beginning at about 20.7 GPa. The structure of the high pressure phase needs further identification. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K 0T , was determined to be 45.9 ± 0.7 GPa with its pressure derivative, K' 0T , being 9.5 ± 0.3 at pressures lower than 17.8 GPa. It was found that the compression behavior of TiS 2 is anisotropic along the different axes. The compression ratio of the c-axis is about nine times larger than the a-axis when pressures are lower than 1 GPa. It suddenly decreases to three times larger at pressures of about 3 GPa. This ratio shows a linear decrease with a slope of negative 0.048 at pressures below phase transformation.

  7. Peculiarities of section topograms for the multiple diffraction of X rays

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, V. G., E-mail: kohnvict@yandex.ru [National Research Centre “Kurchatov Institute” (Russian Federation); Smirnova, I. A. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-07-15

    The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocal lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.

  8. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    Science.gov (United States)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  9. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction

    International Nuclear Information System (INIS)

    Srirangam, P.; Kramer, M.J.; Shankar, S.

    2011-01-01

    High-energy X-ray diffraction experiments were performed using a synchrotron beam source to investigate the effect of strontium on the liquid atomic structure of Al-Si hypoeutectic alloys. The high-temperature liquid diffraction experiments were carried out on Al alloys with 3, 7, 10 and 12.5 (eutectic) wt.% Si, respectively, with 0 and 0.04 wt.% addition of Sr to each of the alloys. Further, the diffraction data for all the alloys were obtained at various melt temperatures (5-220 K) above the respective liquidus temperature. It was observed that the addition of 0.04 wt.% Sr results in significant change in the liquid structure parameters, such as structure factor, pair distribution function, radial distribution function, coordination number and packing density, at any given melt temperature of the alloy. Salient observations were that, for any specific alloy and temperature, addition of Sr significantly decreases coordination number and packing density. Further, with the addition of Sr in the liquid alloy, the atomic coordination number and packing density increases with decreasing temperature and decreasing Si content of the alloy. The results coupled with prior knowledge have enabled an in-depth understanding of the nucleation environment of the solidifying phases, specifically the role of Sr in delaying the clustering tendencies (nucleation) of the eutectic Si phase.

  10. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    International Nuclear Information System (INIS)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-01-01

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell

  11. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  12. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns

    International Nuclear Information System (INIS)

    Zhou Xun; Luo Zi-Jiang; Guo Xiang; Zhang Bi-Chan; Shang Lin-Tao; Zhou Qing; Deng Chao-Yong; Ding Zhao

    2012-01-01

    Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As 4 BEP for InGaAs films. When the As 4 BEP is set to be zero, the RHEED pattern keeps a 4×3/(n × 3) structure with increasing temperature, and surface segregation takes place until 470 °C. The RHEED pattern develops into a metal-rich (4 × 2) structure as temperature increases to 495 °C. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515 °C, the RHEED pattern turns into a GaAs(2 × 4) structure due to In desorption. While the As 4 BEP comes up to a specific value (1.33 × 10 -4 Pa−1.33 × 10 -3 Pa), the surface temperature can delay the segregation and desorption. We find that As 4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. (condensed matter: structural, mechanical, and thermal properties)

  13. Colour-singlet exchange and tests of models of diffractive DIS

    International Nuclear Information System (INIS)

    Williams, J.C.

    2000-03-01

    Diffractive deep-inelastic scattering events observed at the HERA electron-proton collider are interpreted as an interaction involving a virtual photon scattering off a colour-singlet state within the proton. Models which attempt to describe the colour-singlet exchanged in diffractive interactions range from the purely phenomenological Donnachie-Landshoff form factor approach to the QCD-motivated gluon-exchange models and the scalar-pomeron model. It is important to find ways to test these models. In this thesis colour-singlet exchange models of diffractive DIS are compared with cross section and structure function data from the H1 detector. H1 select diffractive data by requiring there to be a large angle between the forward proton direction and any other significant detector activity. This pseudo-rapidity gap cut extracts colour-singlet exchange events from the standard DIS data sample. For a wide range of the parameter space covered by the HERA experiments, however, the pseudo-rapidity gap cuts restrict the final-state phase space available for diffractive scattering. One consequence is that pseudo-rapidity gap cuts can be used to select diffractive events in which the colour-singlet only couples to off-shell partons. To leading order in the strong coupling constant, the diffractive final state consists of a quark-antiquark pair. Higher-order events include diffractive production of quark-antiquark-gluon states. In the region where pseudo-rapidity gap cuts restrict the accessible phase space, the cuts reject low transverse momentum quark-antiquark diffractive events. Pseudo-rapidity gap data selection cuts also allow selection of an enhanced 3-jet data sample. The structure function and transverse momentum distribution data can be described by either a two-gluon model or by the Donnachie-Landshoff model, both models requiring a significant contribution from quark-antiquark-gluon diffractive final states to fit the full kinematic range of the diffractive data

  14. Super-virtual interferometric diffractions as guide stars

    KAUST Repository

    Dai, Wei

    2011-01-01

    A significant problem in seismic imaging is seismically seeing below salt structures: large velocity contrasts and the irregular geometry of the salt-sediment interface strongly defocus both the downgoing and upgoing seismic wavefields. This can result in severely defocused migration images so as to seismically render some subsalt reserves invisible. The potential cure is a good estimate of the subsalt and salt velocity distributions, but that is also the problem: severe velocity contrasts prevent the appearance of coherent subsalt reflections in the surface records so that MVA or tomographic methods can become ineffective. We now present an interferometric method for extracting the diffraction signals that emanate from diffractors, also denoted as seismic guide stars. The signal-to-noise ratio of these interferometric diffractions is enhanced by N, where N is the number of source points coincident with the receiver points. Thus, diffractions from subsalt guide stars can then be rendered visible and so can be used for velocity analysis, migration, and focusing of subsalt reflections. Both synthetic and field data records are used to demonstrate the benefits and limitations of this method. © 2011 Society of Exploration Geophysicists.

  15. Diffraction and low-$Q^{2}$ physics including two-photon physics

    CERN Document Server

    Erdmann, M

    1999-01-01

    Recent experimental results on the partonic structure of the photon and on the color singlet exchange in strong interaction processes are reviewed. At the LEP e/sup +/e/sup -/ and HERA ep colliders, complementary and consistent measurements have been achieved on the quark-gluon structure of quasi-real and virtual photons. At the HERA ep and Tevatron pp colliders, the quark-gluon configurations of the diffractive exchange is consistently found to have a large gluon component. The rate of diffractive interactions observed by the HERA and Tevatron experiments, however, is largely different and challenges explanation. (74 refs).

  16. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  17. Neutron Diffraction Investigation of MnAs under High Pressure

    DEFF Research Database (Denmark)

    Andresen, A.F; Fjellvag, H; Lebech, Bente

    1984-01-01

    Powdered MnAs has been investigated by neutron diffraction in a pressure cryostat, at hydrostatic pressures up to 13 kbar and temperatures down to 4.2 K. It has been found that in the orthorhombic MnP type structure, which under pressure is retained at low temperature, a spiral magnetic structure...

  18. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    Science.gov (United States)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  19. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  20. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    Science.gov (United States)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  1. Intermediate-range order in mesoporous silicas investigated by a high-energy X-ray diffraction technique

    International Nuclear Information System (INIS)

    Wakihara, Toru; Fan, Wei; Ogura, Masaru; Okubo, Tatsuya; Kohara, Shinji; Sankar, Gopinathan

    2008-01-01

    We perform a high-energy X-ray diffraction study comparing bulk amorphous silica with MCM-41 and SBA-15 that are representative mesoporous silicas prepared in basic and acidic conditions, respectively. It is revealed that mesoporous silicas, especially SBA-15, have less ordered structures and contain larger fractions of three- and four-membered rings than does bulk amorphous silica. (author)

  2. Remarks on diffractive production of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Peschanski, R. [CEA Saclay, Service de Physique Theorique, URA 2306, Unite de Recherche Associee au CNRS, 91 - Gif-sur-Yvette (France)

    2005-07-01

    Central diffractive production of the Higgs boson has recently received much attention as a potentially interesting production mode at the LHC (large hadron collider). While the standard production of Higgs boson via gluon-gluon fusion can reach high cross-sections, the study of the Higgs boson will be uneasy due to accompanying particles and background. The original guiding line for central diffractive production is to compensate the weak cross-sections by a cleaner signal, and precise production kinematics thanks to the tagging of diffracted protons. We shall review some of the wishes and realities encountered in this field. Theoretical open problems of diffractive dynamics are involved in making accurate predictions for the LHC, among which the most crucial is understanding factorization breaking in hard diffraction.

  3. High-pressure X-ray diffraction of L-ALANINE crystal

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Souza, A.G.

    2006-01-01

    L-ALANINE has been studied by X-ray diffraction at ambient temperature and pressure up to 10.3 GPa. The material is found to transform to a tetragonal structure between 2 and 3 GPa. and to a monoclinic structure between 8 and 10 GPa. The experimental bulk modulus is 25(5) GPa for the orthorhombic...

  4. Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2014-01-01

    -diffraction of the incident light, here being strongly sensitive to the medium position with respect to the focus. This technique, based on the complex spatial structure of both the incident and the diffracted fields, can be employed for the detection and measurement of weak non-linearities....

  5. Diffractive interactions

    International Nuclear Information System (INIS)

    Del Duca, V.; Marage, P.

    1996-08-01

    The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)

  6. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  7. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  8. Single Hit Energy-resolved Laue Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Comley, Andrew J.; Foster, John M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  9. Single Hit Energy-resolved Laue Diffraction

    International Nuclear Information System (INIS)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-01-01

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation

  10. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  11. High-pressure X-ray diffraction studies on ThS up to 40 GPa using synchrotron radiation

    International Nuclear Information System (INIS)

    Benedict, U.; Spirlet, J.C.; Gerward, L.; Olsen, J.S.

    1983-12-01

    High-pressure X-ray diffraction studies have been performed on ThS up to 40 GPa using synchrotron radiation and a diamond anvil cell. The measured value of the bulk modulus B 0 =145 GPa is in disagreement with a previous measurement. The high-pressure behaviour indicates a phase transformation to ThS II starting at 15 to 20 GPa. The transformation is of second order nature, the resulting structure can be described as distorted fcc. (orig.)

  12. High pressure X-ray diffraction studies on ThS up to 40 GPa using synchrotron radiation

    International Nuclear Information System (INIS)

    Benedict, U.; Spirlet, J.C.; Gerward, L.; Olsen, J.S.

    1984-01-01

    High pressure X-ray diffraction studies (up to 40 GPa) were performed on ThS using synchrotron radiation and a diamond anvil cell. The measured value of 145 GPa for the bulk modulus B 0 disagrees with a previous measurement. The high pressure behaviour indicates a phase transformation to ThS II starting at 15 - 20 GPa. The transformation is of the second-order type, and the resulting structure can be described as distorted f.c.c. (Auth.)

  13. Paraxial diffractive elements for space-variant linear transforms

    Science.gov (United States)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  14. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  15. On X-ray diffraction study of microstructure of ZnO thin nanocrystalline films with strong preferred grain orientation

    Czech Academy of Sciences Publication Activity Database

    Kužel, R.; Čížek, J.; Novotný, Michal

    44A, č. 1 (2013), s. 45-57 ISSN 1073-5623 R&D Projects: GA ČR(CZ) GAP108/11/0958 Institutional support: RVO:68378271 Keywords : zinc oxide thin film * X-ray diffraction * Mg0 * fused silica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.730, year: 2013

  16. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-15

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.

  17. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  18. Competing orbital ordering in RVO3 compounds: High-resolution x-ray diffraction and thermal expansion

    International Nuclear Information System (INIS)

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-01-01

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO 3 compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO 6 octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains

  19. New Forward and Diffractive Physics at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Alberto, E-mail: alberto.santoro@cern.ch [Departamento de Fisica Nuclear e Altas Energias Instituto de Fisica Universidade do Estado do Rio de Janeiro Rua Sao Francisco Xavier, 524 - Maracana 20559-900 - Rio de Janeiro - RJ (Brazil)

    2011-04-01

    Forward and Diffractive Physics (FWP) in LHC is a new open window to understand this type of strong interactions. We will present a didactic description of the topics being developed at CMS. As we know there still is no new results to present for FWP. We are accumulating data to have soon new results. We will show a number of topics and the detectors properties to do the observation of several topologies. We expect to give an optimistic view of the area.

  20. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  1. Diffraction model of a step-out transition

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.; Zimmermann, F.

    1996-06-01

    The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.

  2. Towards automated diffraction tomography: Part I-Data acquisition

    International Nuclear Information System (INIS)

    Kolb, U.; Gorelik, T.; Kuebel, C.; Otten, M.T.; Hubert, D.

    2007-01-01

    The ultimate aim of electron diffraction data collection for structure analysis is to sample the reciprocal space as accurately as possible to obtain a high-quality data set for crystal structure determination. Besides a more precise lattice parameter determination, fine sampling is expected to deliver superior data on reflection intensities, which is crucial for subsequent structure analysis. Traditionally, three-dimensional (3D) diffraction data are collected by manually tilting a crystal around a selected crystallographic axis and recording a set of diffraction patterns (a tilt series) at various crystallographic zones. In a second step, diffraction data from these zones are combined into a 3D data set and analyzed to yield the desired structure information. Data collection can also be performed automatically, with the recent advances in tomography acquisition providing a suitable basis. An experimental software module has been developed for the Tecnai microscope for such an automated diffraction pattern collection while tilting around the goniometer axis. The module combines STEM imaging with diffraction pattern acquisition in nanodiffraction mode. It allows automated recording of diffraction tilt series from nanoparticles with a size down to 5 nm

  3. Diffraction by an immersed elastic wedge

    CERN Document Server

    Croisille, Jean-Pierre

    1999-01-01

    This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.

  4. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  5. Bragg diffraction of fermions at optical potentials; Braggbeugung von Fermionen an optischen Potentialen

    Energy Technology Data Exchange (ETDEWEB)

    Deh, Benjamin

    2008-10-27

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a {sup 6}Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 {mu}s. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  6. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    Science.gov (United States)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  7. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    Science.gov (United States)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  8. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  9. High-Pressure and High-Temperature in situ X-Ray Diffraction Study of FeP2 up to 70 GPa

    International Nuclear Information System (INIS)

    Gu Ting-Ting; Wu Xiang; Qin Shan; Liu Jing; Li Yan-Chun; Zhang Yu-Feng

    2012-01-01

    The high-pressure and high-temperature structural behavior of FeP 2 is investigated by means of synchrotron x-ray powder diffraction combined with a laser heating technique up to 70 GPa and at least 1800 K. No phase transition of FeP 2 occurs up to 68 GPa at room temperature. While a new phase of FeP 2 assigned to the CuAl 2 -type structure (I4/mcm, Z = 4) is observed at 70 GPa after laser-heating. This new phase presents a quenchable property on decompression to ambient conditions. Our results update previous experimental data and are consistent with theoretical studies. (condensed matter: structure, mechanical and thermal properties)

  10. Restoration of diffracted far field at the output of circular diffraction waveplate

    International Nuclear Information System (INIS)

    Hovhannisyan, D; Margaryan, H; Abrahamyan, V; Hakobyan, N; Tabiryan, N

    2014-01-01

    The light propagation in an anisotropic periodic media, such us circular diffraction waveplate (CDW) by a finite-difference time-domain (FDTD) technique is studied. The FDTD numerical simulation and the subsequent Fourier transform of the diffracted electric near field was been used for study of ability of CDW to diffract a laser beam and simultaneously convert polarization state. The FDTD simulation results used to restore the diffracted electric far field at the CDW output. an abstract

  11. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  12. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  13. Coherent and noncoherent double diffractive production of QQ-bar pairs in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1999-01-01

    The coherent and noncoherent double diffractive production of heavy quark-antiquark pairs in ion scattering at the LHC energies has been considered. The total and differential cross sections for such processes featuring the production of cc-bar and bb-bar quark pairs in pp, CaCa, and PbPb collisions have been estimated. It has been shown that the fraction of heavy quark-antiquark pairs produced in double diffractive scattering amounts to a few percent of the number of QQ-bar pairs produced in hard QCD scattering; therefore, it is necessary to take into account such processes in detecting heavy quarks, in seeking Higgs bosons of intermediate mass, in investigating the suppression of heavy quarkonia in quark-gluon plasma, and so on. It has been demonstrated that the cross section for coherent scattering is so large that this process can be used to study collective effects in nuclei at high energies. Large values of the quark-antiquark invariant mass, M QQ-bar > or approx. 100 GeV, in association with a large rapidity gap between diffractive jets, Δη>5, exemplify manifestations of such nuclear interactions

  14. Boundary diffraction wave integrals for diffraction modeling of external occulters

    OpenAIRE

    Cady, E.

    2012-01-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...

  15. Six-six (6-6) cell used in X-ray and neutron diffraction experiments under high pressure

    International Nuclear Information System (INIS)

    Nishiyama, Norimasa; Yamada, Akihiro

    2015-01-01

    At synchrotron radiation facilities and neutron experimental facilities, X-ray diffraction experiments and neutron diffraction experiments under high-pressure for large-capacity of samples are conducted using DIA type device and 6-axis pressure device that add pressure on cubic space. As the anvil assembly capable of mounting on the above two devices, MA6-6 cell has come to be used. This paper introduces the advantages of using MA6-6 cell, pressure region where experiment is possible with MA6-6 cell, and large-capacity high-pressure press beamline P61.2 that simulates MA-6-6 cell. At MA6-6 cell, 6 pieces of the first-stage anvils of DIA type device or 6-axis pressure device pressurize 6 pieces of the second-stage anvils. These second-stage anvils are included in MA6-6 anvil assembly. The greatest feature of MA6-6 cell is the adoption of the frame for taking alignment of the second stage anvils. By combining MA6-6 cell with DIA-type device or 6-axis pressure device, the degree of freedom of experiment increases, which can simplify the experimental setup. (A.O.)

  16. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  17. NIST/Sandia/ICDD Electron Diffraction Database: A Database for Phase Identification by Electron Diffraction.

    Science.gov (United States)

    Carr, M J; Chambers, W F; Melgaard, D; Himes, V L; Stalick, J K; Mighell, A D

    1989-01-01

    A new database containing crystallographic and chemical information designed especially for application to electron diffraction search/match and related problems has been developed. The new database was derived from two well-established x-ray diffraction databases, the JCPDS Powder Diffraction File and NBS CRYSTAL DATA, and incorporates 2 years of experience with an earlier version. It contains 71,142 entries, with space group and unit cell data for 59,612 of those. Unit cell and space group information were used, where available, to calculate patterns consisting of all allowed reflections with d -spacings greater than 0.8 A for ~ 59,000 of the entries. Calculated patterns are used in the database in preference to experimental x-ray data when both are available, since experimental x-ray data sometimes omits high d -spacing data which falls at low diffraction angles. Intensity data are not given when calculated spacings are used. A search scheme using chemistry and r -spacing (reciprocal d -spacing) has been developed. Other potentially searchable data in this new database include space group, Pearson symbol, unit cell edge lengths, reduced cell edge length, and reduced cell volume. Compound and/or mineral names, formulas, and journal references are included in the output, as well as pointers to corresponding entries in NBS CRYSTAL DATA and the Powder Diffraction File where more complete information may be obtained. Atom positions are not given. Rudimentary search software has been written to implement a chemistry and r -spacing bit map search. With typical data, a full search through ~ 71,000 compounds takes 10~20 seconds on a PDP 11/23-RL02 system.

  18. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  19. Drell-Yan diffraction: breakdown of QCD factorization

    International Nuclear Information System (INIS)

    Pasechnik, R.S.; Kopeliovich, B.Z.

    2011-01-01

    We consider the diffractive Drell-Yan process in proton-(anti)proton collisions at high energies in the color dipole approach. The calculations are performed at forward rapidities of the leptonic pair. The effect of eikonalization of the universal ''bare'' dipole-target elastic amplitude in the saturation regime takes into account the principal part of the gap survival probability. We present predictions for the total and differential cross sections of the single-diffractive lepton-pair production at RHIC and LHC energies. We analyze implications of the QCD factorization breakdown in the diffractive Drell-Yan process, which is caused by a specific interplay of the soft and hard interactions, resulting in rather unusual properties of the corresponding observables. (orig.)

  20. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  1. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  2. Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC

    International Nuclear Information System (INIS)

    Dudley, Michael; Huang Xianrong; Vetter, William M

    2003-01-01

    A short review is presented of the various synchrotron white beam x-ray topography (SWBXT) imaging techniques developed for characterization of silicon carbide (SiC) crystals and thin films. These techniques, including back-reflection topography, reticulography, transmission topography, and a set of section topography techniques, are demonstrated to be particularly powerful for imaging hollow-core screw dislocations (micropipes) and closed-core threading screw dislocations, as well as other defects, in SiC. The geometrical diffraction mechanism commonly underlying these imaging processes is emphasized for understanding the nature and origins of these defects. Also introduced is the application of SWBXT combined with high-resolution x-ray diffraction techniques to complete characterization of 3C/4H or 3C/6H SiC heterostructures, including polytype identification, 3C variant mapping, and accurate lattice mismatch measurements

  3. Diffraction at TOTEM

    OpenAIRE

    Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.

    2008-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral...

  4. Illicit drug detection using energy dispersive x-ray diffraction

    Science.gov (United States)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  5. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  6. Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, V.; Begzsuren, K.; Belousov, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R.C.W.; Herbst, M.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2015-03-18

    A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4diffractive parton distribution functions and the value of the strong coupling constant is extracted.

  7. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    International Nuclear Information System (INIS)

    Shaginyan, V. R.

    2011-01-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  8. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  9. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    Science.gov (United States)

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  10. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  11. Enhancement of diffraction efficiency of laminar-type diffraction gratings overcoated with diamond-like carbon (DLC) in soft x-ray region

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Masato, E-mail: koike.masato@jaea.go.jp; Imazono, Takashi [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 Japan (Japan); Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi [Device Dept., Shimadzu Corp., 1Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 Japan (Japan); Terauchi, Masami [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan (Japan); Takahashi, Hideyuki [Science Equipment Sales Dept., JEOL Ltd., 2-1-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004 Japan (Japan); Notoya, Satoshi; Murano, Takanori [SA Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 Japan (Japan)

    2016-07-27

    Boron is the critical trace element in the production of high quality steel, creating a great demand for an efficient detection method of the B-K emission band at around 6.76 nm. To meet this demand we made a simulation study and obtained a practical method to improve the diffraction efficiency of metal-coated laminar-type gratings for a grazing incidence flat-field spectrograph by overcoating a sufficiently transparent high-density material. In the simulation the diffraction efficiency in a spectral region of 3.5-8.5 nm was computed for several combinations of overcoating materials and coating metals, with various thicknesses of the overcoating layer. The result obtained are: (1) the best overcoating material is high-density diamond-like carbon (DLC) having a density of 3.1 g/cm{sup 3}, (2) its optimum thickness is 24 nm at an angle of incidence of 87.0°, and (3) with this thickness the first-order diffraction efficiency is expected to reach 29.7 %, which well exceeds 15.6 % for Ni-coated (or 14.1 % for Au-coated) grating.

  12. A theoretical approach to low multiplicity diffractive dissociation

    International Nuclear Information System (INIS)

    Bishari, M.

    1977-01-01

    The dynamics of low mass inelastic diffractive production in the framework of the ''1/N dual unitarization'' scheme are investigated. The smallness of inelastic diffractive dissociation is explicitly demonstrated by incorporating a Deck type mechanism with the crucial planar bootstrap equation. Although both inelastic and elastic pomeron couplings are of the same order in 1/N, the origin for their smallness is not identical. The work further confirms the validity of the iterative procedure, where the elastic amplitude is first generated from only non-diffractive intermediate states (except possibly for central collisions). Using a previous study of the ''Cylinder'' strength, a semi-quantitative results for the integrated cross-section for low multiplicity diffractive production is also presented, and is compared with the elastic cross-section at very high energies. (author)

  13. Report from the neutron diffraction work group

    International Nuclear Information System (INIS)

    1978-08-01

    This progress report of the neutron diffraction group at the Hahn Meitner Institute in Berlin comprises the following contributions: Three-dimensional critical properties of CsNiF 3 around the Neel point; Spin waves in CsNiF 3 with an applied magnetic field; Solitons in CsNiF 3 : Their experimental evidence and their thermodynamics; Neutron diffraction study of DAG at very low temperatures and in external magnetic field; Neutron diffraction investigation of tricritical behaviour in DyPO 4 ; Crystalline modifications and structural phase transitions of NaOH; Gitterdynamik von Cerhydrid; Investigation of the ferroelectric-ferroelastic phase transition in KH 2 PO 4 and RbH 2 PO 4 by means of γ-ray diffractometry; A γ-ray diffractometer for systematic measurements of absolute structure factors; Electron density in pyrite by combined γ-ray and neutron diffraction measurements: Thermal parameters from short wavelength neutron data; Accurate determination of temperature parameters from neutron diffraction data: Direct observation of the thermal diffuse scattering from silicon using perfect crystals; A Compton spectrometer for momentum density studies using 412 keV γ-radiation; Investigation of the electronic structure of Niobiumhydrides by means of gamma-ray Compton scattering; Interpretation of Compton profile data in position space; High resolution neutron scattering measurements on single crystals using a horizontally bent monochromator and a multidetecter; Statistical analysis of neutron diffraction studies of proteins. (orig.) [de

  14. Diffraction at TOTEM

    OpenAIRE

    Giani, S; Niewiadomski, H; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage...

  15. Sample cell for in-field X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Viktor Höglin

    2015-01-01

    Full Text Available A sample cell making it possible to perform synchrotron radiation X-ray powder diffraction experiments in a magnetic field of 0.35 T has been constructed. The device is an add-on to an existing sample cell and contains a strong permanent magnet of NdFeB-type. Experiments have shown that the setup is working satisfactory making it possible to perform in-field measurements.

  16. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  17. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    International Nuclear Information System (INIS)

    Salek, David

    2011-05-01

    A measurement of the longitudinal diffractive structure function F L D using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep→eXY at centre of mass energies √(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at √(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at √(s) of 301 GeV complete the kinematic coverage needed to extract F L D in the range of photon virtualities 2.5 2 2 and fractional proton longitudinal momentum loss 10 -4 P -2 . The measured F L D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q 2 >7 GeV 2 and compared to the analogous quantity for inclusive DIS. (orig.)

  18. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  19. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  20. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  1. Diffractive bremsstrahlung at high-β{sup *} LHC. Case study

    Energy Technology Data Exchange (ETDEWEB)

    Chwastowski, Janusz J.; Czekierda, Sabina; Staszewski, Rafal; Trzebinski, Maciej [The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland)

    2017-04-15

    Feasibility studies of the measurement of the exclusive diffractive bremsstrahlung cross-section in proton-proton scattering at the centre of mass energy of 13 TeV at the LHC are reported. Present studies were performed for the low luminosity LHC running with the betatron function value of 90 m using the ATLAS associated forward detectors ALFA and ZDC. A simplified approach to the event simulation and reconstruction is used. The background influence is also discussed. (orig.)

  2. Quasi-Bragg diffraction of atoms

    NARCIS (Netherlands)

    Domen, K.F.E.M.; Jansen, M.A.H.M.; Leeuwen, van K.A.H.

    2006-01-01

    We report on a novel atomic beamsplitter. It combines the advantages of Bragg scattering (transfer possible into a single, very high diffraction order due to adiabatic conservation of ‘transverse kinetic energy’) with the convenience of tuning the splitting angle simply by adjusting a magnetic

  3. Magnetic neutron diffraction of MnO thin films

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Mannix, D.; Bernhoeft, N.; Hiess, A.; Ranno, L.; Givord, D.

    1999-01-01

    We report on magnetic neutron diffraction carried out on various epitaxial MnO(III) thin films grown on sapphire and MgO substrates. In all samples, of masses between 5 and 50 μg, magnetic Bragg peaks have been observed. The films exhibit what appears to be continuous phase-transitions in contrast to the strongly discontinuous transition exhibited by bulk samples. In addition, the Neel temperature of films prepared on sapphire substrates is strongly enhanced above that of the bulk whilst that of the film grown on MgO is depressed. The possibility to measure magnetic excitations in such thin film systems is discussed in the light of promising test results obtained from an inelastic magnetic neutron scattering experiment on the IN8 spectrometer. (authors)

  4. X-ray diffraction study of WO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, P. [ESRF, Grenoble (France); Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France); Crichton, W.A. [ESRF, Grenoble (France); Boulova, M. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France); Chemistry Department, Moscow State University, Moscow (Russian Federation); Lucazeau, G. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France)

    2002-07-08

    The high-pressure behaviour of microcrystalline tungsten oxide (WO{sub 3}) has been investigated with angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to 40 GPa at room temperature. Up to 21 GPa, the pressure dependence of the volume of the monoclinic high-pressure (P2{sub 1}/c) phase is described by a third-order Birch-Murnaghan equation of state with parameters V{sub 0}=210.9(7)A{sup 3}, K{sub T}=27(2)GP a and K'=9.4(5). At 24 GPa, a first-order phase transition occurs with an approximate {delta} V of 7.4% to a monoclinic P2{sub 1}/a unit cell with a=6.1669(8)A, b=4.5758(6)A, c=5.3159(6)A, {beta}=101.440(9) deg. A second transition is observed at pressures higher than 31 GPa with an approximate {delta} V of 12% to a phase described by a third monoclinic unit cell, with a=10.3633(22)A, b=3.9065(8)A, c=9.3459(18)A and {beta}=98.539(14) deg. (author)

  5. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  6. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  7. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals.

    Science.gov (United States)

    Awel, Salah; Kirian, Richard A; Wiedorn, Max O; Beyerlein, Kenneth R; Roth, Nils; Horke, Daniel A; Oberthür, Dominik; Knoska, Juraj; Mariani, Valerio; Morgan, Andrew; Adriano, Luigi; Tolstikova, Alexandra; Xavier, P Lourdu; Yefanov, Oleksandr; Aquila, Andrew; Barty, Anton; Roy-Chowdhury, Shatabdi; Hunter, Mark S; James, Daniel; Robinson, Joseph S; Weierstall, Uwe; Rode, Andrei V; Bajt, Saša; Küpper, Jochen; Chapman, Henry N

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  8. High resolution electron microscopy and electron diffraction of YBa2Cu3O(7-x)

    International Nuclear Information System (INIS)

    Krakow, W.; Shaw, T.M.

    1988-01-01

    Experimental high resolution electron micrographs and computer simulation experiments have been used to evaluate the visibility of the atomic constituents of YBa 2 Cu 3 O(7-x). In practice, the detection of oxygen has not been possible in contradiction to that predicted by modelling of perfect crystalline material. Preliminary computer experiments of the electron diffraction patterns when oxygen vacancies are introduced on the Cu-O sheets separating Ba layers show the diffuse streaks characteristic of short range ordering. 7 references

  9. Effects of diffraction and target finite size on coherent transition radiation spectra in bunch length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M.; Cianchi, A.; Verzilov, V.A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Orlandi, G. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)]|[Rome Univ., Tor Vergata, Rome (Italy)

    1999-07-01

    Effects of diffraction and the size of the target on TR in the context of CTR-based bunch length measurements are studied on the basis of Kirchhoff diffraction theory. Spectra of TR from the finite-size target for several schemes of measurements are calculated in the far-infrared region showing strong distortion at low frequencies. Influence of the effect on the accuracy of bunch length measurements is estimated.

  10. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  11. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water

    International Nuclear Information System (INIS)

    Eggert, Jon H.; Weck, Gunnar; Loubeyre, Paul; Mezouar, Mohamed

    2002-01-01

    We report quantitatively accurate high-pressure, structure-factor measurements of fluids in diamond anvil cells (DAC's) using x-ray diffraction. In the analysis of our diffraction data, we found it possible (and necessary) to determine the density directly. Thus, we also present a diffraction-based determination of the equation of state for fluid water. The analysis of these measurements is difficult since the diamond anvils are many times as thick as the sample and excessive care must be taken in the background subtraction. Due to the novel nature of the experiment and the complexity of the analysis, this paper is concerned primarily with a careful exposition of our analytical methods. Our analysis is applicable to both atomic and molecular fluids and glasses, and we present results for the structure factor and density of two relatively low-Z liquids: argon and water. In order to validate our methods we present an extensive comparison of our measurements on water at P≅0 in a DAC to recent state-of-the-art x-ray and neutron diffraction experiments and to first-principles simulations at ambient conditions

  12. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  13. In-situ high-energy X-ray diffraction and batch Rietveld refinement of phase changes in titanium aluminides

    International Nuclear Information System (INIS)

    Whitfield, R.

    2007-01-01

    Full text: We have used the Rietveld refinement method for the analysis of high-energy X-ray power diffraction for quantitatve phase analysis. This method has the advantage of being able to model the multiple phases appearing in the diffraction pattern and tell us about the composition of the phases of a sample as we change the temperature. It has been applied to various TiAl compounds allowing us to follow in detail the phase transitions of the intermetallics when heated to around 1400 0 Cand subsequently cooled. Small amounts of additives like V, Cr and Gd as well as signatures from different production processes can be seen to have an effect on the phase transitions. With increasing temperature we can see the evolution of the unit cell due to thermal expansion, chemical segregation and the relative proportion of phase changes

  14. Angle-resolved diffraction grating biosensor based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Changwu; Li, Peng [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China); Jia, Zhenhong, E-mail: jzhh@xju.edu.cn; Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi [College of Information Science and Engineering, Xinjiang University, Urumqi 830046 (China)

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  15. Measurements of transient electron density distributions by femtosecond X-ray diffraction; Messungen transienter Elektronendichteverteilungen durch Femtosekunden-Roentgenbeugung

    Energy Technology Data Exchange (ETDEWEB)

    Freyer, Benjamin

    2013-05-02

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  16. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  17. Three-dimensional visualization of a human chromosome using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Ishikawa, Tetsuya; Takahashi, Yukio; Imamoto, Naoko; Maeshima, Kazuhiro

    2010-01-01

    We succeeded in observing a human chromosome in two- and three-dimensions using x-ray diffraction microscopy. X-ray diffraction microscopy is a lens-less imaging technique utilizing coherent x-ray diffraction, and can overcome various limitations in conventional lens-based x-ray microscopy. Biological applications of the method have been limited to 2D observation, and 3D observation has been long waited. We found that the reconstructed chromosome images contain high-density axial structure, which has not been observed under unstained or unlabeled conditions. The result experimentally demonstrates the effectiveness of x-ray diffraction microscopy in observing internal structures of unstained biological samples with high image contrast. (author)

  18. Review of high energy diffraction in real and virtual photon proton scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.

    2009-07-15

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at center-of-mass energies W up to 250 GeV and for large negative mass squared -Q{sup 2} of the virtual photon up to Q{sup 2}=1600 GeV{sup 2}. At W = 220 GeV and Q{sup 2}=4 GeV{sup 2}, diffraction accounts for about 15% of the total virtual photon proton cross section decreasing to {approx}5% at Q{sup 2}=200 GeV{sup 2}. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented. (orig.)

  19. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  20. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  1. Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution

    International Nuclear Information System (INIS)

    Muto, S.; Tatsumi, K.; Rusz, J.

    2013-01-01

    We present a parameter-free method of extraction of the electron magnetic circular dichroism spectra from energy-filtered diffraction patterns measured on a crystalline specimen. The method is based on a multivariate curve resolution technique. The main advantage of the proposed method is that it allows extraction of the magnetic signal regardless of the symmetry and orientation of the crystal, as long as there is a sufficiently strong magnetic component of the signal in the diffraction plane. This method essentially overcomes difficulties in extraction of the EMCD signal caused by complexity of dynamical diffraction effects. - Highlights: ► New method of extraction of EMCD signal using statistical methods (multivariate curve resolution). ► EMCD can be extracted quantitatively regardless of symmetry of crystal or its orientation. ► First principles simulation of EFDIF datacube, including dynamical diffraction effects

  2. High pressure behaviour of TbN: an X-ray diffraction and computational study

    DEFF Research Database (Denmark)

    Jakobsen, J.M.; Madsen, G.K.H.; Jorgensen, J.E.

    2002-01-01

    In the present work, we report an X-ray powder diffraction study of TbN up to an applied hydrostatic pressure of 43 GPa. TbN was found to be stable in the 131 (NaCl structure) within the examined pressure interval, and the zero pressure bulk modulus was determined to be 176(7) GPa. The electronic...... is greatly improved by introducing an orbital dependent U term into the energy-functional. The 4f electrons in TbN-B1 are atomic like and highly correlated, and ferro-magnetic TbN-B1 is found to be a magnetic half-metal. Calculations find the spindown f-electrons in a hypothetical TbN-B2 (CsCl) structure...

  3. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  4. On the determination of double diffraction dissociation cross section at HERA

    International Nuclear Information System (INIS)

    Holtmann, H.; Nikolaev, N.N.; Speth, J.; Zakharov, B.G.

    1996-01-01

    The excitation of the proton into undetected multiparticle states (double diffraction dissociation) is an important background to single diffractive deep-inelastic processes ep→e'p'ρ 0 , e'p'J/Ψ, e'p'X at HERA. We present estimates of the admixture of the double diffraction dissociation events in all diffractive events. We find that in the J/Ψ photoproduction, electroproduction of the ρ 0 at large Q 2 and diffraction dissociation of real and virtual photons into high mass states X the contamination of the double diffraction dissociation can be as large as ∼30%, thus affecting substantially the experimental tests of the pomeron exchange in deep inelastic scattering at HERA. We discuss a possibility of tagging the double diffraction dissociation by neutrons observed in the forward neutron calorimeter. We present evaluations of the spectra of neutrons and efficiency of neutron tagging based on the experimental data for diffractive processes in the proton-proton collisions. (orig.)

  5. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  6. Workshop on industrial application of neutron diffraction. Stress measurement by neutron diffraction

    CERN Document Server

    Minakawa, N; Morii, Y; Oyama, Y

    2002-01-01

    This workshop was planned to make use of the neutron from the reactor and the pulse neutron source JSNS for the industrial world. Especially, this workshop focused on the stress measurement by the neutron diffraction and it was held on the Tokai JAERI from October 15 to 16, 2001. The participant total was 93 and 40 participated from the industrial world. The introduction of the residual stress development of measurement technique by the neutron diffraction method and a research of the measurement of the residual stress such as the nuclear reactor material, the ordinary structure material, the composite material, the quenching steel, the high strength material were presented and discussed in this workshop. Moreover, it was introduced for the industrial world that an internal stress measurement is important for development of new product or an improvement of a manufacturing process. The question from the industrial world about which can be measured the product form, the size, the measurement precision, the reso...

  7. X-ray diffraction patterns in high-energy proton implanted silicon

    International Nuclear Information System (INIS)

    Wieteska, K.; Dluzewska, K.D.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    Silicon crystals implanted with 1 and 1.6 MeV protons were studied by means of conventional source double-crystal and synchrotron multi-crystal arrangements. Both the rocking curves and series of topographs were recorded in different parallel settings employing different reflections and wavelengths of radiation. A comparison of rocking curves in different regions of implanted areas was performed in synchrotron multi-crystal arrangement with a beam of a very small diameter. The rocking curves exhibited subsidiary interference maxima with increasing periodicity on the low angle side. The plane wave topographs taken at different angular setting revealed characteristic fringes whose number decreased with increasing distance from the main maximum. The fringe pattern did not depend on the direction of the diffraction vector. The number of fringes for equivalent angular distance from the maximum was larger for higher order of reflection. The shape of the rocking curve and other diffraction patterns were reasonably explained assuming the lattice parameter change depth distribution proportional to the profile obtained from the Biersack-Ziegler theory and lateral non-uniformity of ion dose. A good approximation of the experimental results was obtained using numerical integration of the Takagi-Taupin equations. (orig.)

  8. High resolution electron exit wave reconstruction from a diffraction pattern using Gaussian basis decomposition

    International Nuclear Information System (INIS)

    Borisenko, Konstantin B; Kirkland, Angus I

    2014-01-01

    We describe an algorithm to reconstruct the electron exit wave of a weak-phase object from single diffraction pattern. The algorithm uses analytic formulations describing the diffraction intensities through a representation of the object exit wave in a Gaussian basis. The reconstruction is achieved by solving an overdetermined system of non-linear equations using an easily parallelisable global multi-start search with Levenberg-Marquard optimisation and analytic derivatives

  9. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility.

    Science.gov (United States)

    Kumari, Shobha; Pal, Ravi Kant; Gupta, Rani; Goel, Manisha

    2017-02-01

    Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure-function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.

  10. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.

    2008-01-01

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection...

  11. Neutron diffraction experiments on ordered silver nuclei at Picokelvin temperatures

    International Nuclear Information System (INIS)

    Annila, A.J.; Hakonen, P.J.; Lounasmaa, O.V.; Nummila, K.K.; Oja, A.S.; Tuoriniemi, J.T.; Clausen, K.N.; Lindgaard, P.-A.; Siemensmeyer, K.; Steiner, M.; Weinfurter, H.; Viertioe, H.E.

    1990-08-01

    Nuclear spins in silver constitute an ideal antiferromagnetic spin - 1/2 model system in an fcc lattice. The nuclei are well localized and the interactions coupling the spins can be calculated from first principles. Strong quantum effects are expected owing to spin - 1/2. The magnetic phase diagram of the system has been investigated by several theoretical methods. In the present study the feasibility of neutron diffraction experiments on nuclear magnetic order in silver is discussed. The requirements for cryogenics and for neutron equipment are based on experience with current NMR measurements on sivler and with neutron diffraction work on copper. It is concluded that an experiment using an isotopically enriched specimen of either 107 Ag or 109 Ag is feasible but difficult. (author) 1 tab., 16 ills., 38 refs

  12. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    Science.gov (United States)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  13. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  14. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    International Nuclear Information System (INIS)

    Nihill, Kevin J.; Hund, Zachary M.; Sibener, S. J.; Muzas, Alberto; Cueto, Marcos del; Díaz, Cristina; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando

    2016-01-01

    Fundamental details concerning the interaction between H 2 and CH 3 –Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H 2 and D 2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H 2 compared to the strong RID features observed for D 2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH 3 –Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H 2 and D 2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H 2 (D 2 ) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H 2 (D 2 )/CH 3 −Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H 2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  15. High temperature X-ray diffraction studies on HfO2-Gd2O3 system

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Ananthasivan, K.; Joseph, M.

    2016-01-01

    High temperature X-ray diffraction (HTXRD) technique is an important experimental tool for measuring thermal expansion of materials of interest. A series of solid solutions containing GdO 1.5 in HfO 2 ,Hf 1-y Gd y )O 2 (y = 0.15, 0.2, 0.3, 0.41 and 0.505) were prepared by solid state method. Structural characterization and computation of lattice parameter was carried out by using room temperature X-ray diffraction measurements. The room temperature lattice parameter estimated for (Hf 1-y Gd y )O 2 (y=0.15, 0.2, 0.3, 0.41 and 0.505) are 0.51714 nm, 0.51929 nm, 0.52359nm, 0.52789nm and 0.53241 nm, respectively. Thermal expansion coefficients and percentage linear thermal expansion of the HfO 2 -Gd 2 O 3 solid solutions containing 20 and 41 mol% GdO 1.5 were determined using HTXRD in the temperature range 298 to 1673K. The mean linear thermal expansion coefficients of the solid solutions containing 20 and 41 mol. %Gd are 11.65 x 10 -6 K -1 and 12.07 x 10 -6 K -1 , respectively. (author)

  16. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  17. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  18. Image processing for grazing incidence fast atom diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Debiossac, Maxime; Roncin, Philippe, E-mail: philippe.roncin@u-psud.fr

    2016-09-01

    Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a surface sensitive technique. Compared with thermal energies helium diffraction (TEAS or HAS), GIFAD is less sensitive to thermal decoherence but also more demanding in terms of surface coherence, the mean distance between defects. Such high quality surfaces can be obtained from freshly cleaved crystals or in a molecular beam epitaxy (MBE) chamber where a GIFAD setup has been installed allowing in situ operation. Based on recent publications by Atkinson et al. (2014) and Debiossac et al. (2014), the paper describes in detail the basic steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.

  19. Scattering, diffraction and multiparticle production on hadron and nuclei at high energy

    International Nuclear Information System (INIS)

    Ter-Martirosyan, K.A.; Zoller, V.R.

    1988-01-01

    The cross sections for different types of interactions of hadronic with hadrons and nuclei at high energy are obtained in the simple form in the supercritical pomeron theory. Diffraction desintegration (DD) of hadrons both in the intermediate states, between rescatterings on pomerons, and in the final states is taken into account. With the same accuracy the cross sections δ n for production of n pomeron jets on hadrons and nuclei are also obtained. They determine the whole dynamics of the multiple particle productions, i.e. the spectra and multiplicities of produced particles, the cross sections for DD of colliding hadrons and nucleons inside the target nuclei. The numerical results for δ tot , δ el and for dδ el /dp tr 2 with the set of the pomeron and f, ω-reggeons pole parameters obtained early are presented. 19 refs.; 6 figs

  20. Coherent diffraction microscopy at SPring-8: instrumentation, data acquisition and data analysis

    International Nuclear Information System (INIS)

    Xu, Rui; Salha, Sara; Raines, Kevin S.; Jiang, Huaidong; Chen, Chien-Chun; Takahashi, Yukio; Kohmura, Yoshiki; Nishino, Yoshinori; Song, Changyong; Ishikawa, Tetsuya; Miao, Jianwei

    2011-01-01

    An instrumentation and data analysis review of coherent diffraction microscopy at SPring-8 is given. This work will be of interest to those who want to apply coherent diffraction imaging to studies of materials science and biological samples. Since the first demonstration of coherent diffraction microscopy in 1999, this lensless imaging technique has been experimentally refined by continued developments. Here, instrumentation and experimental procedures for measuring oversampled diffraction patterns from non-crystalline specimens using an undulator beamline (BL29XUL) at SPring-8 are presented. In addition, detailed post-experimental data analysis is provided that yields high-quality image reconstructions. As the acquisition of high-quality diffraction patterns is at least as important as the phase-retrieval procedure to guarantee successful image reconstructions, this work will be of interest for those who want to apply this imaging technique to materials science and biological samples

  1. Enhancing core-diffracted arrivals by supervirtual interferometry

    KAUST Repository

    Bharadwaj, P.

    2013-12-03

    A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  2. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  3. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  4. Location of adsorbed species in NO-reduction catalysts by high resolution neutron powder diffraction

    International Nuclear Information System (INIS)

    Fowkes, A.J.; Rosseinsky, M.J.

    1999-01-01

    Complete text of publication follows. Catalysts containing copper ion exchanged into zeolites are attracting considerable attention due to their efficiency for both NO decomposition and the selective catalytic reduction of NO x in so-called lean-burn conditions in automotive exhausts. This presentation will describe the application of in-situ high resolution neutron powder diffraction to study active sites in a Cu-zeolite Y catalyst active for NO decomposition. The study under NO pressure reveals the location of two distinct copper sites for sorption. The influence of copper oxidation state on the structure of both the pristine and NO-loaded zeolites will be discussed. (author)

  5. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  6. Design of mirror and monochromator crystals for a high-resolution multiwavelength anomalous diffraction beam line on a bending magnet at the ESRF

    International Nuclear Information System (INIS)

    Roth, M.; Ferrer, J.; Simon, J.; Geissler, E.

    1992-01-01

    High intensity for diffraction experiments with high-energy resolution on an intense x-ray beam, like the bending magnet beam lines at the ESRF, requires a strict control of the curvature of the optical elements placed in the beam for geometrical focusing and for wavelength monochromatization. Unwanted curvatures can come from nonuniform and variable heating of the optical elements produced by the absorption of x rays. To design the CRG/D2AM beam line described in the accompanying paper, some new techniques were developed to control these effects based on geometrical, i.e., topological, considerations. (1) Cooling of the entrance mirror: longitudinal curvature can be strongly reduced by cooling the mirror from the sides (and not from the rear) and only near the reflecting surface (i.e., not over the whole lateral surface). The cooling can be achieved for instance with an isothermal liquid Ga eutectic bath. (2) Cooling of the first single-crystal Si monochromator: because of the size of the crystal, only cooling from the rear is conceivable in this case. It can be shown by calculation that the curvature due to the front-to-rear gradient can be exactly compensated by the thermal expansion of a metallic layer at the rear of the crystal, having a larger expansion coefficient than Si

  7. High mass exclusive diffractive dijet production in ppˉ collisions at √s = 1.96 TeV

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2011-01-01

    Roč. 705, č. 3 (2011), s. 193-199 ISSN 0370-2693 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : pair production * diffraction * Batavia TEVATRON Coll * anti-p p: exclusive reaction * mass spectrum: (2jet) * DZERO * experimental results Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.955, year: 2011 http://arxiv.org/abs/arXiv:1009.2444

  8. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  9. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  10. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  11. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Salek, David

    2011-05-15

    A measurement of the longitudinal diffractive structure function F{sub L}{sup D} using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep{yields}eXY at centre of mass energies {radical}(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at {radical}(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at {radical}(s) of 301 GeV complete the kinematic coverage needed to extract F{sub L}{sup D} in the range of photon virtualities 2.5diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q{sup 2}>7 GeV{sup 2} and compared to the analogous quantity for inclusive DIS. (orig.)

  12. Neutron diffraction study of single crystalline ErCo10Mo2

    International Nuclear Information System (INIS)

    Janssen, Y.; De Boer, F.R.; Brueck, E.; Tegus, O.; Ma, L.; Buschow, K.H.J.; Reehuis, M.

    1999-01-01

    Complete text of publication follows. The ferrimagnetic intermetallic compound ErCo 10 Mo 2 (Tc = 600 K) crystallizes in the tetragonal ThMn 12 -type structure (space group 14/mmm). The Co and Mo atoms may share three crystallographic sites (8f, 8i and 8j). Earlier neutron powder diffraction experiments show that Mo has a strong preference for the 8i-site and that the magnetic ordering at low temperature is planar. Furthermore ErCo 10 Mo 2 has been reported to show one [2] or more [3] spin-reorientation transitions from planar to axial magnetic ordering. Recently we succeeded in growing a single-crystalline sample of ErCo 10 Mo 2 . Magnetic measurements in 1T show one spin-reorientation transition at about 135 K. Neutron diffraction experiments were performed to investigate a possible link between the magnetic properties and the site occupation by Mo. Our results show that our sample has the Mo atoms exclusively occupying half the 8i-sites. There is no evidence for a crystallographic superstructure. Furthermore, below 150 K some reflections strongly increase due to the growing Er magnetic moment. (author)

  13. An in situ diffraction study of a solid oxide fuel cell system

    DEFF Research Database (Denmark)

    Sörby, L.; Poulsen, F.W.; Poulsen, H.F.

    1998-01-01

    The design of a synchrotron diffraction experiment on a working SOFC air-electrode is outlined. A large number of diffraction data sets were collected successfully from LSM/YSZ/Ag cells under different polarization states at 850 degrees C. Systematic changes are observed in lattice parameters...... and FWHM's for the LSM phase when the cell is polarized. The peak positions for the YSZ electrode are unchanged throughout the entire experiment. This is the first experimental evidence that oxygen stoichiometry in LSM is strongly influenced by the electrochemical reactions which take place. The cell...... parameters increase under reducing conditions, due to a decrease in the oxygen content of the LSM. All observed changes seem to be reversible....

  14. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  15. Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2-dimensional high-energy synchrotron X-ray diffraction and wide-angle neutron diffraction patterns of hydrogenated and deuterated species

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Hanesaka, Makoto; Ohhara, Takashi; Kurihara, Kazuo; Tamada, Taro; Kuroki, Ryota; Fujiwara, Satoru; Ozeki, Tomoji; Kitano, Toshiaki; Nishu, Takashi; Tanaka, Ichiro; Niimura, Nobuo

    2007-01-01

    2-Dimensional X-ray and neutron diffraction patterns have been successfully measured for deuterated and hydrogenated polyoxymethylene (POM) samples obtained by γ-ray induced solid-state polymerization reaction. More than 700 reflections were collected from the X-ray diffraction data at -150degC by utilizing a high-energy synchrotron X-ray beam at SPring-8, Japan, from which the crystal structure of POM has been refined thoroughly including the extraction of hydrogen atomic positions at clearly seen in the difference Fourier synthesis map. As the first trial the nonuniform (9/5) helical model was analyzed with the reliability factor (R factor) 6.9%. The structural analysis was made also using the X-ray reflections of about 400 observed at room temperature (R 8.8%), and the thermal parameters of constituent atoms were compared between the low and high temperatures to discuss the librational thermal motion of the chains. The 2-dimensional neutron diffraction data, collected for the deuterated and hydrogenated POM samples using an imaging plate system specifically built-up for neutron scattering experiment, have allowed us to pick up the D and H atomic positions clearly in the Fourier synthesis maps. Another possible model, (29/16) helix, which was proposed by several researches, has been also investigated on the basis of the X-ray diffraction data at -150degC. The direct method succeeded in extracting this (29/16) model straightforwardly. The R factor was 8.6%, essentially the same as that of (9/5) helical model. This means that the comparison of the diffraction intensity between the data collected from the full-rotation X-ray diffraction pattern and the intensity calculated for both the (9/5) and (29/16) models cannot be used for the unique determination of the superiority of the model, (9/5) or (29/16) helix. However, we have found the existence of 001 and 002 reflections which give the longer repeating period 55.7 A. Besides there observed a series of meridional

  16. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...

  17. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  18. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  19. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  20. Diffractive interference optical analyzer (DiOPTER)

    Science.gov (United States)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  1. Application of in situ diffraction in high-throughput structure determination platforms.

    Science.gov (United States)

    Aller, Pierre; Sanchez-Weatherby, Juan; Foadi, James; Winter, Graeme; Lobley, Carina M C; Axford, Danny; Ashton, Alun W; Bellini, Domenico; Brandao-Neto, Jose; Culurgioni, Simone; Douangamath, Alice; Duman, Ramona; Evans, Gwyndaf; Fisher, Stuart; Flaig, Ralf; Hall, David R; Lukacik, Petra; Mazzorana, Marco; McAuley, Katherine E; Mykhaylyk, Vitaliy; Owen, Robin L; Paterson, Neil G; Romano, Pierpaolo; Sandy, James; Sorensen, Thomas; von Delft, Frank; Wagner, Armin; Warren, Anna; Williams, Mark; Stuart, David I; Walsh, Martin A

    2015-01-01

    Macromolecular crystallography (MX) is the most powerful technique available to structural biologists to visualize in atomic detail the macromolecular machinery of the cell. Since the emergence of structural genomics initiatives, significant advances have been made in all key steps of the structure determination process. In particular, third-generation synchrotron sources and the application of highly automated approaches to data acquisition and analysis at these facilities have been the major factors in the rate of increase of macromolecular structures determined annually. A plethora of tools are now available to users of synchrotron beamlines to enable rapid and efficient evaluation of samples, collection of the best data, and in favorable cases structure solution in near real time. Here, we provide a short overview of the emerging use of collecting X-ray diffraction data directly from the crystallization experiment. These in situ experiments are now routinely available to users at a number of synchrotron MX beamlines. A practical guide to the use of the method on the MX suite of beamlines at Diamond Light Source is given.

  2. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  3. Direct observation of radial distribution change during tensile deformation of metallic glass by high energy X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Toshio, E-mail: nasu@kekexafs.kj.yamagata-u.ac.j [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Sasaki, Motokatsu [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Usuki, Takeshi; Sekine, Mai [Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Takigawa, Yorinobu; Higashi, Kenji [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Harima Science Garden City, Sayo town, Hyogo 679-5198 (Japan); Sakurai, Masaki; Wei Zhang; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-08-26

    The purpose of this research is to investigate the micro-mechanism of deformation behavior of metallic glasses. We report the results of direct observations of short-range and medium-range structural change during tensile deformation of metallic glasses by high energy X-ray diffraction method. Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass samples in the ribbon shape (1.5 mm width and 25 mum) were made by using rapid quenching method. Tensile deformation added to the sample was made by using special equipment adopted for measuring the high energy X-ray diffraction. The peaks in pair distribution function g(r) for Cu{sub 50}Zr{sub 50} and N{sub 30}iZr{sub 70} metallic glasses move zigzag into front and into rear during tensile deformation. These results of direct observation on atomic distribution change for Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass ribbons during tensile deformation suggest that the micro-relaxations occur.

  4. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    Science.gov (United States)

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.

  5. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  6. High pressure in-situ X-ray diffraction study on Zn-doped magnetite nanoparticles

    Science.gov (United States)

    Ferrari, S.; Bilovol, V.; Pampillo, L. G.; Grinblat, F.; Errandonea, D.

    2018-03-01

    We have performed high pressure synchrotron X-ray powder diffraction experiments on two different samples of Zn-doped magnetite nanoparticles (formula Fe(3-x)ZnxO4; x = 0.2, 0.5). The structural behavior of then a noparticles was studied up to 13.5 GPa for x = 0.2, and up to 17.4 GPa for x = 0.5. We have found that both systems remain in the cubic spinel structure as expected for this range of applied pressures. The analysis of the unit cell volume vs. pressure results in bulk modulus values lower than in both end-members, magnetite (Fe3O4) and zinc ferrite (ZnFe2O4), suggesting that chemical disorder may favor compressibility, which is expected to improve the increase of the Neel temperature under compression.

  7. Looking for the diffractive exclusive signal in the dijet mass fraction measurement

    Czech Academy of Sciences Publication Activity Database

    Kepka, Oldřich; Royon, C.

    2008-01-01

    Roč. 39, č. 9 (2008), s. 2533-2538 ISSN 0587-4254. [ School on QCD, Low-x Physics, Saturation and Diffraction. Copanello, Calabria, 01.07.2007-14.07.2007] R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : exclusive diffractive production * diffraction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.767, year: 2008

  8. X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates

    Directory of Open Access Journals (Sweden)

    Katharina Fucke

    2010-07-01

    Full Text Available A review. Diffraction methods are a powerful tool to investigate the crystal structure of organic compounds in general and their hydrates in particular. The laboratory standard technique of single crystal X-ray diffraction gives information about the molecular conformation, packing and hydrogen bonding in the crystal structure, while powder X-ray diffraction on bulk material can trace hydration/dehydration processes and phase transitions under non-ambient conditions. Neutron diffraction is a valuable complementary technique to X-ray diffraction and gives highly accurate hydrogen atom positions due to the interaction of the radiation with the atomic nuclei. Although not yet often applied to organic hydrates, neutron single crystal and neutron powder diffraction give precise structural data on hydrogen bonding networks which will help explain why hydrates form in the first place.

  9. High-Pressure X-ray Diffraction Study of Tungsten Diselenide

    International Nuclear Information System (INIS)

    Selvi, E.; Aksoy, R.; Knudson, R.; Ma, Y.

    2008-01-01

    Synchrotron X-ray diffraction was used in conjunction with a diamond anvil cell to investigate the properties of a tungsten diselenide (WSe2) sample to 35.8 GPa at room temperature. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, of WSe2 was determined to be 72±1 GPa with its pressure derivative, K(prime) 0T , being 4.1±0.1. It was also found that the c-direction of the hexagonal structure is significantly more compressible than the a-direction. No phase transformation was clearly observed in the pressure range of our measurements.

  10. Diffraction structures in delta electron spectra emitted in heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Liao, C.; Bhalla, C.; Shingal, R.; Schmidt-Boecking, H.; Shinpaugh, J.; Wolf, W.; Wolf, H.

    1992-01-01

    We have measured doubly differential cross sections DDCS for projectiles between F and Au and find evidence for strong diffraction structure in the Binary Encounter region of the emitted electron spectra for Au(Z=79), I(Z=53) and Cu(Z=29) projectiles, however not for F projectiles in the collision energy range between 0.2 and 0.5 MeV/u. (orig.)

  11. DNA hydration studied by neutron fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  12. DNA hydration studied by neutron fiber diffraction

    International Nuclear Information System (INIS)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-01-01

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix

  13. Implementation of the CCGM approximation for surface diffraction using Wigner R-matrix theory

    International Nuclear Information System (INIS)

    Lauderdale, J.G.; McCurdy, C.W.

    1983-01-01

    The CCGM approximation for surface scattering proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)] is implemented for realistic surface interaction potentials using Wigner R-matrix theory. The resulting procedure is highly efficient computationally and is in no way limited to hard wall or purely repulsive potentials. Comparison is made with the results of close-coupling calculations of other workers which include the same diffraction channels in order to fairly evaluate the CCGM approximation which is an approximation to the coupled channels Lippman--Schwinger equation for the T matrix. The shapes of selective adsorption features, whether maxima or minima, in the scattered intensity are well represented in this approach for cases in which the surface corrugation is not too strong

  14. Application of modified analytical function for approximation and computer simulation of diffraction profile

    International Nuclear Information System (INIS)

    Marrero, S. I.; Turibus, S. N.; Assis, J. T. De; Monin, V. I.

    2011-01-01

    Data processing of the most of diffraction experiments is based on determination of diffraction line position and measurement of broadening of diffraction profile. High precision and digitalisation of these procedures can be resolved by approximation of experimental diffraction profiles by analytical functions. There are various functions for these purposes both simples, like Gauss function, but no suitable for wild range of experimental profiles and good approximating functions but complicated for practice using, like Vougt or PersonVII functions. Proposed analytical function is modified Cauchy function which uses two variable parameters allowing describing any experimental diffraction profile. In the presented paper modified function was applied for approximation of diffraction lines of steels after various physical and mechanical treatments and simulation of diffraction profiles applied for study of stress gradients and distortions of crystal structure. (Author)

  15. Improving the diffraction of apoA-IV crystals through extreme dehydration

    International Nuclear Information System (INIS)

    Deng, Xiaodi; Davidson, W. Sean; Thompson, Thomas B.

    2011-01-01

    Apolipoprotein A-IV crystals consisted of a long unit-cell edge (540 Å) with a high mosaic spread, making them intractable for X-ray diffraction analysis. Extreme dehydration in 60% PEG 3350 was utilized as a post-crystallization treatment as well a screening method to significantly sharpen the mosaic spread and increase the overall resolution of diffraction. Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64–335, is presented. ApoA-IV 64–335 crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction

  16. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    International Nuclear Information System (INIS)

    Genzel, Ch.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-01-01

    In April 2005 the materials science beamline EDDI (Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth

  17. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  18. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  19. Di-, tri-, tetranuclear clusters and polymeric cadmium compounds: Syntheses, structures and fluorescent properties with various linking fashions and high stability of orotates under the condition of strong bases

    International Nuclear Information System (INIS)

    Li Xing; Bing Yue; Zha Meiqin; Wang Dongjie; Han Lei; Cao Rong

    2011-01-01

    Assembly reactions of orotic acid (H 3 dtpc ) and CdCl 2 .2.5H 2 O or CdSO 4 .8H 2 O yielded four new cadmium compounds {[Cd(H 2 dtpc)(phen)(H 2 O) 2 ].(H 2 dtpc).4H 2 O} 2 (1: solution reaction, pH=4-5, in addition of phen), [Cd 3 (dtpc) 2 (phen) 5 ].13H 2 O (2: hydrothermal reaction, initial pH=14, final pH=7.5), [Cd(Hdtpc)(H 2 O) 3 ] 4 (3: solution reaction, initial pH=6.5, final pH=6.0), {[Cd(Hdtpc)(phen)(H 2 O)].H 2 O} n (4: hydrothermal reaction, initial pH=8; final pH=6.5), respectively. Compounds 1-4 have been characterized by IR, thermogravimetric analyses (TGA), photoluminescence analyses, single-crystal and powder X-ray diffraction (PXRD). Compound 1 is a binuclear, 2 is a trinuclear, 3 is a tetranuclear structure, and 4 possesses one-dimensional chain framework, respectively, in which the orotate ligands show seven different linking fashions in 1-4. The orotate ligands as trivalence anions are observed in the formation of orotate-compounds, in which the orotates show high stability under the extreme condition of strong basic solution, high temperature and pressure. - Graphical abstract: Assembly of orotic acid and Cd(II) salts result in four new compounds under different reaction conditions, the compounds possess strong photoluminescence emissions and high thermal stability. Highlights: → Four Cd-compounds were prepared from orotic acid under different crystallization systems. → The orotates as trivalence anions displayed high stability under extremely conditions. → The orotates displayed various connection modes in the compounds. → The strong photoluminescence emissions have been observed in the compounds.

  20. Crystallized solids characterization by X-ray diffraction

    International Nuclear Information System (INIS)

    Broll, N.

    1996-01-01

    This work deals with the crystallized solids characterization by X-ray diffraction. The powders diffraction principle is described. Then are given the different powders diffraction experimental methods. An X-ray diffraction device is essentially constituted of three parts: the X-rays source, the sample and the detector. The source is usually constituted by an X-rays tube whereas the sample can be fixed on a photographic chamber or put on a goniometer. The different photographic chambers which can be used (Debye-Scherrer, Seeman-Bohlin and Guinier) are described. The powders diffractometer the most used is a Bragg-Brentano focusing diffractometer because it allows to obtain very sharp spectral lines and an important diffracted intensity. The detectors which are the mainly used are the scintillation counters. The most important use in powders diffractometry is the identification of the different phases of a sample. The phases identification consists to compare the unknown sample spectrum at those of standard materials indexed until now. Two methods exist at present. They are explained and their limits in the phases search are given. Another use of the X-ray diffraction is the quantitative analysis. It consists to determine the concentrations of each crystal phases of a sample. The principles of these quantitative methods are given. The lattice parameters of a polycrystal material can be determined from its X-ray pattern too with a very high precision. The way to index powders patterns is given. The residual stresses of materials can also be estimated. The principle of this measured method is explained. It is at last possible to study from an X-ray pattern, the material grain orientations during the different steps of preparation and working. (O.M.). 13 refs., 19 figs., 1 tab

  1. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit, E-mail: apramani@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-08-29

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. It is observed that only ∼25% of domains undergo reorientation or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve complex mesoscale phenomena in other functional materials.

  2. Accessing the diffracted wavefield by coherent subtraction

    Science.gov (United States)

    Schwarz, Benjamin; Gajewski, Dirk

    2017-10-01

    Diffractions have unique properties which are still rarely exploited in common practice. Aside from containing subwavelength information on the scattering geometry or indicating small-scale structural complexity, they provide superior illumination compared to reflections. While diffraction occurs arguably on all scales and in most realistic media, the respective signatures typically have low amplitudes and are likely to be masked by more prominent wavefield components. It has been widely observed that automated stacking acts as a directional filter favouring the most coherent arrivals. In contrast to other works, which commonly aim at steering the summation operator towards fainter contributions, we utilize this directional selection to coherently approximate the most dominant arrivals and subtract them from the data. Supported by additional filter functions which can be derived from wave front attributes gained during the stacking procedure, this strategy allows for a fully data-driven recovery of faint diffractions and makes them accessible for further processing. A complex single-channel field data example recorded in the Aegean sea near Santorini illustrates that the diffracted background wavefield is surprisingly rich and despite the absence of a high channel count can still be detected and characterized, suggesting a variety of applications in industry and academia.

  3. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  4. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  5. Evaluation of material properties of SiC particle reinforced aluminum alloy composite using neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Akiniwa, Yoshiaki; Machiya, Shutaro; Kimura, Hidehiko; Tanaka, Keisuke; Minakawa, Nobuaki; Morii, Yukio; Kamiyama, Takashi

    2006-01-01

    The phase stresses under loading in a monolithic aluminum alloy and an aluminum alloy reinforced with silicon carbide particles were measured by the neutron diffraction method. Under uniaxial loading, the longitudinal and transverse strains in each constituent phase were measured. The diffraction elastic constants for each diffraction plane were investigated as a function of the diffraction intensity by TOF. Single peak analysis was carried out for each diffraction profile. The measured results were compared with the theoretical micromechanical models such as the self-consistent and Mori-Tanaka method using the Eshelby theory (MTE). The accuracy of the elastic constant strongly depends on the diffraction intensity. In order to confirm the rule of mixture, the phase stress was measured by the X-ray method. The macrostress calculated by the rule of mixture agreed very well with the applied stress. Finally, fatigue damage was evaluated by the neutron method. The change of the full width at half maximum in the aluminum phase during fatigue is small. On the other hand, the value in the SiC phase increased steeply just before fracture

  6. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  7. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  8. Investigation of diffractive optical element femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, Grégoire R., E-mail: g.chabrol@ecam-strasbourg.eu [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Ciceron, Adline [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Twardowski, Patrice; Pfeiffer, Pierre [Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Télécom Physique Strasbourg – Pôle API – 300 Bd Sébastien Brant – CS 10413, Illkirch Graffenstaden F 67400 (France); and others

    2016-06-30

    Highlights: • A method for rapid manufacturing of optical diffractive element in BK7 is proposed. • A binary grating in BK7 was successfully machined by femtosecond laser pulses. • Process relying on nonlinear absorption in the dielectric due to photoionization. • The binary grating was analysed by SEM and interferometric microscopy. • Simulations by Fourier modal method supported the measured diffractive efficiency. - Abstract: This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  9. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    Science.gov (United States)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  10. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  11. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  12. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    Science.gov (United States)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  13. Application of a high-temperature neutron diffraction apparatus to the study of refractory oxides

    International Nuclear Information System (INIS)

    Aldebert, P.; Badie, J.-M.; Buevoz, J.-L.; Roult, G.

    1975-01-01

    A furnace allowing studies of refractory materials by neutron diffraction in situ up to 2500 deg C is described. It is fitted on to a new type of time of flight spectrometer the pulsed source of which is given by a correlation chopper. The advantages of this technique in comparison with fixed-wavelength goniometers are developped. The examination at high temperature of several refractory oxides has been carried out with this experimental device. The thermal expansion curve of α alumina has been established with accuracy up to near the melting point. Several high temperature cristalline forms, X form La 2 O 3 , the tetragonal and cubic ZrO 2 , tetragonal HfO 2 , have been studied. Concerning the latter two, the case of their solid solutions 2MO 2 -M' 2 O 3 (with M=Hf or Zr and M'=La or Y) has also been considered, at room temperature only [fr

  14. Study of optical Laue diffraction

    International Nuclear Information System (INIS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-01-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known

  15. Study of optical Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Giridhar, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Allam, Srinivasa Rao, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Satyanarayana, S. V. M., E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Sharan, Alok, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  16. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  17. Diffractive D{sup *}-mesons production in DIS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Vinokurova, Svetlana

    2010-05-15

    This thesis presents a measurement of the cross sections for the production of the charmed mesons in diffractive deep inelastic positron-proton scattering (DIS) interactions of the type ep{yields}eXY, where the system X is separated from a low-mass system Y, by a large rapidity gap where no particles are observed. These diffractive processes can be explained as a result of the exchange of a strongly interacting colour singlet object between the final state particles. In this measurement data taken with the H1 detector in the years 1999-2000, corresponding to an integrated luminosity of L{sub int}=46.7 pb{sup -1} are used. Inclusive DIS events are selected in the kinematic range with the momentum transfer Q{sup 2} element of [2;100] GeV and inelasticity y{sub bj} element of [0.05;07]. The charm quark is tagged by requiring a D{sup *} meson decaying into the channel D{sup *}{yields}D{sup 0}{pi}{sub slow}{yields}K{pi}{pi}{sub slow} inside the central tracking system with transverse momenta p{sub t}(D{sup *})>2 GeV. The forward components of the H1 detector are used to select genuine diffractive events on the basis of the forward sub-detectors activity and of the presence a large rapidity gap in the final state hadrons. The visible charm production cross sections are measured in the diffractive kinematic range M{sub Y} < 1.6 GeV, vertical stroke t vertical stroke < 1 GeV{sup 2} and x{sub P} < 0.04 to be {sigma}(ep{yields}e{sup '}(D{sup *}X)Y)=249{+-}31(stat.){+-}30(sys) pb, where the first uncertainty is statistical and the second systematic. The shape of the differential distributions for diffractive D{sup *} production are well described by the collinear factorisation model which is implemented in the Monte Carlo simulation RAPGAP. (orig.)

  18. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  19. Neutron diffraction study of high temperature phase of K2SeO4

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Koyano, Nobumitsu; Shibuya, Iwao; Hidaka, Masanori; Okazaki, Atsushi.

    1984-01-01

    The crystal structure of high-temperature phase of K 2 SeO 4 has been determined by means of single crystal neutron diffraction. The space group is P6 3 /mmc of hexagonal system with two formula units per unit cell. The structure is characterized by an averaged dispositions of SeO 4 tetrahedra with one of its Se-O bonds pointing parallel and antiparallel to the hexagonal c-axis in addition to the split distribution of potassium atoms. Heavily distorted distribution of oxygen atoms in SeO 4 is observed in Fourier maps corrersponding to split positions and reorientational motion of tetrahedra. This disordered arrangement is found to have close relation with the room temperature orthorhombic structure. The hexagonal-orthorhombic phase transition of K 2 SeO 4 at 472 0 C is grouped to an order-disorder type. (author)

  20. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  1. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  2. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  3. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  4. Diffractive jet production in a simple model with applications to DESY HERA

    International Nuclear Information System (INIS)

    Berera, A.; Soper, D.E.

    1994-01-01

    In diffractive jet production, two high energy hardons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at DESY HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q 2 . Lossless events should be present for small Q 2 , but not for Q 2 larger than 1/R P 2 , where R P is a characteristic size of the Pomeron

  5. X-ray diffraction identification of clay minerals by microcomputer

    International Nuclear Information System (INIS)

    Rodrigues, S.; Imasava, F.J.

    1988-01-01

    The identification of clay minerals by X-ray powder diffraction are done by searching an unknown pattern with a file of standard X-ray diffraction patterns. For this searching done by hand is necessary a long time. This paper shows a program in ''Basic'' language to be utilized in microcomputers for the math of the unknown pattern, using the high velocity of comparison of the microcomputer. A few minutes are used for the match. (author) [pt

  6. Introducing the ARL X'Tra x-ray diffraction system

    International Nuclear Information System (INIS)

    Harris, L.

    2002-01-01

    Full text: The ARL X'Tra is a state-of-the-art solution for powder X-ray diffraction in a large range of applications such as pharmaceuticals and biosciences, chemicals, earth sciences, semi-conductors, metallurgy and ceramics. The X'Tra offers the latest technology in key diffraction components to produce a high performance instrument at an affordable price. This presentation examines some of the hardware and performance features of this instrument. Copyright (2002) Australian X-ray Analytical Association Inc

  7. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  8. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    Energy Technology Data Exchange (ETDEWEB)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Huang, J. W.; Zeng, X. L.; Li, Y.; E, J. C.; Huang, J. Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Sun, T.; Fezzaa, K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Wang, Z. [Physics Division P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-15

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.

  9. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  10. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  11. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  12. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  13. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  14. A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.B. [College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China); Ertekin, R.C. [Department of Ocean and Resources Engineering, University of Hawai' i, Honolulu, HI 96822 (United States); College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China); Duan, W.Y., E-mail: duanwenyangheu@hotmail.com [College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China)

    2015-02-15

    This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.

  15. Coherent and non-coherent double diffractive production of QQ-bar-pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Galoyan, A.S.; Enkovskij, L.L.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.

    1999-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pairs (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc-bar and bb-bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effect in Quark-Gluon Plasma, in the search got intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherently scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ-bar pair, M QQ-bar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη >5 [ru

  16. Coherent and non-coherent double diffractive production of QQ-bar - pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1998-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, M QQb ar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5

  17. X-ray topography under conditions of monochromatic spherical wave diffraction

    International Nuclear Information System (INIS)

    Aristov, V.V.; Polovinkina, V.I.; Ibhikawa, Tetsuya; Kiduta, Seishi.

    1981-01-01

    An X-ray topographic scheme was developed in which there is a large distance between the X-ray source and the specimen. A monochromatic X-ray beam with an angular divergence 6 x 10 - 5 rad obtained by double successive diffraction in the (n 1 , +n 2 ) setting was used. This scheme enables diffraction focusing of a weakly absorbed wave field onto the exit surface of the crystal to be performed. Topographs of a wedge-shaped silicon crystal were obtained. Interference effects such as focusing, anomalous and ordinary Pendelloesung effects peculiar to X-ray spherical wave diffraction were observed in the topographs with high resolution. (author)

  18. Comparative study of macrotexture analysis using X-ray diffraction and electron backscattered diffraction techniques

    International Nuclear Information System (INIS)

    Serna, Marilene Morelli

    2002-01-01

    The macrotexture is one of the main characteristics in metallic materials, which the physical properties depend on the crystallographic direction. The analysis of the macrotexture to middles of the decade of 80 was just accomplished by the techniques of Xray diffraction and neutrons diffraction. The possibility of the analysis of the macrotexture using, the technique of electron backscattering diffraction in the scanning electronic microscope, that allowed to correlate the measure of the orientation with its location in the micro structure, was a very welcome tool in the area of engineering of materials. In this work it was studied the theoretical aspects of the two techniques and it was used of both techniques for the analysis of the macrotexture of aluminum sheets 1050 and 3003 with intensity, measured through the texture index 'J', from 2.00 to 5.00. The results obtained by the two techniques were shown reasonably similar, being considered that the statistics of the data obtained by the technique of electron backscatter diffraction is much inferior to the obtained by the X-ray diffraction. (author)

  19. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  20. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    Science.gov (United States)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  1. Diffraction study of duty-cycle error in ferroelectric quasi-phase-matching gratings with Gaussian beam illumination

    Science.gov (United States)

    Dwivedi, Prashant Povel; Kumar, Challa Sesha Sai Pavan; Choi, Hee Joo; Cha, Myoungsik

    2016-02-01

    Random duty-cycle error (RDE) is inherent in the fabrication of ferroelectric quasi-phase-matching (QPM) gratings. Although a small RDE may not affect the nonlinearity of QPM devices, it enhances non-phase-matched parasitic harmonic generations, limiting the device performance in some applications. Recently, we demonstrated a simple method for measuring the RDE in QPM gratings by analyzing the far-field diffraction pattern obtained by uniform illumination (Dwivedi et al. in Opt Express 21:30221-30226, 2013). In the present study, we used a Gaussian beam illumination for the diffraction experiment to measure noise spectra that are less affected by the pedestals of the strong diffraction orders. Our results were compared with our calculations based on a random grating model, demonstrating improved resolution in the RDE estimation.

  2. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  3. X-ray Laue diffraction with allowance for second derivatives of amplitudes in dynamical diffraction equations

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2014-01-01

    Asymmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The second derivatives of amplitudes in the direction, perpendicular to diffraction plane in the dynamical diffraction equations are taken into account. Using the corresponding Green function a general form for the amplitude of diffracted wave in the crystal is derived. The sizes of the source in both directions as well as the source of crystal distance and non-monochromaticity of the radiation incident on the crystal are taken into account. On the basis of obtained expression the coherent properties of the field depending on the sizes of the source and on the width of the spectrum of the incident radiation are analyzed. Taking into account the second derivatives of amplitudes with respect to the direction, perpendicular to the diffraction plane, the time dependent propagation equations for an X-ray pulse in a perfect crystal are given

  4. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    Science.gov (United States)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  5. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  6. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  7. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    MEHLHORN, THOMAS A.; DESJARLAIS, MICHAEL P.; HAILL, THOMAS A.; LASH, JOEL S.; ROSENTHAL, STEPHEN E.; SLUTZ, STEPHEN A.; STOLTZ, PETER H.; VESEY, ROGER A.; OLIVER, B.

    1999-01-01

    Peak x-ray powers as high as 280 ± 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments

  8. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  9. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  10. Modern techniques of structural neutron diffraction

    International Nuclear Information System (INIS)

    Aksenov, V.L.; )

    1997-01-01

    Modern techniques of neutron diffraction for structural investigations are analyzed. The time-of-flight method and the reverse time-of-flight method are considered briefly. Characteristics of two-crystal and time-of-flight neutron diffractometers are compared. It is pointed that in the future, the great importance will be possessed the development of high-resolution Fourier neutron diffractometers [ru

  11. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    International Nuclear Information System (INIS)

    Li, Li; Zhang, Ziang; Yu, Miao; Song, Zhengxun; Weng, Zhankun; Wang, Zuobin; Li, Wenjun; Wang, Dapeng; Zhao, Le; Peng, Kuiqing

    2015-01-01

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arrays with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ 0  = 1064 nm. The minimal feature size is only several nanometers (sub λ 0 /100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser

  12. Study of diffractive dissociation especially into strange and charmed particles with EHS

    CERN Multimedia

    2002-01-01

    The diffractive production of heavy quark-antiquark pairs leading to strangeness-antistrangeness and charm-anticharm systems is intended to be measured in this experiment. The use of the rapid cycling bubble chamber (RCBC) with a volume of 100 x 40 x 40 cm$^{3}$ and a picture taking rate of 15 Hz as vertex detector and EHS as forward spectrometer is suitable for the first step of this physics programme. Inclusive cross-sections for diffraction dissociation into $s\\bar{s}$ are lacking whereas diffractive $c\\bar{c}$ production is already better known. The gain of more insight into the mechanism of heavy quark-antiquark production, exclusive diffractive reactions with $\\pi^{0}$'s, diffractive resonance production and also the extraction of data for the double Pomeron exchange mechanism are envisaged. \\\\\\\\ This experiment will be run in two parts, the first one recording the entire unbiased sample of $pp$ and $\\pi^{-}p$ interactions, the second however using triggering for beam and high mass target diffraction di...

  13. High contrast stellar observations within the diffraction limit at the Palomar Hale telescope

    Science.gov (United States)

    Mennesson, B.; Hanot, C.; Serabyn, E.; Martin, S. R.; Liewer, K.; Loya, F.; Mawet, D.

    2010-07-01

    We report on high-accuracy, high-resolution (statistical method, baptized "Null Self-Calibration" (NSC), which provides astrophysical null measurements at the 0.001 level, with 1 σ uncertainties as low as 0.0003. Such accuracy translates into a dynamic range greater than 1000:1 within the diffraction limit, demonstrating that the approach effectively bridges the traditional gap between regular coronagraphs, limited in angular resolution, and long baseline visibility interferometers, whose dynamic range is restricted to 100:1. As our measurements are extremely sensitive to the brightness distribution very close to the optical axis, we were able to constrain the stellar diameters and amounts of circumstellar emission for a sample of very bright stars. With the improvement expected when the PALM-3000 extreme AO system comes on-line at Palomar, the same instrument now equipped with a state of the art low noise fast read-out near IR camera, will yield 10-4 to 10-3 contrast as close as 30 mas for stars with K magnitude brighter than 6. Such a system will provide a unique and ideal tool for the detection of young (AUs) of nearby (< 50pc) stars.

  14. White-Beam X-ray Diffraction and Radiography Studies on High-Boron Containing Borosilicate Glass at High Pressures

    Science.gov (United States)

    Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal

    Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.

  15. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  16. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Koetzle, Thomas F. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: tkoetzle@anl.gov; Piccoli, Paula M.B.; Schultz, Arthur J. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-02-21

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a {beta}-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS)

  17. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Science.gov (United States)

    Koetzle, Thomas F.; Piccoli, Paula M. B.; Schultz, Arthur J.

    2009-02-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H⋯O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  18. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    International Nuclear Information System (INIS)

    Koetzle, Thomas F.; Piccoli, Paula M.B.; Schultz, Arthur J.

    2009-01-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  19. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    Science.gov (United States)

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.

  20. Phase transformation in sol-gel prepared zirconia using in-situ high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Srinivasan, R.; Davis, B.H.; Hubbard, C.R.; Cavin, O.B.; Porter, W.D.

    1991-01-01

    Zirconia was precipitated at a pH of 10.5 by admixing a solution of ZrCl 4 and NH 4 OH both rapidly (∼ 1 min) and slowly (∼ 8 hr). The precipitate was calcined at 500C for 5 hours and then furnace cooled. The former exhibited monoclinic phase while the latter yielded tetragonal phase. The pathway from amorphous to crystalline form was followed by in-situ high temperature X-ray diffraction in flowing air and in He. The data showed the evolution of the tetragonal crystalline phase on heating. On rapid cooling the tetragonal phase is retained at R.T., and on slow cooling the transformation to monoclinic phase occurs in air

  1. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  2. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  3. High-pressure phases of uranium monophosphide studied by synchrotron x-ray diffraction

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Benedict, U.

    1988-01-01

    X-ray diffraction studies have been performed on UP powder for pressures up to 51 GPa using synchrotron radiation and a diamond-anvil cell. At ambient pressure UP has the rocksalt structure. The bulk modulus has been determined to B0=102(4) GPa and its pressure derivative to B0’=4.0(8). The cubic...

  4. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  5. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S. van der

    2005-01-01

    We have performed in situ X-ray diffraction measurements at a synchrotron source in order to study the thermal stability of the retained austenite phase in transformation induced plasticity steels during cooling from room temperature to 100 K. A powder analysis of the diffraction data reveals a martensitic transformation of part of the retained austenite during cooling. The fraction of austenite that transforms during cooling is found to depend strongly on the bainitic holding time and the composition of the steel. It is shown that that austenite grains with a lower average carbon concentration have a lower stability during cooling

  6. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  7. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  8. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...... penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  9. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  10. Unitarized model of inclusive and diffractive DIS with Q2 evolution

    International Nuclear Information System (INIS)

    Armesto, Nestor; Salgado, Carlos A.; Tywoniuk, Konrad; Kaidalov, Alexei B.

    2010-01-01

    We discuss the interplay of low-x physics and QCD scaling violations by extending the unified approach describing inclusive structure functions and diffractive production in γ*p interactions proposed in previous papers to large values of Q 2 . We describe the procedure of extracting, from the nonperturbative model, initial conditions for the QCD evolution that respect unitarity. Assuming Regge factorization of the diffractive structure function, a similar procedure is proposed for the calculation of hard diffraction. The results are in good agreement with experimental data on the proton structure function F 2 and the most recent data on the reduced diffractive cross section, x P σ r D(3) . Predictions for both F 2 and F L are presented in a wide kinematical range and compared to calculations within high-energy QCD.

  11. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    Science.gov (United States)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  12. About some practical aspects of X-ray diffraction : From powder to thin film

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ. Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Structure of thin films can be amorphous, polycrystalline or epitaxial, and the films can be prepared as a single layer films, multilayers or as graded films. A complete structure analysis of thin films by means of X-ray diffraction (XRD) usually needs more than one diffraction geometry to be used. Their principles, advantages and disadvantages will be shortly described, especially with respect to their different sampling depth and different response to orientation of diffracting crystallographic planes. Main differences in structure of thin films with respect to powder samples are given by a singular direction of their growth, by their adhesion to a substrate and often also by a simultaneous bombardment by atomic species during the growth. It means that a thermodynamically unstable atomic structures can be found too. These special features of growth of thin polycrystalline films are reflected in often found strong preferred orientation of grains and in residual stresses conserved in the films. The methods of structure analysis of thin films by XRD will be compared with other techniques which can supply structure images on different scales.

  13. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  14. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  15. Laser diffraction analysis of colloidal crystals

    International Nuclear Information System (INIS)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi

    2001-01-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure → random layer structure → layer structure with one sliding degree of freedom → stacking disorder structure → stacking structure with multivariant periodicity → fcc twin structure with twin plane (111) → normal fcc structure → bcc twin structure with twin plane (11-bar2) or (1-bar12) → normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  16. Development of low temperature and high magnetic field X-ray diffraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P., E-mail: nplallaiuc82@gmail.com; Chaddah, P. [UGC-DAE Consortium for Scientific Research, University campus, Khandwa Road, Indore-452001 (India)

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  17. Assessment of Multiple Scattering Errors of Laser Diffraction Instruments

    National Research Council Canada - National Science Library

    Strakey, Peter

    2003-01-01

    The accuracy of two commercial laser diffraction instruments was compared under conditions of multiple scattering designed to simulate the high droplet number densities encountered in liquid propellant rocket combustors...

  18. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  19. Observation of strong ferromagnetism in the half-Heusler compound CoTiSb system

    Energy Technology Data Exchange (ETDEWEB)

    Sedeek, K., E-mail: KamiliaSedeek@yahoo.com; Hantour, H.; Makram, N.; Said, Sh. A.

    2016-06-01

    Strong ferromagnetism has been detected in the semiconducting half-Heusler CoTiSb compound. The synthesis process was carried out by direct fusion of highly pure Co, Ti, and Sb in an evacuated quartz tube. The structural, micro structural and magnetic properties were investigated. The crystal structure was refined from X-ray powder diffraction data by the Rietveld method. Applying the search match program, three nano-crystalline phases of CoTiSb, Ti{sub 3}Sb and CoTi{sub 2} (50%, 33.3% and 16.7% respectively) were identified for the prepared system. The term “phase” is used to address the co-existence of different stable chemical composition for the same half-Heusler alloy. The scanning electron microscope SEM and the high resolution transmission electron microscope HR-TEM were applied to characterize the morphology, size, shape, crystallinity and lattice spacing. A mixture of ordered and disordered arrangement was detected. Well defined nano-crystalline structure with an average interatomic distance equals 0.333 nm and sharp diffraction spots were measured. Contrary to this, the HR-TEM and electron diffraction image shows distorted structured planes and smeared halo surrounded by weak rings. Thermo-magnetic measurements (M–T) have been measured between 640 °K and 920 °K. Clear magnetic phase transition is detected above 900 °K (T{sub c}), in addition to a second possible phase transition (T{sub FF}) around 740 °K. The latter is clarified by plotting ΔM/ΔT vs. T. To determine the type of the detected phase transitions, the field dependence of magnetization was measured at 300 °K and 740 °K. Arrot plots (M{sup 2}−H/M) confirm the ferromagnetic character at both temperatures. It may be reasonable to assume the T{sub FF} transition as an additional ferromagnetic contribution stemming from some sort of exchange interactions. A tentative magnetic phase diagram is given. Overall, the present results suggest that the prepared multiphases CoTiSb system does

  20. Hard X-ray nanoimaging method using local diffraction from metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Konishi, Shigeki; Shimomura, Sho; Azuma, Hiroaki; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2014-01-13

    A simple hard X-ray imaging method achieving a high spatial resolution is proposed. Images are obtained by scanning a metal wire through the wave field to be measured and rotating the sample to collect data for back projection calculations; the local diffraction occurring at the edges of the metal wire operates as a narrow line probe. In-line holograms of a test sample were obtained with a spatial resolution of better than 100 nm. The potential high spatial resolution of this method is shown by calculations using diffraction theory.